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1 Introduction

Taylor (1986), Granger et al. (1999) and Dacorogna et al. (2001) showed, among others, that

the absolute autocorrelations of financial return series are usually larger than the ones of

squared observations. This phenomena is known as Taylor-Effect and it was first defined by

Granger and Ding (1995). Recently, Malmsten and Teräsvirta (2004) reported evidence that

the GARCH(1,1) model rarely generates series that display the Taylor-Effect since it does

not satisfy this property theoretically. However, the EGARCH(1,1) does not have difficulties

in reproducing empirically this property.

The aim of this paper is threefold: First, we explain in detail how the asymmetry, the

volatility persistence and the kurtosis affect the Taylor-Effect in the context of symmetric

and asymmetric stochastic volatility models with short and long memory. We consider long

memory stochastic volatility models due to the relevance of fractionally integrated volatility

processes in fitting the slow decay of the autocorrelation functions of the absolute and squared

financial returns (see, for example, Baillie et al., 1996).

Second, we perform Monte Carlo experiments in order to infer about the models’ ability

to generate this property and, finally, we fit the stochastic volatility models to the Dow

Jones and we report which model reproduces better the Taylor-Effect. In this way, we are

indirectly proposing extra diagnosis to the stochastic volatility models considered that may

be important in the decision of which model to use for empirical purposes such as volatility

forecasting or value at risk, among others.

The paper is organized as follows: In the next section, we present the models and their

autocorrelation structures. We run Monte Carlo experiments in Section 3. In Section 4, we

report the estimation results and in Section 5, we conclude.

2 Stochastic Volatility Models and the Taylor-Effect

In this section, we review the asymmetric extension of the LMSV specification of Breidt

et al. (1998) proposed by Ruiz and Veiga (2008) and denoted asymmetric ARLMSV model,

in which the volatility persistence is capture by a fractional integrate process. Formally, let

yt = εtσ exp

(

ht

2

)

(1)

(1 − φL)(1 − L)dht = ηt, (2)
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where σ denotes a scale parameter, σ2
t = σ2exp (ht) is the variance of yt and εt is NID(0, 1).

Moreover, L stands for the lag operator, d is the parameter of fractional integration, h

is an unobservable latent variable that is stationary for |φ| < 1 and d ∈ (0, 0.5), and ηt

follows a NID(0, σ2
η). Ruiz and Veiga (2008) assumed additionally that (εt, ηt+1)

′ followed

the bivariate normal distribution

(

εt

ηt+1

)

∼ NID

((

0

0

)

,

(

1 δση

δση σ2
η

))

, (3)

where δ, the correlation between εt and ηt+1, induces correlation between returns and changes

in volatility, (see Taylor, 1994; Harvey and Shephard, 1996).

On the other hand, equation (1) and

(1 − φL)ht = ηt, (4)

equation (4) together with the hypothesis that (εt, ηt+1)
′ follows a bivariate normal distribu-

tion similar to (3) specifies the asymmetric ARSV model.

Although the series of returns is a martingale difference and, consequently, an uncorre-

lated sequence, it is not independent. Next, we provide the expressions of the first order

autocorrelations of the absolute and squared returns for the asymmetric ARLMSV model

derived in Ruiz and Veiga (2008) and Pérez et al. (2009). We simplify the analysis by consid-

ering first order autocorrelations throughout. Therefore, let the first order autocorrelations

of squared
(

corr
(

y2
t , y

2
t+1

))

and absolute (corr (|yt|, |yt+1|)) observations be

ρ2(1) =
exp (σ2

hρh(1))
[

1 + δ2σ2
η

]

− 1

3 exp (σ2
h) − 1

(5)

and

ρ1(1) =
exp

(

σ2
hρh(1)

4

) [

exp
(

−
σ2

ηδ2

8

)

+
√

π

2
√

2
σηδ

[

2Φ
(

σηδ
2

)

− 1
]]

− 1

π
2

exp
(

σ2
h

4

)

− 1
, (6)

respectively, when yt follows an ARLMSV model. Remember that σ2
h is the variance of the

volatility factor ht that is given by σ2
h = σ2

η
Γ(1−2d)

[Γ(1−d)]2
· F (1,1+d;1−d; φ)

(1+φ)
(F (., .; .; .) denotes the

hypergeometric function) and ρh(1) is the autocorrelation of order 1 of ht that it is equal

to d
1−d

· F (1,d+1;1−d+1;φ)+F (1,d−1;1−d−1;φ)−1
(1−φ)F (1,1+d;1−d;φ)

