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COHORT POSTPONEMENT AND PERIOD MEASURES

February 26, 2010

JOSHUA R. GOLDSTEIN AND THOMAS CASSIDY
MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

Abstract. We introduce a new class of models in which demo-
graphic behavior such as fertility is postponed by differing amounts
depending only on cohort membership. We show how this model
fits into a general framework of period and cohort postponement
that includes the existing models in the literature, notably those of
Bongaarts and Feeney and Kohler and Philipov. The cohort-based
model shows the effects of cohort shifts on period fertility measures
and provides an accompanying tempo-adjusted measure of period
total fertility in the absence of observed shifts. Simulation reveals
that when postponement is governed by cohorts, the cohort-based
indicator outperforms the Bongaarts and Feeney model that is now
in widespread use. The cohort-based model is applied to fertility
in several modern populations.

1. Introduction

One way to view much of the demographic change that is taking
place in advanced societies is as a result of the changing meaning of
age. One often hears that 40 is the new 30, or even 80 is the new
60. Demographers have developed formal models to show that shifting
age-schedules (or equivalently, shifting meanings of age) can produce
dramatic changes in cross-sectional period measures. Most notably,
Bongaarts and Feeney’s (1998) paper on fertility postponement, and
their introduction of a “tempo-adjusted Total Fertility Rate” have be-
come a fundamental part of the modern demographic toolkit.

The transformation of the human life cycle is a process that takes
place within individual lives and is thus most naturally conceptualized
as a cohort process. The magic of the Bongaarts and Feeney “tempo
adjustment” is that only period data is needed. This is because post-
ponement is modelled in period manner, with all ages (and thus all
cohorts) postponing their events in the same manner in a given year.
This rate of change can vary from period to period, but all cohorts
must be treated the same. An enormous advantage of this approach –
apart from any degree of realism it may or may not have – is that it

1



2 GOLDSTEIN AND CASSIDY

produces a wonderfully simple mathematical model, in which changes
in period mean ages completely determine the presence and extent of
tempo effects.

Criticisms have been levelled at the Bongaarts and Feeney (BF)
approach. Notably, a number of authors have stated that the uni-
form postponement across all ages is unrealistic. However, few authors
have shown the consequences of departure from this assumption, or
have even proposed alternatives. Zeng Yi and Kenneth Land (2002)
have shown, using a set of simulations, that violations of the uniform
postponement by age assumption matter relatively little. Kohler and
Philipov (2001) proposed a major extension to the BF approach, giv-
ing a fairly general framework for age and time varying postponement,
and offering a special case in which postponement differed linearly by
age within any period. The Kohler and Philipov results have not been
widely used, in part because the paper is complex, the assumptions re-
quired to estimate the model are somewhat stylized, and the estimation
procedure requires strong smoothing in order to produce interpretable
results.

In this paper, we offer a conceptually simple alternative to the period-
paramount view of postponement. Rather than uniform postponement
by age within each period, we present a model in which there is uniform
postponement in each cohort. Rodriguez (2006) provides inspiration
by showing the relationship between these two views in the special case
of linear shifts – that is when the rate of postponement (be it period or
cohort) is unchanging over time. A simple version of our approach cov-
ers any trajectory of cohort postponement, with the important caveat
that the same shift applies to all ages within a cohort. The mathemat-
ics of the model can be readily extended to include both variation in
postponement by age within each cohort and also period effects on the
level (“quantum”) of fertility which introduce variable cohort quantum.
We present procedures for estimating the simple version of the model
and apply this to contemporary fertility patterns in several countries.

We begin by presenting the cohort shift model with period quantum
effects in a simple form. We introduce an adjusted measure of period
total fertility which can be used to recover the total fertility that would
have been observed in the absence of postponement, and we use a few
simple examples to illustrate how this adjusted measure relates to the
observed period total fertility. Next we compare our cohort shift model
with other measures of period total fertility. Finally, we show how the
cohort shift can be estimated from data and apply our adjustment
formula to real data to see how it compares to the BF adjustment.
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2. Models of cohort postponement

Denote the fertility rate at age a and time t by f(a, t). Translation
from period to cohort is made using the fact that t = c+ a, and so the
fertility at age a of the cohort born at time c will be f(a, c+ a).

