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Abstract 

Adaptation to climate change has become an important policy question in recent years. 

Agriculture is the economic activity most sensitive to climate change. We evaluate the dynamic 

effects of productivity change and individual efforts to adapt to climate change. Adaptation 

actions in agriculture are evaluated to determine how the climate affects production efficiency. 

In this paper, we use the bi-directional distance function method to measure Japanese rice 

production loss due to climate. We find that 1) accumulated precipitation has the greatest effect 

on rice production efficiency and 2) the climate effect on rice production efficiency decreases 

over time. Our results empirically support the benefit of an adaptation approach.  
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1. Introduction 

Adaptation to climate change has become an important policy question in recent years, especially in 

the United Nations Framework Convention on Climate Change (UNFCCC). In thirteenth meeting of 

the Conference of the Parties (COP13), participating nations adopted the Bali action plan, which 

proposed the implementation of adaptation actions. The UNFCCC funds adaptation and has 

implemented a project to mitigate climate effects in developing countries. Clearly, the reduction of 

greenhouse gas emissions is an important part of long-term efforts. Stern (2006) estimated that the 

impact of climate change on economic activity will reach 5% of the global GDP if action is not taken. 

Stern warns that if we do not prepare adaptations for climate change, enormous global economic 

damage will occur (see Tol and Yohe, 2009 for a review of climate modeling). Agriculture is the 

economic activity most sensitive to climate change, and many studies have estimated the effect of 

climate change on agriculture (Rosenzweig and Parry, 1994; Reilly et al., 2003; Mendelsohn and 

Dinar, 2009).  

Most of these studies have calculated the potential effect of climate change on the quantity of 

agriculture production (Chang, 2002; Peng et al., 2004; Falco and Chavas, 2008) and have analyzed 

the effects of temperature, rainfall, and sunshine as climate variables. Another group of studies has 

calculated the potential effect of climate change on agricultural economic damage. For example, 

Mendelsohn et al. (1994) used a Ricardian analysis to estimate the effect of global warming on US 
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agriculture. Schlenker et al. (2005) used a hedonic approach to analyze the impact of irrigation on 

adaptation. Deschênes and Greenstone (2007) estimated the impact of climate change on the US 

agricultural sector and used agricultural yields per hectare as the dependent variable to identify 

variation in yields with respect to weather. Like Deschênes and Greenstone (2007), we analyze the 

variation in yields by adding land used as an independent variable. 

However, these studies do not sufficiently evaluate the dynamic effects of productivity change and 

individual effort on adaptation to climate change. Few studies have focused on the climate effect on 

agricultural production efficiency. Thus, it is crucial to evaluate the effect of adaptation on 

agriculture to determine how the climate affects production efficiency. As described below, not all 

decision-making units can maximize yields based on particular conditions. In other words, the 

potential exists for production inefficiency.  

We apply directional distance functions (DDF) as a production efficiency technique to measure 

Japanese rice production loss due to climate change. The DDF method is a nonparametric approach 

to measure the efficiency of production that takes into account production inefficiency. This method 

is used to measure production efficiency in many fields (e.g., Kumar and Managi, 2010). Some 

studies have analyzed agricultural productivity using this method (e.g., Coelli and Prasada Rao, 

2003).  

In this study, we apply the model of Picazo-Tadeo et al. (2005) to measure the effect of climate 
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change. Picazo-Tadeo et al. (2005) calculated efficiency under strong and weak disposability to 

measure the opportunity cost of environmental regulation (see Appendix A). In reality, the joint 

production of several input and output production factors causes difficulties in the measurement of 

the overall performance of decision making units (DMUs). This is because any DMU may 

synchronously decrease both desirable and undesirable outputs without changing inputs. Therefore, 

many previous studies have calculated efficiency under strong disposability to capture the abatement 

effort of undesirable outputs (e.g., Färe et al., 2007).  

However, several inputs have characteristics that decrease the desirable outputs in the agricultural 

production process, including the climate conditions needed for agriculture. Temperature, rainfall. 

and sunshine are important factors for agriculture production. However, extremely high temperatures 

will decrease the quantity of agricultural production, making input factors undesirable for production. 

