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Abstract 
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1. Introduction

Since the seminal work of Hotelling (1929), a rich literature on spatial competition has

emerged. The Hotelling model has become one of the most important methods of analyz-

ing product differentiation. The major advantage of this approach is to endogenize product

selection. Location models fall into two categories: shipping or delivered pricing (shopping or

mill pricing) models are those in which firms (consumers) bear the transport costs. Although

delivered pricing competition is widely observed, the literature on delivered pricing spatial

competition has appeared relatively recently. Lederer and Hurter (1986) carry out a pioneer-

ing work on delivered pricing with Bertrand competition. Hamilton et al. (1989) solve the

equilibrium location pattern of a Hotelling-type linear-city duopoly model with both Bertrand

and Cournot competition.1

We generalize the Bertrand model of Hamilton et al. (1989) to an n-firm oligopoly.2

Furthermore, we analyze welfare implications of the equilibrium location. We consider two

types of problems. In one case the social planner controls both locations and prices of the

firms (first best problem). In the other case the social planner controls only locations (second

best problem). We find that in equilibrium the distance between the firms is too small from

the first best viewpoint, while it is too large from the second best viewpoint.

2. Model

There is a linear city of length 1 where infinitely many consumers lie uniformly. There are n

firms in the market and they engage in the following location-price competition. In the first

stage, each firm simultaneously and independently decides where on the line to locate. Let

xi ∈ [0, 1] be firm i’s location, for i ∈ {1, ..., n}. After observing the rivals’ locations, in the

second stage each firm simultaneously and independently chooses its price level at every point

(market) in the continuum [0, 1] so as to maximize its profit. Without loss of generality, let

xi ≤ xj for all i < j. For brevity, let the vector x signify the firm locations (x1, ..., xn).

Assume that the demand function at each market is linear, i.e., Q(x) = A − p(x), where

A is a positive constant, and p(x) and Q(x) are the price and the total quantity supplied at

market x, respectively. Each firm incurs a symmetric constant marginal cost of production,

which we normalize to zero without loss of generality. The firms must pay transport costs.

To ship a unit of the product from its plant xi to a market at point x, firm i must pay a

transport cost t|x − xi|, where t is a positive constant and |x − xi| is the distance between x

1Greenhut and Greenhut (1975) and Norman (1981) examine Cournot competition in spatial models, but
they discuss the equilibrium price pattern rather than the equilibrium location pattern.

2The equilibrium location pattern of the n-firm Cournot counterpart and its welfare implications are dis-
cussed by Anderson and Neven (1991) and Matsumura and Shimizu (2005), respectively. For the circular city
version, see, Gupta et al. (2004), Matsumura et al. (2005), Matsushima (2001), Pal (1998), and Shimizu and
Matsumura (2003).
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and xi. The consumers are assumed to have a prohibitively costly transport cost, preventing

arbitrage. Finally, we assume that A ≥ 2t. This ensures that effective competition exists at

every market and monopoly pricing does not occur regardless of firm locations.

Consider firm i, where i is in {2, ..., n − 1}. At the market x where |x − xi−1| ≥ |x − xi|
and |x−xi| ≤ |x−xi+1|, only firm i supplies and the price p(x) becomes min{t|x−xi−1|, t|x−
xi+1|, pM

i (xi)}, where pM
i (xi) ≡ (A − t|x − xi|)/2 is the monopoly price by firm i. Under the

assumption A ≥ 2t, the price p(x) becomes min{t|x − xi−1|, t|x − xi+1|}. Thus, among the

locations that firm i serves, firm i supplies at the price t|x − xi−1| at the markets closer to

firm i − 1 than to firm i + 1, and firm i sets the price at t|x − xi+1| at other markets. Firms

1 and n have only one neighbor each. Thus, for x ∈ [0, (x1 + x2)/2] firm 1 sets its price at

t(x2 −x), and for x ∈ [(xn−1 +xn)/2, 1] firm n supplies at price t(x−xn−1). The profit of firm

i at market x is given by

πi(x) = (t|x − xi+1| − t|x − xi|)(A − t|x − xi+1|)
if ∀j |x − xi| ≤ |x − xj |, and |x − xi+1| ≤ |x − xi−1|,

= (t|x − xi−1| − t|x − xi|)(A − t|x − xi−1|)
if ∀j |x − xi| ≤ |x − xj |, and |x − xi−1| ≤ |x − xi+1|,

= 0 otherwise. (1)

Each firm i chooses its location to maximize total profit Πi, which is given by

Πi(x) =
∫

x∈[0,1]
πi(x;x)dx. (2)

3. Equilibrium Location

We solve for the equilibrium location pattern in this n firm game. From here on, let a = A/t.