2.1. The cohort shift model. We let φ0(a) denote a standard base-
line fertility schedule that would have occurred had there been no post-
ponement. In general, shifts in timing could vary by cohort and age,
such that

f(a, c+ a) = φ0(a− S(a, c))q(c+ a),

where q(t) is a period change in the quantum of fertility and S(a, c) is
the “shift”, which can vary by cohort and by age. For example, if “40”
were the new “30” for the cohort of 1960, then S(40, 1960) = 10.

A basic model of cohort postponement, which is still quite flexible in
that it allows each cohort to postpone by a different amount, assumes
uniform age-shifts within a given cohort. We let S(c) be the total
amount of shift experienced by cohort c. Thus

f(a, c+ a) = φ0(a− S(c))q(c+ a),

or equivalently

(1) f(a, t) = φ0(a− S(t− a))q(t).

For convenience we also assume that
∫
φ0(a)da = 1 where the unspeci-

fied limits of integration span all possible ages (this convention will be
used throughout). Note that the period level effect q(t) is invariant by
age, and that the cohort shift effect S(c) is invariant by period.

By definition the cohort total fertility rate (CTFR) for the cohort
born in year c is CTFR(c) =

∫
f(a, c + a)da. Under this model the

Cohort Total Fertility Rate depends on the history of period effects.
If period quantum is constant over time, shifts within a cohort should
not change the CTFR, and indeed we can see that this is the case.
Replacing f(a, c+ a) with φ0(a−S(c))q gives us CTFR(c) =

∫
φ0(a−

S(c))qda. We evaluate this integral using the change of variables w =
a− S(c) to get CTFR(c) = q

∫
φ0(w)dw = q.

The period TFR is influenced by both period quantum and the extent
of cohort shifts. Writing

TFR(t) =

∫
f(a, t)da =

∫
φ0(a− S(t− a))q(t)da

one can see that the sum of period fertility will depend on S(t − a)
Intuitively, this is because in the age-schedule in a given period will
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depend on the history of shifts for various cohorts. The degree to
which the period TFR is influenced by cohort shifts will now be seen.

If the shifts S are not constant, then conventional TFR will not be
equal to the period effect q(t). Notice that when we change variables
in the expression

∫
φ0(a−S(t−a))q(t)da by defining w = a−S(t−a),

we get TFR(t) = q(t)
∫ φ0(w)

1+S′(t−a)dw, where S ′(c) is the derivative of the

shift function with respect to cohort. This calculation illustrates what
is needed to recover the period effect q(t) from f(a, t). We therefore
define a shift-adjusted period Total Fertility Rate as

TFR†(t) :=

∫
f(a, t)(1 + S ′(t− a))da,

so that TFR†(t) =
∫
φ0(w)q(t)dw = q(t), and thus shift-adjusted

TFR†(t) recaptures the period TFR that would have been observed
in the absence of cohort shifts.

The reason that the definition works is because the age-shifts from
cohort-to-cohort are recapitulated in the cross-section from age-to-age.
Increasing postponement effectively speeds up the clocks of those in a
synthetic cohort within a given period. Likewise, slowing postponement
means that the synthetic cohort within a given period will have more
exposure at a given fertility rate. The neat thing about our adjustment
is that rather than inflating or deflating the time spent at each age, we
inflate or deflate the rate in a way that exactly compensates for the
compression or extension of age introduced by the cohort shifts.

2.2. Some simple examples.

Estimation and application of the cohort shift model can be done
by estimating S ′(c) from data. However there are choices for S(c)
which give insight into the consequences of the cohort shift model.
The following examples are useful to illustrate these consequences.