Therefore, we expand the Picazo-Tadeo model to consider undesirable (negative) input factors for 

rice production. 

Normally, adaptation for climate change is a more significant problem in developing countries. 

However, our analysis of Japan has two advantages. First, Japan has several regional climate 

characteristics despite the country’s small size. Thus, we can easily compare how climate factors 

affect production efficiency in each region. Second, Japan has advanced irrigation equipment and 

agricultural technology. The results of our analysis can identify the costs of avoiding climate effects 
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with these technologies and investments.  

This paper is organized as follows. Section 2 provides a literature review. In section 3, we explain 

our empirical model and data. Section 4 presents our specification results. In section 5, we compare 

our index to other indexes, particularly the crop situation index used by the Japanese government 

and other factors that potentially mediate the climate effect. The final section summarizes our 

results.  

  

2. Literature Review 

Productivity growth in agriculture has been one of the most important research topics in agricultural 

policy over the last five decades. Economists have examined the sources of productivity growth and 

productivity differences among regions. A number of analyses of cross-country differences in 

agricultural productivity were conducted in the 1970s and 1980s, including studies by Kawagoe et al. 

(1985), Capalabo and Antle (1988), and Lau and Yotopoulos (1989).  

There are several efficiency measurement approaches in agriculture. A Stochastic Frontier 

Analysis (SFA) might be appropriate to focus on the fact that agricultural processes are stochastic. 

However, the problem with SFA is that it assumes a parametric specification for production 

technology, which can confound the efficiency results (Reihard et al., 1999). In addition, curvature 

conditions (i.e., concavity in inputs) are not globally satisfied when using the popular translog 
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specification. Furthermore, SFA makes an explicit assumption about the distribution of the 

inefficiency term. Data Envelopment Analysis (DEA) has more flexibility so that a parametric 

specification of technology and assumptions about the distribution of efficiency can be avoided 

while allowing the curvature conditions to be imposed easily.  

Previous studies have also attempted to measure agricultural productivity and production 

efficiency with a nonparametric frontier analysis of DEA. However, few studies have measured the 

climate impact on agricultural production efficiency. For example, Mao and Koo (1999) used a 

nonparametric frontier analysis to measure the Malmquist productivity for Chinese agriculture. 

However, the study focused on the measurement of productivity itself; the climate effect on 

agricultural production has yet to be analyzed.  

Normally, the crop situation index is used as a benchmark of the climate effect on agriculture 

production. When the Japanese government evaluates the effect of climate change on crop 

production, the crop situation index is the common key indicator. The Minister of Agriculture, 

Forestry and Fisheries of Japan uses this index for policy making in Japan. In Japan, the crop 

situation index of rice measures the gap between rice quantities at baseline per ton, per acreage, and 

the actual amount of rice production. The baseline amount of rice production is estimated using a 

panel model that can control for climate effects. When negative or positive climate effects do not 

occur, this index is 100%. Values more than 100% mean that climate effects help to increase rice 
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production quantities.  

The crop situation index does not consider efforts to avoid climate effects and changes in 

production inputs. We are aware of only one study that has analyzed climate effects on production 

efficiency. You et al. (2009) used the Cob-Douglas production function to estimate the climate effect 

on wheat productivity in China. However, the climate effect cannot be captured by using a linear 

relationship with output (see Schlenker and Roberts, 2006). Thus, we measure the effect of climate 

on rice production efficiency by DEA, which is suitable for measuring the nonlinear effects of 

climate.  

 

3. Methodology 

This study measures the association between climate effects and efficiency loss on rice production in 

Japan. First, we apply simple fixed and random effects specifications to classify whether climate 

conditions affect rice production positively or negatively. Second, we measure the climate effects on 

production efficiency using the signs obtained in the panel estimations. 

We regress a production function in the first step. We estimate the effects of each output variable 

on the production function to classify which variables increase or decrease the output amount. These 

positive/negative signs are used for the choice of DDF. When we measure the production efficiency 

using DDF methods, we divide positive input (input factors that increase output) and negative input 
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(input factors that decrease output) before measuring the production efficiency. We consider the 

effect of climate impacts on Japanese rice production. However, we cannot understand apparent 

relationships between Japanese rice production quantities and climate impacts. Thus, we first 

estimate the relationship between climate variables and rice production quantities using a regression 

model. With these results, we measure the climate impact on Japanese rice production efficiency 

using a DDF method. 