Let the superscript ‘E’ denote equilibrium locations. For n = 2, Hamilton et al. (1989)

provide the solution. In the duopoly, there is a direct interaction between the location of firm

1 and firm 2. For n = 3, however, there is only an indirect interaction between the location

strategies taken by firm 1 and firm 3. That is, any movement by firm 1 (keeping the restriction

x1 ≤ x2) has no effect on the profit level of firm 3. Similarly, for n ≥ 3, any movement by firm

i within xi ∈ [xi−1, xi+1] has no impact on incentives for firms other than firm i− 1 and firm

i+1. Taking this into account, the following proposition summarizes the equilibrium location

pattern when n ≥ 3.

Proposition 1: In equilibrium, firms 1 and n locate at

xE
1 =

2n(n − 1)a − 2n − 1 − (n − 1)
√

4n2a2 − 12na + 8a + 7

2(n2 − 6n + 2)
, xE

n = 1 − xE
1 .

Firm i ∈ {2, ..., n − 1} locates at xE
i = xE

1 + (i − 1)(1 − 2xE
1 )/(n − 1).

Proof: First we look for several necessary conditions for equilibrium. Using (1) and (2), we
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can derive the following three conditions: (i) For all i ∈ {2, ..., n − 1}, xE
i = (xE

i−1 + xE
i+1) / 2.

(ii) xE
1 �= 0, xE

n �= 1. (iii) xE
1 = 1 − xE

n . Thus, the firms do not locate at the ends of the

linear market and the locations are symmetric. The inner n−2 firms equally divide the region

[xE
1 , xE

n ] into n − 1 parts. The length of the region is 1 − 2xE
1 , so the following holds:

xE
2 =

(1 − 2xE
1 )

n − 1
+ xE

1 . (3)

We also have the first order condition for firm 1’s profit. That is,

∂Π1

∂x1

=
t2

8

[
4(x2 − 3x1)a − 7x2

1 + 14x1x2 − 3x2
2

]
= 0

must hold. Using these two equations, solving for xE
1 and xE

2 and looking for answers in the

appropriate range yield the desired result. The locations for firms 3, ..., n−1 are derived using

the above logic used to obtain (3). xE
n is obtained from condition (iii).

To show that this location outcome is indeed an equilibrium, we have to check for the

following possible deviations:

(a) An inner firm (firms 2, · · · , n−1) moving within its current neighbors. For example, firm

2 moving from xE
2 to somewhere between xE

1 and xE
3 .

(b) An inner firm moving outside the range between its neighbors but not at the edges of the

linear city (between 0 and xE
1 and between xE

n and 1).

(c) An inner firm moving to near an edge of the linear city.

(d) An outer firm (firm 1 or firm n) moving while keeping its neighbor. For example, firm 1

moving from xE
1 to somewhere between 0 and xE

2 .

(e) An outer firm moving to the other end of the market. For example, firm 1 moving from

xE
1 to somewhere between xE

n and 1.

(f) An outer firm moving to become an inner firm.

We have shown that if the firms do not realign their relative locations (so that x1 ≤ x2 ≤
· · · ≤ xn holds), the location pattern given in Proposition 1 is the only possible equilibrium

location pattern. Thus we have already considered deviations (a) and (d). Deviation (d) is

more profitable than deviation (e), as the potential neighbor is located further away from the

end of the market, giving more room for the deviating firm. Deviation (f) is profitable only if

deviation (b) is profitable, as we show in Proposition 2 that the outer firms make more profit

than the inner firms. Deviation (b) is profitable only if deviation (c) is profitable, since the

latter allows for a higher price and more market served. Finally, we show that deviation (c)

is not profitable for the inner firm. The profits of firm 2 before and after deviation can be

respectively rewritten as follows:

ΠE
2 = 2t2

∫ xE
2

(xE
1 +xE

2 )/2
(x − xE

1 − (xE
2 − x))(a − (x − xE

1 ))dx,

ΠD
2 = t2[

∫ xD
2

0
(xE

1 − x − (xD
2 − x))(a − (xE

1 − x))dx
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+
∫ (xD

2 +xE
1 )/2

xD
2

(xE
1 − x − (x − xD

2 ))(a − (xE
1 − x))dx],

where xD
2 =

−6a + 7xE
1 + 2

√
9a2 − 14axE

1 + 7xE
1

7
.

