brought to you by **CORE**

Dynamic Interaction between Economic Indicators and SO₂ Emission in U.S.

Man-Keun Kim

Assistant Professor Department of Applied Economics Utah State University Logan, UT 84322 E-mail: <u>mk.kim@usu.edu</u>

Tun-Hsiang Edward Yu

Assistant Professor Department of Agricultural and Resource Economics University of Tennessee Knoxville, TN 37996 Email: tyu1@utk.edu

Poster prepared for presentation at the Agricultural & Applied Economics Association's 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July 24-26, 2011

Copyright 2011 by [Man-Keun Kim and T. Edward Yu]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

DYNAMIC INTERACTION BETWEEN ECONOMIC INDICATORS AND SO₂ EMISSION IN U.S. Man-Keun KIM and T. Edward YU

1. Motivation

- Economic growth (GDP or income) and environmental pollutants nexus – EKC hypothesis
 - A large number of studies using the reducedform regression models.
- Energy consumption (energy use) and economic growth nexus
 - Does energy use cause economic growth? inconclusive evidences
- Trade (openness) is another key variable
 - Trade liberalization and economic growth nexus
 - Trade liberalization and pollution nexus no clear consensus (pollution haven or race-to-thebottom hypotheses)
- Somewhat surprisingly, studies on economic growth, environmental pollutants, energy use and trade nexus are rare or few if any
 - Reveal the (causal) relationships between economic indicators

2. Theoretical Framework

SO₂ emission (*EMS*): function of energy use (*ENG*) and government policy (*G*), e.g., acid rain program (ARP) and exogenous factors (technology), *Z*₁. *EMS* = *f*^E(*ENG*,*G*,*Z*₁), ∂*EMS*/∂*ENG*>0, ∂*EMS*/∂*G*<0</p>

Government policy: function of income level (*INC*)

 $G = f^G(INC), \frac{\partial G}{\partial INC} > 0$

 Energy use (ENG): function of income (INC and ENG nexus) and exogenous factors, Z₂.

 $ENG = f^{(INC,Z_2)}, \partial ENG/\partial INC>0$ • Income (INC): function of energy use (INC and ENG

nexus), trade openness(OPN) (INC and OPN nexus), and other factors, Z₃.

 $INC = f^{4}(ENG, OPN, Z_{3}), \ \partial INC / \partial ENG > 0, \ \partial INC / \partial OPN > 0$

 Trade openness (OPN): function of INC and other factors

 $OPN = f^{O}(INC, Z_{4}), \ \partial OPN/\partial INC > 0$

* Inter-related variables over time

- Dynamic interactions
- Vector Autoregression model (VAR)

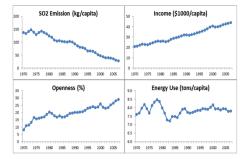
3. Methods

 VAR with trend captures the evolutions and interdependencies among variables

$$\mathbf{y}_{t} = \mathbf{c} + \sum_{i=1} \mathbf{A}_{i} \mathbf{y}_{t-i} + \mathbf{d} \mathbf{Z}_{t} + \boldsymbol{\varepsilon}_{t} (t = 1, ..., T)$$

 Moving average (MA) representation from the VAR and the impulse response functions to investigate relationships

$$\mathbf{y}_{t} = \sum_{i=0}^{\infty} \boldsymbol{\Theta}_{i} \boldsymbol{\varepsilon}_{t-i}, \quad \frac{\partial \mathbf{y}_{t+h}}{\partial \boldsymbol{\varepsilon}_{t}} = \boldsymbol{\Theta}_{h}$$

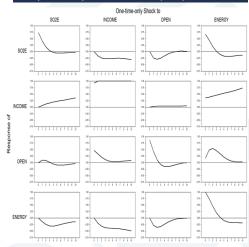

Historical decomposition (HD) of the SO₂ emission

$$E_{t_0+k} = \sum_{s=k}^{\infty} \Theta_s \varepsilon_{t_0+k-s} + \sum_{s=0}^{n-1} \Theta_s \varepsilon_{t_0+k-s}$$

- Left hand side: actual SO₂ emission
- First term in right hand side: base projection of the SO₂ emission utilizing information up to t₀
- * Second term in RHS: partition of contributions of the individual series to deviation from t_0 to t_0+k

4. Data

- SO2 emission per capita: Stern (2007)
 <u>http://www.sterndavidi.com/datasite.html</u>
- Energy use per capita: Energy Information Agency
- Per capital income in U.S. dollar from World Bank
- Trade openness from World Bank (X+M)/Income



5. Contemporaneous Causal Structure

- The 4x1 vector O₀ in the MA representation contains the contemporaneous causal structure among orthogonal innovations (e), which is identified through direct acyclic graph (DAG)(Pearl 2000)
- DAG approach identifies the causal relationship among non-experimental data based on a conditional independence.
- Greedy Equivalence Search algorithm (GES)
 - It starts from a causal representation with no edge (all variables are independent), and it proceeds stepwise searching over causal flow using the Bayesian scoring criterion (Meek, 1997; Chickering, 2003).
- Causal structure using the GES algorithm

6. Impulse Response Functions (IRFs)

7. Historical Decomposition (HD)

Historical decomposition of Energy Use after ARP (1995) ↑

8. Discussion

- ♦ From the causal structure, contemporaneously, energy use → economic growth, and economic growth → openness.
- IRFs show that the relationship between SO₂ emission and the income is negative (EKC hypothesis).
- HD shows that the actual SO₂ emission is lower than the baseline projection after implementing the ARP (phase 1, 1995 and phase 2, 2000) – effectiveness of the ARP
- After 2003, the actual SO₂ emission is higher than the base projection. This is because of high SO₂ allowance prices linked with higher energy prices.
 Income has two effects on the SO₂ emission.
- Indirect impact lowering SO₂ emission through the policy instrument, e.g., ARP (EKC relationship).
- Direct impact increasing SO₂ emissions through higher energy use from the HD.
- The emerging economy may learn from the US experience for the emission control, i.e., China starts to reduce SO₂ emission even though its national income level is still low (Shaw et al, 2010).