3.1 Fixed and random model: Base specification 

This section presents the model of fixed and random specifications. Following previous studies, we 

use rice production quantity (ton) as an output variable. We estimate the following equation using 

fixed and random effects specifications: 

1 2 3 4 5

2

6 7 8

ln ln ln ln ln ln

ln ln ln , (1)

it it it it it it

it it it i it

rice Labor Capital Land Operate Rain

Temp Temp Sun v

     

   

     

    
 

 

where Laborit refers to hours worked for year t and prefecture i, Capitalit denotes the production 

capital (including cost, using Japanese Yen, of animal power, equipment, and rent)
1
, and Landit is 

acreage under rice cultivation (unit of 100m
2
). Operateit is other operating costs (cost of seeding, 

manure, agricultural chemical and other material, also using Japanese Yen). To obtain the output and 

input data in real value terms, it is necessary to convert the nominal value data into real value data 

                                                   
1
 In this study, capital data are flow data in each year.  
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using deflators (1995 = 100). Input price indices for production capital and current goods use the 

Törnqvist method, employing their corresponding price indices from the Statistics of Prices and 

Wages in Rural Areas (SPWRA), which is issued annually by the Ministry of Agriculture, Forestry 

and Fisheries of Japan. We expect commonly used production factors (Labor, Capital, Land, 

Operate) to have a positive association with rice production. 

Rainit, Tempit, and Sunit represent the climate environment with accumulated precipitation 

(millimeter), effective accumulated temperature (degree-days), and accumulated sunshine duration 

during rice growing seasons, respectively. Each climate datum is calculated with a quantity survey. 

In our model, we add a quadratic term of average temperature to consider high temperature injuries, 

as explained in section 4.2.
2
 With regard to precipitation, we consider the linear effect only because 

adding the quadratic variable can cause correlations, and the results are not statistically significant. 

This might be partially because Japan does not experience the harmful situation of too little average 

precipitation. Note that μi is the fixed effect that describes the inherent effect of prefectures on fixed 

effects specifications. In random specifications, μi represents a stochastic variable. 

Many studies show that climate change causes land use changes. We would need to take land use 

changes into account if they occurred during our study period. However, at least for rice in Japan, 

land use changes did not occur during our study period.  

                                                   
2
 We do not report the quadratic results of accumulated precipitation and accumulated sunshine 

duration because they are not statistically significant. 
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First, the correlation in our data between acreage (Land) and the climate variable is small (temp: 

-0.087, Sun: 0.206, Rain: -0.087). The correlation between Land and Sun is positive and higher than 

the other climate variables. This correlation shows farmers’ preferences for choosing suitable places 

for farming. However, there is no clear correlation between Land and the other climate variables. 

Note that several studies have pointed out that climate change does not always cause land use change. 

For example, Taylor et al. (2002) analyzed the influence of land use in the Sahel. They found that 

recent historical land use changes were not large enough to have been the principal cause of the 

Sahel drought.  

Second, climate change did not clearly occur in our study period. When temperatures increase, 

farmers might consider changing their cultivated agricultural crops or giving up on agricultural 

cultivation. However, large temperature changes did not occur in our analysis period. Our regression 

results show the positive coefficient between temperature and output.  

In contrast, the climate environment has a more complex relationship with output. The 

relationship between rainfall and rice production is not clear. In Japan, farmers have better irrigation 

and drainage technology than in other areas (Seino, 1995). Thus, accumulated precipitation might 

not affect rice production. However, if rainfall increases from typhoons (which are accompanied by 

strong winds of up to around 200 km/h, known as hurricanes in the Atlantic Ocean), β5 is expected to 

have a negative sign in our regression. A minimum average temperature is required for efficient rice 
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production. Therefore, β6 is expected to have a positive sign in our regression. Note that excessively 

high or low temperatures cause high and low temperature injuries. We expect a negative relationship 

between average temperature-squared and rice production. Accumulated sunshine duration is 

expected to have a positive sign in our specification. 