. The analogous values for the asymmetric ARSV

model can be obtained by making σ2
h =

σ2
η

1−φ2 and ρh(1) = φ.
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Finally, the kurtosis of yt exist in both specifications if φ < 1 and d ∈ (0, 0.5) (ARLMSV

model) and φ < 1 (ARSV model). It is given by Ky = 3 exp(σ2
h), where σ2

h is replaced by

the respective expressions presented above. Furthermore, the autocorrelation of order one

of squares, for the ARSV model, can be expressed as a function of the kurtosis as follows:

ρ2(1) =

(

Ky

3

)φ
(

1 + δ2ln
(

Ky

3

)(1−φ2)
)

− 1

Ky − 1
.

In fact, an increase of kurtosis for high values of it leads to a decrease of the autocorrelation

of order 1 of squares keeping φ constant. This means that a low first order autocorrelation of

squares and high persistence can coexist in these models if kurtosis is high. Similar results

could be obtained for the ARLMSV model.

The autocorrelation of order one of absolutes can also be expressed as a function of the

kurtosis as follows:

ρ1(1) =

(

Ky

3

)φ/4 [

exp
(

−aδ2

8

)

+
√

π

2
√

2
a0.5δ

[

2Φ
(

a0.5δ
2

)

− 1
]]

− 1

π
2

(

Ky

3

)1/4

− 1

,

where a = ln
(

Ky

3

)1−φ2

. The first order autocorrelation of the absolutes decreases less than

the analogous of the squares for an increase of kurtosis when it is very high. This implies

that an increase of kurtosis leads to an increase of the Taylor-Effect, which is measured by

ρ1(1) − ρ2(1) with ρ1(1) and ρ2(1) given by equations 6 and 5, respectively.
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Figure 1: Relationship between the Taylor-Effect (ρ1(1) − ρ2(1)) and the parameter of asymmetry (δ).

3



0 10 20 30 40
−0.1

0

0.1

0.2

0.3

kurtosis

T
ay

lo
r−

E
ffe

ct

ARSV

δ=−0.9, φ=0.9
δ=0.0,φ=0.9

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

kurtosis

T
ay

lo
r−

E
ffe

ct

ARSV

δ=−0.3, φ=0.9
δ=0.0,φ=0.9

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

kurtosis

T
ay

lo
r−

E
ffe

ct

ARSV

δ=−0.9, φ=0.99
δ=0.0,φ=0.99

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

kurtosis

T
ay

lo
r−

E
ffe

ct

ARSV

δ=−0.3, φ=0.99
δ=0.0,φ=0.99

Figure 2: Relationship between the Taylor-Effect (ρ1(1) − ρ2(1)) and the kurtosis.

Figure 1 and 2 exhibit the relationship among the Taylor-Effect and the parameter that

captures the correlation between the volatility factor and the return process, δ, the volatility

persistence and the kurtosis, in ARSV specifications. The values chosen for the parameters

are the ones more frequently founded empirically. From Figure 1, we observe a positive rela-

tionship between the parameter that induces volatility persistence, φ, and the Taylor-Effect.

In particular, the Figure shows that the curve shifts upward with the increase of φ. Further-

more, the highest Taylor-Effect is generated for values of δ closer to zero (independently of

the value of φ).

The same relationship described above is found for the ARLMSV model, that is, the

Taylor-Effect increases with the increase of the parameter of long memory, d (see Figure

3). However, we observe that a similar absolute variation of the parameter d (compared to

the one of φ in the previous specification) has a larger impact in the value of the Taylor-

Effect. In order to understand this event we plot the autocorrelation functions of absolute

and squared observations for the symmetric ARSV and ARLMSV models (Figures 5 and 6).

The same results would be obtained if we plot the ACF for the asymmetric versions of the

models. We observe that an increase of the parameter d in the ARLMSV specifications has

a larger impact in the ACF of the absolutes than in the ACF of the squares, which makes
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Figure 3: Relationship between the Taylor-Effect (ρ1(1) − ρ2(1)) and the parameter of asymmetry (δ).
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Figure 4: Relationship between the Taylor-Effect (ρ1(1) − ρ2(1)) and the kurtosis.

this later model to generate a quite positive Taylor-Effect for high values of the long-memory

parameter.