We proved that ΠE
2 ≥ ΠD

2 by the following three steps.

(Step 1) We prove that if xE
2 − xE

1 > xE
1 − xD

2 , then

∫ xE
2

(xE
1 +xE

2 )/2
(x − xE

1 − (xE
2 − x))(a − (x − xE

1 ))dx ≥
∫ (xD

2 +xE
1 )/2

xD
2

(xE
1 − x − (x − xD

2 ))(a − (xE
1 − x))dx.

(Step 2) We prove that if xE
2 − xE

1 > xE
1 + xD

2 , then

∫ xE
2

(xE
1 +xE

2 )/2
(x − xE

1 − (xE
2 − x))(a − (x − xE

1 ))dx ≥
∫ xD

2

0
(xE

1 − x − (xD
2 − x))(a − (xE

1 − x))dx.

(Step 3) We prove that both xE
2 − xE

1 > xE
1 − xD

2 and xE
2 − xE

1 > xE
1 + xD

2 hold.

The detailed derivations in the three steps are available from authors upon request. Q.E.D.

Table I summarizes the numerical results for xE
1 and xE

2 for selected values of a and n.

Table I: Equilibrium locations for firms 1 and 2

a = 2 a = 3 a = 5 a = 10 a = 100

n xE
1 xE

2 xE
1 xE

2 xE
1 xE

2 xE
1 xE

2 xE
1 xE

2

3 0.1781 0.5000 0.1737 0.5000 0.1707 0.5000 0.1686 0.5000 0.1669 0.5000
4 0.1319 0.3773 0.1294 0.3765 0.1275 0.3758 0.1262 0.3754 0.1251 0.3750
5 0.1046 0.3023 0.1029 0.3015 0.1008 0.3004 0.1002 0.3001 0.1001 0.3000
10 0.0512 0.1509 0.0508 0.1506 0.0505 0.1504 0.0502 0.1502 0.0500 0.1500
40 0.0126 0.0376 0.0126 0.0375 0.0125 0.0375 0.0125 0.0375 0.0125 0.0375
100 0.0050 0.0150 0.0050 0.0150 0.0050 0.0150 0.0050 0.0150 0.0050 0.0150

The analytical outcomes of the equilibrium profit levels are difficult to parse due to the

square root signs. However, we can show a result on the relative size of profits for the firms.

Proposition 2: In equilibrium, Πj > Πk, where j ∈ {1, n} and k ∈ {2, 3, · · · , n − 1}.
Proof: We compare the equilibrium profit levels for firms 1 and k(∈ [2, n− 1]), applying the

location pattern shown in Proposition 1. They are given as follows:

Π1(x
E
1 , xE

−1) =
∫ xE

1

0
t(xE

2 − x − (xE
1 − x))(A − t(xE

2 − x))dx

+
∫ (xE

1 +xE
2 )/2

xE
1

t(xE
2 − x − (x − xE

1 ))(A − t(xE
2 − x))dx. (4)
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Πk(x
E
k , xE

−k) =
∫ xE

k

(xE
k−1

+xE
k

)/2
t(x − xE

k−1 − (xE
k − x))(A − t(x − xE

k−1))dx

+
∫ (xE

k +xE
k+1)/2

xE
k

t(xE
k+1 − x − (x − xE

k ))(A − t(xE
k+1 − x))dx. (5)

The second terms in (4) and (5) are equal in equilibrium, since the firms are located equidis-

tantly. Thus, to prove that firm 1 has a larger profit than firm 2, we need to show that the

first term in (4) is larger than that in (5) in equilibrium.

