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Abstract

Derivative longevity risk solutions, such as bespoke and indexed longevity swaps, al-
low pension schemes and annuity providers to swap out longevity risk, but introduce
counterparty credit risk, which can be mitigated if not fully eliminated by collat-
eralization. We examine the impact of bilateral default risk and collateral rules on
the marking to market of longevity swaps, and show how longevity swap rates must
be determined endogenously from the collateral flows associated with the marking-
to-market procedure. For typical interest rate and mortality parameters, we find
that the impact of collateralization is modest in the presence of symmetric default
risk, but more pronounced when default risk and/or collateral rules are asymmet-
ric. Our results suggest that the overall cost of collateralization is comparable with,
and often much smaller than, that found in the interest-rate swaps market (as a
result of the offsetting effects of interest rate and longevity risks), which may then
provide the appropriate reference framework for the credit enhancement of both
indemnity-based and indexed longevity risk solutions.
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1 Introduction

The market for longevity-linked securities and derivatives has recently experienced a

surge in transactions in longevity swaps. These pure longevity hedges are agreements

between two parties to exchange fixed payments against variable payments linked to

the number of survivors in a reference population (see Dowd et al., 2006). Table 1

presents a list of recent deals that have been publicly disclosed. So far, transactions have

mainly involved pension funds and annuity providers wanting to hedge their exposure

to longevity risk but without having to bear any basis risk. The variable payments in

such longevity swaps are designed to match precisely the mortality experience of each

individual hedger: hence the name bespoke longevity swaps. This is essentially a form of

longevity risk insurance, similar to annuity reinsurance in reinsurance markets. Indeed,

most of the longevity swaps executed to date have been bespoke, indemnity-based swaps

of the kind familiar in reinsurance markets. This is true despite the fact that some of the

swaps listed in table 1 have been arranged by investment banks: the banks have worked

with insurance companies (in some cases insurance company subsidiaries) in order to

deliver a solution in a format familiar to the counterparty.

A fundamental difference from other forms of reinsurance, however, is that longevity

swaps are typically collateralized, whereas typical insurance/reinsurance transactions

are not.1 The main reason is that longevity swaps are often part of a wider de-risking

strategy involving other collateralized instruments (interest-rate and inflation swaps,

for example), and also the fact that hedgers have been increasingly concerned with

counterparty risk2 in the wake of the Global Financial Crisis of 2008-09. In this article, we

1One rationale for this is that reinsurers aggregate several uncorrelated risks and pool-
ing/diversification benefits compensate for the absence of collateral (e.g., Lakdawalla and Zanjani, 2007;
Cummins and Trainar, 2009). Insurers/reinsurers are still required by their regulators to post regulatory
or solvency capital which plays a similar role to collateral.

2Basel II (2006, Annex 4) defines counterparty risk as ‘the risk that the counterparty to a transaction
could default before the final settlement of the transaction’s cash flows’. The recent Solvency II proposal
makes explicit allowance for a counterparty risk module in its ‘standard formula’ approach; see CEIOPS
(2009).
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provide a framework to quantify the trade-off between the exposure to counterparty risk

in longevity swaps and the cost of credit enhancement strategies such as collateralization.

As there is no accepted framework yet for marking to market/model longevity swaps,

hedgers and hedge suppliers look to other markets to provide a reference model for

counterparty risk assessment and mitigation. In interest-rate swap markets, for example,

the most common form of credit enhancement is the posting of collateral. According to

the International Swap and Derivatives Association (ISDA) almost every swap at major

financial institutions is ‘bilaterally’ collateralized (ISDA, 2010b), meaning that either

party is required to post collateral depending on whether the market value of the swap

is positive or negative.3 The vast majority of transactions is collateralized according to

the Credit Support Annex to the Master Swap Agreement introduced by ISDA (1994).

The Global Financial Crisis highlighted the importance of bilateral counterparty risk

and collateralization for over-the-counter markets, spurring a number of responses (e.g,

ISDA, 2009; Brigo and Capponi, 2009; Assefa et al., 2010; Brigo et al., 2011). The Dodd-

Frank Wall Street Reform and Consumer Protection Act (signed into law by President

Barack Obama on July 21, 2010) is likely to have a major impact on the way financial

institutions will manage counterparty risk in the coming years.4 The recently founded

Life and Longevity Markets Association (LLMA) 5 has counterparty risk at the center

of its agenda, and will certainly draw extensively from the experience garnered in fixed-

income and credit markets.

The design of collateralization strategies is intended to address the concerns aired by

pension trustees regarding the efficacy of longevity swaps, but introduces another dimen-

sion in the traditional pricing framework used for insurance transactions. The ‘insurance

3‘Unlike a firm’s exposure to credit risk through a loan, where the exposure to credit risk is unilateral
and only the lending bank faces the risk of loss, counterparty credit risk creates a bilateral risk of loss:
the market value of the transaction can be positive or negative to either counterparty to the transaction.
The market value is uncertain and can vary over time with the movement of underlying market factors.’
(Basel II, 2006, Annex 4).

4See, for example, ‘Berkshire may scale back derivative sales after Dodd-Frank’, Bloomberg, Au-
gust 10, 2010.

5See http://www.llma.org.
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premium’ embedded in a longevity swap rate reflects not only the aversion (if any) of the

counterparties to the risk being transferred and the cost of regulatory capital involved

in the transaction, but also the expected costs to be incurred from posting collateral

during the life of the swap. The fact that collateral is costly simply reflects the costs

entailed by credit risk mitigation. To quantify the impact of collateral on swap rates, we

must examine the relative sensitivity of the counterparties to its cost. Let us first take

the perspective of a hedge supplier (reinsurer or investment bank) issuing a collateralized

longevity swap to a counterparty (pension fund or annuity provider). Whenever the swap

is sufficiently out-of-the-money, the hedge supplier is required to post collateral, which

can be used by the hedger to mitigate losses in the event of default. Although interest

on collateral is typically rebated, there is both a funding cost and an opportunity cost,

as the posting of collateral depletes the resources the hedge supplier can use to meet

her capital requirements at aggregate level as well as to write additional business. On

the other hand, whenever the swap is sufficiently in-the-money, the hedge supplier will

receive collateral from the counterparty, thus benefiting from capital relief in regulatory

valuations and freeing up capital that can be used to sell additional longevity protection.

The benefits can be far larger if collateral can be re-pledged for other purposes, as in the

interest-rate swaps market.6 The same considerations can be made from the viewpoint of

the hedger, but the funding needs and opportunity costs of the two parties are unlikely to

offset each other exactly. This is particularly relevant for transactions involving parties

subject to different regulatory frameworks. In the UK and several other countries, for

example, longevity risk exposures are more capital intensive for hedge suppliers, such as

insurers, than for pension funds.7

In the absence of collateral, and ignoring longevity risk aversion, swap rates depend

6According to ISDA (2010b),the vast majority of collateral is rehypothecated for other purposes in
interest-rate swap markets. Currently, collateral can be re-pledged under the New York Credit Support
Annex, but not under the English Credit Support Deed (see ISDA, 2010a).

7This asymmetry is, in part, a by-product of rules allowing, for example, pension liabilities to be
quantified by using outdated mortality tables or discount rates reflecting optimistic expected returns.
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on best estimate survival probabilities for the hedged population and on the degree of

covariation between the floating leg of the swap and the defaultable term structure of in-

terest rates facing the hedger and the hedge supplier.8 This means that a proper analysis

of a longevity swap cannot disregard the sponsor’s covenant when the hedger is a pen-

sion plan (see section 3 below). In the presence of collateralization, longevity swap rates

are also shaped by the expected collateral costs, and swap valuation formulae involve a

discount rate reflecting the cost of collateral. As a result, default-free valuation formulae

are not appropriate even in the presence of full collateralization and the corresponding

absence of default losses.9

We quantify collateral costs in two ways: i) in terms of funding costs that are

incurred or mitigated when collateral is posted or received, and ii) as the opportunity

cost of selling additional longevity protection. In both cases, we find that, for typical

interest rate and mortality parameters, the impact of collateralization on swap rates is

modest when default risk and collateral rules are symmetric. There are two opposing

effects at play here:

i) On the one hand, the receiver of the fixed survival rate (the hedge supplier) posts

collateral when mortality is lower and hence longevity exposures are more capital inten-

sive. On the other hand, she receives collateral when mortality is higher and longevity

protection less capital intensive. The overall effect is to push (fixed) swap rates higher,

to compensate the hedge supplier for the positive dependence between collateral flows

and capital costs.

ii) When the hedge supplier is out-of-the-money, collateral outflows are larger in low

interest rate environments (i.e., when liabilities are discounted at a lower rate), hence

there is a negative relationship between the amount of collateral posted and the hedge

supplier’s funding/opportunity costs. On the other hand, when the hedge supplier is

8Along the same lines, Inkmann and Blake (2010) show how the discount rate for the valuation of
pension liabilities should reflect funding risk.

