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1. Introduction

The rate of expansion of the literature on the analysis of non-stationary panels is
impressive, see for example Breitung and Pesaran (2006). This growing interest is due
to many important economic questions that naturally framed in a panel perspective (for
instance, the Purchasing Power Parity issue, Pedroni, 2004, and migrations, Fachin,
2007); further, when only small time samples are available, adding the cross-section
dimension grants considerable improvements of the small samples properties of testing
procedures, provided the possible linkages across units are properly accounted for. This
issue is currently actively investigated in the literature following two main approaches:
(i) modelling the linkages as due to unobserved common factors; these can be estimated
by principal components methods (Bai and Ng, 2004) and then removed from the data
so to apply simple procedures for independent panels (Bai and Carrion-i-Silvestre,
2005, Banerjee and Carrion-i-Silvestre 2006, Gengenbach, Urbain and Palm, 2006,
Westerlund 2008); (ii) apply bootstrap algorithms designed to deliver estimates of
the distribution of the statistics of interest conditional on the cross-section linkages
as present in the dataset at hand. Concentrating on (no-)cointegration tests, two
bootstrap approaches have been put forth so far. Fachin (2007) applies the Continuous-
Path Block bootstrap (Paparoditis and Politis, 2001, 2003) separately to the right-
and the left-hand side variables, while Westerlund and Edgerton (2007) develop a
Sieve Bootstrap procedure for testing the null of cointegration. Unfortunately, neither
the common factor nor the existing bootstrap approaches are fully satisfactory. A
first problem with the common factor approach is that, as Gegenbach, Urbain and
Palm (2006) explicitly admit, it requires large samples. In many empirical applications
the available information set may simply be not rich enough. A second problem is
that it hinges upon a series of assumptions which may be very restrictive. Banerjee
and Carrion-i-Silvestre (2006) and Westerlund (2008) allow for common factors in
the cointegrating residuals but not in the variables themselves. This more general
set-up is allowed by Bai and Carrion-i-Silvestre (2005) and Gegenbach, Urbain and
Palm (2006), but at the cost of other restrictions: the former assume homogeneous
cointegrating vectors, a rather unrealistic condition, and the latter that the matrix of
factor loadings is full rank and block-diagonal, hence ruling out the empirically relevant
case of a single source of non-stationarity common across units and variables1. Block
bootstrap, model-free methods were showed by Fachin (2007) to be empirically useful
tools in tackling the problems at hand. However his algorithm destroys any relationship
between the modelled variables, not only long-run ones. On the other hand, the sieve
bootstrap (shown to be valid for inference on cointegrating regressions by Chang, Park
and Song, 2006) hinges upon the assumption of a linear structure of the cointegrating
residuals2.

In this paper we shall try to improve on the existing bootstrap methods. Our main
conjecture is that Parker, Paparoditis and Politis’ (2006) Residual-based Stationary

1For instance, in the case of regional consumption and income this may be a stochastic trend in
national GDP.

2Further, the sieve bootstrap cointegration test proposed by Westerlund and Edgerton (2007)
may deliver poor power in small samples. Their procedure involves estimating the sieve through the
Yule-Walker equations, so to obtain stationary bootstrap residuals obeying the null of cointegration.
However, under no cointegration the bootstrap residuals, though stationary, will have a root arbitrarily
close to 1, very difficult to distinguish from a unit root in small samples.
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Bootstrap test for unit roots may be applied to the estimated cointegrating residuals.
In fact, the potential of block bootstrap methods in this field is stressed by Chang et al.
(2006). In this paper we will thus first outline the our approach (section 2), evaluate
its small sample performances by simulation (section 3 and 4), present an empirical
illustration (section 5) and finally draw some conclusions (section 6).

2. Single-equation panel cointegration testing via residual based
bootstrap: set-up

Parker, Paparoditis and Politis (2006), henceforth PPP3, developed a bootstrap unit
root test based on the Stationary Bootstrap (Politis and Romano, 1994), a resampling
method suitable for weakly dependent series. The extension of PPP Residual-based
Stationary Bootstrap (RSB) unit root tests to single-equation cointegration testing is
straightforward.