The integrand in each term is the local profit, with (xE
2 −x) and (x−xE

k−1) the price. The

former in the range [0, xE
1 ] is larger than the latter in the range [(xE

1 + xE
2 )/2, xE

2 ]. Since by

assumption the price is lower than the monopoly level, the integrand in (4) is larger than that

in (5). Now, all we need to show is that the length of the range in (4), that is [0, xE
1 ], is larger

than that in (5), [(xE
k−1 + xE

k )/2, xE
k ].

(xE
1 − 0) −

(
xE

k − xE
k−1 + xE

k

2

)
=

3xE
1 − xE

2

2
> 0 ⇐⇒ 3xE

1 > xE
2 = xE

1 +
1 − 2xE

1

n − 1

⇐⇒ xE
1 >

1

2n
, xE

1 − 1

2n
=

n − 1

n(2an2 − 3n + 2 + n
√

4n2a2 − 12na + 8a + 7)
> 0.

Thus we have the desired result. Q.E.D.

The firms on the edges make larger profits than the firms located between them, as the

former firms face only one neighbor, giving them more market area and less competition.

4. Welfare Implications

We consider welfare implications. We denote consumer surplus at each location by cs(x) =
1
2
(Q(x))2. Consumer surplus from the whole market is denoted by

CS =
∫ 1

0
cs(x)dx,

total producer surplus by Π =
∑

i Πi, and total welfare by W = CS + Π.

Consider the first best outcome. The social planner controls both prices and locations

of firms. Then social welfare is maximized by marginal cost pricing of each firm and the

location pattern that effectively minimizes transport costs. Thus, the first best is achieved by

xFB
i = (2i − 1)/(2n), i ∈ {1, ..., n}, and dividing the market so that each firm i only serves

markets [(i − 1)/n, i/n]. Note that half of the firms located to the left (right) of 1/2 are all

located to the right (left) of the first best locations. That is, xE
i > (2i− 1)/(2n) if and only if

i < (n + 1)/2.

We now examine the second-best problem. Given the Bertrand competition in the second

stage, we discuss the welfare effect of relocation.

5



Proposition 3:

(a)
∂Π

∂x1

∣∣∣
x=(xE

1 ,...,xE
n )

< 0,
∂CS

∂x1

∣∣∣
x=(xE

1 ,...,xE
n )

> 0, and
∂W

∂x1

∣∣∣
x=(xE

1 ,...,xE
n )

> 0.

(b)
∂Π

∂xi

∣∣∣
x=(xE

1 ,...,xE
n )

=
∂CS

∂xi

∣∣∣
x=(xE

1 ,...,xE
n )

=
∂W

∂xi

∣∣∣
x=(xE

1 ,...,xE
n )

= 0, (i = 3, ..., n − 2).

(c)
∂Π

∂x2

∣∣∣
x=(xE

1 ,...,xE
n )
≥ 0,

∂CS

∂x2

∣∣∣
x=(xE

1 ,...,xE
n )
≤ 0, and

∂W

∂x2

∣∣∣
x=(xE

1 ,...,xE
n )
≤ 0

and the equalities are satisfied if and only if n = 3.

Proof: We here prove case (a). The proof of the other cases can be proceeded similarly and

is available from the authors upon request. In case (a), note that a slight movement by firm

1 only affects a part of the market area served by firm 2. Thus we only need to look at those

markets in the following welfare analysis.

From the first order condition for firm 1’s equilibrium location we have

∂Π

∂x1

∣∣∣
x=(xE

1 ,...,xE
n )

=
∂Π2

∂x1

∣∣∣
x=(xE

1 ,...,xE
n )

= −
∫ (xE

1 +xE
3 )/2

(xE
1 +xE

2 )/2
t2

(
a − 2(x − xE

1 ) + |x − xE
2 |

)
dx < 0.

Note that ∂π2(x)/∂p(x) = t(a − 2(x − xE
1 ) + |x − xE

2 |) must be positive because the price

p(x) = t(x − xE
1 ) is lower than the monopoly price t(a + |x − xE

2 |)/2. Finally, we have

∂CS

∂x1

∣∣∣
x=(xE

1 ,...,xE
n )

=
∫ (xE

1 +xE
3 )/2

(xE
1 +xE

2 )/2

∂t(x − xE
1 )

∂xE
1

∂cs(x)

∂p(x)
dx =

∫ (xE
1 +xE

3 )/2

(xE
1 +xE

2 )/2
t2

(
a − (x − xE

1 )
)
dx > 0,

and
∂W

∂x1

∣∣∣
x=(xE

1 ,...,xE
n )

=
∫ (xE

1 +xE
3 )/2

(xE
1 +xE

2 )/2
t2

(
(x − xE

1 ) − |x − xE
2 |

)
dx > 0. Q.E.D.