We estimate another model to examine the productivity change in Japanese rice production. In this 

model, we add the time trend (time) and its squared term (time
2
) as proxy variables for productivity 

change.   

3.2 Directional distance function 

This study applies DDF methodology by modifying Picazo-Tadeo et al. (2005).
3
 Picazo-Tadeo et al. 

(2005) analyzed a DDF model to measure desirable output loss considering decreasing undesirable 

output. The climate change effect cannot be considered an output because climate plays a key role in 

agriculture products. Thus, in our model, we consider climate factors as inputs.   

Consider a production process that uses a vector of inputs,
Lx  , to obtain a set of desirable 

outputs denoted by the vector 
My  , a vector of climate factors that cause efficiency loss 

(negative climate factors), 
Rb  , and a vector of climate factors that increase output (positive 

climate factors), 
sc  . Next, define the production possibilities set by  

  , , , : ( , , )P x y b c x b c can produce y .  

                                                   
3
 For a graphical representation of the DDF method, see Appendix B. 
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In particular, we assume a weak disposability of desirable outputs and climate factors to explicitly 

consider that climate factors may affect rice production quantities, as is commonly assumed in 

traditional production theory. When a farmer faces climate change, some climate factors cause 

efficiency loss. The axiom of weak disposability of inputs constitutes an appropriate assumption of 

the technology. In other words, climate that otherwise could have a productive use (i.e., production 

of desirable outputs) has to be diverted to reduce the negative influence of climate change. The 

directional technology distance function can generalize both the input and output of Shephard’s 

distance functions, which provides a complete representation of the production technology. We 

formally define the presence of climate factors as 

    ( , , , ; , ) sup : , , .x y y xD x y b c g g y g P x g b c        

 (2) 

Under weak disposability, this directional technology distance function, 
W

D , can be computed 

for prefecture k , which solves the following programming problem: 

( , , , ; , )
W

k

x yD x y b c g g Maximize       
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where 
lix  is the l th input factor for prefecture i  in an L × N input factor matrix X, 

miy  is the m th 

output in a M × N output factor matrix Y, 
rib  is the r th negative climate factor in a R × N matrix B, 

and 
ric  is the sth negative climate factor in a S × N matrix C. In addition, 

lgx is the directional input 

vector of the lth input factor, 
mgy  is the mth directional output vector of desirable output factors, k  

is the inefficiency score of the kth prefecture, and k

i  is the variable weight for the i th prefecture. 

To estimate the inefficiency score of all areas, the model needs to be independently applied N times 

for each area.  

Alternatively, we consider the case that prefectures do not face a negative climate effect. Strong 

disposability of negative climate factors constitutes a convenient characterization of the technology 

because it allows for the possibility that farmers do not face a negative climate effect. That is, in the 

absence of climate constraints, farmers can produce rice at the most efficient production level. In this 

scenario, the distance function 
S

D  for prefecture k arises as the solution to the following 

programming problem: 
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   (4) 

 

Next, we compare the additive efficiency measures obtained from the DDFs under the weak and 

strong disposability to compute an index of the impact on prefectures’ performance, considering 

climate constraints that prevent the efficient production of rice (see Hernández-Sancho et al., 2000; 

Picazo-Tadeo et al., 2005; Piot-Lepetit et al., 2007). In our technology constraints, we assume that 

negative climate factors force desirable output to shrink (which is also shown in the results of 

Equation (1)) so that the impacts of negative climate factors can be measured in terms of desirable 

output losses. The efficient production (EP) of desirable output m relative to the unconstraint frontier 

of region k is 

  ( ) , , , ; , ,
S

S k k k

m m k k k k mEP y y D x y b c gx gy y      (5) 

while the projection on the boundary of the constrained output set is 

  ( ) , , , ; , .
W

W k k k

m m k k k k mEP y y D x y b c gx gy y      (6) 

The climate impact index (CI) for region k and good m is then computed as the difference between 
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efficiency projections of desirable m on both regulated and unregulated frontiers. That is,  

    
( ) ( ) ( )

, , , ; , , , , ; , .

k S k W k

m m m

S W
k

k k k k k k k k m

CI y EP y EP y

D x y b c gx gy D x y b c gx gy y

 

  
 (7) 

This CI always takes values equal to or greater than zero. A value of zero implies that climate 

changes are not economically binding, and consequently, the constraint does not hinder the strong 

disposability of negative climate factors. Conversely, a positive index indicates that climate 

constraints hinder efficient rice production.  

