Spurious Instrumental Variables

Daniel Ventosa-Santaularia*

Abstract

Spurious regression phenomenon has been recognized for a wide range of Data Gene-
rating Processes: driftless unit roots, unit roots with drift, long memory, trend and
broken-trend stationarity, etc. The usual framework is Ordinary Least Squares. We
show that the spurious phenomenon also occurs in Instrumental Variables estimation
when using non-stationary variables, whether the non-stationarity component is sto-
chastic or deterministic. Finite sample evidence supports the asymptotic results.
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1 Introduction

Spurious regression—that is, a statistically significant relationship between two independent
random variables—has been uncovered for different forms of non-stationarity in a simple
Least Squares (hereinafter, LS) framework. Indeed, related literature has studied the cases
where the variables are generated as driftless random walks (Phillips 1986), random walks
with drift (Entorf 1997), I(d) processes with d being an integer (Marmol 1995), long memory
and fractional integrated processes (Marmol 1998), Trend Stationary (T'S) processesH as TS
processes with breaks, and, mixed nonstationary DGP’slq The approach taken in the study
of spurious regression tends to involve the computation of the asymptotics using increasingly
complex Data Generating Processes (DGP’s), whilst estimation methodology remains the

same (LS). This dependence on LS estimators may be considered somewhat limiting, given
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the variety of estimators commonly used in applied research—Instrumental Variables (IV)
and Generalized Method of Moments (GMM), for example. To the best of our knowledge,
little consideration has been given to the possibility of a connection between the spurious
phenomenon and the IV estimator!d This paper focuses in the IV regression estimates under
independent nonstationary variables. We prove that, when there is no relationship between
the regressand, the regressor and the instrumentH IV estimates are statistically significant,
that is, IV regression is spurious. We derive the asymptotic behavior of t-statistics in
IV-estimated regressions, where the DGP consists of two independent and nonstationary
processes with a trending mechanism, be it deterministic with (a possible) structural break
or stochastic. Additionally, some Monte Carlo evidence is presented to account for the

spurious regression phenomenon in finite samples.

2 1V Estimates using Nonstationary Variables

IV is a classical technique in econometrics; it originated as a proposal to solve the identifi-
cation problem in the estimation of demand and supply curves (Wright 1928)H Typically,
in text books, IV is proposed as a solution to the problem of omitted variables and, broadly
speaking, when there is no independence between the error term and the regressors. The
selection of adequate instruments remains the key issue and little attention has been paid to
the problem of the nonstationarity of the series. As mentioned above, Phillips and Hansen
(1990) and Hansen and Phillips (1990) studied the asymptotics as well as the finite-sample
properties of the IV estimator in the context of a cointegrated relationship, and proved that
even “spurious instruments” (i.e. I(1) instruments structurally non-related to the regres-
sors) provide consistent estimates. In this paper, we prove that, when there is no structural
relationship between the regressand and a single regressor, that is, when there is no cointe-

gration between y and x respectively, the use of spurious instruments does not prevent the

3A notable exception is Phillips and Hansen (1990) and Hansen and Phillips (1990) whose results con-
cerning IV estimation of cointegrated vectors are discussed in the next section.
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phenomenon of spurious regression. We focus on the estimation of the following specification:

Yy =+ 0Ty + uy (1)

Let us suppose that we are dealing with three variables, the dependent, the explanatory and
a potential instrument, y, z and z, respectively. The three variables are independent of each

other and may be generated by any of the following DGP’s:

wy = Huw + /Bwt + IYw-Dth T+ Ut (2)
t
wy = Wo+ prot+ Z Uy (3)
=1

where w = y,z,z; DGP () is referred to as T'S + br, that is, a Broken-Trend Stationary
process, and DGP (@) is referred to as I(1) + dr (Random walk with drift); uz, wy and wy
are independent innovations obeying Proposition 17.3 in Hamilton (1994, pp. 505-506), and
DT, is a dummy variable allowing changes in the slope, that is, DTy,: = (t—Tp,,)1(¢t > Tp,,),
where 1(-) is the indicator function, and 7}, is the unknown date of the break in w. We
denote the break fraction as A\, = (T, /T) € (0,1), where T is the sample size. Wy is an
initial condition.