Moreover, we observe from Figure 3 and 7 that there is no significant increase in the

Taylor-Effect when we increase the parameter φ for high values of the parameter of long

memory, d. This is due to the fact that the autocorrelation function of the absolute obser-

vations shifts upward infinitesimally and the autocorrelation function of the squared returns

decays much faster towards zero and reports a first order autocorrelation slightly smaller
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Figure 5: ACF of the absolute observations (left column) and ACF of the squared observations (right

column) for two symmetric ARSV specifications.
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Figure 6: ACF of the absolute observations (left column) and ACF of the squared observations (right

column) for two symmetric ARLMSV specifications.

than the one of the specification {σ2
η = 0.05, φ = 0.7, d = 0.49}, (0.3229 versus 0.3244).
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Figure 7: Relationship between the Taylor-Effect (ρ1(1) − ρ2(1)) and the parameter of asymmetry (δ).

Therefore, there is evidence, at least for the ACF of the squared returns, that an increase

of the persistence parameter, φ, for high values of the long memory parameter, seems to

cancel out the persistence of the squared observations. On the other hand, for the model to

generate high kurtosis, φ should be relatively large (for a constant σ2
η). This evidence seems

to confirm the results by Chernov et al. (2003). In their work, they reported evidence that

stochastic volatility models with one factor of volatility are not able to fit simultaneously

the fat tails of the return distribution and the volatility persistence.

Finally, Malmsten and Teräsvirta (2004) reported evidence that for low values of the

kurtosis the EGARCH is not able to reproduce the Taylor-Effect. Although, the symmetric

ARSV is able to generate it for small values of kurtosis. Figures 2 and 4 show that there is a

positive relationship between kurtosis and the Taylor-Effect in asymmetric stochastic volatil-

ity models with short and long memory. We also observe that a more negative correlation

between εt and ηt+1 leads to a smaller Taylor-Effect, keeping constant the other parameters.

3 Finite Sample Properties

So far we have seen that the two stochastic volatility models do not always generate the

theoretical Taylor-Effect, in particular, for low values of persistence and long memory. How-

ever, we know nothing about the performance of these asymmetric models in capturing the

sample Taylor-Effect.

For this purpose, we have run several Monte Carlo experiments. All results are based on

1000 replicates of the models. We have selected eight cases for each model and in all cases

we have imposed a scale parameter, σ, of one. The results are presented in Tables 1-4. The

first conclusion is that the biases exist and are larger for extreme values of the asymmetry

(δ = −0.9) and the first order autocorrelations of the squares, in the case of the ARSV
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T=1000

{φ1, σ2
η

, δ} TE MC.TE ρ1(1) ρ2(1) MC
ρ1(1) MC

ρ2(1) RB1 RB2

{0.9, 0.05, −0.9} -0.0118 -0.0046 0.0979 0.1097 0.0916 0.0962 -0.0648 -0.1234

{0.9, 0.05, −0.5} -0.0050 -0.0021 0.0925 0.0975 0.0879 0.0899 -0.0499 -0.0778

{0.9, 0.05, −0.3} -0.0031 -0.0018 0.0909 0.0940 0.0864 0.0883 -0.0494 -0.0612

{0.9, 0.05, 0.0} -0.0020 -0.00006 0.0900 0.0921 0.0859 0.0865 -0.0460 -0.0606

{0.99, 0.05, −0.9} 0.1286 0.1118 0.4485 0.3198 0.3609 0.2492 -0.1952 -0.2210

{0.99, 0.05, −0.5} 0.1346 0.1117 0.4451 0.3105 0.3621 0.2505 -0.1865 -0.1934

{0.99, 0.05, −0.3} 0.1364 0.1118 0.4442 0.3078 0.3637 0.2519 -0.1812 -0.1818

{0.99, 0.05, 0.0} 0.1373 0.1097 0.4436 0.3063 0.3692 0.2503 -0.1884 -0.1827

Table 1: TE denotes Taylor-Effect (ρ1(1) − ρ2(1)), MC.TE denotes Monte Carlo finite sample Taylor-Effect, ρ1(1) and

ρ2(1) denote first order autocorrelation of absolute and squared observations, respectively, MCρ1(1) and MCρ2(1) denote

Monte Carlo finite sample first order autocorrelation of absolute and squared observations, respectively, RB1 denotes relative

bias respectively to the first order autocorrelation of absolute returns and RB2 denotes relative bias respectively to the first

order autocorrelation of squared returns, in ARSV models. T is the sample size.