 

4. Applications 

4.1 Data 

In the first step, fixed and random specifications use panel data from 1961 to 1995. In this study, we 

apply data from 1961-1995 because of unavailable climate data before 1960 and changes in the 

definition of price indices after 1996. This analysis covers all of the key agricultural prefectures in 

Japan (39 prefectures out of 47). The Appendix lists 39 prefectures and area classifications. We 

exclude the prefectures of Chiba, Kanagawa, Tokyo, Okinawa, Osaka, Saitama, Shiga, and 

Yamaguchi due to limitations of the data. The data on Rice (quantity of rice production), Labor, 

Capital, Land, and Operate are obtained from the Ministry of Agriculture, Forestry and Fisheries in 

Japan. Climate data (such as Rain, Temp, and Sun) are obtained from the Japan Meteorological 

Business Support Center (2006). Annual climate data are compiled from daily data in each 
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prefectural capital during rice-growing seasons from the heading to harvesting period. The effective 

accumulated temperature is calculated based on a daily mean temperature: below 10 
°
C contributes 0 

degree days, between 10 and 30 
°
C contributes the difference between a daily mean temperature and 

10 
°
C, and above 30 

°
C contributes 20 degree days (Ebata, 1990a,b). Accumulated precipitation and 

sunshine duration are calculated by summing the daily data. 

The efficiency loss analysis in the second step is conducted using the same data on fixed and 

random specifications. Inputs are Labor, Capital, Land, and Operate, and input climate factors are 

Rain, Temp, and Sun. In the first step, we classify climate factors into negative climate factors and 

positive climate factors. From the result, we can decide which climate factors should be used as 

negative or positive factors in our DDF model to measure efficiency loss. 

 

4.2 Result of fixed and random specifications 

Table 1 shows the result of fixed and random specifications to understand the sign of climate factors 

to production quantities. In this table, we also add the ordinary least square (OLS) result to check the 

robustness of our estimations. The fixed effect result shows that all production factors (Labor, 

Capital, Land, and Operate) are positive and significantly associated with production quantities.  

The Land coefficient shows the largest effect on production quantities. Some previous studies 

found similar results. This demonstrates the Japanese policy effect on agricultural land use. Since the 
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1970s, the Japanese government has implemented a rice acreage reduction policy to adjust 

production quantities of rice because farmers had difficulty expanding the cultivated area. Therefore, 

the scale of the cultivated area is the most important factor for rice production. Previous studies have 

shown the coefficient between rice production quantities and the scale of the cultivated area. For 

example, Kondo and Hiromasa (1986) estimated the elasticity of cultivation for rice production 

quantities to be 0.6-0.7 in the Tohoku and Hokuriku districts in Japan. However, each climate factor 

has a different association with output. 

Temp and Sun have a positive relationship with output, but Rain and Temp
2 

have a negative 

relationship with output. Excessively high temperatures and rainfall, however, decrease rice 

production quantities. The negative sign of Temp
2
 and the positive sign of Temp imply that 

temperature leads to the maximum output. However, we note that the current maximum temperature 

is below the peak associated with the maximum output. Therefore, we add Temp as a good climate 

factor. In addition, differences between the aforementioned result and another specification with the 

time trend are provided. We find that time trends are not significant.  

High temperatures have the potential to decrease future production quantities. In addition, 

considering future negative effects and the negative synergetic effect of rain, we add temperature to 

bad climate factors in a separate model as follows, and we consider Rain a bad climate factor in the 

DDF analysis.  
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4.3 Measurement of efficiency loss  

Based on the above results, we classify each climate factor as negative or positive to measure the 

production efficiency. Because we consider average temperature a positive and negative factor for 

rice production, we develop two models. Table 2 presents the combination of variables for each 

model.  

