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Abstract 

This paper examines the impact of a pollution tax as a pollution control device on the output and location decisions of 
undifferentiated oligopolistic firms with free entry. It shows that the optimum output and location of an oligopolistic 
firm is independent of a change in the pollution tax if the demand function is linear. Furthermore, an increase in the 
pollution tax will increase (decrease) output and move the plant location toward (away from) the CBD if the demand 
function is concave (convex). It also shows that a higher pollution tax will increase the pollution damage if the demand 
function is linear and the location effect dominates the demand effect. These results are significantly different from the 
conventional results based on the monopolistic location model. It indicates that the demand condition plays an 
important role in the determination of the impact of a pollution tax on the location decision of an oligopolistic firm and 
the pollution damage to the CBD residents. 
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1. Introduction 

In his famous 1973 paper, Tintenberg (1973) showed that in a general equilibrium model 
firms will face different pollution taxes because the marginal contribution of waste to 
pollution varies spatially.  Along this line, Mathur (1976), Gokturk (1979) and Forster 
(1988) introduced pollution taxes into the linear location model and examined the effects 
of a change in the pollution tax on the plant location and on abatement decisions of the 
firm.  Recently, Hwang and Mai (2004) (henceforth HM) extended the conventional 
linear location model to the two-dimensional Weber triangular location model.  
Assuming that (1) a monopolist uses two transportable inputs located at two vertices to 
produce a product which is sold at CBD (i.e., Central Business District) located at the 
third vertex, (2) the objective of the firm is to find the profit maximizing plant location 
within the triangle, they obtained the following important propositions. 
 
HM1.  The plant location of the firm is invariant with respect to a change in the pollution 

tax policy if the production function is constant returns to scale. Nevertheless, the 
plant location moves closer to (farther away from) the CBD as a result of higher 
pollution tax if the production function is decreasing returns to scale (increasing 
returns to scale). Hwang and Mai (2004, p. 61). 

HM2.  If the production function is increasing returns to scale, then a higher pollution 
tax will decrease the pollution damage to the CDB residents. Hwang and Mai (2004, 
p. 62). 

 
However, HM1 and HM2 emphasize the cost factors and neglect the demand factors of 
plant location.  They only focus on the polar case of monopoly.  Given that oligopolistic 
industries are relatively common in the economy, it is surprising that the impact of 
pollution taxes on the location decisions of oligopolistic firms has received little 
attention. 

The purpose of this paper is to fill this gap.  It explicitly incorporates oligopolistic 
market structure into the Weber triangle and examines the impact of a change in the 
pollution tax on the plant location and on abatement decisions of oligopolistic firms.   It 
will be shown that HM1 and HM2 need not hold in the oligopolistic location model. 
 

2. An Oligopolistic Location Model 

Our analysis is based on the following assumptions. 
(a) N firms employ two transportable inputs (M1 and M2) located at A and B to produce a 
homogenous product (q) which is sold at the output market C locating at the CBD.  The 
location triangle in Figure 1 illustrates the location problem of oligopolistic firms.  In 
figure 1, the distance a and b and the angle  γ are known; h is the distance between the 
plant location (E) and the CBD (C); z1 and z2 are the distances of plant location (E) from 
A and B, respectively; θ is the angle between CA and CE. 
(b) Firms make Cournot-Nash conjectures about their rivals’ production and location 
decisions and enter the industry without any restrictions until there is no economic profit.  
Assume also that equilibra are symmetric.  Thus, we can neglect the location dispersion 

 1



  

of firms and focus on the impact of market demand on the location decision of a 
representative firm. 
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                      Figure 1.   The Weber-Moses Triangle 

 
(c) The production function is homothetic and can be specified as: 
 
          q = f(M1, M2)                                                                                                         (1) 
 
with fM1 ≡  ∂q/∂M1 > 0, fM2 ≡  ∂q/∂M2 > 0, fM1M1 ≡  ∂2q/∂M1

2 < 0,  fM2M2 ≡  ∂2q/∂M2
2 < 

d) The industry inverse demand function for output is given by 

       P = P(Q)                                                                                                                 (2) 

 demanded,  PQ ≡ ∂P/∂Q < 0, cf. HM (2004, p. 59).  

