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Abstract: Obtaining new and flexible classes of nonseparable spatio-temporal covariances have 
resulted in a key point of research in the last years within the context of spatio-temporal Geostatistics. 
In general, the literature has focused on the problem of full symmetry and the problem of anisotropy 
has been overcome. By exploring mathematical properties of positive definite functions and their close 
connection to covariance functions we are able to develop new spatio-temporal covariance models 
taking into account the problem of spatial anisotropy. The resulting structures are proved to have 
certain interesting mathematical properties, together with a considerable applicability.  
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INTRODUCTION 

 
 Spatial and spatio-temporal statistics recognizes 
and exploits the spatial locations of data when 
designing for, collecting, managing, analyzing and 
displaying such data. Spatial and spatio-temporal data 
are typically dependent, for which there are classes of 
spatial models available that allow process prediction 
and parameter estimation. 
 Spatially arranged measurements and spatial 
patterns occur in a surprisingly wide variety of 
scientific disciplines. The origins of human life link 
studies of the evolution of galaxies, the structure of 
biological cells and settlement patterns in archaeology. 
Ecologists study the interactions among plants and 
animals. Foresters and agriculturalists need to 
investigate plant competition and account for soil 
variations in their experiments. 
 The estimation of rainfall and of ore and petroleum 
reserves is of prime economic importance. Rocks, 
metals and tissue and blood cells are all studied at a 
microscopic level. Geology, soil science, image 
processing, epidemiology, crop science, ecology, 
forestry, astronomy, atmospheric science, or simply any 
discipline that works with data collected from different 
spatial locations, need to develop models that indicate 
when there is dependence between measurements at 
different locations. 

 The study of spatial and overall spatio-temporal 
variability is a relatively new area within Statistics, 
which explains the scarcity of spatial (spatio-temporal) 
statistical tools available 30 years ago. There has been a 
growing realization in the last 10 years that knowing 
where and when data were observed could help 
enormously in answering the substantive questions that 
precipitated their collection. One of the most powerful 
tools for spatial data analysis is the map. For example, 
in military applications, the battle space is mapped for 
command and control. 
 The sensors are both in situ and remote and they 
generate spatially distributed data of many different 
kinds (see Fadda et al., 2008, and Saberioon et al., 
2010, among others). Producing a statistically optimal 
map, together with measures of map uncertainty, which 
is always up-todate, is a complicated task. Once these 
types of statistical problems are solved, a Geographic 
Information System, or GIS, is well suited to forming 
the decision-making maps.  
 Recent literature persistently emphasizes the use of 
approximation methods and new methodologies for 
dealing with massive spatio-temporal data sets. When 
dealing with spatio-temporal data, calculation of the 
inverse of covariance matrices becomes a crucial 
problem. For instance, the inverse is needed for best 
linear unbiased prediction (also known as kriging) and 
is repeatedly calculated in maximum likelihood 
estimation or Bayesian inferences. Thus, large spatio-
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temporal sample sizes traduce into big challenges from 
the computational point of view. 
 As well known, interpolation-based kriging 
procedures strongly depend on the choice of the auto 
covariance associated to a space-time random field (Anuar 
et al., 2008 and Gholizadeh et al. 2009,  are two references 
in nonstandard fields). Thus, the geostatistical aim is to 
obtain permissible dependence structures for space and 
time; in other words, what is needed are nonseparable 
spatio-temporal covariance models associated to stationary 
or non-stationary random fields. This has been one of the 
most important challenges for the statistical community in 
the last ten years. But spatio-temporal covariance 
functions must be positive definite and this characteristic is 
no easy to prove and this is the reason why researchers 
have opted for using celebrated mathematical theorems 
from 20th Century that lead to positive definite covariance 
functions.   
 In this study we first deeply explore the connection 
between geostatistics and pure mathematical results 
proved several decades ago and which are now brought 
to light when dealing with spatial-temporal covariances. 
Connections between covariance functions and 
completely monotonic functions and Bernstein 
functions are highlighted. These are important tools for 
the construction of positive definite radial functions and 
have been used to define important inequalities 
involving characteristic functions.  
 In modern literature we can find several 
approaches to the construction of nonseparable 
covariance’s. In the earlier contributions the focus was 
on extending spatial or temporal methods to spatio-
temporal ones, considering the spatio-temporal 
dependency separately in most of the cases. Most of 
these contributions deal with stationary spatio-temporal 
covariance’s assuming isotropy in space and time. 
However, isotropy is a very restrictive condition which 
is not reasonable in many real applications, but to 
which sometimes researchers need (are forced) to use, 
due to the lack of practical alternatives. This is why our 
approach here is to build new families of space-time 
covariance functions by removing the isotropy 
condition. In particular we present a new way of 
defining anisotropic models by assuming the condition 
of anisotropy by isotropy within components. This new 
definition needs the support of several important 
mathematical results appeared in the discipline of pure 
mathematical analysis and brought and adapted to the 
language used in the geostatistical community.  
 After this introductory section, we present the 
mathematical set up and background needed in the 
building of space-time covariance functions. We also 
include a spatio-temporal covariance function setup. 

