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I. INTRODUCTION

Predictability, both in the time series and the cross section of stock returns, has been the

focus of much research in the field of empirical finance. At the time-series level, the main

finding is that variables like the price-dividend ratio and term premia can predict stock

returns variation at long horizons.1 As for the cross section of stock returns, predictability

translates into the use of conditioning variables to improve on the performance of the CAPM

and Consumption CAPM (CCAPM) versus their unconditional counterparts. These two

strands of the literature connect because lagged instruments that are shown to predict market

returns are natural conditioning variables for tests of the cross section.2

Extant economic explanations for the time-series and cross-sectional predictability are

notably sparse and detached from one another. Time series predictability is obtained by

either investors’ learning about some unobservable fundamental process as in Timmermann

(1993, 1996) and Veronesi (2000) or cyclical variations in investors’ risk aversion as in Camp-

bell and Cochrane (1999) and Barberis et al. (2001). Instead, at the cross-sectional level,

the theoretical models concentrate either on portfolio constraints (Cuoco (1997)) or the ex-

ploitation of growth options’ opportunities (Gomes et al. (2000)). A notable exception is

Berk et al. (1999) who construct a model of firm’s investment with implications for the cross

section and that yields interest rates as predictors of market returns.

In this paper we propose and test a different economic mechanism that generates stock

return predictability both at the time-series and at the cross-sectional level, namely, fluctu-

ations in the fraction of consumption funded by sources other than dividends from the stock

market. The intuition is straightforward. In addition to the dividends paid by competitively

traded stocks, investors have an endowment flow of consumption good. As the fraction of

consumption funded by this endowment fluctuates, the relationship between stock returns

1This evidence has survived a decade long effort to tackle many of the econometric issues that are relevant
for evaluating these effects “at reasonable if not overwhelming levels of statistical significance,” (Campbell
(2000), page 9.) Furthermore, predictability is not unique to the standard US data set, but it can be found
in many other countries as well (see Campbell (1999), Table 12, panel B). For a summary see Cochrane
(1997 and 2000).

2See Cochrane (1996), Ferson and Harvey (1999), and Lettau and Ludvigson (2000b) for recent contribu-
tions in this direction. For example Ferson and Harvey (1999) state that “simple proxies for time variation
in expected returns, based on common lagged instruments, are also significant cross-sectional predictors of
returns.”
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and consumption growth varies as well, thereby generating changes in the risk premia in-

vestors require to hold stocks. Clearly some portfolios will be more sensitive than others to

these fluctuations and as a consequence will demand different premia, generating the desired

cross sectional predictability.

An obvious candidate for this additional source of consumption is labor income and it is

to this interpretation that we restrict ourselves throughout the paper. Labor income, after

all, accounts for more than 80% of total consumption on average and, as shown in Figure

1, varies between 75% and 90%. At the aggregate level it is rather intuitive that periods

characterized by a high labor-income to consumption ratio should also imply a low expected

excess return: Since most of consumption is not stemming from the stock market, investors

do not need to require a high premium. A similar intuition holds at the cross-sectional level.

To formalize this intuition we write a minimal extension of the standard Lucas (1978)

exchange economy to accommodate, in a tractable model, the possibility of multiple sources

of consumption. In our set up investors receive both dividend income from many risky

securities and “other income,” such as labor income. By concentrating on the “fractions”

of dividends and wages to consumption, and under conventional preferences, we can solve

for stock prices in closed form and obtain simple formulas for stock returns. As mentioned,

our first finding is that the ratio of labor income to consumption is the main determinant

of the predictability of stock market returns because of the intuitive mechanism developed

above. In addition, we also obtain a stochastic beta representation for the cross-section of

stock returns as well as intuitive formulas for the “betas” themselves. These “betas” are

indeed mainly affected by the labor income to consumption ratio with a sensitivity that is

asset specific and depends on the characteristics of the underlying dividend process.

We test the main predictions of the model by running predictive regressions using both the

ratio of labor income over total consumption and/or the dividend price ratio as explanatory

variables. Our first main empirical finding is that for the overall sample 1946-1999 the ratio

of labor income to total consumption performs much better than the (log) dividend price

ratio to forecast future returns. For example, the R2 of the one year predictive regression

is 6.1% (against 3.9% for the log dividend-price ratio) and it reaches 34.6% for the four

year ahead regression (against 20.7% for the dividend price ratio.) Since this result may be

driven by the inclusion of the 1995-1999 period in the data sample (which witnessed a low

dividend price ratio and high returns,) we also run regressions over the more conventional

1952-1994 data period where it is known that the dividend price ratio is working well (see
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e.g. Campbell et al. (1997)). In this case the dividend price ratio is performing better

than the wages-to-consumption ratio, but the latter is still a significant regressor at long

horizons where it still produces a good forecasting power: The R2 is 3% for the one year

ahead regression but it reaches 22.6% for the 4 year ahead regression.

Interestingly, the inclusion of both regressors – either linearly or in a multiplicative fashion

– dramatically improves upon the predictive power of the regression at every horizon. For

example, in the 1952-1994 sample the (adjusted) R2 ranges between 25.1% at the one year

horizon to above 60% at the four year horizon. This finding is indeed fully consistent with

our model, which implies that both expected returns and the dividend yield are non linear

functions of the labor income to consumption ratio. It follows that the dividend yield may

proxy for the non linear relation between expected returns and this ratio and it is then not

surprising that it improves the predictability.

The cross-sectional implications of the model, that is, the stochastic beta representation

for the expected returns of individual securities, are investigated next. Roughly, we test

whether conditioning the CAPM and the CCAPM by the share of labor income to consump-

tion improves the fit on the cross section relative to their unconditional counterparts.

To test these hypothesis we use a set of portfolios that has become standard in the

literature, the 25 Fama and French (1992, 1993) portfolios, which are portfolios sorted by

size and book to market. A novel feature though is that we use a longer sample period than

the one originally used by these two authors and others after them. Whereas the standard

sample period is 1963-1998 in this paper we use the 1946-1998 period, but we also report

results in the more restricted sample.

As many have noted before us, the standard CAPM explains little of the cross sectional

variation in stock returns. The adjusted R2 is only 10%, that is, the unconditional CAPM

can only explain 10% of the cross sectional variation in returns. In contrast the inclusion of

the returns on the market portfolio scaled by the fraction of labor income to consumption

considerably increases the explanatory power of the CAPM. In this case the adjusted R2 is

43%. We show that this cross term is significant and it’s relevance robust to several specifica-

tions. Furthermore when the fraction of labor income to consumption enters independently

the adjusted R2 is as a high as 61%, a notable improvement over unconditional versions of

the model.

We test whether the results are present in the more standard period of 1963-1998. They

are. In this case the specification suggested by our model can explain as much as 54% of the
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cross sectional variation in returns whereas the unconditional CAPM explains a puny −2%.

We also test whether our specification is robust to the “dating convention” advocated by

Jagannathan and Wang (1996) which provides investors with an information set consistent

with the release of data by the Bureau of Economic Analysis. In an environment where

human capital is a tradable asset investors need to know it’s price in order to form their

optimal portfolio. Jagannathan and Wang (1996) argue that that it is not reasonable to

assume that investors posses information on data collected by the BEA and that is released

with delay. Our results are robust to this dating convention. Furthermore we show that the

role of labor income growth in tests of the cross section as a proxy for human capital returns

depends critically on the dating convention adopted by the researcher.