It has been proved that the phenomenon of spurious regression occurs when estimating
equation () using LS when the variables z and y generated by any combination of DGP’s
(@ and [3). Indeed, the order in probability of t5 _is O, (T%> or O, (T) [See Noriega and
Ventosa-Santaularia (2006) and Noriega and Ventosa-Santaularia (2007)]. In this paper, we
are concerned with the estimation of equation (Il) by Instrumental Variables (hereinafter,
IV). All variables, y, z and a single instrument, z, remain independent of each other. Each
may be generated by either of DGP’s (@) or ([B). For the purposes of clarity, we denote

DGP’s @) and @) as a and b; subsequently, Cyp, represents the IV estimation using y, x,



and z generated by DGP’s a, b and a, respectively.

Proposition 1 The order in probability of ts,, n model ) for z, y, and z generated
independently by any combination of DGP’s (3) and (3) is:

1. Combinations Cyppy, and Chpe: t; = O, (T)

5IV
2. Any other Combination: t5 = O, (Tl/z)

where 8y denotes the IV estimate of & in eq. ().

Proof: see Appendix A.

For any combination of DGP’s, the t-statistic diverges at a rate of v/T or faster, indicating a
spurious relationship amongst independent variables. When y and z are I(1)+dr processes—
independently of the DGP of z—the IV estimates diverge at rate T. Moreover, when = and
z are I(1)+dr processes—independently of the DGP of y—the IV estimates do not differ from

their LS counterparts:

Corollary 1 Let x and z be generated independently by DGP [3) and let y be generated by
either DGP (@) or (3). Hence:

SIV = SLS

[|=

Srv 2

where = stands for asymptotical equivalence and dLs denotes the LS estimate of 0 in eq.

@-

Proof: see Appendix A.
Amidst these results it can be questioned whether these hold when the researcher happens
to choose a valid instrument, that is, an instrument correlated with the regressor. In order

to further investigate this issue, we modify the DGP of x;. Let z; be generated by equation



B); assume further that x; holds a cointegrated relationship with z;:

Ty = g+ Brz + Ug (4)

It can be proved that the use of a valid instrument does not preclude the spurious pheno-

menon previously identified:

Proposition 2 Let z, and z; be generated by DGPs (3) and ([{)), respectively.

1. The order in probability of t5 = in model (@) for y: generated independently by DGP

2. The order in probability of ts,, “n model (@) for y: generated independently by DGP
(3) is:

Proof: see Appendix A.

Proposition (2)) shows that, even when the instrument is related to the regressor in an
ideal manner, the I'V estimate of 3 does not converge to its true value of zero. In other
words, IV yields spurious estimates whether the instruments are spurious or not, at least

asymptotically.

3 Finite Sample Evidence

We computed rejection rates for ts,., in model (@), using a 1.96 Critical Value (5% level
for a standard normal distribution). The asymptotic results presented in Proposition ()
were evaluated in finite samples that varied from 50 to 500. The variables y, x and z were
simulated according to different combinations of DGP’s @), [B) and {@). The values of

the parameters were inspired on real data from Perron and Zhu (2005) and can be found



in Appendix B. The number of replications is 10,000. Tables () and (2) summarize the
finite sample findings: the first presents the results when the DGP’s include white-noise
innovations, whereas the second table uses DGP’s where the innovations are first-order

autogressive processes, AR(1). Again, for the purposes of clarity, we denote DGP () as c.

- Sample size || 501 100 | 200 | 500 | 1000
Combination
Cona 0.59 | 1.00 | 1.00 | 1.00 | 1.00
Coub 0.49 | 0.85 | 0.93 | 0.96 | 0.98
Cota 0.33 [ 0.73 | 0.86 | 0.96 | 0.99
Chan 0.63 | 0.80 | 0.90 | 0.99 | 0.99
Coth 0.28 | 0.58 | 0.75 | 0.90 | 0.97
Chab 0.51 | 0.67 | 0.80 | 0.93 | 0.98
Chba 0.41 | 0.60 | 0.78 | 0.95 | 0.9
Covt 0.34 | 048 | 0.66 | 0.87 | 0.96
Coot 0.07 | 041 | 0.68 | 0.82 | 0.92
Chet 0.11 | 0.35 | 0.61 | 0.81 | 0.92

Table 1: Rejection rates of {5 under white noise innovations

The results above suggest that the spurious phenomenon in IV estimates is indeed present,
even for samples as small as 50, whether the regressor and the instrument are cointegrated
or not. When the innovation’s structure is more complex, the rejection rates seem to fall

slightly, as is illustrated in table (2]). Nevertheless, the spurious phenomenon remains strong.