Next, we focus on the problem of modeling anisotropy 
through isotropy within components. We present some 
necessary definitions and theoretical background. We 
continue presenting the Bernstein class, a generalization 
of Gneiting (2002) approach to obtain new classes of 
space-time covariance functions which are spatially 
anisotropic. The study ends with some discussion and 
concluding remarks. 
 
MATHEMATICAL SETUP AND BACKGROUND 
ON SPACE-TIME COVARIANCE FUNCTIONS 

 
 A space-time process can be denoted by 

{ }( , ) : ( ) ,  dZ t D t t T∈ ⊂ ∈ ⊂s s ℝ ℝ , where each of Z, 

D and T is possibly random. Geostatistical approaches 
have been developed to fit Random Field models in 
continuous space and time settings, based on a limited 
number of spatially and/or temporally dispersed 
observations. These approaches model the observations 
as a partial realization of a spatial-temporal, typically 
Gaussian, Random Field (here indicated with the 
acronym RF).  
 Let ( , ), dZ ts s�ℝ  andt�ℝ , be a real be a real-

valued spatial-temporal RF with mean ( , )ts�  and with 

constant and finite variance. Then, the function 

� � � �1 2 1 2 1 2 1 2, , , , , ,stt t C t ts s s s֏  defined on the product 

space d d� � �ℝ ℝ ℝ ℝ  is called the spatial-temporal 
covariance function of the process and, if no further 
assumptions are made, depends on the space-time 
coordinates� �1 2 1 2, , ,t ts s . As well known, a real valued 

function stC defined on the product 

space d d� � �ℝ ℝ ℝ ℝ is the covariance function 
associated to a spatial-temporal RF if and only if: 
 

( ) ( )( )
1 1

, , , 0
n n

i j st i i j j
i j

a a C t ts s
= =

≥∑∑  (1) 

 
for all finite sets of real coefficientsia and points 

� �, , 1,...,d
i it i ns � � �ℝ ℝ . This property is called 

positive definiteness, or with alternative notation, 
permissibility.  
 In this study we first deeply explore the connection 
between geostatistics and pure mathematical results 
proved several decades ago and which are now brought 
to light when dealing with spatial-temporal 
covariance’s. Connections between covariance 
functions and completely monotonic functions and 
Bernstein functions are highlighted. These are 
important tools for the construction of positive definite 
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radial functions and have been used to define important 
inequalities involving characteristic functions. We then 
first recall the definition and some properties of two 
such important functions. 
 A function ( ), 0t t t� �֏  is said to be completely 

monotonic if it is positive and ( 1) ( ) 0n n t�� � , for all n 

a natural number. For well known results, completely 
monotonic functions admit the representation in 
Bernstein’s theorem, i.e.: 
 

[ )0,
( ) ( )

rt

t e dF rϕ
−

∞
= ∫  

 
for F a probability measure. In other words, a function 
�such that (0) 1ϕ =  is a completely monotonic 

function if and only if it is the Laplace transform of a 
probability measure. In addition, Bernstein functions 
are positive functions whose first derivative is 
completely monotonic. 
 Finally, bivariate Laplace transforms, here denoted 
asL , admit the representation: 
 