Consider for simplicity two I(1) variables, X and Y , linked by a linear relationship

yt = µ + βxt + εt, t = 1, . . . , T (1)

with εt = ρεt−1 + νt. It is immediately seen that when H0 : no cointegration holds
ρ = 1,while when it does not |ρ| < 1. The hypothesis of no cointegration is then
equivalent to H0: ρ = 1. Two important remarks are in order here. First, εt = ρεt−1+νt

is not a model of the cointegrating residuals; it only defines a parameter expressing
the null hypothesis of interest. Second, the ν ′

ts are always stationary, either H0 holds
or not: they can thus be resampled via the Stationary Bootstrap. An algorithm along
the lines put forth in PPP, mean zero case, may then proceed as follows:

1. Compute ν̂t = ε̂t− ρ̂ε̂t−1, where {ε̂t} are the estimated residuals and ρ̂ is the OLS
estimate of ρ;

2. Resample the series {ν̂t} via the stationary bootstrap, obtaining {ν∗
t } ;

3. Cumulate {ν∗
t } obtaining pseudoresiduals {ε∗t} obeying the null hypothesis of no

cointegration;

4. Compute y∗t = µ̂ + β̂xt + ε∗t ;

5. Estimate the cointegrating regression on the dataset {y∗t , xt}: y∗t = µ̂∗+ β̂∗xt + ε̂∗t ;

6. Estimate the AR(1) coefficient ρ∗ for the residuals ε̂∗t ;

7. Repeat 2-6 B times;

8. Test the hypothesis H0 : ρ = 1 on the basis of the distribution of the ρ∗′s, which
obey it. Note that the consistency results reported in PPP are in fact general
enough to allow the use of more general statistics function of ρ, such as the ADF.

3Not to be confused with the acronym for Purchasing Power Parity.
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Consider now the panel dimension, ignored so far. An essential feature to be taken
into account is dependency across units. In order to reproduce it in the pseudoseries
we simply need to apply the resampling algorithm to the entire cross-sections. In
this way the (short- and long-run) cross-correlation structure of the data is exactly
reproduced in the bootstrap data. More precisely, letting ν̂it = ε̂it − ρ̂iε̂it−1, in step 2
of the RSB algorithm we apply the stationary bootstrap to the entire T × N matrix
of the residuals V = [ν̂1 . . . ν̂N ] , where ν̂j = [ν̂1j . . . ν̂Tj]

′ , In the final step the statistic
of interest becomes some summary statistic of the ρ′s (or the transformation used,

e.g. the ADF) and p∗ = prop(S∗ < Ŝ), where S is the summary statistic adopted;
the standard choice in the literature (with the only exception of the bootstrap test by
Fachin, 2007) is the mean. However, an often overlooked point is that this summary
statistic implies the alternative hypothesis H1 : ”ρi < 1 in most of units or ρi << 1 in
a smaller number of units”, as these two cases may be observationally equivalent for
the mean. In fact, we can define three other different alternative hypothesis to H0 : no
cointegration in all units, i.e.H0 : ρi = 1 for i = 1, . . . , N : (i) H1 : ρi < 1 in all units;
(ii) H1 : ρi < 1 in at least one unit; (iii) H1 : ρi < 1 in most of the units. Each of
these alternative hypothesis implies a specific summary statistics: (i) G = Max(ρi);
(ii) G = Min(ρi); (iii) G = Median(ρi). As the first two alternative hypothesis and
respective summary statistics are obviously of little interest, the choice is restricted to
mean and median. Now, the point is that a panel cointegration testing procedure is
supposed to find out which description (cointegration or not) best fits the panel as a
whole. This means that the alternative hypothesis should be ”cointegration in most of
the units”, case (iii) above, and the individual statistics summarised by the median4.
However, this statistic is of notoriously difficult treatment by asymptotic methods, so
that a bootstrap approach is mandatory.