Because this paper shows evidence pertaining to both the time series of the aggregate

market and the cross section of stock returns it naturally relates to the two strands of the

empirical asset pricing literature that have respectively dealt with these two issues. Our

work though presents important differences with these two bodies of evidence.

First, the early predictability literature documents the forecasting power of either prices

scaled by dividends or earnings and of various interest rate measures.3 More recently Lettau

and Ludvigson (2000a) (LLa henceforth) manipulate the budget constraint to show that

the consumption to total wealth ratio, which includes labor income and financial wealth,

contains information about stock returns.

Our paper adds to this literature by providing yet more evidence on the predictability of

stock returns. A critical difference between our work and previous empirical research though

is the fact that our predictive variable is neither a version of the stock price scaled by either

dividends or earnings nor some other financial variable like the term premium, but rather a

pure macroeconomic variable. Furthermore, it does not need to be estimated as in LLa as

it is directly observable. Finally it is important to emphasize that our testable implication

does not result from basic manipulations of either the definition of returns (Cochrane (2001),

page 395-6) or the budget constraint as in LLa.

Second, the present paper adds to a literature that emphasizes the role of labor income

in the cross section of stock returns. References on human capital and asset returns go as

3Campbell and Shiller (1988a and b), Fama and French (1988a and b), Hodrick (1992), Lamont (1998)
document the predictive power of prices scaled by dividends and earnings. Campbell (1987), Fama and
French (1989), Hodrick (1992), and Keim and Stambaugh (1986) show the forecasting power of interest rate
measures.
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far back as Mayers (1972) and Fama and Schwert (1977) and, more recently, authors like

Jagannathan and Wang (1996) and Campbell (1996) have included human capital returns to

improve on the definition of the market portfolio. For instance, in tests of the cross section,

Jagannathan and Wang (1996) find that the inclusion of human capital in the definition of

the market portfolio considerably improves the ability of the CAPM to explain the cross

section of portfolios sorted by size and beta.

In a different direction Lettau and Ludvigson (2000b) (LLb henceforth) explicitly model

the discount factor as a function of current information and show that the ratio of consump-

tion to total wealth, a variable shown to predict market returns in LLa, is an important

instrument for tests of the conditional CAPM and CCAPM. In particular they show that

their version of the conditional CAPM and CCAPM provides a remarkable fit to the 25

Fama and French (1993) portfolios.

As already emphasized our conditioning variable is not a version of the price scaled by any

other variable, whether it be earnings, dividends, or consumption itself. In this sense it is free

from the concerns advanced by Berk (1995), namely, that because returns are mechanically

related to prices, ratios that have prices either in the numerator or denominator are in turn

automatically related to returns. For this reason these ratios cannot identify whether they

correlate with the cross section because they proxy for economically meaningful forces or

some other reason, like misspricing effects.

We close this introduction by pointing out that our framework does not attempt to resolve

other long standing issues in the field of empirical asset pricing, such as the equity-premium

puzzle or the risk-free rate puzzle. Rather, it illustrates how alternative sources of income

other than dividends may have a role to play in accounting for the empirical properties of

stock return data. As a consequence, and to offer a clear picture of the economic forces at

work in our set up, we depart from the recent trend of investigating alternative preference

specifications to match the moments of stock and bond returns to focus on the well known

iso-elastic case. Clearly a full account of empirical properties of returns require additional

ingredients like variation in the investors attitudes towards risk, as in Campbell and Cochrane

(1999) or Barberis, Huang, and Santos (2001) but we do not attempt such a comprehensive

exercise here.

Section II contains the model and discussion of the assumptions. Section III provides the

results that motivate our empirical strategy. Data description and the empirical results are

reported in section IV. Section V concludes. Proofs, tables, and figures are in the appendix.
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II. THE MODEL

Consider a standard pure exchange economy populated by identical investors whose util-

ity function is4

U(Ct, t) = e−φt log (Ct) ,

where Ct denotes consumption at time t. There is a riskless asset in zero net supply that

pays a continuous rate of return rt. There are n− 1 risky assets in positive net supply that

pay a continuous dividend rate Di
t for i = 2, 3, , . . . , n, and that trade competitively at a

price P i
t . Agents are endowed with an additional source of income other than dividends from

these competitively traded financial assets. In accordance with our empirical strategy below,

we assume that this other income springs from a human capital asset that pays a continuous

wage rate wt.
5 For ease of notation we will sometimes denote wt by D1

t .

The problem of the investor is then the usual one:

max
N i

t ,Ct

E0

[∫ ∞

0

U(Ct, t)dt

]
subject to the standard dynamic budget constraint

dWt =
n∑

i=2

N i
t

(
dP i

t +Di
tdt
)

+

(
Wt −

n∑
i=2

N i
tP

i
t

)
rtdt+ (wt − Ct) dt,

where N i
t denotes the number of shares of stock i held by the investor and Wt is his total

wealth at time t.

A rational expectations equilibrium is then a set of price functions P i
t , allocation process

N i
t , and consumption process Ct such that agents maximize and markets clear, that is,

N i
t = 1 for all i = 2, 3, . . . , n and Ct = wt +

∑n
i=2D

i
t.

As already mentioned, our emphasis is on the general payoff structure available to the

investor rather than the more traditional concerns on preferences. A basic requirement in

modeling this general payoff structure is that dividends and wages add up to an aggregate

consumption process that is consistent with the observed behavior of the US time series,

which is roughly a random walk. Once this requirement is met, the proposed endowment

structure will also naturally embed the standard endowment economy of Lucas (1978).
4In appendix we extend these results to the general CRRA case.
5A fully rigorous account of labor income in an asset pricing framework should accommodate the endoge-

nous labor supply decision. We abstract from this effect in the present paper.
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We start then by modeling consumption growth as

dCt

Ct

= µcdt+ σcdBt, (1)

where µc is a scalar and σc is a 1 × n vector of constants and Bt = (B1
t , . . . , B

n
t )
′

are n

independent Brownian motions. The specification of µc is flexible and in particular it can

be time varying to reflect any weak autocorrelation in consumption growth that may be

observed in the data.

In order to model dividends and wages define first the share of these dividends and wages

over consumption:

sw
t = s1

t =
wt

Ct

and si
t =

Di
t

Ct

for i = 2, ..., n, (2)

By construction then wages and dividends will add up to the consumption process in (1) if∑n
j=1 s

j
t = 1. To illustrate the economic forces at work we propose a simple process for the

share dynamics and leave for the appendix the description of a richer, but equally tractable,

model. In particular we assume that:

dsi
t = a

(
si − si

t

)
dt+ si

tσi (st) dBt (3)

where

σi (st) = νi −
n∑

j=1

sj
tνj, (4)

νi for i = 1, 2, . . . , n are n dimensional vectors, and st = (s1
t , . . . , s

n
t ). Our choice for the

functional form of the volatility function (4) guarantees that both si
t > 0 and

∑n
i=1 s

i
t = 1.

We model then these shares as a mean reverting process with a common reversion speed,

a, and conditional expected value given by

Et

[
si

τ

]
= si +

(
si

t − si
)
e−a(τ−t). (5)

If a particular “tree” is contributing little to consumption compared to its unconditional

level, as expressed by it’s low si
t, then one should expect a high positive growth rate of this

share. In the future a larger percentage of consumption will come from asset i.