4 Concluding remarks

We have shown that the spurious regression phenomenon (i.e. diverging t-statistics) in the
estimation of the linear relationship using IV is present when the variables exhibit nonstatio-
nary behaviour (such nonstationarity being deterministic (with a structural break) and/or
stochastic). Moreover, when both the explanatory variable and its instrument are random

walks with drift, IV and LS produce exactly the same spurious asymptotic estimates. These



- Sample size || 50| 100 | 200 | 500 | 1000
Combination
Cona 0.37 | 0.99 | 1.00 | 1.00 | 1.00
Coub 0.46 | 0.81 | 0.91 | 0.94 | 0.95
Cota 0.19 | 0.61 | 0.72 | 0.85 | 0.93
Chaa 0.42 | 0.61 | 0.73 | 0.86 | 0.93
Cott 0.24 | 0.48 | 0.61 | 0.75 | 0.84
Coab 0.43 | 0.52 | 0.62 | 0.77 | 0.86
Chva 0.27 | 0.44 | 0.56 | 0.73 | 0.87
Covt 0.30 | 0.37 | 0.46 | 0.64 | 0.77
Coot 0.20 | 0.45 | 0.52 | 0.59 | 0.65
Chet 0.28 | 0.41 | 0.45 | 0.55 | 0.62

Table 2: Rejection rates of £5 under autocorrelated innovations

results may complete those obtained in Phillips and Hansen (1990) and Hansen and Phi-
llips (1990); the latter demonstrated that IV is able to provide consistent estimates in a
cointegrated relationship and may actually outperform LS when there is a strong problem
of endogeneity, even if the instruments are spurious. Nevertheless, when there is no cointe-
grated relationship, the reality is that IV provides spurious estimates, just as LS does. The
main result indicates the need for caution with regard to the inferences to be drawn from

IV regression analysis which may in fact be spurious.

A Proof of Propositions [1I] and [2l and Corollary (1

We present a guide as to how to obtain the order in probability of a t-ratio appearing in
Proposition () in the estimation of regression (1) using IV where the variables y and x are
generated by DGP (@) and z by DGP (@) (all other combinations follow the same steps.
Proof of such was provided with the aid of Mathematica 4.1 Software@]) We use the classical
IV formulas where the number of instruments matches the number of regressors:

orv = (ZX)M 7y
0l = *ZX) N (Z2'2)(X'z)"
y _ v

SIV ~
/52
orv

6The corresponding codes are available at http://www.ventosa-santaularia.com/VSC_07.zip.

where,




7xX= {Zth szfzj - Xe= [ZTJ% ZZ;;] 7= {ZTZ’E §j§] |

7Y = {Ezygtj;t] ;

and

62 = yi+aqy T +07y Y a7 —20uv > ye —201v Y aay + 260v0rv Y ae

We shall now describe the process involved in establishing the aforementioned proof. h) IV,
&glv and ¢ are functions of the following expressions (unless indicated otherwise, all sums

run from ¢ =1 to T'). Denote &, = ZZ—T:l Uy, Let w =1y, x:
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S -
S -
ZDth -
> D12 = 6[2T3(1—Az) 3T (1 A)’ +T(1-A.)
> DIt = )\ZTZDth+ZDT2
> DT,DT., = Y DT+ (A —X)TY DTy

(T°+1)
(2T° +37% + T)
7

+T@-Aﬂ

=N = O =N =

The orders in convergence of the underbraced expressions can be found in Hamilton (1994)
pp- 505-506. and in Noriega and Ventosa-Santaularia (2007). The last sum, > DT, DT, is
not needed in this example, but it appears in other combinations; we assume, for simplicity,
that Ay > Az > ..