[ )
1 1 2 2

21 2 1 2
0,

( , ) ( , )r re dF r rθ θθ θ − −

∞
= ∫L  

 
where, F is a bivariate probability measure, so that 

(0,0) 1=L . Obviously, if the probability measure is 

concentrated on the line 1 2θ θ= , then L  reduces to a 

completely monotonic function. 
 The concept of positive-definiteness of a function 
defined on T T�  for arbitrary T has played major role 
in the study of Gaussian processes. In addition, if T is a 
semi group with involution∗ , one can study the 
structure of positive definite functions. This can be 
related to problems in operator theory. Classically, 
continuous positive definite functions on ,d d

�ℝ ℝ  or 

0ℕ can be related to the non-negative measures through 

Fourier, Laplace and moment transforms. In order to 
determine if a function is positive definite one 
associates it as an inner product between two values of 
a Hilbert space valued function f. The natural question 

arises: what are the properties of 
2

( ) ( )f t f s� , 

, .t s T� ? This was answered by I.J. Shoenberg who 

introduced the concept of conditionally negative 
definite function. I.J. Shoenberg provided some 
relations between conditionally negative definite 
functions and positive definite functions. 
 In terms of stochastic processes, continuous 
conditionally negative-definite functions can be related 
to more general class (than Gaussian) of stationary 

independent increment processes through so the called 
Lévy-Khinchine representation. For the semigroup d

�ℝ , 

the analogous representation reduces to Bernstein 
function.  
 The celebrated Bochner’s theorem establishes a 
one to one correspondence between continuous positive 
definite functions and the Fourier transform of a 
positive and bounded measure, i.e., a 
function : df →ℝ ℂ  is positive definite and continuous 

if and only if it is the Fourier transform of a positive 
finite measure �on d

ℝ , i.e., if and only if: 

 
,( ) ( )

d

i xf x e dξ µ ξ−= ∫
ℝ

  (2) 

 
 By Bernstein’s theorem a function :]0, [f �� ℝ  

is completely monotonic if and only if it is the Laplace 
transform of a positive measure� on[0, [� , i.e.: 

 
,

0
( ) ( ) ( )xf x x e dξµ µ ξ

∞ −= = ∫L  (3) 

 
 The connection with positive definite 

functions is provided by the Schoenberg theorem. For 
rotation invariant functions : df →ℝ ℝ , i.e. functions 

of the form � �2( )f x x��  for some function 

: [0, [� � and i denoting the Euclidean norm, 

Shoenberg proved the following important result. Let: 

: [0, [� �� ℝ be given. Then � �2x� is continuous 

and positive definite on d
ℝ  for all 1d ≥  if and only if 

�is the Laplace transform of a positive finite measure 

on[0, [� . 

 Focusing on the construction of space-time 
covariance functions, in the last years there has been a 
great demand for models describing the evolution of a 
wide range of phenomena in space and time. In 
particular, there is a big need for models able to capture 
the simultaneous behavior of the spatial and temporal 
components. If we considered them separately, a large 
amount of information would be lost. 
 We refer to geostatistical spatio-temporal modeling 
as a leading instrument to analyze the evolution of such 
spatio-temporal processes. As well known, 
interpolation-based kriging procedures strongly depend 
on the choice of the autocovariance associated to a 
space-time random field. Thus, the geostatistical 
perspective is to obtain permissible spatio-temporal 
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covariances which take into account the interaction 
between space and time; in other words, what we need 
is nonseparable spatio-temporal covariance models 
associated to stationary or nonstationary random fields. 
This has been one of the most important challenges for 
the statistical community in the last ten years. 
 Geostatistical approaches have been developed to 
fit Random Function (RF) models in continuous space 
and time, based on a limited number of spatially and/or 
temporally dispersed observations. These approaches 
model the observations as a partial realization of a 
spatio-temporal (typically Gaussian) random function. 
 Stationarity, isotropy, separability and full 
symmetry are then simplifying assumptions which are 
often needed for estimation and modeling.  
 Let ( , ), dZ t �s s ℝ andt�ℝ , be a stationary real 

valued Gaussian spatio -temporal RF with constant 
mean, which does not depend on the space-time 
coordinates and with constant and finite variance. Then, 
the function: 
 

� � � �� �cov , , , ( , )i i j j stZ t Z t C u�s s h   (4) 

 

is defined for � �( , ) , d
i j i ju t t� � � � �h s s ℝ ℝ and is 

called a stationary spatio-temporal covariance function 
of the process, as it exclusively depends on the spatial 
and temporal separation vectors, respectively h and u . 
A stationary covariance function is called isotropic if it 
is rotation and translation-invariant, i.e.: 
 

� �( , ) ,st stC u C u�h hɶ   (5) 

 
where, with i  we denote the usual Euclidean norm 

and 
stCɶ  is a positive definite function. 