3. Monte Carlo Design

We will base our simulations on a DGP which is essentially a generalisation of the
classical Engle and Granger (1987) DGP to the case of dependent panels, with the
design of the panel structure related to those used by Kao (1999), Fachin (2007), and
Gegenbach et al. (2006)5. Since panel DGPs are inevitably very complex, simulation
experiments are computationally very demanding, hence, our aim will be that of defin-
ing an empirically relevant set-up. We assume a variable of interest, Y, known to be
linked by a linear, possibly cointegrating, relationship to a right-hand side variable6 X:{

yit = µ0i + βixit + εy
it

εy
it = ρiε

y
it−1 + ey

it, ey
it ∼ N(0, σ2

iy)
(2)

where i = 1, . . . , N , t = 1, . . . , T . When Xi and Yi are not cointegrated ρi = 1,
while |ρi| < 1 when instead they are; in the power simulations ρi will be generated as

4Note that using this statistic a rejection would implie (by definition) that cointegration holds in
more than half of the units examined, but nothing can more precise can be said. On the other hand,
using the mean we do not even know if the cointegrating units are the majority of the panel or not.

5Several parameters are in fact fixed at the values used by the latter.
6Exploratory simulations showed the performances of the test to be independent on the number of

independent variables.
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Uniform(0.6, 0.8) across units to mimic a generally rather slow adjustment to equilib-
rium. To ensure some heterogeneity across units σ2

iy ∼ Uniform(0.5, 1.5), while with
no loss of generality µ0i = βi = 1 ∀i.

Long-run growth of X is assumed to be driven by a non-stationary factor common
across units (F1), with short-run deviations caused by a second stationary common
factor (F2) and by an idiosyncratic stationary noise (εx

it):

xit = γ1F1t + γ2F2t + εx
it (3)

Following Pesaran (2006) the factor loadings are chosen so to ensure substantial cross-
correlation in the X ′s: γi ∼ Uniform(−1, 3) ∀i. The common factors are generated as
follows: [

F1t

F2t

]
=

[
F1t−1

0.4F2t−1

]
+

[
f1t

f2t

]
(4)

where, as in Gegenbach et al. (2006), both the common and idiosyncratic shocks are
assumed to have a MA(1) structure:

[
f1t

f2t

]
=

[
η1t

η2t

]
+

[
ϑ1 0
0 ϑ2

] [
η1t−1

η2t−1

]
(5)

εx
it = ex

it + ϕex
it−1, (6)

where ηit ∼ N(0, 1), i = 1, 2, and ex
it ∼ N(0, σ2

ix), with σ2
ix ∼ Uniform(1, 1.4) . Both ϕ

and the ϑ′s are generated as Uniform deviates in the range [0.5,0.7].
An important remark is that this DGP is more general than those already used in

the literature: Gegenbach et al. (2006) exclude the possibility of a single source of non
stationarity common to both the left- and the right-hand side variables, Westerlund
(2008), assumes common factors to be present in the residuals of the cointegrating
equation only7, Bai and Carrion-i-Silvestre (2005) allow for common factors in the
X’s only if the cointegrating vectors are homogenous. Thanks to its generality it
is likely to be representative of many empirical applications: an obvious example is
the case of regional consumption and income, with the common factors given by the
trend and cycle in national GDP. To shed some light on the performances that can be
expected from common factors methods in this type of set-up we shall also examine the
performance of Westerlund’s Durbin-Hausman group mean DHg test. For simplicity
we are ruling out the possibility of cointegration holding in some units only, but the
design could be easily generalised further to include this case also. The sample sizes
considered in the experiment are also chosen trying to reproduce empirically relevant
conditions. Hence, we assume the data set to cover up to N = 40 cross-section units
and T = 20, 40, 80. In principle an important, and still largely unsettled, aspect of block
bootstrap methods is the choice of block size. In practice according to the simulation
results reported by PPP the RSB unit root tests appear to be quite robust to this
parameter. We will thus fix it at either 0.10T (as in Paparoditis and Politis, 2001) or
0.15T with a minimum of 4, leaving implementation of data-based methods for future
research. Finally, Monte Carlo simulations and bootstrap redrawings have been set to
1000.