Example 1: Linear shifts
Following Rodriguez (2006), let S ′(c) be a constant k. In this case,

TFR† is (1 + k) times the observed TFR. Since the fertility sched-
ule f(a, t) is φ0(a − kt)q(t), period fertility is shifted but its shape is
unchanged, and so the BF formula, TFR∗ = TFR/(1 − µ′) is also
applicable. It follows that TFR/(1− µ′) = TFR(1 + k) and so

k =
µ′

1− µ′
,

which is the result obtain by Zeng and Land letting r∗ = k and r = µ′.
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Example 2: Polynomial shifts
Now consider the case that S(c) is a polynomial in c. It is particularly

interesting to center this polynomial at −µ(t) so that our cohort of
interest is the one currently at the mean age of childbearing. So we
can write S(c) =

∑n
0 bi(c + µ(t))i =

∑n
0 bi(t − (a − µ(t))i where the

coefficients bi are constants. If our polynomial is quadratic then

TFR†(t) =

∫
(1+b1+2b2t−2b2(a−µ(t)))f(a, t)da = (1+b1+2b2t)TFR(t)

since the term 2b2(a− µ(t)) integrates to zero.
If the polynomial is cubic then TFR†(t) is∫
(1+b1+2b2t−2b2(a−µ(t))+3b3(t

2−2t(a−µ(t)+(a−µ(t))2))f(a, t)da

= (1 + b1 + 2b2t+ 3b3(t
2 + σ2(t)))TFR(t)

where σ2(t) is the variance of the schedule f(a, t) with respect to a.
For polynomials of arbitrary degree we can use an approach that will

work for any analytic function. Let G(a) = S ′(t− a) and expand G in
a Taylor series about µ(t). Then

TFR†(t) =

∫
(1 +G(a))f(a, t)da =

TFR(t)(1 + S ′(t− µ(t)) +
∑
n=2

(−1)n
S(n+1)(t− µ(t))

n!
K(t)n

where K(t)n is the centralized nth moment of the fertility schedule
f(a, t). If we expect the higher moments to be small, then we can use
the following approximation

TFR†(t) ∼= (1 + S ′(t− µ(t)) + S ′′′(t− µ(t))σ2/2)TFR(t).

3. Comparison of TFR† with other tempo-adjustments

In this section we contrast TFR† with other tempo-adjustments pro-
posed in the literature.

3.1. Comparison with Bongaarts-Feeney adjustment.
Here we investigate the behavior of the BF adjustment procedure

when applied to a setting in which postponement is purely cohort
driven. We also show that the hypothetical postponement used in
this comparison is not inconsistent with observed fertility rates.

Using simulations, we see that in periods of cohort shift transitions,
TFR† and the BF adjustment differ. In particular, if we postulate a
rise in cohort postponement that spans multiple cohorts but eventually



6 GOLDSTEIN AND CASSIDY

stabilizes, we observe the following pattern: when the TFR begins to
drop as a consequence of the onset of cohort postponement, the BF ad-
justment initially over compensates for the decline in TFR; when the
cohorts with the greatest increase in postponement are at their peak fer-
tility level, the BF adjustments underestimates the adjustment needed;
as the end of postponement brings TFR close to its original level the
BF adjustment once again over shoots the ideal tempo-adjusted level.

To illustrate this phenomena we consider a highly stylized situation
in which all women have exactly one birth, fertility is normally dis-
tributed and there is no period quantum change. Suppose also that
postponement increases continuously from 0 to 3 years over the course
of 30 as years as shown here.

Figure 1. A hypothetical history of cohort postponement
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2.5

postponement S

Under these assumptions we obtain the picture of TFR, TFR† and
TFR∗ shown in Figure 2.

During the 40 years in which postponement is changing the observed
TFR, the BF adjustment both over and under compensates for this
change. We also see that on average the BF adjustment is accurate over
the long term. The short term volatility of the BF adjustment can be
explained as a consequence of the age differences in the impact of cohort
postponement on period measures. At the beginning of postponement
the youngest cohorts experience a decline in fertility, and this has a
larger influence on the mean age at birth than would a decrease of the
same magnitude for cohorts who are currently closer to the mean age
at birth. Similarly, as postponement comes to an end, only the oldest
cohorts are undergoing a change in fertility, in this case an increase,
and once again the effect on the mean age at birth is magnified.

Recent fertility in France provides an interesting case where this sort
of postponement may in fact have occurred. Pla and Beaumel (2010)
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Figure 2. Simulated TFR, TFR† and TFR∗

contrast period fertility schedules for French women in 1980, 1999 and
2009 to obtain the top picture in Figure 3.