. 

ce plus the freight cost, and the price of 
eight cost. 

) The pollution tax revenue function can be specified as: 

      G(q, e) = ey(q)                                                                                                      (3) 

production process that depends on the output level.  Following HM (2004, p. 60), we 

0. 
(
 
  
 
where Q = ∑qi is the market quantity
                                                      N 
It should be noted that ∑ denotes ∑    
                                                     i=1 
(e) The prices of inputs and output are evaluated at the plant location (E).  The cost of 
purchasing inputs is the price of input at the sour
output is the market price minus the fr
(f)  Transportation rates are constant. 
(g
 
  
 
where e = the pollution tax rate, y(q) = the amount of pollution generated by the 

 2



  

assume that y(q) = βq, β is a positive constant, thus Gq = eβ >0, Gqq = 0, Gqe = β > 0, and 
Ge = βq > 0. 
(h)  The objective of each firm is to find the optimum location and production within the 
Weber triangle which maximizes the profit. 
    With these assumptions, the profit maximizing location problem of the representative 
firm is given by 
 
        max Π = [P(Q)-th]f(M1, M2) – (w1+r1z1)M1 – (w2+r2z2)M2 – G(q, e)                 (4) 

eters. 

) 

 

 
where z1 = (a2 + h2 – 2ahcosθ)1/2, z2 = [b2 + h2 – 2bhcos(γ-θ)]1/2; w1 and w2 are the base 
prices of M1 and M2 at their sources A and B; t, r1 and r2 are constant transportation rates 
of q, M1, M2; z1, z2, and h are the distances from the plant location to the source location 
A, B and the market location C.  It is worth mentioning that q, M1, M2, h and θ are 
choice variables and a, b, e, γ, w1, w2, t, r1, r2 are positive param
     Assuming that the oligopolistic firm treats q instead of M1 and M2 as a decision 
variable, we first derive the cost function by minimizing total cost subject to a given 
output at a given location, 
 
       min L = (w1+r1z1)M1 – (w2+r2z2)M2  + λ[q – f(M1, M2)]                                       (5
 
where λ  is the Lagrange multiplier; q, h and θ are parameters.  Using the standard 
comparative static analysis and the envelope theorem, we can show that the production 
function is homothetic if and only if the cost function is separable in the sense that 
 
       C(q; h, θ) = c(w1+r1z1, w2+r2z2)H(q)                                                                       (6)
 
where c is a function of the delivered prices of M1 and M2, cf. Takayama (1993, 
Proposition 3.5., pp. 147-148).  Hence, the average cost and marginal cost can be written 
as: 
 
      AC = C(q; h, θ)/q = c(h, θ)H(q)/q                                                                             (7) 
      MC = Cq = c(h, θ)Hq                                                                                                          (8) 
 
where Cq ≡  ∂C(q; h, θ)/∂q and  Hq ≡  dH(q)/dq. 
     Following Hanoch (1975), from (7) and (8), we obtain the following relation: 
 
     H(q)/q > (=) < Hq                                                                                                       (9) 
 
if the production function exhibits increasing (constant) or decreasing returns to scale. 
     Substituting the cost function C = C(q; h, θ) into (4), we obtain the profit as a function 
of q, θ and h.  The first-order condition for a maximum would be 
 
      ∂Π/∂q = [(P + PQq) – th] – c(.)Hq – Gq = 0                                                              (10) 
      ∂Π/∂θ = - cθH(q) = 0                                                                                                 (11) 
      ∂Π/∂h = - tq – chH(q)  = 0                                                                                        (12) 
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where Gq ≡  ∂G(.)/∂q,  cθ ≡  ∂c(.)/∂θ, ch ≡  ∂c(.)/∂h.  Assume that the second-order 
conditions are satisfied and the possibility of the corner solution is excluded; cf. 
Kusumoto (1986) and Mai and Hwang (1992).  We can solve (10)-(12) for q, θ and h 
when entry is prohibited. 
     If free entry is allowed, each firm in the industry earns normal profit only.  The 
following condition must be satisfied. 
 