9See Johannes and Sundaresan (2007) for the case of symmetric default risk and full collateralization
in interest-rate swaps.
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in-the-money, collateral inflows are larger exactly when funding/opportunity costs are

more significant. The opposite situation is faced by the hedger, who demands lower

swap rates as a compensation for the positive dependence between collateral costs and

collateral amounts.

When default risk and/or collateral rules are asymmetric, the offsetting effects are

of different magnitudes and, as a result, the impact of collateral costs on longevity

swap rates is larger. For example, we find that swap rates increase substantially when

the hedger has a lower credit standing and the collateral rules are more favorable to

the hedge supplier. Although collateralization introduces an explicit link between the

individual risk exposures and the hedge supplier’s funding risk (hence some of the pool-

ing/diversification benefits used to substitute for collateralization in the standard insur-

ance model may be lost), in our examples we find that the opposite effects of longevity and

interest rate risk make the overall impact of collateralization comparable with, and typi-

cally lower than, that observed in fixed-income markets (e.g., Johannes and Sundaresan,

2007). An important implication is that the interest-rate swaps market might provide

an appropriate framework for the collateralization of bespoke solutions, even though the

latter lack of the transparency and standardization benefits associated with indexed-

based instruments. Investment banks have sold index-based longevity swaps which have

a structure that would be more familiar to capital markets investors, but they have so far

been less popular than bespoke solutions. Nevertheless, for the longevity swaps market

to really take off, it is necessary to expand beyond the limits of the reinsurance market

and attract such new investors. We therefore also examine the costs of collateral in

index-based swaps.

On the methodological side, we show how longevity swap rates must be determined

endogenously from the dynamic marking to market10 of the swap and the collateral

10Here and in what follows, by ‘market value’ and ‘marking to market’ we mean that assets and
liabilities are assumed to be valued according to accounting/regulatory standards, all of which have now
adopted a market-consistent valuation approach.
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rules specified by the contract. To see why, note that the market value of the swap at

each valuation date depends on the evolution of the relevant state variables (mortality,

interest rates, credit spreads), as well as on the swap rate locked in at inception. On

the other hand, the swap’s market value will typically affect collateral amounts and,

in a setting where collateral is costly, will embed the market value of expected future

collateral flows. Hence, the swap rate can only be determined by explicitly taking into

account the marking-to-market process and the dynamics of collateral posting. To avoid

the computational burden of nested Monte Carlo simulations, we use an iterative proce-

dure based on the Least-Squares Monte Carlo approach11 (see Glassermann, 2004, and

references therein). We provide several numerical examples showing how different col-

lateralization rules shape longevity swap rates giving rise to margins in (best estimate)

survival probabilities reflecting the cost of future collateral flows. Although our focus is

on longevity risk solutions, the approach can be applied to other instruments, such as

bespoke solutions for inflation and credit risk.

Our work contributes to the existing literature on longevity risk pricing in at least

three ways: i) we introduce default risk in the pricing of longevity risk solutions, and

properly address its bilateral nature; ii) we explicitly allow for collateralization rules,

which are the backbone of any real-world hedging solution and materially affect the

pricing of over-the-counter transactions; and iii) we introduce a ‘structural’ dimension

in an otherwise reduced-form pricing framework, by allowing for funding/opportunity

costs associated with longevity risk exposures held by hedgers and hedge suppliers. As

there is essentially no publicly available information on swap rates, our approach12 has

the advantage of using publicly available information on credit markets and regulatory

standards, without having to rely exclusively on calibration to primary insurance market

prices, approximate hedging methods or assumptions on agents’ risk preferences (e.g.,

11A similar approach is used by Bacinello et al. (2010) for surrender guarantees in life policies and by
Bauer et al. (2010b) for the computation of capital requirements within the Solvency II framework.

12Similarly, Biffis and Blake (2010a) endogenize longevity risk premia by introducing asymmetric
information and capital requirements in a risk-neutral setting.
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Dowd et al., 2006; Ludkovski and Young, 2008; Bauer et al., 2010a; Biffis et al., 2010;

Chen and Cummins, 2010; Cox et al., 2010, among others).

The article is organized as follows. In the next section, we introduce longevity swaps

and formalize their payoffs. We consider the case of both bespoke and index-based swaps,

but, in the latter case, we ignore the issue of basis risk13 to keep the article focused. In

section 2.1, we examine the marking to market of a longevity swap during its lifetime

to demonstrate the impact of counterparty risk on the hedger’s balance sheet. Section 3

introduces bilateral default risk in longevity swap valuation formulae. We identify the

main channels through which default risk affects the market value of swaps and show

why an iterative procedure is needed to compute swap rates. Section 4 introduces credit

enhancement in the form of collateralization, and shows how longevity swap rates are

affected even in the presence of full cash collateralization (and hence absence of default

losses). We explain how swap rates can be computed by using an iterative procedure

based on the Least-Squares Monte Carlo approach. In section 5, several stylized examples

are provided to understand how different collateralization rules may affect longevity swap

rates. Concluding remarks are offered in section 6. Further details and technical remarks

are collected in an appendix.

< Table 1 about here >

2 Longevity swaps

We consider a hedger (insurer selling annuities, pension fund), referred to as party A,

and a hedge supplier (reinsurer, investment bank), referred to as counterparty B. Agent

A has the obligation to pay amounts XT1 , XT2 , . . ., possibly dependent on interest rates

and inflation, to each survivor at fixed dates 0 < T1 ≤ T2, . . . of an initial population

13See, for example, Coughlan et al. (2011), Salhi and Loisel (2010) and Stevens et al. (2010b) for some
results related to this risk dimension.
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of n individuals alive at time zero (annuitants or pensioners). We are clearly restricting

our attention to homogeneous liabilities for ease of exposition, more general situations

requiring obvious modifications. Party A’s liability at a generic payment date T > 0

is given by the random variable (n − NT )XT , where NT counts the number of deaths

experienced by the population during the period [0, T ]. Assuming that the individuals’

death times have common intensity14 (µt)t≥0, the expected number of survivors at time

T can be written as EP [n−NT ] = npT , with the survival probability pT given by (see

the appendix)

pT := EP

[
exp

(
−

∫ T

0
µtdt

)]
. (2.1)

Here and in the following, P denotes the real-world probability measure. The intensity

could be modeled by using, for example, any of the stochastic mortality models consid-

ered in Cairns et al. (2009). For our examples, we will rely on the simple Lee-Carter

model.

Let us now consider a financial market and introduce the risk-free rate process (rt)t≥0.

We assume that a market-consistent price of the liabilities can be computed by using

a risk-neutral measure P̃, equivalent to P, such that the death times have the same

intensity process (µt)t≥0 (with different dynamics, in general, under the two measures;

see Biffis et al., 2010). The time-0 market value of the aggregate liability can then be

written as

EP̃

[
∑

i

exp

(
−

∫ Ti

0
rtdt

)
(n−NTi

)XTi

]
= n

∑

i

EP̃

[
exp

(
−

∫ Ti

0
(rt + µt)dt

)
XTi

]
.

For the moment, we take the pricing measure as given: we will give it more structure

later on.

We consider two instruments which A can enter into with B to hedge its exposure: a

14Intuitively, µt represents the instantaneous conditional death probability for an individual alive at
time t. As discussed more in detail in the appendix, for tractability we restrict our attention to the case
of doubly stochastic (or Cox, conditionally Poisson) death times.
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bespoke longevity swap and an index-based longevity swap. In these swaps, in contrast

with interest rate swaps, the fixed leg will be a series of fixed rates each one pertaining to

an individual payment date. The reason is that mortality increases substantially at old

ages and a single fixed rate would introduce a growing mismatch between the cashflows

provided by the swap and those needed by the hedger. However, as with interest rate

swaps, we can treat a longevity swap as a portfolio of forward contracts on the underlying

floating (survival) rate.15 In this section, we ignore default risk and focus on individual

payments at maturity T > 0. Throughout the article, we always assume the perspective

of the hedger.