 Stationarity is only one of the simplifying 
assumptions which are often needed for estimation and 
modeling. Other very popular assumptions are that of 
separability and full symmetry. A space-time 
covariance function is called separable if we can factor: 
 

( ,0) ( , )
( , ) , ( , ) .

( ,0)
dst st

st
st

C C u
C u u

C
� � � �

h 0
h h

0
ℝ ℝ  (6) 

 
In other words, separability means that the spatio-
temporal covariance structure factors into a purely 
spatial and purely temporal component, which allows 
for computational efficient estimation and inference. 
Consequently, separable covariance models have been 

used even in situations in which they are not 
physically justifiable. 
 An interesting definition coined in Gneiting (2002) 
is full symmetry, which happens if: 
 

( , ) ( , ) ( , ) ( , )st st st stC u C u C u C uh h h h= − = − = − −   (7) 

 
for every ( , ) du � �h ℝ ℝ . Equivalently, Lu and 

Zimmerman (2005) speak about reflection symmetry. It 
has been shown by Gneiting et al. (2005) that if Cst is 
fully symmetric, so is its associated spectral density, if 
it exists. Another interesting aspect is that separable 
covariances are also fully symmetric, while viceversa is 
not necessarily true. Hence, covariance structures that 
are not fully symmetric are non-separable and tests for 
full symmetry can be used to reject separability. 
 Gneiting et al. (2005) it is nicely summarized the 
relationships between the various notions in terms of 
classes of spatio-temporal covariance functions and an 
analogous scheme applies to correlation structures. The 
largest class is that of general, stationary or non-
stationary covariance functions. A separable covariance 
can be stationary or nonstationary and similarly for 
fully symmetric covariances. 
 Experiments with time-forward kriging predictors 
suggest that the use of more complex and more realistic 
covariance models results in improved predictive 
performance. Thus, recent literature has emphasized the 
need for non-separable spatio-temporal covariances, in 
order to take into account the interaction between the 
spatial and temporal components. 
 In the earlier contributions the focus was on 
extending spatial or temporal methods to spatio-
temporal ones, considering the spatio-temporal 
dependency separately in most of the cases. These 
extension approaches could be classified into two main 
categories: (a) the former considers a pure extension of 
multivariate spatial or temporal models and (b) the 
latter is based on considering a univariate spatio-
temporal process. Even if there are many points in 
common between the two approaches, some 
distinctions are necessary in order to see the chance of 
applying one approach despite the other. 
 Some geometrically anisotropic models for spatio-
temporal data were proposed in Dimitrakopoulos and 
Lou (1994). Guttorp et al. (1992) used separable 
covariance structures, obtained through the tensor 
product of a spatial and a temporal covariance. In the 
same context of separability, Rouhani and Hall (1989) 
proposed the so called sumvariogram. 
 Other approaches were based on the fact that the 
trend could entirely catch the temporal variability, in 
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order to obtain a purely spatial random process. In the 
nonseparable context, efforts have been focus on 
obtaining general classes of spatio-temporal 
covariances. It is worth citing Jones and Zhang (1997), 
Cressie and Huang (1999), Christakos (2000); De 
Cesare et al. (2001); Gneiting (2002); Ma (2005), Stein 
(1999; 2005), Fernandez-Casal et al. (2003). Sahu et 
al., 2005, is also a recommended applied reference 
from the Bayesian perspective. Most of these 
contributions deal with stationary spatio-temporal 
covariances assuming isotropy in space and time. In 
particular, Cressie and Huang (1999) proposed a 
spectral approach to obtain spatio-temporal 
Covariances and Gneiting (2002) represents the natural 
generalization of this approach, obtained by using 
completely monotone functions and functions whose 
first derivative is completely monotonic. Stein (2005) 
puts emphasis on the spectral approach and on the fact 
that a spatio-temporal spectral density must be 
sufficiently smooth away from the origin, as well as 
on the problems of differentiability at the origin. 
Finally, Fernandez-Casal et al. (2003) extended the 
Shapiro-Botha approach to flexible variograms in the 
spatio-temporal context. In the non-stationary context, 
important contributions come from Christakos (2002); 
Fuentes (2002) and Kolovos et al. (2004). Mateu et al. 
(2007) and Porcu et al. (2006) introduced the following 
developments: (a) anisotropy by isotropy within 
components; (b) the inclusion of the Bernstein class for 
the generalization of Gneiting (2002) result. Chen et al. 
(2006) studied the non-stationary covariance functions 
based on mixtures of local orthogonal random 
functions. Porcu and Mateu (2007) obtained new non-
stationary models through completely monotone 
functions. Gregori et al. (2008) developed  covariances 
with negative values. And Porcu et al. (2009) had new 
insights about quasi-arithmetic means of covariance 
functions. 
 