     Π = [P(Nq) – th]q – c(.)H(q) – G(q, e) = 0                                                                (13) 
 
     If there is an interior solution, we can solve equations (10) – (13) for q, θ, h and N in 
terms of e and v = (a, b, γ, w1, w2, r1, r2, t), where v is a vector of remaining parameters. 

 
 

) 

 
     q = q(e, v),     θ = θ(e, v),    h = h(e, v),    N = N(e, v)                                              (14) 
 
The expressions for the partial derivatives such as ∂q/∂e, ∂θ/∂e, ∂h/∂e and ∂N/∂e can be 
obtained by applying the standard comparative static analyses.   It is of interest to note 
before concluding this section that there must be increasing returns to scale for a solution 
as in (14).  To see this, we divide both sides of equation (13) by q and utilizing (10) to 
obtain  
 
        [P(Nq) – th] = c(.)H(q)/q – G(q, e)/q                                                                    (15) 
 
Substituting (15) into (10), we obtain 
 
        PQq = c(.)[Hq(q) - H(q)/q] + [Gq - G(q, e)/q]                                                       (16) 
 
Clearly, the left-hand side of (16) will be negative.  Since Gq = G(q, e)/q and c(.) > 0, for 
the right-hand side of (16) to be negative, the production function must exhibit increasing 
returns to scale, i.e., H(q)/q > Hq(q).  It simply implies that in equilibrium all firms 
produce on the downward sloping part of the average cost curve but not on  minimum 
average cost under Cournot competition with free entry.    
     This completes our modeling of the basic framework for studying the effects of a 
pollution tax on the oligopolistic firm’s production and location decisions. 
 

3.  Effects of Pollution Tax on Production and Location Decisions 

We are now in a position to examine the effect of a change in the pollution tax rate on the 
optimum output and location.  Totally differentiating equations (10)-(13) and applying 
Cramer’s rule, we obtain the following results. 
 
         (∂q/∂e) = (-D2/D4)yPQQq2                                                                                     (17) 
         (∂θ/∂e) = (-1/D4)yPQQq2Πθhch{[H(q)/q] – Hq}                                                     (18)
         (∂h/∂e) = (1/D4)yPQQq2Πθθch{[H(q)/q] – Hq}                                                      (19)
         (∂N/∂e) = (y/D4)(D2{[2PQ + PQQq – c(.)Hqq] + (N - 1)PQQq} – ΠθθΠqh

2)           (20
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where Πθh = - chθH(q), Πθθ = - cθθH(q), Πqq = (N + 1)PQ + NPQQq – cHqq, Πq = PQq(N – 
1), Πqh = ch{[H(q)/q] – Hqq}, D2 = ΠθθΠhh - Πθh

2 and D4 is the relevant Hessian 
determinant.   It should be noted that Πθθ < 0, D2 > 0 and D4 > 0 by the stability 
conditions and ch < 0 can be seen from (12). 
     Assume that the market demand function is linear, i.e., PQQ = 0.  From (17) – (19), we 
obtain (∂q/∂e) = 0, (∂θ/∂e) = 0 and (∂h/∂e) = 0.  Thus, we can conclude that 
 
Proposition 1.  The optimum output and location of an oligopolistic firm is independent 
of a change in the pollution tax rate if the demand function is linear. 
 
     The effect of pollution tax on the optimum output and location is, perhaps, surprising.  
According to HM (2004), in the monopoly case, an increase in the pollution tax rate will 
decrease the monopolist’s output level and alter its location decision if the demand 
function is linear.   But the above result shows that HM’s monopolistic result can not 
apply to the oligopoly case.  The economic interpretation behind Proposition 1 is given as 
follows.  A pollution tax does not change the slope of the demand curve at any output 
level but will increase the output price in equilibrium for firms to break even.  In the case 
where the demand function is linear, i.e., PQQ = 0, a higher output price will not alter the 
slope of demand curve and so the required tangency between demand curve and average 
cost curve occurs at the same output level for each firm, i.e., (∂q/∂e) = 0.  Since output 
per firm remains unchanged, the optimum location will remain the same. 
     Next, we consider the case where the demand function is not linear, i.e., PQQ ≠ 0.  
Since the signs of PQQ and Πθh can not a priori be determined, the signs of (∂q/∂e), 
(∂θ/∂e) and (∂h/∂e) in (17) - (19) are ambiguous.  However, from (17) and (19), we can 

btain  

         (∂h/∂e) > (<) 0, as PQQ > (<) 0                                                                        (22) 

hus, we can conclude that 

 the CBD as the 
ollution tax rate increases if the demand function is concave (convex). 