A bespoke longevity swap allows party A to pay a fixed rate pN ∈ (0, 1) against

the realized survival rate experienced by the population between time zero and time T .

Assuming a notional amount equal to the initial population size, n, the net payout to

the hedger at time T is16

n

(
n−NT

n
− pN

)
,

i.e., the difference between the realized number of survivors and the pre-set number of

survivors npN agreed at inception. Letting S0 denote the market value of the swap at

inception, we can write

S0 = nEP̃

[
exp

(
−

∫ T

0
rtdt

)(
n−NT

n
− pN

)]

= nEP̃

[
exp

(
−

∫ T

0
(rt + µt)dt

)]
− nB(0, T )pN ,

(2.2)

with B(0, T ) denoting the time-zero price of a zero-coupon bond with maturity T . By

15With a slight abuse of terminology, we use the term ‘swap rate’ for individual forward rates as well
as for swap curves (a series of swap rates). We note that swap curves are often summarized by the
improvement factor applied to the survival probabilities of a reference mortality table/model.

16For ease of exposition, here and in the following sections, we consider contemporaneous settlement
only. Other settlement conventions (e.g. in arrears) have negligible effects, but make valuation formulae
more involved when bilateral and asymmetric default risk is introduced.
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setting S0 = 0, we obtain the swap rate as

pN = p̃T +B(0, T )−1CovP̃
(
exp

(
−

∫ T

0
rtdt

)
, exp

(
−

∫ T

0
µtdt

))
, (2.3)

where the risk-adjusted survival probability p̃T is defined as in (2.1) with expectations

taken under P̃. Expression (2.3) shows that if the intensity of mortality is uncorrelated

with bond market returns (a reasonable first-order approximation), the longevity swap

curve just involves the survival probabilities {p̃Ti
} relative to the different maturities

{Ti}. Several studies have recently addressed the issue of how to quantify risk-adjusted

survival probabilities, for example, by calibration to annuity prices and books of life

policies traded in secondary markets, or by use of approximate hedging methods (see

references in Section 1). As there is essentially no publicly available information on swap

rates, for our numerical examples we will suppose a baseline case in which p̃Ti
= pTi

for

each maturity Ti and focus on how counterparty default risk and collateral requirements

might generate a positive or negative spread on best estimate survival rates. Although in

what follows, we mainly concentrate on longevity risk, in practice, the floating payment of

a longevity swap might involve a LIBOR component or survival indexation rules different

from the ones considered above. To keep the setup general, we will at times consider

instruments making a generic variable payment, P , and write the corresponding swap

rate p as

p = EP̃ [P ] +B(0, T )−1CovP̃
(
exp

(
−

∫ T

0
rtdt

)
, P

)
. (2.4)

The setup can easily accommodate index-based longevity swaps, standardized

instruments allowing the hedger to pay a fixed rate pI ∈ (0, 1) against the realized value

of a survival index (It)t≥0 at time T . The latter might reflect the mortality experience

of a reference population closely matching that of the liability portfolio. Examples are

represented by the LifeMetrics index developed by J.P. Morgan, the Pensions Institute
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and Towers Watson,17 or the Xpect indices developed by Deutsche Boerse.18 The relative

advantages and disadvantages of index-based versus bespoke swaps are discussed, for

example, in Biffis and Blake (2010b). Assuming that the index admits the representation

It = exp(−
∫ t

0 µ
I
sds), with (µIt )t≥0 the intensity of mortality of a reference population,

the swap rate pI is given again by expression (2.3), but with the process µ replaced by

µI , and with p̃T replaced by the corresponding risk-adjusted survival probability p̃IT .

2.1 The marking-to-market (MTM) process

Longevity swaps are not currently exchange traded and there is no commonly accepted

framework for counterparties to mark to market/model their positions.19 The presence of

counterparty default risk and collateralization rules, however, makes the MTM procedure

a very important feature of these transactions for at least three reasons. First, at each

payment date, the difference between the variable and pre-set payment generates a cash

inflow or outflow to the hedger, depending on the evolution of mortality. In the absence of

basis risk (which is the case for bespoke solutions), these differences show a pure ‘cashflow

hedge’ of the longevity exposure in operation. Second, as market conditions change (e.g.,

mortality patterns, counterparty default risk), the MTM procedure could result in the

swap switching status in the hedger’s balance sheet between that of an asset and that of

a liability. This may have the implication that, even if the swap payments are expected

to provide a good hedge against longevity risk, the hedger’s position may still turn into

a liability if, for example, deterioration in the hedge supplier’s credit quality shrinks the

expected present value of the variable payments. Third, for solvency requirements, it is

important to value a longevity swap under extreme market/mortality scenarios (‘stress

testing’). This means, for example, that even if a longevity swap qualifies as a liability on

a market-consistent basis, it might still provide considerable capital relief when valued

17See www.lifemetrics.com.
18See www.xpect-index.com.
19At the time of writing, LLMA was working on this issue.
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on a regulatory basis.

To illustrate some of these points, let us consider the hypothetical situation of an

insurer A with a liability represented by a group of ten thousand 65-year-old annuitants

drawn from the population of England & Wales in 1980. We assume that party A entered

a 25-year pure longevity swap in 1980 and we follow the evolution of the contract until

maturity. The population is assumed to evolve according to the death rates reported

in the Human Mortality Database (HMD) for England & Wales.20 We assume that

interest-rate risk is hedged away through interest rate swaps, locking in a rate of 5%

throughout the life of the swap. The role of collateral is examined later on; here, we

show how the hedging instrument operates from the point of view of the hedger. For

this bespoke solution, the market value of each floating-for-fixed payment occurring at

a generic date T can be computed by using the valuation formula

St =nE
P̃

t

[
exp

(
−

∫ T

t

rsds

)(
n−Nt

n
exp

(
−

∫ T

t

µsds

))]
− nB(t, T )pN , (2.5)

for each time t in [0, T ] at which no default has yet occurred, with B(t, T ) denoting the

market value of a zero-coupon bond with time to maturity T−t, and EP̃
t [·] the conditional

expectation given the information available at time t. As a simple benchmark case, we

assume that market participants receive information from the HMD and use the Lee-

Carter model to value longevity-linked cashflows. In other words, at each MTM date

(including inception), longevity swap rates are based on Lee-Carter forecasts computed

using the latest HMD information available.21 Figure 1 illustrates the evolution of swap

survival rates for an England & Wales cohort tracked from age 65 in 1980 to age 90

in 2005. It is clear that the systematic underestimation of mortality improvements by

the Lee-Carter model in this particular example will mean that the hedger’s position

20See www.mortality.org.
21See Dowd et al. (2010a,b); Cairns et al. (2011) for a comprehensive analysis of alternative mortality

models; see also Girosi and King (2008) and Pitacco et al. (2009).
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will become increasingly in-the-money as the swap matures. This is shown in Figure 2.

In practice, the contract may allow the counterparty to cancel the swap or re-set the

fixed leg for a nonnegative fee, but we ignore these features in this example. Figure 2

also reports the sequence of cash inflows and outflows generated by the swap, which

are lower ex-post than what was anticipated from an examination of the MTM basis.

As interest rate risk is hedged − and again ignoring default risk for the moment − cash

inflows/outflows arising in the backtesting exercise only reflect the difference between the

realized survival rates and the swap rates locked in at inception. On the other hand, the

swap’s market value reflects changes in market swap rates, which by assumption follow

the updated Lee-Carter forecasts plotted in Figure 1 and differ from the realized survival

rates. As is evident from Figure 2, the credit exposure of a longevity swap is close to zero

at inception and at maturity, but may be sizable in between, depending on the trade-

off between changes in market/mortality conditions and the residual swap payments

(amortization effect). The credit exposure is quantified by the replacement cost, i.e.,

the cost that the nondefaulting counterparty would have to incur at the default time

to replace the instrument at market prices then available. As a simple example which

predicts the next section, let us introduce credit risk (but no default) and assume that

in 1988 the credit spread of the hedge supplier widens across all maturities by 25 and 50

basis points. The impact of these two scenarios on the hedger’s balance sheet is dramatic,

as shown again in Figure 2, demonstrating how MTM profits and losses can jeopardize

a successful cashflow hedge.