Notice that fertility for women under the age of 25 changes from
1989 to 1999, but is virtually unchanged from 1999 to 2009, while
for women over 27 the fertility curve continues to shift to the right.
This could be explained as the outcome of cohort postponement which
was increasing for the older cohorts but was ending for the cohort of
1975. A consequence of postponement stabilizing for the cohort of
1975 is that the younger women of 1999 and 2009 experience similar
fertility rates while the older women do not. Indeed, when we model
this using cohort postponement with a right skewed baseline fertility
schedule and a postponement schedule that grows continuously from no
postponement for the cohort of 1940 to four years of total postponement
for the cohort of 1975, our simulation produces the lower picture in
Figure 3.

While this similarity does not prove that cohort postponement has
occurred, it does suggest that the cohort postponement model can be
a viable explanation of observed changes in period fertility.

3.2. Comparison with Average Cohort Fertility.
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Figure 3. Fertility in France and a cohort shift simulation
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In order to contrast TFR† with the Average Cohort Fertility (ACF)
measure introduced by Butz and Ward (1979)(see also Schoen 2006),
we consider a model in which cohort quantum, rather than period quan-
tum, varies. This model can be summarized as

f(a, t) = φ0(a− S(t− a))q(t− a),

where q(t− a) is a factor which varies by cohort, but not by age. The
interpretation of TFR† in this case is as a weighted average of cohort
fertility. The weights, (1 + S ′(t− a))φ0(a− S(t− a)), are a product of
two factors. The first, tells us how to inflate the observed fertility in
order to account for the cross-sectional compression of age that results
from increasing postponement. The second tells us the fraction of
cohort fertility occurring at age a, as a result of a shift in the baseline
schedule.

The shift-adjusted total fertility rate in the case of varying cohort
quantum gives a measure very similar to the ACF. That measure is

ACF (t) =

∫
β(a, t)CTFR(t− a)da∫

β(a, t)da
,
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or in our notation,

ACF (t) =

∫
φ0(a− S(t− a))q(t− a)da∫

φ0(a− S(t− a))da
.

The two measures are identical if, for example, cohort shifts are
linear. In this case, the term 1 + S ′(t − a) can be taken out of the
integral as a constant and

∫
f0(a − S(t − a))da = 1/(1 + S ′(t − a)),

demonstrating the equality.
The two measures are also equal if cohort quantum is constant, with

both measures equal to the constant level of cohort fertility.
In general, however, the two measures are not equal, since the weights

need not have the same profile. We have found in simulation that
ACF can differ from TFR† considerably in the case of cohort shifts
with period quantum. This is because a jump in quantum occurring
in period t0 will change the values of the weights β(a, t) for all cohorts
which experience fertility in year t0, and consequently ACF will increase
in years both before and after year t0. In contrast, TFR† will respond
to this change in period quantum only in year t0, and the value of
TFR† in adjacent years will be unaffected.

The important point here then is that TFR† is a kind of moving av-
erage of cohort fertility, related but not necessarily identical, to ACF.
Furthermore, the ACF measure can be reproduced exactly in cases
where cohort fertility is constant, and/or shifts are linear. In these
cases this gives us a new way to think of the ACF, not as some hy-
pothetical measure that one could calculate if only one knew the com-
pleted fertility of all cohorts, but also as the measure that one would
obtain by calculating TFR† as the result of shift.

3.3. Comparisons using a more general cohort shift model.
Models of fertility in which postponement is a function of period, or

of period and age, can be understood in the cohort shift framework if
we employ the more general form of the shift function mentioned at
the start of section 1. Here we present a model of cohort shifts which
allows for differing shifts within a cohort by age. We first describe this
model and then show how it encompasses the models in the literature to
date, notably that of Bongaarts and Feeney, Kohler and Philipov, and
the cohort shift model presented above.1 The idea behind this more

1The way we conceive of postponement is as a kind of time and clock shifts. In
order to avoid problems of shifts occurring to births that have already occurred and
other logical inconsistencies, it is convenient to first allow time and age to shift as
specified by the S(a, c) function and then simply remap take a pre-assigned surface
of births B(a, c) and move them accordingly.
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general model is to define a function u(a, t) that gives the incremental
increase in postponement at age a and time t. This, in combination
with knowledge of the initial postponement of each cohort, allows a full
description of any shift function S(a, c) on the Lexis surface.2