o
 
           (∂q/∂e) < ( >) 0, as PQQ > (<) 0                                                                       (21) 
  
 
T
 
Proposition 2.  The optimum output of an oligopolistic firm will increase (decrease) as 
the pollution tax rate increases if the demand function is concave (convex).  The optimum 
location of an oligopolistic firm moves closer to (farther away from)
p
 
This result is different from that of HM (2004) in the monopoly case.  They show that a 
monopoly will decrease output and move the plant location farther away from the CBD 
as a result of a higher pollution tax if the production function exhibits increasing returns 
to scale.  In the oligopolistic case with increasing returns to scale, we show that a higher 
pollution tax will lead to a higher output level and move the plant location closer to the 
CBD if the demand curve is concave.  The economic intuition underlying Proposition 2 is 
given as follow.   An increase in the pollution tax rate does not change the slope of the 
demand curve at any output level but will increase the output price in equilibrium for 
firms to break even.  In the case where the demand function is concave (i.e., PQQ < 0), a 
higher output price decreases the absolute value of the slope of the demand curve and so 
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the point of tangency between demand curve and average curve occurs at a larger output 
level for each firm.  Since the production function exhibits increasing returns to scale, the 
quantity of inputs, M1 and M2, per unit of output declines, then the resources pull 
decreases while the market pull increases.  As a result, the optimum location moves 
towards the CBD.  In the case where the demand function convex (i.e., PQQ > 0), the 

posite applies. 
  

4.   Effect of Pollution Tax on Pollution Level 

cation and the CBD.   Following HM (2004), the pollution 
vel at CBD is specified as: 

         X* = m(h)X,   mh < 0, mhh > 0                                                                        (23) 

on level at CBD and the plant location.  Assume that X = 
(q).  (23) can be rewritten as: 

        X* = m(h)Ny(q)                                                                                               (24) 

 q = q(e, v) and N = N(e, v), we 
ke partial derivative of X* with respect of e to obtain 

                                   (25) 
                   = output effect + location effect + entry effect 

n of 
X*/∂e) is ambiguous.   However, use the result in (21) and (22), we can show that 

     ∂X*/∂e > 0, as PQQ = 0 and - D2[2PQ – c(.)Hqq] < – ΠθθΠqh                             (26) 

hus, we can conclude that 

ollution 
mage to the CBD residents if the location effect dominates the demand effect.  

ate 
ill increase the pollution damage if the location effect dominates the demand effect.  

op

Next, we examine the impact of pollution taxes on the pollution level at the CBD.  The 
pollution is emitted by undifferentiated oligopolistic firms located at E.  The pollution 
level measured at the CBD is lower than at the plant location and is affected by the 
distance between the plant lo
le
 
  
 
where X = total pollution measured at E, X* = total pollution measured at C, m(h) = the 
relationship between the polluti
y
 
  
 
Since the optimal solution of h, q and N is h = h(e, v),
ta
 
         ∂X*/∂e = mNyq(∂q/∂e) + Nymh(∂h/∂e) + my(∂N/∂e)   
  
 
Since yq > 0 and mh < 0 and the signs of (∂q/∂e), (∂h/∂e) and (∂N/∂e) rely on the 
characteristics of the demand function and the firm’s location decision, thus the sig
(∂
 

2  
 
T
 
Proposition 3.  If the production function exhibits increasing returns to scale and the 
demand function is linear, a change in the pollution tax rate will increase the p
da
   
     This result is quite different from HM’s result in the monopoly case.  In the 
monopolistic location model where the production function exhibits increasing returns to 
scale, HM shows that a higher pollution tax rate will decrease the pollution damage.   In 
the oligopolistic location model with free entry, we show that a higher pollution tax r
w
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5. Concluding Remarks 

on the characteristics 

s 

sign should receive carefully scrutiny, and there 
 a need for future research in this area. 
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