But, as it is intuitive, what is critical in the valuation of any of the available assets is

whether on average they grow when consumption does. It can be easily shown that the
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covariance between consumption growth and share growth is given by

covt

(
dsi

t

si
t

,
dCt

Ct

)
= θi −

n∑
j=1

sjθj (6)

with θi = νiσ
′
c. The parameters θi’s, that regulate the covariance between consumption

growth and the growth of the share of consumption produced by asset i, will play an im-

portant role in the formula for asset returns, and for this reason we elaborate on them

further.

First, equation (6) shows that the constants θi are not identified as we can add a constant

to all of them without changing any of the covariances. For this reason we can renormalize

them and we find it convenient to set θ1 = 0. Second, since the fraction of consumption

generated by wages sw
t is by far the largest component of all si

t’s, it is convenient to find a an

expression for the covariance in (6) that makes explicit the dependence on sw
t . By substituting

the identity si
t = 1−

∑
j 6=i s

j
t in equation (6) and rearranging terms we immediately find that

covt

(
dsi

t

si
t

,
dCt

Ct

)
= sw

t θi +
∑
j 6=1,i

sj
t (θi − θj) (7)

We use equations (6) and (7) repeatedly throughout.

III. RESULTS

In this section we describe the asset pricing implications of the model introduced in the

previous section. We derive first the equilibrium price dividend ratios for both individual

assets and the market portfolio. Then we explore the implications for the market asset

returns and the cross section of stock returns.

III.A Equilibrium prices

In our set up, as in others, labor income is a tradable asset6 and we abstract from any

effect that market incompleteness may have on asset prices. For this reason the standard

asset pricing formula applies:

P i
t = Et

[∫ ∞

t

Uc (τ, Cτ )

Uc (t, Ct)
Di

τdτ

]
. (8)

6See Campbell (1996) for example. For a lucid defense of this assumption see also Jagannathan and Wang
(1996, page 13).
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Given our assumptions on preferences and dividends, Uc (τ, Cτ ) = e−φτC−1
τ and Di

τ = si
τCτ ,

equilibrium prices are:

P i
t = Et

[∫ ∞

t

e−φ(τ−t)Ct

Cτ

si
τCτdτ

]
(9)

= Ct

∫ ∞

t

e−φ(τ−t)Et

[
si

τ

]
dτ (10)

= Ct

{
asi

φ (a+ φ)
+

si
t

a+ φ

}
, (11)

where7 we used equation (5). The expression for the price dividend ratio of asset i now

follows trivially from equation (11):

P i
t

Di
t

=

(
1

φ

)(
1

φ+ a

)[
φ+ a

(
si

si
t

)]
. (12)

That is, the price-dividend ratio of asset i depends on the share of consumption that the

representative consumer derives from asset i. In addition, the price dividend ratio of security

i depends on the “distance” of its current level si
t from its long-run average si.

Equation (12) extends naturally to the price dividend ratio of the market portfolio. Define

PM
t =

∑n
i=2 P

i
t and DM

t =
∑n

i=2D
i
t. Then it is straightforward to show that:

PM
t

DM
t

=

(
1

φ

)(
1

φ+ a

)[
φ+ a

(
1− sw

1− sw
t

)]
=

(
1

φ

)
ψ(sw

t ) (13)

Equation (13) has a strong intuitive appeal. The first term of the expression, 1
φ
, is the

standard price dividend ratio in one endowment economy with log utility function. The

second term, ψ(sw
t ), corrects for the presence of an alternative source of income other than

dividends from the market portfolio.

Notice that ψ(sw
t ) = 1 only if sw = sw

t . That is an economy in its steady state yields

a price dividend ratio that is no different than the usual one. Deviations form this steady

state generate movements in the price dividend ratio of the market portfolio. For instance,

if sw < sw
t then the price dividend ratio is higher than it’s long run level, 1

φ
. There are two

reasons for this. First, if sw
t is relatively high investors are less exposed to fluctuations in

the stock market, and hence they require a lower compensation to hold it, and this, in turn,

7The inversion of integrals between (9) and (10) is possible because φ > 0 and si
τ ∈ [0, 1].
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translates into higher prices. Also, a high share of labor income to consumption signals that

future aggregate dividend growth is going to be above that of consumption as sw
t will mean

revert to sw. This further reinforces the positive effect on the price dividend ratio.

Equation (13) then captures an alternative source of variation in the price dividend ratio

to the ones that have been emphasized in the literature.8 As the share of labor income

to consumption ratio varies the price dividend ratio will vary unambiguously. In the next

section we explore whether the intuition carries to the aggregate market returns.

III.B Market returns

The excess stock returns of the market portfolio, dRM
t , is defined as:

dRM
t =

dPM
t +DM

t dt

PM
t

− rt,

where the risk free rate can be easily proved to be equal to:9

rt = φ+ µc − σcσ
′
c.

In appendix we show that a straightforward application of Ito’s lemma together with

the fact that Et

[
dRM

t

]
= covt

(
dRM

t ,
dCt

Ct

)
yields the following expression for the expected

excess return of the market portfolio:

Et

[
dRM

t

]
= σcσ

′
c +

1

1 +
(

a
φ

)(
1−sw

1−sw
t

) ( sw
t

1− sw
t

) n∑
j=2

sj
tθj. (14)

In the standard “one tree” economy the conditional expected excess return of the market

portfolio is simply σcσ
′
c. Whether the level of the conditional expected excess return is above

or below this benchmark depends on the covariance between wage income share growth and

consumption growth, which, from equation (6), equals −
∑n

j=1 s
j
tθj (recall that θ1 = 0.) If

this covariance is negative, then the premium is higher than in the standard case as the

market tends to pay in the presence of consumption growth. If on the other hand the

covariance is positive the expected excess return is lower than σcσ
′
c as the market provides

a natural hedge against weak consumption growth.
8For instance Campbell and Cochrane (1999) emphasize changes in the degree of risk aversion as a source

of variation.
9Recall that we allow for time varying µc and hence the dependence of the risk free rate on time. If µc

is constant consumption growth is completely i.i.d.
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As equation (14) shows, there are two sources of variation in expected excess returns:

changes on the distribution of dividends across the market portfolio and fluctuations in sw
t .

What is the economic intuition behind each source of variation?

To gain some insights on the impact of cross sectional variation in the distribution of

dividends across the market,
∑n

j=2 s
j
tθj, assume that the share of labor income to consump-

tion, sw
t , stays constant and that we “redistribute” an amount δ away from share si

t to share

sj
t . Then the change in conditional expected excess return is given by:

∆Et

[
dRM

t

]
= δ

 sw
t

(1− sw
t ) +

(
a
φ

)
(1− sw)

 [θj − θi]

= δ

 sw
t

(1− sw
t ) +

(
a
φ

)
(1− sw)

[covt

(
dsj

t

sj
t

,
dCt

Ct

)
− covt

(
dsi

t

si
t

,
dCt

Ct

)]
,

where the last equality follows from equation (6). The expected rate of return of the market

portfolio will rise if the covariance of asset j is higher than that of asset i. This is only

natural, as dividends are redistributed towards the asset whose share growth covaries more

strongly with consumption growth and hence the overall market is more strongly correlated

with consumption growth.

Variations in the share of labor income to consumption is the second source of fluctuations

in expected market returns. Unlike before though, it is not possible now to hold distributional

effects fixed, as changes in sw
t necessarily result in changes in

∑n
j=2 s

j
tθj. An example then

could be helpful here.

