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Abstract

F tests which test jointly for a unit root and a zero intercept, and so compete against
Dickey−Fuller t tests, are shown not to enhance power because they are invariant to the
intercept value in the absence of a unit root. Monte Carlo results in the literature that indicate
otherwise are shown to have resulted from the use of special starting values. Testing
procedures that employ these F tests to enhance power should be revised.
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 1. Introduction
In their simplest form, tests for unit roots are introduced in the context of

 yt = ρ yt-1 + α + εt                                                                                              (1)

 where εt is an error term with mean zero and variance σ2, and the time series yt is said to
have a unit root if ρ = 1. Judging by textbook expositions, and comments such as that of
Ayat and Burridge (2000, p.74), the augmented Dickey-Fuller (ADF) test has become the
most popular of many competing tests in the literature. In its original, unaugmented form,
known as the DF test, this test is undertaken by estimating equation (1) and conducting a
traditional one-sided t test of ρ = 1, using special critical values.1

The seminal paper of Dickey and Fuller (1981) introduced a competing F test, Φ1,
based on testing the joint null (ρ, α) = (1, 0) with the usual F statistic but using special
critical values. Equation (1) is appropriate whenever yt is known not to have a trend, in
which case the null of a unit root implies that the intercept or “drift” term α must be zero.
This suggests that Φ1, which looks at both ρ and α, may have more power than the
competing t test. Dickey and Fuller (1981, p.1069) state unequivocally that their t test is
generally less powerful than Φ1 when ρ is less than one. Hatanaka (1996, pp.49-50) also
has an unequivocal statement: “The t-statistic for ρ = 1 can also be used……. but the F-
statistic is more desirable.” Hamilton’s (1994, p.494) endorsement of Φ1 is less direct:
“Thus, it might seem more natural to test for a unit root in this specification by testing the
joint hypothesis that α = 0 and ρ = 1.” Several other references in the literature, such as
Perron (1988, p.317), Holden and Perman (1994, pp.64-65), Enders (1995, p.257), and
Ayat and Burridge (2000, p.80) can be interpreted as implicitly endorsing Φ1 as being
more powerful than the t test. To our knowledge there are no statements to the contrary in
the literature.

The purpose of this note is to point out that this view in the literature is incorrect, and
that Monte Carlo results in Dickey and Fuller (1981) showing otherwise are misleading
because they result from the use of special starting values.2 A consequence of this is that
unit root testing strategies that make use of this test, such as those of Perron (1988),
Holden and Perman (1994), and Enders (1995) should be revised, and recommendations
favoring this F test should be ignored.

2. F Test Redundancy
The result just noted stems from a peculiar feature of unit root F tests in the absence

of a unit root, apparently unnoticed in the literature. Since this peculiarity is common to
both DF and ADF tests, for simplicity we confine our discussion to the DF test. Φ1 tests
the joint null (ρ, α) = (1, 0) in equation (1) when we know that yt has no trend. The
alternative is ρ < 1 with any value for α, although in most realistic cases α should be

                                                          
1 It is more common to find this test undertaken by regressing the first difference of yt on yt−1 and testing the
coefficient on yt−1 against zero. Since this transformation is of no consequence for what follows, for
simplicity we ignore it.

2 A similar result holds for Dickey and Fuller’s Φ2 test as a supplement to their Φ3 test. We do not exposit

this result here because the Φ2 test is not in common use.
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positive. The t test is one-sided, whereas the F test is not, so that for small values of α we
would expect the t test to have greater power. For large values of α, however, we might
expect the F test to have larger power because it attends to the value of α. Unfortunately,
this is incorrect because it happens that when there is no unit root (i.e., when we are
examining power), the value of α has no influence on the F statistic.

This result can most easily be demonstrated by showing that the restricted and
unrestricted sums of squared residuals used to calculate the F statistic are unaffected by
the intercept, so long as the starting value y0 is equal to its unconditional mean α0/(1−ρ0),
where α0 and ρ0 are the true values of α  and ρ, respectively. (The role of the starting
value is discussed further below.) The AR(1) process can be written as
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Imposing the constraints that y0 = α0/(1−ρ0), and ρ0≠1, this can be rewritten as
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where ε0 = 0 by definition because of the way in which y0 is chosen.  (Note that equation
(3) describes the full sequence, including y0.)  From this equation it is clear that yt – yt-1,
and thus the restricted sum of squared residuals used in calculating the F test of the
hypothesis that (ρ, α) = (1, 0), is not affected by the intercept value α0.