We can fill the previously-cited matrices and then compute the IV parameter estimates and
the t-statistic associated with 8. The asymptotics are computed by the program and is

represented below. Note that the code provides ) s and &g ; in addition to & v and 05
L IV

To understand it, a brief glossary is required. Let w = z, ¥, z:

Term Represents Term Represents Term Represents Term Represents
St St St2 3 2 WO Wo Muw Yw

Sw 3wy Sw2 ) wf Uw 3 Ut Uwt 3 Ut
Uzy S Ugtty DTzy . DTuDTy: Ew 3 Euw,t—1 Ew?2 SE2
Ewt > Ew i1t Bw Buw Gw Y Uw?2 S ul,

Sxzy > iy Mzxzx (X'X)_1 Exy > Eat—1€y,t—1 Exuz D Eat—1Uzt
DTw > DTyt DTw?2 > DT2, DTwt > DTyt L., Aw

DTzuz > DT.iuzy DTzey > DTy, t—1 Szey > zey -1 Szux > Zeugt
Szz > w2z Syz 3 yiwe Swt 3wyt Sdtzy > DT,y

Table 3: Glossary of the Mathematica Code

ClearAll; St = 1 * (T2 + T);St2 = g * 2+ T3 + 3+ T2 4+ T);

DTz =1 * (T? x (1 —Lz)2 + T = (1 — Lz));

DTz2= %% (2% T3 x (1 —Lz)> + 3% T2 x (1 — Lz)2 + T x (1 — Lz));
DTzt = DTz2+ T x Lz x DTz;

Sx = X0* T + Mx * St + Ex * T3;
Sy = YO * T + My * St + Ey  T3;
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Sz =Mz * T + Bz x St + Gz« DTz + Uz * T'3;

Sx2=X02*T +Mx®xSt2 + Ex2+ T2 + 2« X0+ Mx xSt + 2« X0« Ex « T3 +
2*Mx*Ext*T%;

Sy2=Y0?+«T + My? «St2+Ey2+T2 +2xYO* My xSt + 2« YO« Ey x T3 +
2 x My * Eyt * T'3;

Sz2 = Mz2 % T + Bz2 % St2 + Gz2 « DT22 + Uz2 * T + 2 « Mz * Bz % St+
2%Mz*Gz*DTz+ 2% Mz + Uz * T3 + 2« Bz « Gz * DTzt +
2*Bz*Uzt*T%+2*Gz*DTzuz*T%;
Sxz=X0*Mz*T + X0 *Bz xSt + X0+ Gz + DTz + X0 x Uz * T3+

Mx * Mz * St + Mx * Bz * St2 + Mx * Gz x DTzt + Mx * Uzt x T3 +
Mz*Ex*T%+Bz*Ext*T%+Gz*DTzex*T%+Exuz*T;
Syz=Y0xMz*T + Y0 *Bz*St + YO* Gz+ DTz + YO * Uz x T2+

My * Mz * St + My * Bz * St2 + My * Gz * DTzt + My * Uzt « T3 +
Mz*Ey*T%+Bz*Eyt*T%+Gz*DTzey*T%+Eyuz*T;
Sxy=XO*YO*T+XO*My*St+XO*Ey*T%+Y0*Mx*St+

Mx * My * St2 + Mx x Eyt x T2 + Y0 x Ex * T3 + My x Ext * T2 + Exy * T2;

Mex=( L 5% \yew=( Y ).
_(Sx Sx2 )’ny_(Sxy )i

iMxx = Inverse[Mxx];
Paraml = iMxx.Vxy;

P10 = Factor[Expand|[Extract[Param1, {1, 1}]]];
Pllnum = Numerator[P10];

K1 = Exponent[P11num, T;

Anum = Limit[Expand[P11num/T¥!], T — oo];
P12den = Denominator[P10];

K2 = Exponent[P12den, T;

Aden = Limit[Expand[P12den/T¥?], T — o0;
Apar = Factor[Expand[(Anum/Aden) * Zgz]);

P20 = Factor[Expand[Extract[Param1, {2, 1}]]];
P21num = Numerator[P20];

K3 = Exponent[P21num, T';

Bnum = Limit[Expand[P21num/T%3], T — oo];
P22den = Denominator[P20];

K4 = Exponent[P22den, T;

Bden = Limit[Expand[P22den/T%4], T — oo];
Bpar = Factor[Expand[(Boum/Bden) * gz ]|