Assume that θj = θ for all j = 2, 3, . . . , n, that is, that the share growth rates have

the same covariance with consumption growth. In this case,
∑n

j=2 s
j
tθj = θ (1− sw

t ) =

−covt

(
dsw

t

sw
t
, dCt

Ct

)
(from (6)) which we can substitute into (14) to obtain

Et

[
dRM

t

]
= σcσ

′
c +

θsw
t (1− sw

t )

φ (1− sw
t ) + a (1− sw)

(15)

Equation (15) shows that the instantaneous expected return depends non-linearly on the

fraction of consumption produced by labor income sw
t = wt/Ct. Its functional form shows

that expected returns are equal to σcσ
′
c both when sw

t = 0 and when sw
t = 1. To understand

this result, notice that when sw
t = 0, then Ct =

∑n
j=2D

j
t = DM

t and hence we are in the
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usual Lucas (1978) economy with no other endowment than the risky assets. The results

that in the log utility case Et

[
dRM

t

]
= σcσ

′
c is indeed standard. More puzzling at first is

that this model implies that Et

[
dRM

t

]
= σcσ

′
c when sw

t = 1. In this case we must have

si
t = 0 for all i = 2, .., n which from (11) entails PM

t = Ct
a(1−sw)
φ(a+φ)

. Since we would also have

Ct = wt, we obtain that the price is perfectly correlated with wages (and hence consumption),

yielding the result. Of course, both these limit cases are extreme, given that, as shown in

Figure 1, sw
t lies comfortably in the interval (0.75, 0.9). In this case, what is the relationship

between Et

[
dRM

t

]
and sw

t ? In the simplified example of equation (15) where θj = θ for all

j = 2, 3, . . . , n, we can see that the denominator of the second term is always positive, hence

the behavior of expected stock returns depend on the sign of θ. To gain intuition on the likely

sign of this term, recall again that sw
t (1− sw

t ) θ = −cov (dsw
t , dCt/Ct). If wages are much

smoother than dividends, we can imagine that an increase in dividends is accompanied by an

increase in consumption and hence a decrease in sw
t = wt/Ct (if wages do not move much).

This induces a natural negative covariance between consumption growth and the changes in

sw
t . Indeed, evidence (not reported) shows a negative covariance between dsw

t and dCt/Ct.

Since sw
t (1− sw

t ) is positive, this implies θ > 0. This in turn yields a negative relationship

between expected returns and the labor share sw
t when sw

t is in the relevant range (0.75, 0.9).

The economic intuition of this result is clear: as sw
t increases, consumption becomes fueled

by labor income only, decreasing the covariance between consumption growth and dividend

growth. This in turn translates into a lower covariance between consumption growth and

returns, generating a lower risk premium.

III.C The cross section of stock returns

Similar arguments to the ones used in the previous section yield a closed form solution to

the conditional expected rate of return of asset i. Let P TW
t = PM

t +Pw
t the value of the total

wealth portfolio, that is, the portfolio that comprises the value of the market portfolio PM
t

and the value to human capital Pw
t . Notice that the latter can be computed from equation

(11) for i = 1. If we denote by dRTW
t the excess return from the total wealth portfolio,

standard equilibrium conditions require Et [dRi
t] = covt

(
dRi

t, dR
TW
t

)
which in turns implies

the “beta” representation

Et

[
dRi

t

]
= βi (st)Et

[
dRTW

t

]
, (16)

where the conditional beta βi (st) = covt

(
dRi

t, dR
TW
t

)
/vart

(
dRTW

t

)
can be written explicitly
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as a function of sw
t and sj

t ’s as:

βi (st) = 1 +

 θi

σcσ′c

(
1 + a

φ

(
si

si
t

))
 sw

t +

 1

σcσ′c

(
1 + a

φ

(
si

si
t

))
∑

j 6=1,i

sj
t (θi − θj) (17)

The conditional beta of each asset i with respect to the total wealth portfolio depends on

both the share of labor income to consumption sw
t and on the distribution of shares across

the stock market
∑

j 6=1,i s
j
t . The coefficients on each of this common “factors” depend on

the relative position of si
t with respect to its steady state value, si. For instance, in the

case where θi = θ for all i = 2, 3, . . . , n, βi (st) varies as a function of just sw
t and si

t (the

second term in (17) vanishes). The reason for this is as follows: In this case we recall that

covt

(
dsi

t

si
t
, dCt

Ct

)
= θsw

t . If θ > 0, conditional on si
t, an increase in sw

t results in a higher

conditional expected rate of return as a result of the increase of the covariance between

consumption growth and share growth. The degree to which changes in sw
t affect the beta

βi (st) of asset i depends also on the value of si
t. If si

t ≈ 0 changes in sw
t do not affect the

required return, as asset i does not contribute to consumption and does not covary with its

growth.

Given that the return on the total wealth portfolio is not directly observable, from (16)

we obtain a formulation more suitable for the empirical analysis. Define first:

Φ(st) =
Pw

t

Pw
t + PM

t

,

where st = (s1
t , s

2
t , . . . , s

n
t ), and again Pw

t is the price of the human capital asset. Then the

return on the total wealth portfolio is given by:

dRTW
t = Φ(st)dR

w
t + (1− Φ(st)) dR

M
t , (18)

where dRw
t is the rate of return on the human capital asset. Given thatEt [dRi

t] = covt

(
dRi

t, dR
TW
I

)
we can use the definition of the return on the total wealth portfolio, equation (18), to obtain:

Et

[
dRi

t

]
= Φ(st)covt

(
dRi

t, dR
w
t

)
+ (1− Φ(st)) covt

(
dRi

t, dR
M
t

)
. (19)

Then equation (19) implies that the conditional expected rates of return on both the human

capital asset and the market are given by:

[Et [dRw
t ] Et [dRw

t ]]′ = ΣwM [Φ(st) (1− Φ(st)]
′ , (20)
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where ΣwM as the variance-covariance matrix of dRw
t and dRM

t . From equation (20) we can

get an expression for [Φ(st) (1− Φ(st)]
′ that we can readily substitute back into (19) to

obtain the beta representation:

Et

[
dRi

t

]
= βiw(st)Et [dRw

t ] + βiM(st)Et

[
dRM

t

]
, (21)

where βiw(st) and βiM(st) are the multiple regression coefficients:

[βiw(st) βiM(st)]
′ =
(
ΣwM

)−1 ×
[
covt

(
dRi

t, dR
w
t

)
covt

(
dRi

t, dR
M
t

)]
.

Versions of equation (21) have been the focus of much research lately. For instance,

Jagannathan and Wang (1996) test a version the above equation where they also extend

the definition of the market portfolio to include returns in human capital and where their

conditioning variable is the properly defined default premium, shown to forecast business

cycles. More recently LLb have tested a similar equation in a different set of test portfolios

where the conditioning variable is the consumption to wealth ratio, a conditioning variable

that they show predicts future market returns.

Our version of the conditional CAPM has the advantage of unambiguously specifying the

set of conditioning variables that could improve the performance of the conditional CAPM

and CCAPM, namely, the shares of dividends and wages over consumption. We return below

to the question of how to derive a specific test of our model.

We can derive along very similar lines the conditional Consumption CAPM which is given

by:

Et

[
dRi

t

]
= βc

1i (st) dt+ βc
2i (st)Et

[
dCt

Ct

]
(22)

where βc
1i (s) is a function of st and βc

2i (s) is the regression coefficient of dRi
t onto dCt/Ct.

As before we delay the specific test on this model to the empirical section.