NEW FAMILIES OF ANISOTOPIC 
COVARIANCE FUNCTIONS 

 
 As the assumption of isotropy is very often 
unrealistic to model real phenomena, the researcher has 
to deal with the problem of relaxing this hypothesis. In 
other words, it is important to define covariance models 
that attain an anisotropic behavior in the spatial 
component. 
 There are two types of anisotropy. The simplest 
one, called geometric, is defined when the same 
covariance form and sill parameter is present in all 
directions, but the range changes with direction. In this 
case, there is a single sill, but the semivariogram 

reaches the sill in a shorter lag distance along a 
particular direction. 
 In the second case, called zonal anisotropy, either 
the form or the sill of the covariance structure or the 
scale parameter (or both) are different in distinct 
directions. Whilst in the case of geometric anisotropy, 
one can use an isotropic model simply by setting a 
deformation of the coordinates; the case of zonal 
anisotropy is mathematically much more complex and 
needs further caution. 
 Anisotropy through isotropy within components 
assumes that there is not necessarily isotropy in the 
complete space, but separately in subspaces of complete 
dimension. For instance, in3

ℝ , if ( )1 2 3, ,h h h=h : 

 

( ) ( ) ( ) ( )1 1 1 2 3 1 1 1 2 3: , ,      or     : , ,  C C h h h C C h h h= =h hɶ ɶ  

 

are two examples of covariance functions in R
3 which 

are not isotropic but anisotropic through isotropy within 
components. 
 Our strategy is to create partitions of the spatial lag 
vector d∈h ℝ in the following way: if 

( )1 2, , , nd d d=d … and , d∈h k ℝ we can always write 

( ) 1 2
1 2, , , ndd d

nh h h x x x= ∈h … ℝ ℝ ⋯ ℝ (and similarly for 

k) so that: 
• ( ) ( )C C=h k for any , d∈h k ℝ if i i=h k for 

all 1, 2, ,i n= … . 
• The resulting covariance can be written as: 
 

( ) ( )1 , , nC C=h h h…  (8) 

 
and (8) admits an integral representation as a scale 
mixture of Bessel functions. 
 For the space-time setting, the element d has 
always cardinality |d|=d+1. Then, although we may 
force the anisotropy in the spatial components, all 
processes are considered as symmetric in time. 
 

THE BERNSTEIN CLASS OF SPACE-TIME 
COVARIANCE FUNCTIONS 

 
 In this context of covariance functions in which 
anisotropy is obtained through isotropy within 
components, the Bernstein class with a covariance 
function of the form: 
 

( ) ( ) 10 0
1

( , ) exp ( )
d

st i i i t d
i

C u h u dFh ωψ ω ψ ω
∞ ∞

+
=

 = − − 
 
∑∫ ∫⋯  
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with ( ( )1,..., 'dh hh = , ( )1 1,..., 'dω ω ω +=  and 

1,..., ,d tψ ψ ψ Bernstein functions, arises naturally. 