T=5000

{φ1, σ2
η

, δ} TE MC.TE ρ1(1) ρ2(1) MC
ρ1(1) MC

ρ2(1) RB1 RB2

{0.9, 0.05, −0.9} -0.0118 -0.0061 0.0979 0.1097 0.0927 0.0988 -0.0534 -0.0999

{0.9, 0.05, −0.5} -0.0050 -0.0035 0.0925 0.0975 0.0912 0.0947 -0.0138 -0.0292

{0.9, 0.05, −0.3} -0.0031 -0.0030 0.0909 0.0940 0.0898 0.0928 -0.0119 -0.0129

{0.9, 0.05, 0.0} -0.0020 -0.0016 0.0900 0.0921 0.0892 0.0907 -0.0096 -0.0142

{0.99, 0.05, −0.9} 0.1286 0.1314 0.4485 0.3198 0.4199 0.2885 -0.0637 -0.0979

{0.99, 0.05, −0.5} 0.1346 0.1341 0.4451 0.3105 0.4189 0.2848 -0.0589 -0.0826

{0.99, 0.05, −0.3} 0.1364 0.1358 0.4442 0.3078 0.4206 0.2847 -0.0531 -0.0750

{0.99, 0.05, 0.0} 0.1373 0.1326 0.4436 0.3063 0.4144 0.2818 -0.0659 -0.0800

Table 2: TE denotes Taylor-Effect (ρ1(1) − ρ2(1)), MC.TE denotes Monte Carlo finite sample Taylor-Effect, ρ1(1) and

ρ2(1) denote first order autocorrelation of absolute and squared observations, respectively, MCρ1(1) and MCρ2(1) denote

Monte Carlo finite sample first order autocorrelation of absolute and squared observations, respectively, RB1 denotes relative

bias respectively to the first order autocorrelation of absolute returns and RB2 denotes relative bias respectively to the first

order autocorrelation of squared returns, in ARSV models. T is the sample size.

model. For this model and for the parameters chosen, we do not observe cases where the

Taylor-Effect is only observed empirically and not in the population or viceversa. However,

we do observe a case where the empirical Taylor-Effect estimated is stronger than the one

in the population (see Table 2, specification {0.99,0.05,-0.9}).

In order to simulate the ARLMSV model, we use its infinite moving average represen-

tation and we truncated it at 1000.1 According to Bollerslev and Mikkelsen (1996), this

truncation procedure is able to generate high volatility persistence.

Once more, we observe that the specifications are able to reproduce empirically the

Taylor-Effect although the biases are high. For this model, their origin is mainly the auto-

correlations of absolutes.

1The infinite moving average is ht =
∑

∞

i=0
ψiηt−i, where ψi is a function of gamma functions.
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T=1000

{φ1, d, σ2
η

, δ} TE MC.TE ρ1(1) ρ2(1) MC
ρ1(1) MC

ρ2(1) RB1 RB2

{0.7, 0.4, 0.05, −0.9} 0.0135 0.0065 0.2255 0.2120 0.1535 0.1470 -0.3191 -0.3068

{0.7, 0.4, 0.05, −0.5} 0.0196 0.0102 0.2208 0.2012 0.1509 0.1407 -0.3165 -0.3007

{0.7, 0.4, 0.05, −0.3} 0.0213 0.0087 0.2194 0.1981 0.1496 0.1409 -0.3182 -0.2888

{0.7, 0.4, 0.05, 0.0} 0.0223 0.0106 0.2187 0.1964 0.1498 0.1392 -0.3148 -0.2910

{0.7, 0.49, 0.05, −0.9} 0.2693 0.0363 0.6069 0.3376 0.2330 0.1967 -0.6161 -0.4173

{0.7, 0.49, 0.05, −0.5} 0.2760 0.0386 0.6045 0.3285 0.2328 0.1942 -0.6149 -0.4088

{0.7, 0.49, 0.05, −0.3} 0.2779 0.0383 0.6038 0.3259 0.2316 0.1933 -0.6164 -0.4067

{0.7, 0.49, 0.05, 0.0} 0.2790 0.0362 0.6034 0.3244 0.2304 0.1942 -0.6182 -0.4015

Table 3: TE denotes Taylor-Effect (ρ1(1) − ρ2(1)), MC.TE denotes Monte Carlo finite sample Taylor-Effect, ρ1(1) and

ρ2(1) denote first order autocorrelation of absolute and squared observations, respectively, MCρ1(1) and MCρ2(1) denote

Monte Carlo finite sample first order autocorrelation of absolute and squared observations, respectively, RB1 denotes relative

bias respectively to the first order autocorrelation of absolute returns and RB2 denotes relative bias respectively to the first

order autocorrelation of squared returns, in ARLMSV models. T is the sample size.