What is the intuition behind these results? Recall that we have established earlier that

movements in the share of labor income to consumption together with variation in the dis-

tribution of shares across the market result in variations in the conditional expected rate

of return on the market portfolio. These changes are likely to affect alternative portfolios

differently as they will display varying sensitivities to the share of labor income to consump-

tion for example. This is what provides a role for this variable in tests of the cross section

of stock returns.
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IV. EMPIRICAL TESTS

In this section we test the main predictions of our model. We start by providing a brief

description of the data set employed. We then test the implications for the time series

behavior of the aggregate market portfolio. Last we explore whether our version of the

conditional CAPM and CCAMP provides a better description of the cross section of stock

returns.

We emphasize that in what follows we concentrate in the role of the share of labor income

to consumption, sw
t , as a predictive and conditioning variable and leave the effects of the

cross sectional distribution of dividend shares for future research. There are two main reasons

for this. We are interested in the role of labor income, a variable that has proved to play a

considerable role in recent asset pricing tests (Jagannathan and Wang (1996), LLa and LLb,)

and that seems a clear first order effect given the large percentage of consumption it funds.

Another reason is our emphasis in bringing in conditioning information that is “purely” non

financial as it provides a sharper view on the links between macroeconomics and financial

markets.

IV.A Data description

The financial data we use is standard. We consider returns on the value weighted CRSP

index, which includes NYSE, AMEX, and NASDAQ, as our measure of financial asset re-

turns. Dividend price ratios are also obtained from CRSP and the risk free rate is the 90-day

Treasury bill.

For both consumption and labor income we use data from the National Income and

Product Accounts (NIPA). Following the literature (see LLa), we define consumption as

nondurable plus services excluding shoes and clothing. The argument behind this idea is

that the theory applies to the flow of consumption and it should not include additions or

replacements to the stock of durable goods. As it is also traditional we assume that total

consumption is proportional to consumption of non durables plus services and we choose

a constant of proportionality to be the long term ratio between total consumption and

consumption of non durables plus services. This ratio is estimated to be 1.15.

The labor income series is as in LLa. It is constructed by adding to wages and salaries,

transfer payments plus other labor income and subtracting personal contributions to social

insurance and taxes.10 Both the consumption and labor income series are quarterly.
10See LLa Appendix A. As of the writing of this paper, data from 1929 to 1945 was still being revised by
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For the cross sectional tests we use the sets of test portfolios constructed by Fama and

French (1993). These portfolios are formed by intersecting 5 portfolios sorted by size with

other five portfolios sorted by book-to-market. We convert the returns to quarterly data

producing a time series covering 1946 to 1998.

IV.B Predictability of aggregate returns

IV.B.1 Forecasting regressions

We test first the forecasting power of the ratio of labor income to consumption. Recall

that the main prediction of our model postulates that the high share of labor income to

consumption, sw
t , predicts low future returns. For this reason we run regressions of returns

on lagged values of sw
t . We also rerun the standard predictability regression to check its

performance during our sample period and frequency. Finally we run two additional regres-

sions that try to asses whether the role of the share of labor income to consumption in the

predictability regression is robust to the inclusion of the price dividend ratio. That is we

estimate:

rt,t+K = α1 + β1(K)sw
t + εt+k (23)

rt,t+K = α2 + β2(K) log

(
DM

t

PM
t

)
+ εt+k (24)

rt,t+K = α3 + β3(K) log

(
DM

t

PM
t

)
+ β4(K)sw

t + εt+k (25)

rt,t+K = α5 + β5(K)

(
sw

t × log

(
DM

t

PM
t

))
+ εt+k (26)

where rt,t+K is the cumulative log return over K periods. For each regression, Tables II-IV

report the point estimate of the included explanatory variable, the Newey-West corrected

t−statistic for the null hypothesis that the coefficients are zero, and the adjusted R2.

We start discussing our results for the whole sample period at our disposal, 1946-1999.

The first row of Table II-A shows that the ratio of labor income to consumption sw
t is

statistically significant at any forecasting horizons between one quarter and four years. The

sign of the regression coefficient is negative, giving support to the view expressed in the

previous section that positive innovations in sw
t lead to low future returns. The explanatory

power is also high, ranging from 6.1% for the one year regression to 34.6% for the four year

the Bureau of Economic Analysis. For an update visit, http://www.bea.doc.gov. See also footnote 11.
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regression.

We compare these results with those of the standard predictability regression, equation

(24). In this case, the dividend price ratio is never significant at any horizons and the

predictive power is rather low, ranging from 3.9% at the one year horizon to 20.7% at the

four year horizon. As we will see below, this poor performance of the dividend-price ratio

to forecast future returns is partly due to the inclusion of the period 1995-1999 in the data

sample. Indeed, during this period the dividend price ratio was extremely low and yet returns

have been record high.

Recall that, as shown in equation (13), the dividend price ratio is a non linear function of

sw. Including the dividend price ratio then may proxy for any non linearities in the relation

between returns and sw. When both ratios enter linearly (regression (25)) both regressors

are significant and the predictive power ranges from an adjusted R2 of 16.2% at the one year

horizon to an R2 of over 61% at the four year horizon. Interestingly, a similar result obtains

when we only use the interaction factor sw × log (D/P ) in the regression (regression (26)).

In this case again the coefficient is highly significant and the R2 ranges from 13.4% at the

one year horizon to over 50% at the four year horizon.

As shown in Figure 1, the first two years of our sample, 1946-7, showed a remarkable

drop in the ratio of labor income to consumption. The special circumstances of those years

may account for that event. We reran the predictability regression excluding those eight

initial data points and we report the results in Table II-B. The short term predictability of

our variable improves slightly but overall the estimates are very similar.

Other researchers using quarterly data, like LLa, concentrate on the period starting in

1952. In order to check the validity of our empirical findings, Tables III and IV report results

for two subsamples of the data starting in 1952.11 The first is the standard sample 1952:01-

1994:04, that will enable us to compare our results to others in the literature.12 Indeed the

second line in Table III shows that during this period the dividend price ratio was doing

11We point out that the main result of this paper (that the labor income to consumption ratio forecast
future returns) accidentally underwent an out-of-sample test. Until April 26th, 2000 data on compensation
of employees and other series from the Bureau of Economic Analysis were only available for the period
1959:01-1999:04. The BEA news release on April 26th, 2000 also included the revised data for the 1946:01
- 1958:04 period. Our result held well also when the first period was included.

12See for example Campbell, Lo and MacKinlay (1997, page 269, Table 7.1), who use monthly data. These
authors estimate the predictability regression in three different sample periods, 1927-1994, 1927-1951, and
1952-1994. As already mentioned, data for macroeconomic time series is available only from 1946.
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extremely well in predicting future returns. Our results using quarterly data are comparable

to the ones reported in Campbell et al. (1997) who instead used monthly data. For instance,

for the one year and four year horizons they obtain R2’s of 18.8% and 41.7% respectively,

matching our results almost to the point. The use of quarterly data then does not seem to

be producing any particular bias in the results.

As can be seen in the first line of Table III, the ratio of labor income to consumption is now

only a significant predictor at horizons of two years or more. The R2 is 3% for the one year

regression but rises to 22.6% for the four year regression. Interestingly, however, when both

the dividend price ratio and the wages-to-consumption ratio are included – either in linear

fashion as in regression (25) or in a nonlinear one as in regression (26) – the performance of

the predictability regression improves considerably, with R2 ranging between 25.1% for the

one year regression to above 62.7% for the four year regression.