Figure 1 presents the average efficiency loss of rice production in each year as a percentage of 

efficiency loss (EP
s
 - EP

w
) using DDF. In almost all of our study periods, efficiency loss tended to 

decline on average. In the 1970s, however, efficiency loss fluctuated widely. The efficiency loss 

clearly decreased after the 1970s, but our results show that negative climate factors affect the 

fluctuation of efficiency loss. Figure 2 shows the total rice production quantity loss each year. These 

trends are similar to those in Figure 1.  

Between 1961 and 1970, efficiency loss from negative climate effects showed a sharp decline in 

each prefecture. These results are expected due to improvements of cultivar and irrigation equipment. 

In these periods, cultivar improvements focus on low temperature injuries. The Japanese government 

is committed to maintaining irrigation equipment; improving irrigation equipment protects the rice 

plant from the negative effects of low temperatures. In reality, the gap between model 1 and model 2 

was largest in the 1960s (with an average inefficiency of 0.75%). This gap suggests the inefficiency 
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of rice production that is due to the temperature. In the 1970s and later, improvements in cultivar and 

irrigation led to decreases in inefficiency due to negative temperature effects. These effects increase 

adaptation ability to decrease the CI.  

During the 1970s, efficiency loss fluctuated widely. Efficiency loss was particularly high in 1976, 

when Japan experienced several typhoons. For example, the typhoon “Fran” caused record rainfall in 

many prefectures and destroyed 80,304 ha of cultivated area (National Astronomical Observatory of 

Japan, 1997). Thus, efficiency loss increased in this year. 

Table 3 shows the average percentage of efficiency loss and a summary of CI in key areas and 

regions where the prefectures were aggregated into three districts (detailed area classification is 

given in Appendix C). We take simple average values in the tables. The Tohoku region is the most 

important rice production area. The Hokkaido region became one of the major rice production areas 

in these years, and the Kyushu region is a major production area but has high temperature injuries 

caused by climate change. Thus, we focus on efficiency loss in these regions.  

Table 3 shows that the Tohoku region has a lower percentage of efficiency loss than the other 

prefectures. Negative climate factors do not affect efficiency in the Hokkaido region. We expect the 

characteristics of each of the region prefectures to affect efficiency loss. For example, the CI of West 

Japan (including the Kyushu area) is larger than other regions. The Kyushu region has more 

precipitation during the rice-growing seasons than other districts in Japan because of heavy rainfall 
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in the early summer rainy season, called “Baiu.” This region also has storm and flood damage from 

many typhoons each year. In North Japan (including Tohoku and Hokkaido), however, the typhoons 

do not have a large impact.  

We also investigate the correlation coefficient of these models (see Table 4). Our calculations 

reveal a high correlation between the two models. The correlation coefficient between model 1 and 2 

is 0.813. This result implies two possibilities. First, trends in efficiency loss are similar in the models. 

Second, the climate effect of production inefficiency is mainly caused by accumulated precipitation.  

 

5 Discussion 

In summary, our study reveals two important results. First, accumulated precipitation is the most 

effective factor in rice production efficiency. Second, the climate effect on rice production efficiency 

decreases over time. We provide two discussions based on these results. First, we investigate the 

other factors that influence climate effects on rice production. In particular, heavy rainfall causes 

floods, and the associated policy response is of interest. Thus, we analyze the relationship between 

CI and investment for river improvement.  

Second, we compare our results (CI) with the crop situation index. As mentioned above, the crop 

situation index does not clarify efforts to avoid climate effects and change production inputs. Thus, 

we compare CI and the crop situation index. If these two correlations are high, our proposed index is 
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not needed because of its complexity. 

 

5.1 Relationship between public investment and other effective factors  

Investment in avoiding floods and other weather crises has the potential to affect rice production 

efficiency loss. Therefore, we investigate the relationship between constraints that impact rice 

production and public investment for river improvements at the prefecture level. Figure 2 presents 

the scatter plots and shows a negative correlation between the amount of public investment (one 

million Japanese Yen) and CI in each year. The data on public investment are obtained from the 

Cabinet Office, Government of Japan (2007). 