7Here the X’s are always cointegrated across units, while the Y ’s are when |ρi| < 1 within units,
i.e. Xi and Yi are cointegrated.
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4. Monte Carlo Results

The results are reported in tables 1-4 below. As it can be appreciated from Tables
1-2, the bootstrap tests deliver an overall rather good performance. First of all, Type
I errors are generally close to nominal, except for some overrejection for T = 20 (recall
that with 1000 Monte Carlo simulations approximate 95% confidence intervals around
5% and 10% are respectively 4%-6% and 8%-12%). Second, the power performance is
very good: more than the high values of the rejection rates (which are conditional on
the specific DGP and signal/noise ratio at hand), the important evidence here is their
rapid growth with the cross-section dimension. The good behaviour of the panel tests
is confirmed by the results with T = 80 and the first five units (Table 3): Type I errors
are essentially equal to nominal size and power reaches 100%. Finally, in Table 4 we
report the Type I errors of the Durbin-Hausman group mean test DHg by Westerlund
(2008). We stress again that the application of the test is obviously wrong here; a
careful common factor analysis of the data would conclude that the residuals have
no common factor, while the right-hand side variable does. Though largely expected,
the results are nevertheless instructive of the possible consequences of an automatic
application of the method: since the common factor procedure fails to remove the
dependence across units, the test heavily overejects. In fact, when the X is generated
according to the full specification (3)-(6) with two common factors the true null of no
cointegration is always rejected by DHg test. Letting γ2 = 0 so that there is only one,
non stationary common factor, the size bias falls but it is still very large, and, though
shrinking with the time dimension, it worsens with the cross-section one for a fixed time
sample. The problem is that, since the bias is exactly in the direction most welcome
by practitioners (against H0: no cointegration, hence in favour of the existence of a
cointegrating relationship), they will probably be too happy of the results delivered by
a routine application of the test to check carefully the validity of its assumptions.
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Table 1
Bootstrap Panel Cointegration Tests

Size

Units
5 10 20 40

T α Median(ADF )
20 0.05 0.08 0.08 0.10 0.10

0.10 0.14 0.16 0.20 0.20
40 0.05 0.06 0.07 0.07 0.06

0.10 0.10 0.14 0.14 0.12
T α Mean(ADF )
20 0.05 0.08 0.09 0.12 0.10

0.10 0.14 0.17 0.22 0.20
40 0.05 0.05 0.07 0.06 0.05

0.10 0.12 0.13 0.13 0.12

DGP: Xi : cf. (3)-(6) Yi : cf. (2)
ρi = 1∀i H0 :No cointegration
Median(ADF): H1 : cointegration in most units
Mean(ADF): H1 : cointegration in a large
number of units or strong cointegration in a
smaller number of units.

Table 2
Bootstrap Panel Cointegration Tests

Power

Units
5 10 20 40

T α Median(ADF )
20 0.05 0.74 0.94 1.00 1.00

0.10 0.85 0.97 1.00 1.00
40 0.05 0.99 1.00 1.00 1.00

0.10 1.00 1.00 1.00 1.00
T α Mean(ADF )
20 0.05 0.57 0.86 0.99 1.00

0.10 0.83 0.97 1.00 1.00
40 0.05 0.98 1.00 1.00 1.00

0.10 1.00 1.00 1.00 1.00

DGP: Xi : cf. (3)-(6) Yi : cf. (2)
ρi ∼ Uniform(0.6, 0.8)
H0,H1 : see Table 1.
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Table 3
Bootstrap Panel Cointegration Tests

T = 80, N = 5

α 0.01 0.05 0.10
Median(ADF ) Size 0.01 0.07 0.14

Power 1.00 1.00 1.00
Mean(ADF ) Size 0.01 0.07 0.14

Power 1.00 1.00 1.00

DGP: see Table 1; H0,H1 : see Table 1.
Size: ρi = 1 ∀i; Power: ρi ∼ Uniform(0.6, 0.8).

Table 4
Durbin-Hausman Common Factors

Group Mean DHg

Panel Cointegration Test
Size

Units
T α 5 10 20 40
20 0.05 0.06 0.42 0.70 0.89

0.10 0.06 0.47 0.75 0.91
40 0.05 0.03 0.25 0.35 0.49

0.10 0.04 0.30 0.43 0.58
80 0.05 0.05 0.08 0.09 0.11

0.10 0.06 0.13 0.13 0.16

DGP: Xi : cf. (3)-(6),γ2 = 0.

Yi : cf. (2), ρi = 1∀i
H0 : No cointegration.