We can compare the results in Table III with those in Table IV, where the same exercise

is carried out for the sample period 1952:01-1999:04. We include these results to show the

dramatic decrease in the predictive power of the dividend price ratio due to the impressive

stock market surge of the 90’s (see e.g. Cochrane (1997) for a similar point) and to show how

the labor income-to-consumption ratio still works well. Indeed, we see that over this sample

period the dividend price ratio is never significant at any horizon and the R2 of the predictive

regressions does not go above 7% at any horizon. Instead, the wages-to-consumption ratio

is performing quite well: The coefficients are statistically significant at all horizons and its

predictive power ranges between 7.4% at the one year horizon to 35.4% at the four year

horizon. As before, using both ratios greatly improves upon the predictability regression:

using regression (25) for example we obtain R2 ranging from 19.6% at the one year to above

56% at the four year horizon.

How does our model perform when confronted with the extraordinary stock market of

the 90s? Figures 2 and 3 plot the time series of wages-to-consumption ratio, dividend price

ratio and the four year cumulative stock return. As it can be seen in Figure 2, the dividend-

price ratio and the cumulative four year return started moving in opposite directions at the

end of the 80’s. As already mentioned this is at the heart of the failure of the standard

predictability regression (equation (24)) in our sample. However Figure 3 shows that the

negative relation between the cumulative four year return and the ratio of labor income to

consumption held well even in the last part of the sample. Still, our model cannot reconcile

the very low dividend price ratios observed in the 90s with the high expected returns during
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the same period because low sw
t imply relatively high dividend price ratios rather than low

ones.

This is not unique to the model proposed in this paper. Barring bubbles, the low dividend

price ratios and high expected returns observed in the 90s can only be rationalized with

expectations of very high dividend growth or an impressive string of unexpected positive

shocks to returns. Notice though that in the context of the model presented in section II

there is still no room to simultaneously obtain low shares of labor income to consumption

with low dividend price ratios. This though is an unfortunate feature of the log utility case

and it can be proved that under more general preference specifications the dividend price

ratio of the market portfolio depends on the entire distribution of dividend payments across

the market.

The negative relation between the share of labor income to consumption and future

stock returns has received subsequent support in a recent research by Lettau and Ludvigson

(2001c). They isolate the permanent and transitory shocks of the cointegrated vector formed

by consumption, labor earnings, and financial wealth. There are two permanent shocks of

which only the “first” affects consumption. The second one they term income neutral as it

does not result in any significant impact on consumption but rather “causes labor income

to increase and asset wealth to decrease.” A positive income neutral shock then results in

an increase in the ratio of labor income to consumption which is followed by low financial

returns as postulated in this paper.13

IV.B.2 Spurious regressions tests

Table I reports standard unit root tests. As can be seen, most series used in this paper

are close-to-unit root series and hence there is a justified concern that the results about the

time-series predictability may be due to spurious regressions.14 In this section we tackle

this problem by performing tests of spurious regressions as presented by Richardson and

Stock (1989) and Torous and Yan (1999). We describe the procedure in detail in Appendix

II, but, roughly, the test amounts to generate, by means of Monte Carlo simulations, the

empirical distribution of the estimated regression coefficient under the null hypothesis that

the population coefficient is zero. Such a distribution is reported in Table IX and we compare

13See Lettau and Ludvigson (2001c) pages 24-25 and their Figure 2.
14Aside from the original article by Phillips (1986), the reader is referred to Chap. 18.3 in Hamilton (1994)

for a lucid exposition of the spurious regression problem and for other references.
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the estimated coefficient in Tables II-IV to the cutoff points for the preferred confidence level.

For the sample period 1946-1999 the estimated coefficients reported in Table II-A are

extremely close to being statistically significant at the 10% level for the one quarter, one

year, and two year regression. For example, the one quarter ahead predictive regression

yields a coefficient β (1) = −.308 while from the simulations, the 90% confidence interval

is [−0.309, 0.282]. For the three and four year regression both coefficients are statistically

significant at the 10% level. For instance for the four year regression the estimated coefficient

is given by β (16) = −4.902 while the 90% confidence interval is [−4.441, 4.129].

In contrast the dividend price ratio is never significant at the 10%. This is partly due to

the fact that the correlation between returns and dividend price ratio, ρ, is much higher in

this case (around −.96) than in the case where the predictive variable is the labor income

to consumption ratio (in which case ρ ≈ −.02). As explained in the appendix, a higher

correlation ρ makes the distribution of β (K) even more “non-normal”. For example, using

the dividend price ratio for the one quarter and four year regression we obtain β (1) = .022

and β (K) = .475 respectively while robust confidence intervals are [−0.0027, 0.0598] and

[−0.048, 0.7655] respectively.

Looking at the regression where both the share and the log dividend price ratio enter

linearly the estimated coefficient on sw is significant at all horizons. For instance, for the

one quarter predictability regression the estimated value of the coefficient is β (1) = −.467,

whereas the 90% confidence interval is given by [−.424, .363] . Once again, the dividend price

ratio is never significant at this level of statistical significance.

The results are even stronger when the sample is restricted to the period 1948-1999 (see

Table II-B). The estimated coefficients for the univariate regression with sw are all significant

at the 10% level with the exception of the one year ahead regression, which is, in any case,

extremely close to the cut-off value. All of them are statistically significant in the regression

where the dividend price ratio enters linearly.

Overall, this section confirms from a statistical point of view that the predictive regression

results obtained in the previous subsection section are unlikely to be spurious, and it lends

further credence to the hypothesis of an economic relation linking returns on the aggregate

market portfolio and the share of labor income to consumption.

IV.C Cross sectional Regressions

In this section we test the implications of the model for the cross-section of stock returns,
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which was developed in section III.C. Recall that the model has predictions for both the

conditional CAPM and the conditional Consumption CAPM. We derive first specific testable

implications and then conduct the empirical analysis on two sets of tests portfolios.

IV.C.1 Cross-sectional Implications

The starting point of our tests of the conditional CAPM is the beta representation given in

expression (21). This conditional beta representation implies that both βiw (st) and βiM (st)

are (complicated) functions of all the state variables, namely (s1, .., sn). We argue though

that the share of labor income to consumption is the most important common component

driving the variation in “betas” and the conditional expected rates of return as it is, by far,

the largest share. Furthermore, and as shown in equation (17), the beta of the total wealth

portfolio is “almost” linear in sw
t . By analogy with this we approximate the βiw(st) and

βiM(st) in the two beta representation by:

βiw (st) ≈ βiw1 + βiw2s
w
t and βiM (st) ≈ βiM1 + βiM2s

w
t .

In this case (21) becomes

Et [dRi] = βiw1Et [dRw
t ] + βiw2Et [sw

t dR
w
t ]

+βiM1Et

[
dRM

t

]
+ βiM1Et

[
sw

t dR
M
t

]
We can condition down this expression to obtain

E
[
dRi

t

]
= βiw1E [dRw

t ] + βiw2E [sw
t dR

w
t ]

+ βiM1E
[
dRM

t

]
+ βiM2E

[
sw

t dR
M
t

]
, (27)

which is the version of the conditional CAPM that we test below. Notice that the coeffi-

cients βijk for j = w,M and k = 1, 2 are no longer regression coefficients as in a standard

Conditional CAPM formulation. However, for the purpose of this paper we can test the pre-

dictions of our model by checking the improvement in the fit of the cross-sectional regression

when we impose βij2 6= 0 for j = w,M . Indeed, by using a standard Fama-MacBeth (1972)

procedure, the restricted case would imply a model with a “beta” that is independent of sw
t ,

while the latter allows for a stochastic beta relationship.