Figure 3 shows the possibility that public investment for river improvements may decrease the 

efficiency loss of the climate effect. We apply public investment as a flow variable. Ideally, 

accumulated stock has an impact on production loss, but a stock variable was not available in this 

study. Therefore, we use the flow amount of public investment as a proxy. The reduced loss effect of 

public investment is most likely small because investment in climate change adaptation has a low 

priority for public investment decision making. Therefore, the indirect effects of public investment 

might prevent harm to human life and other economic activities. If policy makers increase the 

priority of investment for adaptation, this effect may increase.  

Other important factors also decrease the impact of climate on rice varieties. Improvements in rice 
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varieties were begun in Japan in the early nineteenth century. Almost all of these improvements 

focused on reducing cold summer damage in the northern areas of Japan. Our data show that the 

average temperature during our analysis periods was sometimes low. Thus, improvements in rice 

varieties that reduce cold summer damage play a significant role in decreasing the negative climate 

impact. In addition, some farmers cultivate several types of rice at the same time to reduce the risk of 

climate effects. Such efforts might reduce the climate impact on rice production in Japan.  

 

5.2 Comparison with crop situation index 

The crop situation index does not control for adaptation efforts and productivity changes to mitigate 

the climate effects. The fluctuation of the crop situation index is larger than our measurement (see 

Figure 4). In addition, the correlation between our measurement and the crop situation index is weak 

(see Table 4). Therefore, the crop situation index does not capture the climate effect on production 

efficiency. Policy makers must evaluate not only the crop situation index but also the production 

efficiency when planning for adaptation to climate change. 

 

6. Conclusion 

In this paper, we measured the climate effect on rice production efficiency in Japan using a 

directional distance function method. Our results contribute to the understanding of crop production 
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management. Until the 1980s, low temperature injuries were one of the most significant problems 

for rice production in Japan. However, in the near future, climate changes will increase average 

temperatures.  

Our results reveal that the temperature effect on rice production is weak in Japan because Japanese 

agriculture has advanced cultivar and irrigation technologies to improve rice varieties. In addition, 

climate change increases not only average temperature but also the scale of storm and flood damage 

from typhoons (IPCC, 2007). Our results show that significant public investments have the potential 

to decrease the climate effect on rice production. Of course, other adaptation factors (the 

development of rice varieties to prevent low temperature injury, the cultivation of rice varieties that 

reduce the risk of climate effects on rice production) are important as well. Adaptation to climate 

change has become important for rice production in Japan. 

High temperature injuries in rice production occur in tropical regions, including many developing 

countries. Many previous studies have noted the importance of adaptation in developing countries 

(Parry et al, 2004; Stern, 2006). Although the Japanese case may not directly apply to developing 

countries, our results suggest the importance of several adaptation methods, such as public 

investment, developing new agricultural varieties, and efforts to reduce the risk of climate effects.   
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Table 1. Estimation of Production Function (amount of rice production base) 

  OLS Random Effect Fixed Effect (add time trend) 

Labor 0.058*** 0.080*** 0.076***  0.094*** 

 (3.98) (5.36) (4.92) (3.10) 

Capital 0.047*** 0.075*** 0.070***  0.075*** 

 （2.97） (4.51) (3.98) (3.98) 

Land 0.818*** 0.805*** 0.782***  0.809*** 

 (37.71) (32.21) (27.43) (25.31) 

Operate 0.163***  0.113*** 0.106***  0.067** 

 (7.52) (4.84) (4.43) (2.50) 

Temp 10.670*** 9.337*** 9.265***  8.798*** 

 (7.13) (7.32) (7.28) (7.00) 

Temp
2
 -0.816*** -0.704*** -0.698*** -0.656*** 

 (-6.96) (-7.04) (-7.00) (-6.66) 

Sun  0.111***  0.087*** 0.084***  0.076*** 

 (6.40) (5.20) (4.99) (4.40) 

Rain -0.044***  -0.015*** -0.014***  -0.027*** 

 (-8.44) (-6.02) (-5.70) (-5.86) 

Time    -0.012 

    (-0.84) 

Time
2
    0.003 

    (0.53) 

Constant -33.475*** -29.39*** -28.934***  -27.358*** 

  (-6.99) (-7.22) (-7.13) (-6.82) 

R
2
 0.931 0.930 0.930 0.932 

Hausman test - 44.57***  

Note: *Significant at 10% level, **Significant at 5 %, ***Significant at 1% level. Values in 

parentheses are t-values. 