 In particular, note that an adaptation of Theorem 1 
in Gneiting (2002) to our context can be stated as 
follows. 
 For 1,2,3,4,i =  let { }1,2,... .id ∈ =ℕ  A 

continuous, bounded, symmetric and integrable 

function 31 2 4: dd d d
stC × × × →ℝ ℝ ℝ ℝ ℝ  is a covariance 

function if and only if the function: 
 

( )3 3 4 43 4,
1 2 1 2 3 4 3 4( , ) ( , , , )i

stC e C d dh hh h h h h h h hω ωω ω ′ ′− += ∫∫  (9) 

 
defined in 1 2d d×ℝ ℝ is a covariance function for all 

( ) 3 4
3 4, .d dω ω ∈ ×ℝ ℝ  

 Then, following Porcu et al. (2006) we can 
formulate the following general result. Let 1 2,ψ ψ  be 

either (i) positive Bernstein functions or (ii) 
intrinsically stationary variograms not vanishing at the 
origin( )ψ γ≡ . Let L  be the bivariate Laplace 

transform of a nonnegative random vector ( )1 2,X X  

with distribution function F. Then 
 

( ) ( ) ( ) ( )3 4

2 22
3 4

1 2 3 4 2 2
2 22 2

1 1 2 2
1 1 2 2

( , , , ) ,st d d
C

h h
h h h h

h hh h

σ
ψ ψψ ψ

 
 =  
 
 

L

  (10) 
 

is a covariance function in 31 2 4 .dd d d× × ×ℝ ℝ ℝ ℝ  
 Several particular results are of importance. A 

first result can be obtained by considering the margins of 
(10), ( ,0)stC ⋅  or ( , )stC 0 ⋅ . Then, if ϕ  is a completely 

monotone function and ψ  a Bernstein function, the 
function 
 

( ) ( )1

22
1

2
2 2

2
2

( )
d

C
h

h
hh

σ ϕ
ψψ

 
 =  
 
 

 (11) 

 
for 1 2 ,d ddh ∈ = ×ℝ ℝ ℝ  and ( )1 2,h h h=  with 

id
ih ∈ℝ for 1,2,i = is a stationary nonseparable 

covariance function.  
 A second particular case on the spatio-temporal 
domain defining a spatially componentwise anisotropic-
temporally symmetric covariance function is as follows. 

Let 1 2,ψ ψ be either Bernstein functions, variograms 

or increasing and concave functions on [0, ∞). Then, 
 

( ) ( ) ( ) ( )
2 22

2 3
1 2 3 1 1 2 2

2 22 2
1 1 2

1 1 2

( , , , ) ,st

h h
C h h h u

h uh u

σ
ψ ψψ ψ

 
 =  
 
 

L

   (12) 
 
with, , , 1,2,3,ih u i∈ =ℝ is a stationary nonseparable 

space-time covariance function with spatially 
anisotropic components, defined on 3 .×ℝ ℝ . 
 Observe that the arguments in (12) can be 
interchanged preserving the validity of the resulting 
covariance function. Another interesting point is that 
this covariance structure admits four trivariate margins, 
six bivariate and four univariate ones, so that starting 
from (12) we can build a wide variety of covariance 
functions for space and space-time. In addition, the 
extension to 3 ,  3,× >ℝ ℝ d  is straightforward. 

 A final example comes from considering a 
particular case of the Bernstein class by considering the 
bivariate Laplace transform of a nonnegative random 
vector ( )1 2,W W  with distribution function F: 

 

( ) ( )
1

( , ) , ,
d

st i i t
i

C u h uh ψ ψ
=

 =  
 
∑L  (13) 

 
 Leading to a stationary nonseparable spatio-
temporal covariance function ind ×ℝ ℝ  for any positive 
natural number d. Using random vectors ( )1 2,W W  such 

that such that the integrating measure of the Laplace 
transform is concentrated on the line 1 2ω ω= , we come 

back to completely monotone functions, obtaining that: 
 

( ) ( )( )1 2( , ) ( ) ( ) ,s tu uh hϕ ψ γ ψ γ+֏  (14) 
 
and: 
 