< Figure 1 about here >

< Figure 2 about here >
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3 Counterparty default risk

The backtesting exercise of the previous section has demonstrated the importance of the

hedge supplier’s credit risk and the marking to market procedure in assessing the value

of a longevity swap to the hedger. A correct approach, however, should allow for the fact

that counterparty risk is bilateral. This is the case even when the hedger is a pension

plan. Private sector defined benefit pension plans in countries such as the UK are founded

on trust law and rely on a promise by (rather than a guarantee from) the sponsoring

employer to pay the benefits to plan members. This promise is known as the ‘sponsor

covenant’. The strength of the sponsor covenant depends on both the financial strength

of the employer and the employer’s commitment to the scheme.22 As a reasonable but

imperfect proxy for the effect of the sponsor covenant, we use the sponsor’s default

intensity (party A’s default intensity). For large corporate pension plans, the intensity

can be derived/extrapolated from spreads observed in corporate bond and CDS markets.

For smaller plans, an analysis of the funding level and strategy of the scheme is required.

Assume that both party A (the hedger) and B (the hedge supplier) may default

at random times τA, τB, admitting default intensities23 (λAt )t≥0, (λ
B
t )t≥0. Defining by

τ := min(τA, τB) the default time of the swap transaction, we further assume that,

on the event {τ ≤ T}, the nondefaulting counterparty, say party i, receives a fraction

ψj ∈ [0, 1] (i 6= j, with i, j ∈ {A,B}) of the market value of the swap before default,

Sτ−, if she is in-the-money, otherwise she has to pay the full pre-default market value

Sτ− to the defaulting counterparty. Following Duffie and Huang (1996), we can then

22In the UK, for example, The Actuarial Profession (2005, par. 3.2) defined the sponsor covenant
as: “the combination of (a) the ability and (b) the willingness of the sponsor to pay (or the ability of
the trustees to require the sponsor to pay) sufficient advance contributions to ensure that the scheme’s
benefits can be paid as they fall due.” See also The Pensions Regulator (2009).

23For tractability and symmetry with the mortality model of section 2, we work with doubly stochastic
default times (see the appendix). The main drawback is that the occurrence of default does not affect the
conditional default probability of the surviving counterparty, thus limiting the extent to which close-out
risk can be properly modelled.
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write the market value of a swap with notional amount n as

S0 =nE
P̃

[
exp

(
−

∫ T

0
(rt + 1{St<0}(1− ψA)λAt + 1{St≥0}(1− ψB)λBt )dt

)(
P − pd

)]
,

(3.1)

where P denotes the variable payment, pd the fixed rate, and the indicator function

1H takes the value of unity if the event H is true, zero otherwise. To understand

the above formula, note that, in our setting, the risk-neutral valuation of a defaultable

claim involves the use of a default-risk-adjusted short rate rt + λAt + λBt and dividend

payment λAt (ψ
A1St−<0 + 1St−≥0) + λBt (ψ

B1St−≥0 + 1St−<0) determined by the recovery

rules described above. As a result, the valuation formula (3.1) entails discounting at a

spread above the risk-free rate given by

Λt :=λ
A
t + λBt − λAt (ψ

A1St<0 + 1St≥0)− λBt (ψ
B1St≥0 + 1St<0)

=1{St<0}(1− ψA)λAt + 1{St≥0}(1− ψB)λBt ,

showing a switching-type dependence on the characteristics of the counterparty that

is out-of-the-money at each given time prior to default. The swap rate admits the

representation

pd = EP̃[P ] +
CovP̃

(
exp

(
−
∫ T

0 (rt + Λt)dt
)
, P

)

EP̃

[
exp

(
−
∫ T

0 (rt + Λt)dt
)] , (3.2)

and hence depends in a complex way not only on the interaction between the variable

payments and risk factors such as interest rates, default intensities and recovery rates,

but also on the path of the swap’s market value itself. When P does not include a

demographic component, as in the case of interest-rate swaps, the covariance term is

typically negative. To see this, consider the case of the standard swap valuation formula

obtained by assuming that both counterparties have the same default intensity (λt :=

λAt = λBt ) and there is no recovery conditional on default (ψA = ψB = 0). If the credit
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risk of the counterparties is equal to the average credit quality of the LIBOR panel, the

discount rate in (3.2) is simply given by r+λ, where λ is just the LIBOR-Treasury (TED)

spread. For a swap paying the LIBOR rate, we would then have a negative covariance

term and hence pd ≤ EP̃[P ]. When P only includes a demographic component, as in

expression (2.3) for example, we may expect the covariance term also to be negative, as

longevity-linked payments are likely to be positively correlated with the credit quality of

hedge suppliers24 and companies with significant pension liabilities. The case of floating

payments linked to both mortality and interest rates would then suggest a swap rate

satisfying pd ≤ EP̃[P ]. In the next section, we will show that this is not necessarily the

case. To understand why, consider, for example, the case of full recovery (ψA = ψB = 1):

expression (3.2) reduces to a default-free risk-neutral valuation formula, irrespective of

both the default intensities of the counterparties and the costs involved by the credit

enhancement tools needed to ensure that full recovery is indeed achieved upon default!

Counterparty risk can be mitigated in a number of ways, for example by introducing

termination rights (e.g., credit puts and break clauses) or using credit derivatives (e.g.,

credit default swaps and credit spread options). We will focus on collateralization, a

form of direct credit support requiring each party to post cash or securities when it

is out-of-the-money. For simplicity, we consider the case of cash, which is by far the

most common type of collateral (e.g., ISDA, 2010a) and allows us to disregard close-out

risk, the risk that the value of collateral may change at default. In the interest-rate

swaps market, Johannes and Sundaresan (2007) find evidence of costly collateral by

comparing swap market data with swap values based on portfolios of futures and forward

contracts. We cannot carry out a similar exercise for longevity swaps, because there are

no publicly available data on these transactions. On the other hand, we can quantify

the funding/opportunity costs associated with the collateral flows originating from the

marking-to-market procedure. We will therefore work from the bottom up to ‘synthesize’

24This is a reasonable assumption for monoline insurers such as pension buyout firms, but might be
less so for well-diversified reinsurers.
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the dynamics of collateral costs for a representative longevity-linked liability.

4 Collateralization

Collateral agreements reflect the amount of acceptable credit exposure that each party

agrees to take on. We will consider simple collateral rules capturing the main features

of the problem. Formally, let us introduce the pre-default collateral process25 (Ct)t≥0,

which indicates how much cash, Ct, to post at each time t prior to default in response

to changes in market conditions, including, in particular, the MTM value of the swap

(we provide explicit examples below). Again, we develop our analysis from the point of

view of the hedger, so that Ct > 0 (Ct < 0) means that party A is holding (posting)

collateral. Using the notation a+ := max(a, 0) and a− := max(−a, 0), the recovery rules

take the following form:

• On the event {τA ≤ min(τB, T )} (hedger’s default), party B (the hedge supplier)

recovers any collateral received by the hedger an instant prior to default, C−
τA−

,

and pays the full MTM value of the swap to party A if SτA− ≥ 0. The net flow to

party A is then S+
τA−

− C−
τA−

.

• On the event {τB ≤ min(τA, T )} (hedge supplier’s default), party A (the hedger)

pays the full MTM value of the swap to party B if SτB− < 0, and recovers any

collateral received by B an instant prior to default, C+
τB−

. The net flow to party

A can then be written as −S−
τB−

+ C+
τB−

.

• Whenever the nondefaulting counterparty, say A, is out-of-the-money, payment

of the full MTM value of the swap is accomplished by party A recovering the

extra amount (Sτ− − Cτ−)
+ in case of overcollateralization, or by party A paying

the extra amount (Cτ− − Sτ−)
+ in case of undercollateralization. In case of full

25In other words, the actual collateral process supporting the transaction is (1{τ>t}Ct)t≥0; hence, we
are not concerned with the value taken by Ct after default.
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collateralization, party A simply loses any collateral posted with B.