Let u(a, t) be the incremental increase in postponement at age a and
time t. Define the cumulative postponement for cohort c by

S(a, c) =

∫ a

0

u(x, x+ c)dx+ S(0, c).

where S(0, c) is the “initial postponement” of cohort c. Note that
partial derivative Sa(a, c) is u(a, a + c) and Sc(a, c) =

∫ a
0
ut(x, x +

c)dx+ Sc(0, c).
To show how observed period values relate to the baseline cohort

schedule, let F0(a) =
∫ a

0
φ0(x)dx be the cumulative fertility for the

baseline cohort schedule. Following Rodriguez, let F (a, c) = F0(a −
S(a, c)) be the cumulative fertility for cohort c at age a in the absence of
any quantum effects. By differentiating F0(a−S(a, c)) with respect to a
and then replacing c with t−a we get f0(a−S(a, t−a))(1−Sa(a, t−a)),
which describes the fertility that would be observed at age a in period
t if shifts were to occur without any quantum changes. The observed
fertility rate f(a, t) is then obtained by applying period quantum effects
to these rates to produce

(2) f(a, t) = φ0(a− S(a, t− a))(1− Sa(a, t− a))q(t).

Notice that if the period effects are constant, then CTFR(c) is once
again equal to q. The definition of TFR† for this general version of
cohort shifts is

TFR†(t) =

∫
f(a, t)

(1− Sa(a, t− a) + Sc(a, t− a))

1− Sa(a, t− a)
da.

To see why this definition works rewrite this expression by replacing
f(a, t) with φ0(a− S(a, t− a))(1− Sa(a, t− a))q(t) to get∫

φ0(a− S(a, t− a)(1− Sa(a, t− a) + Sc(a, t− a))q(t)da.

Next set w equal to a−S(a, t−a) and change variables to get
∫
φ0(w)q(t)dw =

q(t) so that once again TFR†(t) is equal to the period quantum.
We now consider various examples of this more sophisticated model.

2Further generalization could treat each value S(a, c) as the mean of some ran-
dom variable, and an even further generalization could consider population mixing
of distinct homogeneous populations.
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Example 1: The model presented in the first section is the special
case that u(a, t) = 0 and all postponement is determined by the initial
postponement S(0, c).

Example 2: Bongaarts and Feeney consider the situation in which
the change in postponement is a function r(t) of time which does not
vary with age. This situation can be encompassed within our model
by setting u(a, t) = r(t) and S(0, c) =

∫ c
0
r(x)dx. Then Sc(a, t− a) will

be r(t) and we get

TFR†(t) =

∫
f(a, t)

1− r(t)
da =

TFR(t)

1− r(t)
which is exactly the result obtained by Bongaarts and Feeney.

Example 3: In order to investigate the consequences of variance ef-
fects in the BF formula, Philipov and Kohler consider a scenario in
which cumulative postponement varies linearly with a. They choose a
function of the form S(a, t − a) = a − ā0 − (a − ā0 − γt)e−δt where γ
and δ are constants and ā0 is the mean of the baseline schedule φ0.

Using Philipov and Kohler’s form for S(a, t−a) we find Sa(a, t−a) =
1 + e−δt(−1 + aδ − a0δ + γ − δγt), S(0, c) = a0e

−δc − a0 + γce−δc and
Sc(a, c) = e−δt(aδ − a0δ + γ − δγt). Thus we calculate TFR†(t) as∫

f(a, t)

1− γ − δ(a− ā0 − γt)
da.

If δ = 0 then this is (1− γ)−1TFR(t). Otherwise, notice that since ā0

is the mean of the baseline schedule, it follows that

0 =

∫
(w − a0)f0(w)dw =

∫
e−δt(a− ā0 − γt)

1− γ − δ(a− ā0 − γt)
f(a, t)da.

Since δ 6= 0 then we can factor (1− γ)e−δtδ−1 out of the expression on
the right to see that

(3) 0 =

∫
δ(a− ā0 − γt)

(1− γ)(1− γ − δ(a− ā0 − γt))
f(a, t)da.