Similarly the starting expression for our tests of the conditional Consumption CAPM is

(22) , and, as before if we assume, βc
i (st) ≈ βc

i1 + βc
i2s

w
t , we obtain

Et

[
dRi

t

]
= βc

i11 + βc
i12s

w
t + βc

i21Et

[
dCt

Ct

]
+ βc

i22Et

[
sw

t

dCt

Ct

]
(28)
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By taking the unconditional expectation in (28)

E
[
dRi

t

]
= βc

i11 + βc
i12E [sw

t ] + βc
i21E

[
dCt

Ct

]
+ βc

i22E

[
sw

t

dCt

Ct

]
(29)

and it is this last expression that we test in the empirical section.

IV.C.2 Empirical Results

In this section we test equations (27) and (29) in the set of test portfolios introduced by

Fama and French (1993). In what follows we compare different specifications by reporting

R2, both adjusted and unadjusted, in the different regressions, but the reader should bear in

mind that we have only 25 (cross-sectional) observations, the Fama-French portfolios, and

that, as a consequence this statistic should be interpreted with caution.

a. Tests of the CAPM

Tests of equation (27) require an estimate of the return to human capital, which is not

observable. We follow Jagannathan and Wang (1996) and LLa and proxy the return on

human capital as the growth rate of wages ∆ log (wt).
15

Table V presents the main results of this section. There we test several empirical spec-

ifications that are consistent with the theoretical implications developed above. For ev-

ery specification we report the estimate, the t-statisitic, and the Shanken (1992) corrected

t−statisitic (in brackets). The last column reports the R2 and, below it, the adjusted R2 (in

brackets). Our discussion centers around the adjusted R2.

Panel A reports the results for our test of the conditional CAPM as given by expression

(27). The first line shows the weak performance of the unconditional CAPM. The beta on

the value weighted return is not statistically significant, enters with the wrong sign, and the

R2 is a just 10%, that is, the unconditional CAPM only explains 10% of the cross section of

stock returns. The second line shows that adding the excess return on labor income Rw does

not help much, given that the adjusted R2 drops to 6%. A better definition of the market

portfolio does not seem to improve the dismal performance of the CAPM.

Next we include the interaction term swRM , that is, we assume that βiM2 in (27) is

different from zero. Because sw is slow moving, the joint presence of swRM and RM can

15Our model yields a precise method to compute those returns by applying the pricing formula (11) to
labor income. However, we found a correlation of about 90% between the two measures and the results were
similar. For consistency with these other studies, we use the growth rate of wages as measure of return to
labor.
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result in severe multicollinearity problems. For this reason we include only the component

of swRM that is orthogonal to RM . As shown in line 3, conditioning market returns by

the variable sw dramatically improves the cross-sectional fit to an adjusted R2 of 43%. The

coefficient is strongly significant and positive. This sign is not easily interpretable as, recall,

this only reflects the premium associated with the orthogonal component. As we shall see,

the strong significance and explanatory power of the this term will be robust to different

specifications and sample periods, lending credence to the mechanism emphasized in this

paper. Surprisingly, the coefficient on RM is now significant, but this is not stable across

specifications. We share with many other studies16 the negative sign in the market premium.

Adding labor income further improves the fit to an adjusted R2 of 47% though the

coefficient is not significant and enters with the wrong sign (see line 4.) Line 5 drops swRM

in order to purely measure the impact of labor income, and it’s scaled counterpart, on the

cross section of stock returns.17 The scaled factor is strongly significant and negative. As in

the case of swRM , this result is fairly stable throughout. Interestingly, the fit is fairly high,

and the adjusted R2 is 32%. Finally line 6 is the full specification as presented in equation

(27). All coefficients are strongly significant, with the exception of the coefficient on Rw, and

the adjusted R2 achieves a robust 49%. The top two panels of Figure 4 offers a quick visual

impression of the ability of the share of labor income to consumption to properly rearrange

the set of tests portfolios.

In summary, the introduction of the share of labor income to consumption as a scaling

variable considerably improves the performance of the CAPM. As already mentioned, we

emphasize that our conditioning variable is not a financial variable and it is free of the con-

cerns voiced by Berk (1995). He expressed that because returns are mechanically related to

prices, ratios that have prices either in the numerator or denominator are in turn automat-

ically related to returns, independently of whether they proxy for economically meaningful

forces or not.

Table V also includes t−statistics using the correction in the computations of the standard

errors proposed by Shanken (1992). This correction takes into account the fact that the

betas are estimated rather than fixed.18 In particular Shanken (1992) showed that under the

16See for instance Jagannathan and Wang (1996) and LLb
17As emphasized above in order to avoid multicollinearity problems we include only the component of

swRw that is orthogonal to Rw. We follow this practice throughout.
18For a review of this point see Cochrane (2001), page 239.
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assumption that asset returns have a conditional joint distribution with constant covariance

matrix, the Fama-MacBeth procedure overstates the precision of the estimated parameters.

As LLb note, the size of the correction is much larger when using macroeconomic factors

than when using purely financial variables. Indeed, notice that for the standard CAPM there

is essentially no difference between the uncorrected and the corrected t−statistic associated

with RM , whereas there is a much stronger correction when the share of labor income to

consumption enters into the different specifications.19

Panel B of Table V reports similar regression results for the case where also sw is entered

in the cross-sectional regression as an independent factor. Although our test, as shown

in equation (27), does not imply this regression, the results are nonetheless interesting to

understand the effect of the labor-to-consumption ratio on the cross-section of stock returns.

The first line in Panel B reports the CAPM regression where only sw is added as explanatory

variable and we see that the adjusted R2 jumps to 45% (against 10% for the unconditional

CAPM). Adding the scaled return on the market portfolio swRM increases the adjusted R2

to 52% while when also the scaled return to labor is included the adjusted R2 increases to

61%.

b. Robustness and comparison with related work

Our use of the sample period 1946-1998 is novel and the reader may have some concerns

as to whether the results are robust to the more standard period 1963-1998, which was the

one used originally by Fama and French (1993) and more recently by LLb. We show next

that the results do indeed improve for this truncated sample.

Table VI reports the results for the sample period 1963-1998. First notice that the

adjusted R2 for the standard CAPM has collapsed to a dismal −2% as compared to 10%

in the full sample. The very poor performance of the unconditional CAPM in this sample

period and tests portfolios is indeed consistent with previous findings.20

As in the previous sample, the addition of the scaled market portfolio results in a remark-

able improvement in the ability of the CAPM to explain the cross section. The coefficient is

strongly significant and the adjusted R2 is 46%. Again the role of swRM is robust through-

19However the Shanken (1992) corrected t−statistics should be interpreted with caution. As Jagannathan
and Wang (1998) show, “the standard errors obtained from the Fama-MacBeth procedure need not neces-
sarily overstate the precision of estimates,” whenever the the assumption of conditional homoskedasticity is
violated.

20For instance LLb, Table 1, line 1, report an adjusted R2 of −3% for the unconditional CAPM.
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out the various specifications. Adding labor income further improves the fit to 55% and the

coefficient is now significant. Finally line 6 reports the full specification, which reports a

slight improvement of the cross sectional fit over the sample period 1946-1998 (from 49% to

55%.) As before panel B shows the results where the variable sw is included independently

and again the results are very similar. Once gain, panels C and D of Figure 4 plot the

unconditional and conditional performance of the CAPM in the 1963-1998 sample period.