To obtain neater results, it is convenient to express the collateral before default of

either party as a fraction of the MTM value of the swap,

Ct =
(
cBt 1{St−≥0} + cAt 1{St−<0}

)
St−, (4.1)

where cA, cB are two nonnegative left-continuous processes giving the fraction of the

MTM value of the swap that is posted as collateral by party A or B, respectively. Note

that representation (4.1) comes at a cost: we cannot encompass the case when collateral

is posted by a counterparty at inception (a form of overcollateralization), which may be

the case for some transactions. Finally, we introduce a nonnegative continuous process

(δt)t≥0 representing the yield on collateral, in the sense that holding/posting collateral

of amount Ct yields/costs instantaneously the net amount δtCt (after rebate). Instead

of capturing simultaneously the perspective of both counterparties with δ, it may be

convenient to introduce some asymmetry by considering δt = δAt 1{St−<0} + δBt 1{St−≥0},

so that δAt (δBt ) can be interpreted as the cost of posting collateral for party A (B) when

it is out-of-the-money. Denoting by pc the swap rate available in case of collateralization,

we can write the MTM value of the swap as in (3.1), but with the spread Λ now replaced

by (see the appendix for a proof)

Γt = λAt (1− cAt )1{St<0} + λBt (1− cBt )1{St≥0} −
(
δAt c

A
t 1{St<0} + δBt c

B
t 1{St≥0}

)
. (4.2)

In the above expression, we recognize the typical features of valuation formulae for credit-

risky securities (e.g., Bielecki and Rutkowski, 2002): the first two terms account for the

fractional recovery of the swap MTM value in case of default of the counterparty, the

third one for the costs incurred when posting collateral before default. We now examine

simple special cases to understand better the role of collateral in shaping swap rates.
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4.1 Full collateralization

Consider the collateral rule obtained by setting cA = cB = 1 and δA = δB = δ, mean-

ing that the full MTM value of the swap is received/posted as collateral depending on

whether the marking-to-market process results in a positive/negative value for St. As we

consider cash collateral, default is immaterial. In contrast with section 3, however, the

expression for the swap MTM value does not reduce to the usual default-free, risk-neutral

valuation formula in general, unless collateral costs are zero:

pc = EP̃[P ] +
CovP̃

(
exp

(∫ T

0 (δt − rt)dt
)
, P

)

EP̃

[
exp

(∫ T

0 (δt − rt)dt
)] . (4.3)

If the cost of collateral is positively dependent on interest rates, we expect the swap rate

to be higher than pd in expression (3.2), even if it is only the floating payments that

are linked to interest rates, reflecting the fact that (costly) collateralization requires a

premium to be paid to the payer of the fixed rate (see Johannes and Sundaresan, 2007).

The intuition is that the party paying the floating rate will have to both post collateral

and incur higher funding costs when the floating rate increases. As was emphasized

in the introduction, in longevity space, the cost of collateral is positively dependent on

mortality improvements, but longevity-linked liabilities are more capital intensive in low

interest rate environments (due to lower discounting of future cashflows). The combined

impact of these two effects is ambiguous, and we may have situations in which pc ≥ EP̃[P ]

even if EP̃[P ] ≥ pd.

4.2 Partial collateralization

According to ISDA (2010a), it is typical for collateral agreements to specify collateral

triggers based on the market value of the swap or other relevant variables (credit ratings,

credit spreads, etc.) crossing pre-specified threshold levels. The following are relevant

(if somewhat stylized) examples that are useful for our case:
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a) Consider the collateral rule obtained by setting cBt = 1{St−≥s(t)} and cAt = 1{St−≤s(t)}

(for continuous functions s, s defined on [0, T ] and satisfying s ≤ s), meaning that

the hedge supplier (hedger) is required to post full collateral if the swap’s MTM

value is above (below) the appropriate time-dependent threshold. More general col-

lateral rules can be obtained by setting cBt = γBt 1{St−≥s(t)} and cAt = γAt 1{St−≤s(t)},

for suitable processes γA, γB depending on prevailing market conditions, such as

the credit standing of the counterparties.

b) In longevity swaps, however, it is more common to define collateral thresholds in

terms of mortality forecasts based on a model agreed at contract inception, and

monitor the deaths in the hedger’s population instead of the market value of the

swap. This is due to both the re-estimation risk affecting any given mortality

model and the presence of substantial model risk, which most likely would prevent

the counterparties from agreeing on a common model at future dates. We can set

cBt = 1{Nt−≤α(t)} and cAt = 1{Nt−≥β(t)}, for continuous functions α and β satisfying

0 ≤ α ≤ β ≤ n, meaning that the hedge supplier (hedger) is required to post full

collateral if realized deaths are below (above) the relevant threshold.

c) For an index-based swap, it may be more convenient to work with the mortality

intensity µI of the reference population (see section 2) and set cBt = 1{
∫ t

0 µI
sds≤a(t)}

and cAt = 1{
∫ t

0 µI
sds≥b(t)} for (say) continuous functions a, b satisfying 0 ≤ a ≤

b. This means that collateral posting is triggered at each time t if the real-

ized value of the longevity index, exp(−
∫ t

0 µ
I
sds), falls outside the open interval

(exp(−b(t)), exp(−a(t))).

d) As was emphasized in section 2.1, the severity of counterparty risk depends on the

credit quality of the counterparties. This is why collateralization agreements may

set collateral thresholds that explicitly depend on credit ratings or CDS spreads.

A simple example of this practice can be obtained as a special case of (a) by setting
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cBt = 1{Nt−≤α(t)}∪{λB
t ≥λ}, c

A
t = 1{Nt−≥β(t)}∪{λA

t ≥λ}, meaning that, at each time t,

the hedger (hedge supplier) receives collateral when either realized deaths fall below

the level α(t) (respectively β(t)) or the hedge supplier’s (respectively hedger’s)

default intensity overshoots a given threshold λ ≥ 0. Note that both cA and cB can

be non zero at the same time (for example on the event {Nt− ≤ α(t)}∩{λAt ≥ λ}),

but expression (4.1) ensures that only the party out-of-the-money will have to post

collateral.

4.3 Computing the swap rate

The recursive nature of swap valuation formulae in the case of bilateral and asymmetric

counterparty risk has already been noted by Duffie and Huang (1996). By modeling

the recovery rates and the difference in counterparties’ credit spreads in reduced form,

however, they could use a simple iterative procedure to determine swap rates.26 Here,

we explicitly allow for the impact of collateral and the marking-to-market process in the

pricing functional, and hence need a different approach. Working in a Markov setting, we

let X denote the state variable process and use a Least-Squares Monte Carlo approach.

Exploiting the properties of the doubly stochastic setup (see the appendix), we do not

model death/default times explicitly, but just rely on the mortality/default intensities

(see algorithm 2 in Bacinello et al., 2010, for example). The procedure involves the

following steps:

Step 1. For an arbitrary fixed swap rate pci , generate M simulated paths of X under

P̃ along the time grid T := {0 < t1, t2, . . . , tn = T}. Denote by Sm,i
tj

the MTM value of

the swap and by f i,mtj
the cashflows originating from the swap (collateral flows and swap

payments) at time tj on path m and for given swap rate pci .

Step 2. Compute recursively the value of the swap at time tj (for j = n − 1, . . . , 0

with t0 = 0) as Sm,i
tj

= β∗j · e(Xm
tj
), where e(x) := (e1(x), . . . , eH(x))T and {e1, . . . , eH}

26Johannes and Sundaresan (2007) sidestep recursivity issues by considering full collateralization and
symmetric default risk and collateral costs.
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is a finite set of functions taken from a suitable basis, and β∗j is given by

β∗j = arg min
βj∈RH

M∑

m=1

(
S
i,m
tj+1

+ f
i,m
tj+1

− βj · e(X
m
tj
)
)
.

At each time tj , use Sm,i
tj

to check whether the collateral thresholds are triggered and

determine the corresponding amount of collateral and associated costs.

Step 3. Iterate the above procedure over different values for pci until a candidate swap

rate pci∗ is found, such that the initial price of the swap, 1
M

∑M
m=1 S

m,i∗

t0
, is close enough

to zero. Set pc = pci∗ .

Of course, the procedure relies on knowledge of the dynamics of the state variable

process under the pricing measure. To this end, in the next section, we outline a cali-

bration approach based on the joint use of fixed-income data and funding costs / capital

requirements for longevity-linked liabilities.

5 Examples

We use a continuous-time model for the risk-free yield curve, the LIBOR and mortality

rates, as well as for the cost of collateral. The credit risk of party B (the hedge supplier)

is assumed to be equal to the average credit quality of the LIBOR panel, so that the

TED spread would be party B’s default intensity if there were zero recovery upon default

(see section 3). We then set λA = λB +∆ and consider two cases: party A is either of

the same credit quality as party B (∆ = 0) or is more credit-risky (∆ > 0).