Now via algebra we can write

TFR†(t) =

∫
f(a, t)

1− γ − δ(a− ā0 − γt)
da =∫ [

1

1− γ
+

δ(a− ā0 − γt)
(1− γ)(1− γ − δ(a− ā0 − γt))

]
f(a, t)da.

which using equation 3 above is∫
f(a, t)

1− γ
da =

1

1− γ
TFR(t)
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and thus regardless of the value of δ we recover the Philipov and Kohler
formula.

4. Estimation of TFR† with real data

We return to the basic model of cohort shifts given in equation 1.
To estimate the shift-adjusted TFR, we need separate estimates of the
adjustment factor 1+S ′(c) and of the period quantum q(t). In practice
we do not need to estimate either S(c) or the baseline schedule φ0 since
TFR† is calculated from the observed fertility schedule f .

If we assume that the absolute value of S ′ is never greater than one,
then period fertility recapitulates all the fertility rates experienced by
cohorts, although the duration of exposure has changed. In this case,
we can think of the adjustment factor 1+S ′(c) as a ‘stretching’ of aging
so that the duration of period exposure is reset to match cohort expo-
sure, and thus our period measure reproduces the cohort experience.
In the absence of postponement, the derivatives of period fertility and
cohort fertility with respect to age should be the same. With post-
ponement, this ratio of derivatives measures the degree to which age
has been compressed in a period, and consequently multiplying fertility
rates by this ratio gives us the appropriate quantity to include in our
adjusted total fertility rate. In mathematical terms this means that, in
the absence of changing period quantum,

(4) 1 + S ′(c) =
fa(a, t)

fa(a, t) + ft(a, t)
=

d
da
f(a, t)

d
da
f(a, c+ a)

.

One should be aware that both derivatives in this ratio will be zero
at ages that correspond to peak levels of fertility, and therefore those
ages cannot be used to calculate the adjustment factor. However, if
postponement is a function of cohort only, then changing to a different
age for the same cohort will provide an equally valid measure of the
adjustment factor. Since in practice these derivatives can only be es-
timated, we have found it useful to calculate these values for multiple
ages and then take the median of those values for each cohort. We use
the median because the results of formula 4 are unstable for ages near
peak fertility.

To see why the first equality in formula 4 holds notice that if f(a, t) =
φ0(a− S(t− a))q then fa(a, t) = φ′0(a− S(t− a))(1 + S ′(t− a))q and
ft(a, t) = −φ′0(a − S(t − a))S ′(t − a)q. If in addition we allow period
quantum to vary, then the role of ft in the denominator will need to
be adjusted to compensate for the change in quantum over time. A
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Figure 4. Iterative estimates of cohort postponement
and TFR†. This example uses Dutch fertility. Values
are not smoothed.
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formula3 that captures 1 + S ′(c) in the presence of changing period
quantum is

(5) 1 + S ′(c) =
fa(a, t)

fa(a, t) + ft(a, t)− f(a, t)q′(t)/q(t)
.

In an iterative calculation, the relative derivative q́(t) = q′(t)/q(t)
can be approximated by using formula 4 in a first estimation of TFR†(t)
and then substituting this value for q(t) in to formula 5. The result of

3Equations 4 and 5 are not the only formulas that extract 1 + S′ from f . For
example, the second derivative analog to equation 4 is (faa +fat)/(faa +2fat +ftt).
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formula 5 can then be used to to get a new estimate of TFR†(t), which
in turn allows a new calculation of 1 + S ′.4

To illustrate how the iterative procedure performs, we show the ex-
ample of Dutch fertility in Figure 4. We see that the adjustment for
period quantum given in equation 5 has a small impact on the measure
of postponement for every cohort. It is apparent that the estimates of
1 + S ′ (and consequently TFR†) converge within just a few iterations.
Indeed a fourth iteration of this process produces graphs that are in-
distinguishable from the third. We also note that the first estimate of
1 + S ′, using just formula 4, is not very different from the quantum
adjusted estimates, suggesting that formula 4 alone could be used to
get an estimate of TFR†.5

Figure 4 also illustrates the history of cohort postponement in the
Netherlands. We see that the cohorts born before World War II, the
parents of the babyboom, are in general advancing their fertility. The
children of the babyboom generally postponed their fertility. For co-
horts born after about 1970, however, no more postponement is de-
tectable. The “postponement transition” seems to have come to an
end (or at least a temporary one).