Note that the case for firm n (n − 1) is the mirror image of case a (c). Proposition 3(a)

implies that a slight increase in the distance between the edge of the linear-city and the outside

firm from their equilibrium distance increases consumer surplus, reduces the joint profit of the

two firms, and increases the total social surplus. The direction of the welfare improving

relocation in the second best setting is opposite from the first best one. In the second best

case, a decrease in the distance between firms accelerates competition, particularly near the

edges of the linear city, and thus improves welfare.

Finally, we compare the locations for the three location patterns we analyzed. Table 2

describes the relationship among the first best, second best, and equilibrium locations of the

four firm case for different values of a. Let the superscript ‘SB’ and ‘FB’ denote the second

best and the first best locations respectively.

From this table we can infer the following. First, similarly to the first best case, xSB
1 +xSB

2 =

1/2 holds. Therefore, firm 1 supplies to markets [0, 1/4] and firm 2 supplies to markets
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Table II: Equilibrium and second best locations for firms 1 and 2 when n = 4.

a = 2 a = 3 a = 5 a = 10 a = 100

xE
1 0.1319 0.1294 0.1275 0.1262 0.1251

xSB
1 0.1345 0.1309 0.1284 0.1266 0.1252

xFB
1 0.1250 0.1250 0.1250 0.1250 0.1250
xE

2 0.3773 0.3765 0.3758 0.3754 0.3750
xSB

2 0.3655 0.3691 0.3716 0.3734 0.3748
xSB

2 0.3750 0.3750 0.3750 0.3750 0.3750

[1/4, 1/2]. Second, xFB
1 < xE

1 < xSB
1 and xSB

2 < xFB
2 < xE

2 hold. Third, as a increases, all

three values converge. This is because a ≡ A/t going to ∞ implies that the unit transport t

is negligible. This result is consistent with the standard findings in location theory.

We offer an intuition for these inferences. Consider the 4-firm case. Both in the first best

and the second best cases, welfare is maximized when inefficient transport cost is minimized.

This occurs when firm 1 supplies to the first quarter and firm 2 supplies to the second quarter

of the market. This is the reason why xSB
1 + xSB

2 = 1/2 holds.

Suppose that the firms locate so that x1 + x2 = 1/2. Given the firm’s locations, in the

first best pricing case the price p(x) is equal to firm 1’s marginal cost (unit transport cost) for

x ∈ [0, 1/4]. Thus the quantity is decreasing in x for x ∈ [x1, 1/4]. On the other hand, in the

second best pricing case (as well as the equilibrium case), the price p(x) is equal to firm 2’s

marginal cost (unit transport cost) for x ∈ [0, 1/4]. Thus the quantity is increasing in x for

x ∈ [x1, 1/4].

Consider a change from the first best case of x∗
1 = 1/8 (x∗

2 = 3/8) to x1 = 1/8 + ε

(x2 = 3/8 − ε), where ε is small and positive. It lowers the market prices for all x ∈ [0, 1/2]

in the second best pricing case. This competition-accelerating effect does not exist in the first

best pricing case. This is one of the factors yielding the difference between the first best and

the second best locations. In addition, the move raises transport costs for markets x ∈ [0, x1]

and x ∈ [x2, 1/2], and it lowers them for markets x ∈ (x1, x2). In the second best (first best)

pricing case, the quantity supplied for markets close to 1/4 is high (low). The cost reducing

effect dominates (is dominated by) the cost rising effect in the second best (first best) pricing

case. Note that 1/4 ∈ (x1, x2). This also yields the difference between the first best and the

second best locations.

In this note we adopt the standard assumption of this field in this paper, such as uniform

distribution of consumers. As Tabuchi and Thisse (1995) show, the non-uniform distribution

of consumers can change the equilibrium locations drastically in the mill pricing model. Sim-

ilar principle might apply to the delivered pricing model. Investigating this problem in the

delivered pricing model remains for future research.
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