T=5000

{φ1, d, σ2
η

, δ} TE MC.TE ρ1(1) ρ2(1) MC
ρ1(1) MC

ρ2(1) RB1 RB2

{0.7, 0.4, 0.05, −0.9} 0.0135 0.0064 0.2252 0.2120 0.1810 0.1746 -0.1970 -0.1764

{0.7, 0.4, 0.05, −0.5} 0.0196 0.0114 0.2208 0.2012 0.1775 0.1661 -0.1961 -0.1746

{0.7, 0.4, 0.05, −0.3} 0.0213 0.0136 0.2194 0.1981 0.1749 0.1613 -0.2928 -0.1858

{0.7, 0.4, 0.05, 0.0} 0.0223 0.0140 0.2187 0.1964 0.1741 0.1601 -0.2036 -0.1845

{0.7, 0.49, 0.05, −0.9} 0.2692 0.0527 0.6069 0.3376 0.2940 0.2413 -0.5155 -0.2850

{0.7, 0.49, 0.05, −0.5} 0.2760 0.0571 0.6045 0.3285 0.2873 0.2302 -0.5247 -0.2993

{0.7, 0.49, 0.05, −0.3} 0.2779 0.0565 0.6038 0.3259 0.2885 0.2320 -0.5222 -0.2880

{0.7, 0.49, 0.05, 0.0} 0.2790 0.0582 0.6034 0.3244 0.2853 0.2271 -0.5271 -0.3000

Table 4: TE denotes Taylor-Effect (ρ1(1) − ρ2(1)), MC.TE denotes Monte Carlo finite sample Taylor-Effect, ρ1(1) and

ρ2(1) denote first order autocorrelation of absolute and squared observations, respectively, MCρ1(1) and MCρ2(1) denote

Monte Carlo finite sample first order autocorrelation of absolute and squared observations, respectively, RB1 denotes relative

bias respectively to the first order autocorrelation of absolute returns and RB2 denotes relative bias respectively to the first

order autocorrelation of squared returns, in ARLMSV models. T is the sample size.

4 An Empirical Example

In this section, we take real data from the Dow Jones Industrial Index in order to determine

whether the models are able to reproduce the empirical properties. The daily returns of the

Dow Jones span the period 3/01/90 to 11/01/07 including a total of 4293 observations. The

kurtosis of this series is 7.71 and the first order autocorrelations of the absolute and squared

observations are 0.15968 and 0.15965, respectively, that implies a very small Taylor-Effect

of 0.00003.

We estimated the models with the Efficient Method of Moments (EMM) by Gallant and

Tauchen (1996). The estimated parameters together with the implied Taylor-Effects are

presented in Table 5. The results show that the ARLMSV is able to generate an estimated

Taylor-Effect closer to the empirical one (less biased) and that the ARSV model overestimates

its magnitude.2

2We estimated two long memory models. The first was the ARLMSV(1,d,0) and the second the
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φ d ση δ σ Estimated T.E.

ARSV 0.988 0.121 -0.831 1.027 0.011

(0.001) (0.006) (0.021) (0.044)

ARLMSV 0.153 0.161 -0.802 0.937 -0.005

(0.002) (0.011) (0.028) (0.029)

Table 5: EMM estimates of the parameters and in parenthesis numerical Wald standard errors. T.E. denotes Taylor-Effect

(ρ1(1) − ρ2(1)). All parameters are statistical significant.

5 Conclusion

We show that not only the sign of asymmetry affects the Taylor-Effect but also the volatility

persistence and kurtosis. In particular, a higher persistence and kurtosis lead to a more

positive Taylor-Effect. These results are consistent with the ones found in the literature for

the GARCH and EGARCH models.

We have also observed a case where the empirical Taylor-Effect estimated was larger

than the one in the population which may us think that in other circumstances (with other

parameter values, for instance) the Taylor-Effect may be a sampling result due to the biases

in the sample autocorrelations and viceversa.

Finally, the empirical results report evidence, for the Dow Jones Industrial Index, that

the ARLMSV is able to generate a slight accurate estimate of the sample Taylor-Effect.
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