( )( ( ))( )3 1 2( , ) ( ) ( ) ,s tu uh hϕ ψ ψ γ ψ γ+֏  (15) 

 
are stationary covariance functions on 3 ,×ℝ ℝ  

whenever ϕ  is a completely monotone function with 

1 2 3(0) 1, , ,ϕ ψ ψ ψ=  are Bernstein functions, and ,s tγ γ  

are respectively spatial and temporal intrinsically 
stationary variograms. 
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Some examples: Starting from parametric expressions 
of Laplace transforms of bivariate distribution 
functions, we provide some examples of covariance 
functions belonging to the Bernstein class and for 
which anisotropy is obtained through isotropy within 
components. 
 The Frechet upper bound for bivariate copulas 
admits Laplace transform L  with equation: 
 

( )
1 2

1 2
1 2

1
,

θ θ

θ θ
θ θ

− −−=
+
e

L  (16) 

 
for 1 0θ ≠ or 2 0θ ≠ , and where ( )0,0 1=L . 

 Thus the corresponding covariance belonging to 
the Bernstein’s class in Eq. 13 would be: 
 

( ) ( )

( ) ( )
1

1

1,                                  if  or 0

( , )   1
,    otherwise

d

i i T
i

h

st
d

i i T
i

C u e

h

ψ ψ µ

µ

ψ ψ µ

=

− −

=

= =


∑= −


−

∑

h 0

h  (17) 

 
where � �1, , ,  ,d

dh hh �� � �… ℝ ℝ  and 

,  ,  1, ,i T i d� � � … are Bernstein functions. 
 Using now formula (12), it is possible to obtain a 
spatially anisotropic covariance function. We consider 

here a covariance function defined on R3×R, but the 

extension to a generic (d+1)-dimensional space is 
immediate. Thus, we set a partition of the three-
dimensional lag vector of the type 

( ) 3
1 2 3, ,  h h h= ∈h … ℝ and through straightforward 

calculation, using the Bernstein functions 

1 2,  ψ ψ applied respectively to the first spatial lag 

component 1h  and to the temporal component µ , we 

obtain: 
 
 

( ) ( ) ( ) ( )
( ) ( )

32

2 2
1 1 2

1 1
2 22 2

1 1 2

2 2 2 2

2 2 3 1 1

1,                                                                                if  or 0

( , )   
1 ,    otherwise

hh

hst
hC u

e x
h h h

ψ ψ µ

µ

ψ ψ µ

ψ µ ψ

− −

= =

  
 =   −  

+     

h 0

h

 

  (18) 
 
where ( ) 3

1 2 3, ,h h h= ∈h … ℝ and µ ∈ℝ . Observe that 

instead of the two Bernstein functions 1 2,  ψ ψ one could 

alternatively use two variogram models, say1 2,  γ γ , 

provided that they do not vanish at the origin, which is 
equivalent to variograms with a nugget effect. 

CONCLUSION AND DISCUSSION 
 

 Spatio-temporal interactions usually show very 
complicated forms. We believe that analytical 
procedures which are easy to implement and 
interpretable can help in the specification of the spatio-
temporal dependence. In this study we have presented 
an overview of possible solutions to the problem of 
modeling anisotropy in space-time data. The methods 
are quite general and allow building space-time 
covariances which are spatially anisotropic. The classes 
here presented are very rich as contain a wide range of 
particular cases. Note that the ingredients required for 
the construction of these covariances are easy-to-find. 
For instance, it is easy to find a list of Bernstein 
functions as indicated above, and even easier to find 
increasing concave functions. In general, the new 
classes of covariance functions we present in this study 
are easy to build and allow for closed forms through 
simple bivariate or univariate mixtures. 
 The application of nonseparable anisotropic 
covariances to real space-time data is one of our main 
scopes for the future. Although the scope of this study 
is mainly theoretical, in the future we shall dedicate 
time for applications. Besides, simulation of space-time 
random fields is not at all easy for the meantime. 
Various computational problems are already 
encountered, even in very simple cases. But, obviously, 
it will be a very interesting research point for the future. 
In this context, it would be nice to consider our new 
proposed covariance families within a test of 
separability and analyze the power of such a test. 
Again, we leave this action for the next coming 
research. 
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