P30 =

Factor|

Expand[Sy2 + P10% x T 4 P20% * Sx2 — 2 * P10 * Sy — 2 * P20 * Sxy+
2 x P10 * P20 * Sx]|;
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P31num = Numerator[P30];

K5 = Exponent[P31num, T';

Vnum = Factor[Limit[Expand[P31num/T¥>], T — oo]];
P32den = Denominator[P30];

K6 = Exponent[P32den, T;

Vden = Factor[Limit[Expand[P32den/TX6], T — oo]];
Vpar = Factor[Expand[T~! * (Vnum/Vden) * %:;]],

Varianzasl = Extract[iMxx, {2, 2}];

P40 = Factor[Expand[T~! * P30 * Varianzasl]];
P41num = Numerator[P40];

K7 = Exponent[P41num, T';

Bvarnum = Limit[Expand[P41num/TX7), T — oc;
P42den = Denominator[P40];

K8 = Exponent[P42den, T';

Bvarden = Limit[Expand[P42den/T%8], T — oo);
Bvar = Factor[Expand[(Bvarnum/Bvarden) * %‘fx;]]

T Sx T Sz T
MZX_(SZ Sxz )’sz_(Sx Sxz )’MZZ_(SZ
S
sz=(S;’Z );

iMzx = Inverse[Mzx|; iMxz = Inverse[Mxz|;
Param?2 = iMzx.Vzy;

P50 = Factor[Expand[Extract[Param2, {1, 1}]]];
P51num = Numerator[P50];

K9 = Exponent[P51num, T';

Fnum = Limit[Expand[P51num/T¥°], T — oo];
P52den = Denominator[P50];

K10 = Exponent[P52den, T7;

Fden = Limit[Expand[P52den/T¥19), T — oo);
Fpar = Factor[Expand[(Fnum/Fden) * %}?%]],

P60 = Factor[Expand[Extract[Param2, {2, 1}]]];
P61num = Numerator[P60];

K11 = Exponent[P61num, T7;

Dnum = Limit[Expand[P61num/T%], T — oo];
P62den = Denominator[P60];

K12 = Exponent[P62den, T;

Dden = Limit[Expand[P62den/T¥!?], T — oo];

TKll

Dpar = Factor[Expand[(Dnum/Dden) * Fryz]]

12
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P70 =

Factor|

Expand[Sy2 + P50% * T 4 P60 * Sx2 — 2 x P50 * Sy — 2 % P60 * Sxy+
2 x P50 * P60 * Sx]|;

P71num = Numerator[P70];

K13 = Exponent[P71num, T7;

Wnum = Factor[Limit[Expand[P71num /T3], T — oo]];

P72den = Denominator[P70];

K14 = Exponent[P72den, T;

Wden = Factor[Limit[Expand[P72den/TX], T — o]J;

K13

Whpar = Factor[Expand[T~! * (Wnum/Wden) * Txrz]];

Varianzas20 = (iMzx.Mzz.iMxz);
Varianzas2 = Extract[Varianzas20, {2, 2}];

P80 = Factor[Expand[T~! * P70 * Varianzas2][;
P81num = Numerator[P80];

K15 = Exponent[P81num, T7;

Dvarnum = Limit[Expand[P81num/T¥%), T — oo);
P82den = Denominator[P80];

K16 = Exponent[P82den, T;

Dvarden = Limit[Expand[P82den/T¥16], T — oo];

Dvar = Factor[Expand[(Dvarnum/Dvarden) * %‘;—Z]]

B Parameter values of simulations

1. Rejection rates of ¢{; ~under white noise innovations

The values of the pararﬁeters in the DGP’s are as follows: all DGP’s: o, = 1 and
no-autocorrelation in w,;. DGP’s with one break: A, = 0.5, A\, = 0.3, and X\, = 0.6;
vy = —0.015, v, = 0.035, and 7, = 0.02. Constants (or drifts): u, = 0.11, p; = 0.09,

and p, = 0.05. Trends: 3, = 0.04, 3, = 0.07, and 3, = —0.07.

2. Rejection rates of t; ~under autocorrelated innovations

all DGP’s are generated as in Table () except for the properties of w,;; the innova-
tion processes are generated as AR(1). The values of the parameters in the AR(1)

specification are: p, = 0.5, p, = 0.4, and p, = 0.7
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