5. Empirical illustration: the Fisher effect

The so-called ”Fisher effect” dates back to Fisher (1930), who put forth the hy-
pothesis that the nominal interest rate (i) adjusts to the sum of expected real interest
rate (r∗) and expected inflation rate (p∗):

it = r∗t + p∗t (7)

Of course, (7), which involves unobserved variables, cannot be directly tested; how-
ever, it suggests an observable direct relationship with unit coefficient between the
nominal interest rate and the actual inflation rate (”full Fisher effect”). In practice,
this reasonable hypothesis never found consistent support from the data (recent ev-
idence in this direction is provided, inter alia, by Bonham, 1991, King and Watson,
1997), although more general specifications with coefficients different from one (”par-
tial Fisher effect”) or breaks were shown to be compatible with the data (e.g., Garcia
and Perron, 1996). However, as Westerlund (2008) points out, the available empiri-
cal studies are weak under two important aspects. First, most studies examined US
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data only. Second, in the case of long-run studies the economic hypothesis is rejected
when the statistical null hypothesis of no cointegration is not. Hence, low power of
the statistical procedure used may lead to erroneously reject the economic hypothesis
of interest, exactly as it happens with the Purchasing Power Parity theory8. To tackle
both, Westerlund (2008) applied his Durbin-Hausman panel cointegration tests to a
panel of 20 OECD countries9 for the period 1980:1-2004:4. With a p-value equal to
0.000, the group mean DHg test provides extremely strong evidence in favour of panel
cointegration between interest rates and inflation (which appear to be non-stationary
on the basis of both univariate and panel unit root tests). Since the estimated coeffi-
cients are different from one the conclusion is that the hypothesis of a partial Fisher
effect holding in the examined panel as a whole cannot be rejected. Although this is a
certainly reasonable conclusion, in view of the uncertainty prevailing in the literature
its strength is somehow suspect. The simulation reported in Table 4 suggests that in
the case of common factors in the right-hand side variable, rather than in the residuals
as assumed by the test, the DHg panel cointegration test can be severely oversized.
In fact, applying our bootstrap procedure10 we estimate the p-value of the mean ADF
cointegration statistic as 0.03, and that of the median ADF as 0.13. Applying the
conventional 5% significance level the hypothesis of no panel cointegration is rejected
in mean (hence, in favour of the alternative hypothesis of cointegration in most of the
units or strong cointegration in a smaller number of units) but not in median (when
the alternative hypothesis is cointegration in most of the units). At the 1% level mean
and median tests agree to suggest no rejection of the null hypothesis of no Fisher ef-
fect in the panel as a whole. Our conclusion is therefore not entirely at odds with
Westerlund’s, but considerably more cautious and thus more in line with the previ-
ous literature: there is some evidence in favour of a partial Fisher effect, but (i) it is
weaker than suggested by the Durbin-Hausman DHg test, and, (ii) it seems to come
from some subset of the examined panel of OECD economies. Clearly, as suggested by
Garcia and Perron (1996), allowing for breaks may strengthen the evidence in favour
of a Fisher effect.

6. Conclusions

The key contribution of this paper is to put forth a test for panel cointegration
in dependent panels based upon a residual based unit root test recently proposed by
Parker, Paparoditis and Politis (2006). The test procedure is shown by simulation to
deliver good size and power performances in panels with long- and short-run depen-
dence due to common factors in the variables examined. The power gains with respect
to aggregate tests appear particularly valuable. Applying the procedure to test the
Fisher hypothesis on the Westerlund (2008) data we find some weak evidence in favour
of a partial Fisher effect; our conclusions are therefore more cautious than Wester-
lund’s. Future research will try to address the issue of data-based choice of block size,
the asymptotic properties of the test, as well as generalising the procedure to allow for
breaks at an unknown date.

8In fact, this empirical issue was an important motivation for the early developments of panel
cointegration methods: see e.g. O’Connell (1998).

9Australia, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, United
Kingdom, Ireland, Italy, Japan, Luxembourg, Netherlands, Norway, New Zealand, Portugal, Sweden,
United States.

10Mean block size T/10, 1000 redrawings. The results are robust to mean block size.
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