We consider a Markov setting, and describe the evolution of uncertainty by a six-

dimensional state variable vector X with the Gaussian dynamics reported in appendix B.

The first four components are: the short rate, r = X(1), assumed to revert to the long-

run central tendency factor X(2), representing the slope of the risk-free yield curve; the

TED spread X(3), so that the LIBOR rate is given by X(1) +X(3); and the net yield on
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collateral in the interest-rate swap market, X(4). The remaining two components describe

the yield on collateral attached to longevity risk business, X(5), and the log-intensity of

mortality of a given population, log µ = X(6). Under the assumption of independence

between the interest rate and mortality rates, we can estimate separately the dynamics

of the two groups of factors (X(1), X(2), X(3), X(4)) and X(6). For the first group, we

rely on the estimates of Johannes and Sundaresan (2007), who use weekly Treasury and

swap data from 1990 to 2002 to obtain the parameter values reported in table 2. For

the intensity exp(X
(6)
t ), we use a continuous-time version of the Lee-Carter model; see

appendix B for details. As we do not have any publicly available transaction data from

the longevity swap market to proxy X(5), we use information on credit markets (funding

costs) and regulatory requirements (capital charges). In particular, as a first example,

we focus on funding costs and simply take δB = X(3) and δA = X(3) + ∆, meaning

that net collateral costs coincide with each party’s borrowing rate net of the risk-free

rate (assuming it is rebated). In the case of asymmetric default risk, we consider values

of 100 and 200 basis points for ∆. In a second example, discussed in detail below, we

focus on the opportunity cost of selling additional longevity protection and simulate the

capital charges arising from holding a representative longevity-linked liability to estimate

the dynamics of X(5). In both cases, we compute the longevity swap rates for a 25-year

swap written on a population of 10,000 US males aged 65 at the beginning of 2008.

< Table 2 about here >

In figure 3, we plot the swap curves obtained for different collateralization rules

against the percentiles of survival rate improvements based on Lee-Carter forecasts. We

see that margins are positive and increasing with payment maturity in the case of sym-

metric default risk, for both uncollateralized and fully collateralized transactions. As

soon as we introduce asymmetry in default risk (∆ > 0), however, margins widen in the

case of no collateralization, reflecting the fact that the hedger needs to pay an additional
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premium on account of its higher credit risk. In the case of full collateralization, the

hedge supplier benefits from the negative dependence between funding costs and collat-

eral amounts discussed before: equilibrium swap rates are pushed lower and produce a

negative margin on best estimate swap rates. In figure 4, we examine the swap margins

induced by one-sided collateralization in the case of asymmetric default risk. When only

the hedge supplier has to post full collateral, swap rates are higher than best estimate

survival probabilities, meaning that the hedger has to compensate the hedge supplier

for bearing both the cost of risk mitigation and the hedger’s default risk. The opposite

is true when it is the hedger who has to post full collateral when out-of-the money. In

this case, swap margins are clearly negative, and decreasing in payment maturity. These

effects are amplified when the asymmetry in counterparties’ credit quality is greater,

as can be seen from the swap spreads reported in table 3 for some key maturities and

collateralization rules.

Plotting the swap rate margins against best estimate mortality improvements allows

one to interpret the swap rates as outputs of a pricing functional based on adjustments

to a reference mortality model (which is common practice in longevity space). On the

other hand, longevity swap spreads are easier to compare with those emerging in other

transactions. In table 4, we make a comparison with the interest-rate swap spreads

implied by our parameterization of the state vector (X(1), X(2), X(3), X(4)). In particular,

we report the difference between interest-rate futures prices (obtained by considering

full collateralization and setting the cost of collateral equal to the risk-free rate) and

interest-rate swap rates for collateralized transactions with collateral costs equal to the

funding costs of the counterparties. Spreads are negative, in line with the intuition

that interest rate risk leads to a discount for the payer of the fixed rate, as discussed

in the introduction, and are of a magnitude consistent with the findings of Johannes

and Sundaresan (2007). The results show that longevity swap spreads are comparable

with, and often much smaller in absoulte value than, those found in the interest-rate
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swap market. For example, in the case of bilateral full collateralization, longevity swap

rates for 15- to 25-year maturities embed a spread substantially smaller than that of

interest-rate swaps of corresponding maturity. In the case of one-sided collateralization

on the hedger’s side, in interest-rate swap rates we find a discount (negative spread)

that turns into a premium (positive spread) of comparable size in the corresponding

longevity swap, due to the additional and opposite effect of longevity risk on swap rates.

Our findings are robust to the choice of maturity, collateralization rules, and counterparty

credit quality, and are mainly driven by the fact that interest rate risk and longevity risk

impact longevity swap margins in opposite directions, thus diluting the overall effect of

collateralization on longevity swap rates.

< Table 3 about here >

< Table 4 about here >

< Figure 3 about here >

< Figure 4 about here >

In a second example, we ‘synthesize’ the dynamics of X(5) by using information on

regulatory requirements to quantify the capital charges accruing to the counterparties

during the life of the swap. In particular, we use the following bottom-up procedure:

Step 1: We simulate several paths of the factors X(1), . . . , X(4) and X(6) along a

time grid T̂ := {t1, t2, . . . , tk} (with tk = T̂ > t1 > 0) and under the pricing measure P̃.

Again, for our example, we focus on the baseline case of p̃T = pT , and hence assume the

P̃-dynamics of X(6) to be the same as under the physical measure.
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Step 2: The paths simulated in the previous step are used to compute, at each

date t ∈ T̂ , the regulatory capital needed by an insurer to hold the liability n − Nt+T ,

where T < T̂ is a representative maturity proxying the average duration of longevity-

linked liabilities in the longevity swap market. We use T = 15 and T̂ = 40 (years) for

our example. To compute the capital requirements, we use the Solvency II framework,

which is based on the 99.5% value-at-risk of the net assets over a one-year horizon.

For simplicity, we assume holders of longevity exposures to be invested in cash. The

distribution of the one-year-ahead market-consistent value of the liability usually requires

nested simulation, unless a simplified approach is adopted. In our setting, market-

consistent discount factors can be computed analytically based on the one-year-ahead

simulated realizations. We use a Least-Squares Monte Carlo approach (see section 4.3)

to determine the expected number of survivors.27

Step 3: We use the simulated capital charges obtained in the previous step to compute

the gains/costs incurred to reduce/increase capital at each time step along each simulated

path. We assume that capital charges are funded at the counterparties’ funding cost,

plus a spread of 6%28 to reflect the opportunity cost of diverting to an individual liability

funds that could be used to support insurance business at aggregate level. The simulated

realizations of the opportunity cost of capital are used to estimate the dynamics of X(5)

reported in the appendix. The parameter estimates are included in table 2.

In the case of symmetric collateralization, we find results comparable with those

obtained by using the counterparties’ funding costs for the process δ. However, figure 5

shows that margins increase (decrease) considerably when one-sided collateralization on

the hedge supplier’s (hedger’s) side is considered. This is because the party required

to post collateral explicitly takes into account tail events in computing collateral costs,

whereas in figure 4 funding costs where computed on the basis of the market value of

27See Stevens et al. (2010a) for other approximation methods in the context of Lee-Carter forecasts.
28This is a reasonable, conservative value for the cost of internal capital: anecdotal evidence suggests

that this cost may be twice as large for longevity swap dealers.
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the longevity swap.

Finally, we study the sensitivity of longevity swap spreads to the volatility of the

net collateral cost X(5). To close off the interest-rate risk channel, we fix the factors

X(1), X(2) equal to their long-run means. Table 5 reports the results obtained for different

values of the volatility parameter σ5 in the case of symmetric default risk and bilateral

full collateralization. We see that spreads increase dramatically for large values of the

volatility parameter, but are comparable with those found in the previous examples for

reasonable volatility levels (i.e., below 5%).