 



28 

 

Table 2 Combination of variables in each model of DEA  

    model 1 model 2 

Good input Sun  ✔ ✔ 

  Temperature   ✔ 

Bad input Rain ✔ ✔ 

  Temperature ✔   

Output Production quantity ✔ ✔ 
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Table 3 Average of efficiency loss and CI in each region 

 EP
s
 - EP

w
  Climate impact(CI) 

  model1 model2 model1 model2 

Tohoku region 0.0064 0.0044 17311.900 11360.043 

Hokkaido region 0 0 0 0 

Kyushu region 0.0147 0.0119 17864.010 14079.567 

Other region 0.0177 0.0094 83576.279 42555.821 

        

North Japan 0.0055 0.0037 17311.900 11360.043 

East Japan 0.0128 0.0070 43045.355 21753.076 

West Japan 0.0199 0.0120 58394.934 34882.311 

Note: The results of model 1 and model 2 are based on quantity of rice production (t).  
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Table 4 Correlation between each model results 

 model 1 model 2 

model 1 - 0.813 

Crop situation index -0.177 -0.222 
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Figure 1 Percentage of Efficiency loss (average of all result) 
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Figure 2 Summations of climate impact (amount of rice production) 
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Figure 3 Relationship between investments for river improvement and climate Impact (amount of 

rice production) 

Note: Figure 3 shows plots every five years because census data are available every five years. 
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Figure 4 Crop situation index and percentage of efficiency loss 

for rice production quantity  
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Appendix A: Strong disposability and Weak disposability 
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Figure A Strong disposability and Weak disposability of input 

 

Figure A shows the weak and strong disposability of inputs and the indifferent curve based on two 

inputs (x1 and x2 ) for the production of one output. Starting at point b, an increase in x1 causes a 

reduction in output when x2 is held constant (from b to c) or requires an increase in x2 to maintain 

constant output (from b to d), so the input x1 is weakly disposable. Starting at point a, an increase in 

x2 can be disposed of freely without the cost calculated as reduced output or as an increased use of x1. 
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Appendix B: Directional Distance function 

Output oriented

Input oriented

Both oriented

input

output

 

Figure B Measurement method of inefficiency 

 

Figure B illustrates how to measure distance to the frontier. Input- or output-oriented approaches are 

the primary methods to measure production inefficiency. The input-oriented method has the ability 

to reduce input to produce the same amount of output as the present situation. Conversely, the 

output-oriented approach has the ability to increase output using the same amount of input as the 

present situation. In this study, we use a method that considers both input and output to measure 

production inefficiency. This approach considers both savings in input and increases in output. 
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Appendix C 

List of prefectures and area classification 

No 
Prefecture 

name 
Region Part No 

Prefecture 

name 
Region Part 

1 Hokkaido - North 21 Kyoto Other West 

2 Aomori Tohoku North 22 Hyogo Other West 

3 Iwate Tohoku North 23 Nara Other West 

4 Miyagi Tohoku North 24 Wakayama Other West 

5 Akita Tohoku North 25 Tottori Other West 

6 Yamagata Tohoku North 26 Shimane Other West 

7 Fukushima Tohoku North 27 Okayama Other West 

8 Ibaraki Other East 28 Hiroshima Other West 

9 Tochigi Other East 29 Tokushima Other West 

10 Gunma Other East 30 Kagawa Other West 

11 Niigata Other East 31 Ehime Other West 

12 Toyama Other East 32 Kochi Other West 

13 Ishikawa Other East 33 Fukuoka Kyushu West 

14 Fukui Other East 34 Saga Kyushu West 

15 Yamanashi Other East 35 Nagasaki Kyushu West 

16 Nagano Other East 36 Kumamoto Kyushu West 

17 Gifu Other East 37 Oita Kyushu West 

18 Shizuoka Other East 38 Miyazaki Kyushu West 

19 Aichi Other East 39 Kagoshima Kyushu West 

20 Mie Other East 
    

 

 