We now apply the cohort shift model to fertility data from the
Netherlands, Sweden, the U.S.A. and Austria using the period life
tables from the Human Fertility Database. In order to approximate
the quantity 1 + S ′(c) we have used equations 4 and 5 iteratively as
described above. For purposes of comparison we also include the ob-
served TFR and TFR∗ in these illustrations. These pictures include
two version of the BF adjustment. The first, labelled “period-tempo
adjusted TFR∗,” is calculated using the period mean age at birth for
all births. The graph labelled “period-tempo adjusted, parity-specific,
TFR∗” was generated using the sum of the BF adjustments applied sep-
arately to each birth order as recommended by Bongaarts and Feeney.
Our calculations for all these measures were limited to females between
15 and 45 years old. The results are presented in Figure 5.

In all four graphs we see common patterns. During the years when we
might expect postponement to depress observed fertility rates (approx-
imately from the mid 1970’s into the 1990’s), both the parity specific

4One can obtain a theoretically exact formula for the relative derivative q́(t) in
terms of derivatives of f . The fact that formula 5 gives the same values at (a, t)
and (a− 1, t− 1) produces an equation relating q́(t) and q́(t− 1). If we now change
to the cohort born in year t−a−1 and equate the results of formula 5 evaluated at
(a, t− 1) and (a + 1, t), we get a second equation relating q́(t) and q́(t− 1). These
two equations with two unknowns can then be solved to obtain the formula for q́(t).

5All of the estimates we show in later figures use 5 iterations.
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Figure 5. TFR, TFR† and two versions of the BF ad-
justment in the Netherlands, Sweden, the U.S.A. and
Austria
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TFR∗ and TFR† exceed TFR and thereby compensate for the effects
of postponement. The case of the United States is particularly illus-
trative. We see that during the late 1990’s, when one would expect the
postponement to be decelerating, the BF adjustments are higher than
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TFR†, just like in the simulation in section 2.1 (Figure 2). A similar
phenomenon occurs for Holland and Austria.6 In all four illustrations
we observe that TFR† is comparatively smoother than TFR∗. This is
what we would expect if shifts follow the cohort model given in equa-
tion 1, since TFR†(t) effectively averages the shifts for all the cohorts
experiencing fertility in period t. We also see that the fluctuations in
TFR† clearly parallel changes in the observed TFR, whereas the more
dramatic jumps in TFR∗ are harder to interpret.

None of these illustrations can tell us whether postponement in these
countries really does occur by cohort rather than by period. However
these pictures make it clear that the adjusted total fertility rate given
by TFR† represents a plausible approach to addressing the distortions
in period measures caused by postponement.

5. Discussion

The cohort shift model is at least an alternative formulation to the
period perspective of Bongaarts and Feeney. At best, it will prove
to be estimable and in some cases provide superior estimates of the
underlying level of fertility.

The cohort-shift model fits into a larger class of shift models, which
include all of the shift models we know of the literature to date. This
general form for shift models does not – at least to us – present a full
set of tractable analytic forms for the postponement function u(a, t).
However, it does, at least, allow us to understand how all of the dif-
ferent models to date relate to one another. In the future, it may also
lead to useful flexible formulations of u(a, t) that are both analytically
understandable and behaviorally defensible.
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Rodŕıguez, G. Demographic translation and tempo effects: An accel-
erated failure time perspective. (2006). Demographic Research
14:85-110.

Schoen, R. 2006. Dynamic Population Models, Springer.
Zeng Yi and Land, K.C. (2001). A sensitivity analysis of the Bongaarts-

Feeney method for adjusting bias in observed period total fer-
tility rates. Demography, 28:17-28.

Zeng Yi and Land, K.C. (2002). Adjusting period tempo changes with
an extension of Ryder’s basic translation equation. Demogra-
phy, 39(2):269-285.