< Table 4 about here >

< Figure 5 about here >

6 Conclusion

In this study, we have provided a framework for understanding and quantifying the cost

of bilateral default risk and collateral strategies on longevity risk solutions. The results

address the concerns aired by potential hedgers regarding how to measure the trade-off

between the hedge effectiveness of longevity-linked instruments and the counterparty risk

they involve. We have described a methodology for pricing longevity swaps that explicitly

takes into account the dynamics of the marking-to-market process, the collateral flows

it generates, and the costs associated with the posting of collateral. We have shown

how collateral strategies can mitigate if not eliminate counterparty risk, but inevitably

introduce an extra cost that must be borne by the hedge supplier or by the hedger,

depending on whether it is longevity risk or interest rate risk that has a stronger impact

on the cost of collateral. Our most significant and useful finding is that the overall cost of

the collateralization strategies in the longevity swap market is comparable with, and often
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smaller than, that found in the much more liquid interest-rate swap market. Hence, there

is no reason to suppose that counterparty risk will provide an insurmountable barrier to

the further development of the longevity swap market. Our analysis accordingly provides

a robust framework for comparing the costs of credit enhancement in bespoke longevity

swaps with the benefits offered by competing solutions such as securitization and indexed

swaps.
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A Details on the setup

We take as given a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), and model the death

times in a population of n individuals (annuitants or pensioners) as stopping times

τ1, . . . , τn. This means that at each time t the information carried by Ft allows us to

state whether each individual has died or not. The hedger’s liability is given by the
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random variable
∑n

i=1 1{τ i>T}, which can be equivalently written as n−
∑n

i=1 1{τ i≤T} =

n−NT (recall that the indicator function 1H takes the value of unity if the event H is

true, zero otherwise). We assume that death times coincide with the first jumps of n

conditionally Poisson processes with common random intensity of mortality (µt)t≥0 under

both P and an equivalent martingale measure P̃ (see Biffis et al., 2010, for details). The

expected number of survivors over [0, T ] under the two measures can then be expressed

as EP
[∑n

i=1 1{τ i>T}

]
= npT and EP̃

[∑n
i=1 1{τ i>T}

]
= np̃T , with pT and p̃T given by

the expectation (2.1) computed under the relevant probability measure.

Consider any stopping time τ i satisfying the above assumptions, an integrable ran-

dom variable Y ∈ FT and a bounded process (Xt)t∈[0,T ] such that each Xt is measurable

with respect to Ft−, the information available up to, but not including, time t. Then

a security paying Y at time T in case τ i > T and Xτ i at time τ i in case τ i ≤ T has

time-zero price

EP̃

[∫ T

0
exp

(
−

∫ s

0
(rt + µt)dt

)
Xsµsds+ exp

(
−

∫ T

0
(rt + µt)dt

)
Y

]
.

Consider now two stopping times τ i, τ j , with intensities µi, µj , jointly satisfying the

above assumptions (i.e., they are the first jump times of the components of a bivariate

conditionally Poisson process). A security paying Y at time T in case neither stopping

time has occurred (i.e., min(τ i, τ j) > T ) and Xt in case the first occurrence is at time

t ∈ (0, T ] (i.e., t = min(τ i, τ j)) has time-zero price given by the same formula, with µt

replaced by µit + µ
j
t . This follows from the fact that the stopping time min(τ i, τ j) is

the first jump time of a conditionally Poisson process with intensity (µit + µ
j
t )t≥0 (e.g.,

Bielecki and Rutkowski, 2002). The expressions presented in sections 2-4 all follow from

these simple results.

Proof of expression (4.2). Let (δAt , δ
B
t )t≥0 denote the opportunity costs of collateral for

the two parties, meaning that holding collateral of amount Ct provides an instantaneous
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yield equal to δBt C
+
t − δAt C

−
t (we use the notation a+ := max(a, 0), a− := −min(a, 0)).

We assume that collateral is bounded and Ct is measurable with respect to Ft− for

all t ∈ [0, T ]. Parties A and B are assumed to have death (default) times satisfying the

properties reviewed above, in particular having intensities λA, λB. Recalling the recovery

rules described in section 4, we can then write:

S0 =E
P̃

[
exp

(
−

∫ T

0
(rt + λAt + λBt )dt

)(
P − pd

)]

+ EP̃

[∫ T

0
exp

(
−

∫ s

0
(rt + λAt + λBt )dt

)(
λAs (S

+
s − C−

s ) + λBs (C
+
s − S−

s )
)
ds

]

+ EP̃

[∫ T

0
exp

(
−

∫ s

0
(rt + λAt + λBt )dt

)
(δBs C

+
s − δAs C

−
s )ds

]
.

Using representation (4.1), the amount recovered by the nondefaulting counterparty at

time τ = min(τA, τB) ≤ T is

1{τ=τA}Sτ−(c
A
τ 1{Sτ−<0} + 1{Sτ−≥0}) + 1{τ=τB}Sτ−(c

B
τ 1{Sτ−≥0} + 1{Sτ−<0}),

where we see that cA, cB replace the recovery rates ψA, ψB introduced in section 3. We

can then write

S0 =E
P̃

[
exp

(
−

∫ T

0
(rt + λAt + λBt )dt

)(
P − pd

)]

+ EP̃

[∫ T

0
exp

(
−

∫ s

0
(rt + λAt + λBt )dt

)(
λAs + (λBs + δBs )c

B
s )S

+
s − (λBs + (λAs + δAs )c

A
s )S

−
s

)
ds

]

=EP̃

[
exp

(
−

∫ T

0
(rt + Γt)dt

)(
P − pd

)]
,

which is nothing other than the usual risk-neutral valuation formula for a security with

terminal payoff ST = P − pd paying continuously a dividend equal to a fraction

(λAs + (λBs + δBs )c
B
s )1{St−≥0} + (λBs + (λAs + δAs )c

A
s )1{St−<0}
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of the security’s market value an instant before each t ∈ [0, T ]. Subtracting the dividend

rate from λA + λB and rearranging terms we obtain expression (4.2) for Γ.

B Details on the numerical examples

The numerical examples are based on a six-dimensional state variable process X =

(X(1), . . . , X(6))T having P̃-dynamics

dX
(1)
t =

(
k1(X

(2)
t −X

(1)
t )− η1

)
dt+ σ1dW

1
t

dX
(2)
t =

(
k2(θ2 −X

(2)
t )− η2

)
dt+ σ2dW

2
t

dX
(3)
t =

(
κ3(θ3 −X

(3)
t ) + κ3,1(X

(1)
t − θ2) + κ3,4(X

(4)
t − θ4)− η3

)
dt+ σ3dW

3
t

dX
(4)
t =

(
κ4(θ4 −X

(4)
t ) + κ4,1(X

(1)
t − θ2) + κ4,2(X

(2)
t − θ2)− η4

)
dt+ σ4dW

4
t

dX
(5)
t =

(
κ5(θ5 −X

(5)
t ) + κ5,1(X

(1)
t − θ2) + κ5,2(X

(2)
t − θ2) + κ5,3(X

(3)
t − θ3)

+ κ5,4(X
(4)
t − θ4) + κ5,6(X

(6)
t − E0[X

(6)
t ])− η5

)
dt+ σ5dW

5
t

dX
(6)
t =

(
A(t) +B(t)(X

(6)
t − a(t))

)
dt+ σ6(t)dW

6
t ,

where W = (W 1, . . . ,W 6)T is a standard P̃-Brownian motion, the constants ηi rep-

resent market prices of risk and the functions A(·), B(·), σ6(·) are defined below. The

P-dynamics are obtained by removing the market prices of risk from the drifts of the

relevant factors and replacing the innovations with the corresponding P-Brownian inno-

vations. We assume that X(6) has the same dynamics under the physical and the pricing

probability measures, consistent with our baseline case of a swap rate equal to pT for

each T in the absence of collateral. The Brownian innovations are uncorrelated, with

the exception of the pair W 1,W 2, whose instantaneous correlation is denoted by ρ1,2.

For the first four factors, we use data from Johannes and Sundaresan (2007) who

rely on a two-stage maximum likelihood procedure based on weekly data sampled on

Wednesdays, from 1990 to 2002, and set the long-run mean of X(3) equal to the aver-
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age of the 3-month TED spread over the sampling period. For the log-intensity X(6),

we use the mortality model described below, and assume that the Brownian compo-

nent W 6 is uncorrelated with the other ones. The intensity of mortality is modeled

using a continuous-time version of the Lee-Carter model (see Biffis et al., 2010). We

first use the annual central death rates {my,s} for US and UK males from the Hu-

man Mortality Database to estimate the model my,s = exp(α(y) + β(y)Ks) for dates

s = 1961, 1962, . . . , 2007 and ages y = 20, 21, . . . , 89 with Singular Value Decomposition.