Consider now the unrestricted sum of squared residuals for this F test, with the
residuals denoted 1ˆˆ t-t yy ρα −− . If we change the true value of α from α0 to α*, and y0 to

its unconditional mean α*/(1−ρ0), then the residuals become **ˆ*ˆ* 1t-t yy ρα −− .  From

(3) and the properties of the OLS estimator
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Substituting (4) through (6) into *y*y t-t 1*ˆ*ˆ ρα −−  produces 1ˆˆ t-t yy ρα −− , so the

unrestricted sum of squared errors is unaffected by the intercept value.
All this implies that, in the absence of a unit root, the true value of α affects

neither the restricted nor the unrestricted sum of squared errors, and thus does not affect
the F statistic – with unconditional mean starting values, the calculated F value is
numerically identical for different α values. This implies that there is no gain in power3

from using Φ1: the t test dominates.

                                                          
3 One reason this result has gone unnoticed in the literature is that under the null of a unit root, where the
profession has directed its attention, the intercept does affect the F value. It is only when examining power
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3. Starting Value Influence
To examine the influence of the starting value, substitute y0 = δ + α0/(1−ρ0) in

equation (2), where δ is the extent to which the starting value differs from its
unconditional mean, and calculate the comparable equation (4) result, obtaining
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This result illustrates the general nature of the impact of the starting value – if it differs
from its unconditional mean the results we derived earlier will not follow – yt* and the
other results are slightly different, implying that the sums of squared residuals are no
longer unchanged when the intercept changes. Equation (7) suggests that this difference
will disappear asymptotically (because ρ0

tδ disappears asymptotically) and indeed
straightforward but tedious algebra shows that this is the case. Intuitively, the process
starts at a value considerably different from its unconditional mean, but being stable,
works its way into a neighborhood of its unconditional mean. For a time, however, it
produces unrepresentative observations, affecting the F statistic. If δ is related to the
intercept, the intercept could in this way affect the power of the F statistic. This
phenomenon helps explain seemingly anomalous Monte Carlo results in the literature, as
explained in the next section.

4. Monte Carlo Contradiction
One reason why the profession has failed to notice this peculiarity of F tests in the

unit root context is that Dickey and Fuller (1981, p.1067) in their Table VII present
Monte Carlo results indicating that the Φ1 test gains power as the intercept α grows. As
explained below, these results have come about because they held constant the initiating y
value at zero as they moved from α = 0 to α = 0.5 to α = 1.0. This causes the extent to
which the process begins away from its unconditional mean to vary as the intercept value
varies. The Dickey-Fuller Monte Carlo power results must be interpreted as showing that
the power of the F test increases as the distance of the process starting value from its
unconditional mean increases, rather than, as is implicitly suggested in their paper,
increasing as the intercept increases.

Consider their case in which ρ = 0.9. When α = 0 the equilibrium (unconditional
mean) value of y is zero, so the starting y value should be zero if fixed and have mean
zero if random; when α = 0.5, the equilibrium value of y is 5, so the starting y value
should be 5 if fixed and have mean 5 if random; and when α = 1.0 the equilibrium value
of y is 10, so the starting y value should be 10 if fixed and have mean 10 if random. But
in the Dickey-Fuller Monte Carlo study, when α = 0.5 the process always began 5 units
below its conditional mean, and when α = 1.0 it always began 10 units below its
conditional mean. This resulted in a major string of outliers, always in the same direction
in repeated samples, biasing the Monte Carlo results. This bias disappears asymptotically
because the y values eventually move to a range consistent with their equilibrium

                                                                                                                                                                            
(i.e., when ρ < 1) that this result comes into play. It should also be clear that this result does not hold when
testing a null other than a unit root.
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(unconditional mean) value, but in finite samples (of size 100, say, as employed by
Dickey and Fuller) the bias is enough to produce markedly misleading results.

Our observation that the power of the Φ1 test is not affected by the intercept is not
entirely new to the literature. Dickey (1984) reports results of an extensive Monte Carlo
study which investigated the powers of this and other tests.4 A careful reading of his
clever summary in Table 6.1 (p.491) reveals that the intercept value does not affect the
power of Φ1. Unfortunately, Dickey did not report that these results contradicted the
Dickey and Fuller (1981) results, and did not warn the profession about the implications
of his results for the use of these tests, perhaps because in 1984 it was not yet evident that
the profession would so enthusiastically adopt these tests.

We began our investigation of this by replicating the Dickey-Fuller Monte Carlo
results, in which data were generated by equation (1), using a fixed starting value of y0 =
0, regardless of the intercept. Our results, shown in Table I, differ minimally from the
Dickey-Fuller Table VII results. We have omitted columns for which ρ > 1, and five
rows corresponding to other F statistics and variants of the DF t statistic. The second-last
row refers to the traditional DF t statistic, two sided, and the last row, added by us, is the
traditional one-sided DF t statistic. This last row is reported by Dickey and Fuller in their
Table IX (p.1068).