The resulting estimates for K are then fitted with the process Ks+1 = δKKs + σKε,

with ε ∼ N(0, 1). For fixed age x = 65, the estimates for {α̂(x + h), β̂(x + h)}h=0,1,...

are interpolated with differentiable functions a(t), b(t). The functions A,B, σ6 are finally

obtained by setting A(t) = a′(t) + b(t)δK , B(t) = b′(t)b(t)−1 and σ6(t) = b(t)σK . The

expectation appearing in the drift of X(5) ensures that the longevity capital charges react

to departures of realized mortality from the term structure of survival rates estimated

at inception.

To estimate the dynamics of X(5), the component of collateral costs related to

longevity risk, we implement the procedure discussed in section 5, setting the dura-

tion T of the representative liability equal to 15. We simulate forward all of the other

state variables, and at each time step we compute the opportunity cost of capital arising

from the capital charges accruing to the hedge supplier based on the simulated mortality

and market conditions. We assume that funding occurs at the LIBOR rate plus a fixed

spread of 6%, a reasonable value for the cost of internal capital. To obtain the net cost of

collateral, we take into account the rebate of the risk-free rate. We estimate the dynam-

ics of X(5) on each simulated path. We set the parameter θ5 equal to the average of X(5)

along the simulated path. The parameter estimates are computed for each simulated

path and then averaged across all simulations. The estimates are reported in table 2.

36



C Tables and figures

Date Hedger Size Term (yrs) Type Interm./supplier

Jan 08 Lucida Not disclosed 10 indexed JP Morgan
ILS funds

Jul 2008 Canada Life GBP 500m 40 bespoke JP Morgan
ILS funds

Feb 2009 Abbey Life GBP 1.5bn run-off bespoke Deutsche Bank
ILS funds / Partner Re

Mar 2009 Aviva GBP 475m 10 bespoke Royal Bank
of Scotland

Jun 2009 Babcock GBP 750m 50 bespoke Credit Suisse
International Pacific Life Re

Jul 2009 RSA GBP 1.9bn run-off bespoke Goldman Sachs
(Rothesay Life)

Dec 2009 Berkshire GBP 750m run-off bespoke Swiss Re
Council

Feb 2010 BMW UK GBP 3bn run-off bespoke Deutsche Bank
Paternoster

Dec 2010 Swiss Re USD 50m 8 indexed ILS funds
(Kortis bond)

Feb 2011 Pall (UK) GBP 70m 10 indexed JP Morgan
Pension Fund

Table 1: Publicly announced longevity swap transactions 2008-2011.
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κ1 0.969 η1 -0.053 σ1 0.008 UK
κ2 0.832 η3 -0.014 σ2 0.155 δK -0.888
κ3 1.669 η4 0.007 σ3 0.009 σK 1.156
κ4 0.045 η5 0.055 σ4 0.010 US
κ5 0.990 κ5,1 0.147 σ5 0.690 δK -0.761
κ3,1 -0.163 κ5,2 1.340 θ2 0.046 σK 1.078
κ4,1 0.114 κ5,3 2.509 θ3 0.003
κ3,4 0.804 κ5,4 -0.133 θ4 0.007
κ4,2 -0.038 κ5,6 -0.002 θ5 0.115 ρ1,2 -0.036

Table 2: Parameter values for the dynamics of X given in Appendix B. The estimates for X(5) are based
on the assumption that capital increases are funded by counterparties at 6% plus the LIBOR
rate.

Maturity cA = 0 cA = 0 cA = 1 cA = 1
payment cB = 0 cB = 1 cB = 0 cB = 1

(yrs) (bps) (bps) (bps) (bps)

λA,B = λ, 15 0.03 11.34 -11.76 0.05
δA,B = δ, 20 1.11 19.93 -17.94 0.86
δ = λ 25 1.50 21.25 -18.35 1.24

λA = λB +∆, 15 5.45 16.79 -17.29 -5.84
δi = λi, 20 10.16 28.95 -27.08 -8.23
∆ = 0.01 25 10.96 30.75 -27.76 -9.19

λA = λB +∆, 15 11.30 22.29 -22.90 -11.25
δi = λi, 20 19.26 38.06 -36.16 -17.42
∆ = 0.02 25 19.46 40.27 -37.02 -18.38

Table 3: Second example in section 5: swap spreads pcTi
− pTi

(in basis points) for different collateral-
ization rules, maturities and credit spread ∆ ∈ {0, 0.01, 0.02}. The LSMC procedure uses 5000
paths over a quarterly grid with polynomial basis functions of order 3, and is repeated for 100
seeds.

IRSs longevity swaps
Maturity cA = 0 cA = 1 cA = 1 cA = 0 cA = 1 cA = 1
payment cB = 1 cB = 0 cB = 1 cB = 1 cB = 0 cB = 1

(yrs) (bps) (bps) (bps) (bps) (bps) (bps)

λA,B = λ, 15 -7.96 -44.97 -52.86 11.34 -11.76 0.05
δA,B = δ, 20 -12.68 -42.64 -56.22 19.93 -17.94 0.86
δ = λ 25 -17.94 -40.98 -58.92 21.25 -18.35 1.24

λA = λB +∆, 15 -8.00 -67.87 -75.23 16.79 -17.29 -5.84
δi = λi, 20 -12.65 -63.84 -77.42 28.95 -27.08 -8.23
∆ = 0.01 25 -17.65 -60.63 -77.64 30.75 -27.76 -9.19

Table 4: Second example in section 5: comparison of interest-rate swaps (IRSs) with longevity swaps.
The IRS spreads represent the difference betweeen the futures prices (the opportunity cost of
collateral coincides with the risk-free rate for both parties) and the swap rate for the collater-
alized IRS (for different collateralization rules, maturities, and credit risk).

38



σ5 p25 pc spread (bps)

0.0005 0.201425 0.201469 2.15
0.0100 0.201425 0.201822 19.68
0.0150 0.201425 0.202009 28.96
0.0200 0.201425 0.202196 38.26
0.1000 0.201425 0.205237 189.24
0.1500 0.201425 0.207184 285.90

Table 5: Sensitivity with respect to parameter σ5: we compute 25-year swap rates and spreads (in basis
points) under full collateralization by setting X(1), X(2) equal to their long run means. The
baseline estimated parameter values for the dynamics of X(5) are θ5 = 0.000254, κ5 = 1.005073,
σ5 = 0.000542, η5 = 0.000269, κ53 = 0.003648, κ54 = 0.000018, κ56 = 0.000261.
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Figure 1: Survival curves computed at the beginning of each year t = 1980, . . . , 2004 for England &
Wales males aged 65 + t− 1980 in year t. Forecasts are based on the Lee-Carter model using
the latest Human Mortality Database data available at the beginning of each year t.
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Figure 2: Mark-to-market value of the longevity swap (MTM) and stream of cashflows with no credit
risk (CFs), and with counterparty B’s credit spreads widening by 25 and 50 basis points over
1988-2005.
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Figure 3: Swap margins pcTi
/pTi

− 1 computed for different maturities {Ti} and collateral rules, with

δA = λA and δB = λB : no collateral (squares), full collateralization (circles); λA = λB +∆,
with ∆ = 0 (dashed lines) and ∆ = 0.01 (solid lines). The underlying is a cohort of 10,000
US males aged 65 at the beginning of 2008. Swap rates are plotted against the percentiles of
improvements in survival rates based on Lee-Carter forecasts.
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Figure 4: Swap margins pcTi
/pTi

− 1 computed for different maturities {Ti} and collateral rules, with

δA = λA = λB +0.01 and δB = λB : no collateral (squares), full collateralization (circles), full
collateral posted only by party A (stars) or party B (diamonds). The underlying is a cohort
of 10,000 US males aged 65 at the beginning of 2008. Swap rates are plotted against the
percentiles of improvements in survival rates based on Lee-Carter forecasts.
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Figure 5: Swap margins pcTi
/pTi

− 1 computed for different maturities {Ti} and collateral rules, with

λA = λB and δ = X(5), where the parameter estimates of X are given in table 2. Collateral
rules: no collateral (squares), full collateralization (circles), full collateral posted only by party
A (stars) or B (diamonds). Swap rates are plotted against the percentiles of improvements in
survival rates based on Lee-Carter forecasts.
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