Next, we replicated their results by using a fixed starting value equal to the
unconditional mean, namely y0 = α/(1–ρ), so that it varies with the intercept. The results,
shown in Table II, were as we expected – when ρ < 1, power was unaffected as the
intercept varied. The Dickey-Fuller power values in Table I for α = 0 match those of
Table II, of course, but when α ≠ 0 they are very different. Also of note is that the DF t
test powers are no longer affected by the intercept. This makes sense – the t test should be
unaffected by the intercept value, so its power should also be unaffected.

Finally, we replicated their results using what we regard as the most relevant
starting value methodology, a random starting value. Here y0 was chosen randomly with
mean α/(1 – ρ), the unconditional mean of y, and variance σ2/(1 – ρ2), the unconditional
variance of y. The results, shown in Table III, differ from those in Table II only insofar as
power is a bit higher. This is consistent with our earlier discussion of the influence of
starting values.

The main point of this paper is that for testing ρ = 1 the Φ1 test is dominated by the
(one-sided) DF t test. This is evident in Table III where the estimated powers for Φ1 are
uniformly lower than those of the traditional one-sided DF t test, in contrast to the
Dickey-Fuller results reported in Table I. The Dickey-Fuller results are only relevant to a
situation in which a researcher knows that in the recent past the value of y was
considerably different from its unconditional mean, by an amount affected by the true
intercept value. An example would be if we knew, regardless of the intercept value, that
the process started recently at zero. This does not to us seem representative of actual
applications.

                                                          
4 We are greatly indebted to David Dickey for drawing this paper to our attention, and for his willingness to
help us investigate this issue in a scholarly fashion.
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5. Conclusions
The main conclusion of this paper is that the F test Φ1 should be abandoned in

favor of the Dickey-Fuller t test, contradicting recommendations to the contrary in the
literature. This should simplify unit root testing strategies, such as those of Perron (1988),
Holden and Perman (1994), and Enders (1995), that employ this test in the mistaken
belief that it will enhance power.

These results suggest an interesting avenue for future research. If under the null of a
unit root the t and Φ1 tests (adjusted for degrees of freedom) are not equivalent, but are
equivalent, or nearly so, under the alternative, perhaps this equivalency could be
exploited to develop a unit root test with a null of stationarity.

Table I
Empirical Power of 0.05 Tests for Sample Size 100 (y0 = 0)

ρρρρ = 0.8 ρρρρ = 0.9 ρρρρ = 0.95 ρρρρ = 0.99 ρρρρ = 1.0

αααα αααα αααα αααα αααα
Statistic 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00

Φ1 0.77 0.82 0.93 0.23 0.34 0.75 0.08 0.22 0.91 0.05 0.78 1.00 0.05 0.98 1.00

µτ̂  two-sided 0.71 0.76 0.88 0.18 0.27 0.58 0.06 0.13 0.51 0.04 0.08 0.14 0.05 0.27 0.34

µτ̂  one-sided 0.86 0.90 0.96 0.31 0.42 0.75 0.12 0.23 0.67 0.06 0.07 0.20 0.06 0.01 0.00

Power is computed from 10,000 samples

Table II
Empirical Power of 0.05 Tests for Sample Size 100 (y0 = αααα/(1−−−−ρρρρ))

ρρρρ = 0.8 ρρρρ = 0.9 ρρρρ = 0.95 ρρρρ = 0.99 ρρρρ = 1.0

αααα αααα αααα αααα αααα
Statistic 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00

Φ1 0.77 0.77 0.77 0.23 0.23 0.23 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.98 1.00

µτ̂  two-sided 0.71 0.71 0.71 0.18 0.18 0.18 0.06 0.06 0.06 0.04 0.04 0.04 0.05 0.27 0.34

µτ̂  one-sided 0.86 0.86 0.86 0.31 0.31 0.31 0.12 0.12 0.12 0.06 0.06 0.06 0.06 0.01 0.00

Power is computed from 10,000 samples

Table III
Empirical Power of 0.05 Tests for Sample Size 100 [ y0  ~ N(αααα/(1−−−−ρρρρ), σσσσ2/(1−−−−ρρρρ2)) ]

ρρρρ = 0.8 ρρρρ = 0.9 ρρρρ = 0.95 ρρρρ = 0.99 ρρρρ = 1.0

αααα αααα αααα αααα αααα
Statistic 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00

Φ1 0.79 0.79 0.79 0.25 0.25 0.25 0.09 0.09 0.09 0.05 0.05 0.05 0.05 0.98 1.00

µτ̂  two-sided 0.73 0.73 0.73 0.20 0.20 0.20 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.27 0.34

µτ̂  one-sided 0.87 0.87 0.87 0.33 0.33 0.33 0.13 0.13 0.13 0.06 0.06 0.06 0.05 0.00 0.00

Power is computed from 10,000 samples
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