A puzzling result of Table VI is that adding labor income growth as a proxy for the

returns on human capital does not result in any improvement on the ability of the CAPM

to explain the cross section of stock returns (see line 2.) This is all the more surprising in

light of recent findings by LLb in the same set of test portfolios. These authors report an

adjusted R2 of 54% when they include labor income growth to improve on the definition of

the market portfolio.21 What is the reason behind this difference? The answer lies in the

dating convention used in the construction of the labor income series.

Jagannathan and Wang (1996) use a dating convention that involves lagging the labor

income series one month to account for the one month delay in the release of the data by

the Bureau of Economic Analysis. The argument is that investors need information about

the price of the human capital asset in order to form their optimal portfolios and that it is

not reasonable to assume that they posses such information prior to it’s release. LLb appeal

to this argument to also use a lagged labor income series.

Unlike Jagannathan and Wang (1996), who use a monthly data set, we only have quar-

terly data. We lag the labor income by one quarter in order to provide agents with an

information set comparable to that used by Jagannathan and Wang (1996). This time series

has a correlation coefficient of .88 with the one used in LLb for their cross sectional study.22

Table VII contains the results where the labor income series has been lagged. In order to

ease the comparison with LLb we report the results for the sample period 1963-1998. Clearly

the only lines that are different with respect to Table VI are those that involve Rw. Notice

that indeed now the return on human capital is a significant variable that greatly improves

the performance of the CAPM. The adjusted R2 goes from −2% in the case of the standard

unconditional CAPM to 17% (see lines 1 and 2.) Furthermore, and as also found by LLb

21See their line 2 in Table 1. Jagannathan and Wang (1996) report a similar finding albeit in a different
set of test portfolios and, most importantly, using monthly data.

22This dating convention in the case of quarterly data may be “too much.” Still there is no alternative to
this procedure when the data’s frequency is quarterly.
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and Jagannathan and Wang (1996), it enters with the right sign. A quick impression of this

improvement can be obtained from panel C of Figure 5.23

Interestingly the main difference with respect to Table VI is that now scaling Rw with

the share of labor income to consumption improves the performance of the CAPM to an

adjusted R2 of 54% as opposed to the 27% found with the unlagged labor income series (see

line 5 in both Tables VI and VII.) Finally the full specification (line 6) is very similar to the

previous one and the adjusted R2 is 57% (see panels B and D of Figure 5.)

In summary, the role of sw is then robust to different sample periods and alternative

assumptions about the investors’ information set. Furthermore most of the improvement

comes from scaling returns, RM and Rw, by the share of labor income to consumption, as

prescribed by our model, a variable that is not automatically related to returns by construc-

tion.24 Importantly it also has a significant explanatory power when it enters independently.

c. Tests of the CCAPM

Table VIII reports tests for the unconditional and conditional CCAPM as given by ex-

pression (29). As can be seen from panel A results for the period 1946-1998 are disappointing.

The share of labor income to consumption does not seem to play any role in improving the

appalling performance of the CCAPM. Only in the full specification is the share of labor

income to consumption significant but the adjusted R2 is just 2% (see panels A and B of

Figure 6.)

The picture improves substantially in the sample period 1963-1998 (see panels C and D

of Figure 6.) The inclusion of sw results in significant coefficient and an adjusted R2 of 15%.

Scaling consumption growth does not seem to add any explanatory power to the CCAPM

by itself. In contrast the full specification shown both sw and sw∆c as significant regressors

and the adjusted R2 improves to a more respectable 30%.25

23Interestingly, in the sample 1946-1998 labor income does not improve the performance of the CAPM.
See panel A of Figure 5.

24This robustness is important in light of recent work by Menzly (2001) who shows that tests of the
conditional CAPM may suffer from a low power problem. In particular he shows that “most portfolios
constructed using US postwar returns data have little ability in distinguishing between an economically
meaningful scaling variable and a random variable with no economic content.”

25As in the case of the CAPM we only include the orthogonal component, that is, the part of sw∆c that
is orthogonal to sw and ∆c.
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V. FURTHER TESTS AND CONCLUDING REMARKS

We propose a simple general equilibrium model to show that changes in expected returns

may be generated by changes in the relative importance of various sources of income. In

our model, total income is funded by dividends and labor income that grow stochastically

over time. We show that equilibrium expected returns change as the fraction of total income

funded by labor income fluctuates over time, because the latter affects the conditional co-

variance between equilibrium returns and consumption growth. We then obtain a new and

simple testable implication, namely, that the ratio of labor income to consumption should

help predicts stock returns. This is strongly confirmed in the data. The regression of stock

returns on lagged values of this ratio produces statistically significant coefficients and ad-

justed R2 that are larger than those generated when using the dividend price ratio as a single

explanatory variable. Notice that differently from the dividend price ratio, our variable is a

pure macroeconomic variable that is constructed with no reference to financial variables and

it is in this sense that we provide a powerful test of our theory.

We derive and test a version of the conditional CAPM and the conditional consump-

tion CAPM, where the variable we use to condition is the aforementioned ratio. Tests are

conducted on the 25 Fama-French portfolios. We find that when we use our labor-income

to consumption ratio as conditioning variable, the CAPM does a substantially better job

in capturing cross sectional variation in returns. The result is robust to alternative sample

periods and dating conventions regarding the returns on the human capital asset. Results

for the Consumption CAPM are more disappointing.

In addition to the robustness tests performed above, a previous version of the paper

contained others that further confirmed the share of labor income to consumption as an

economically meaningful variable.

First we checked the robustness of our results to alternative specifications of the variable

sw. For instance the model proposed in this paper implies that total consumption equals

total income in equilibrium. As a consequence, the same relationships that hold for the labor

income to consumption ratio should also hold for the labor income to total income ratio.26

26For coherence with the labor income series (which is net of taxes), we took the total disposable income
as a measure of total income. It is worth reminding the relationship between total income and disposable
income in the national accounts (NIPA tables). We have Total Personal Income equals Compensation of
Employees plus Proprietors Income plus Rental Income plus Personal Dividend Income plus Personal Interest
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These regressions showed that the ratio of labor income to disposable income ratio has a

very good predictive power for future returns in all subsamples, although the results were

not so strong for the one quarter ahead predictive regression.

We also performed a direct test of our theory. Essentially the economic model that

motivated our empirical investigation entails that the covariance between returns and con-

sumption growth moves over time due to the change in the ratio between labor income and

total consumption. In order to test whether the ratio between labor income and consump-

tion predicts the level of covariance between returns and real consumption growth, we first

obtained an estimated time series of the latter by fitting a bi-variate GARCH(1,1) model to

data from 1946-1999. We then ran a regression of the estimated covariance versus past co-

variances and the share of labor income to consumption. Again the share of labor income to

consumption obtained as a significant predictor of changes in the covariance between returns

and consumption growth.27

We also tested the cross sectional implications of our model the alternative set of test

portfolios used by Jagannathan and Wang (1996), which were portfolios sorted by size and

beta.28 In the full specification of our model the adjusted R2 was 18% and rose to 55% when

the share of labor income to consumption was independently included. Furthermore tests

of the CCAPM in this set of tests portfolios resulted in adjusted R2 as high as 38%. These

results were also robust to alternative dating conventions concerning human capital returns.

In conclusion, we find a substantial support for the economic model proposed in this

paper, that is, that the time variation in the relative importance of the various sources of

income has an important effect on the required expected return. Furthermore, our model

is also fully consistent with a recent body of of evidence uncovered by Martin Lettau and

Sydney Ludvigson documenting that cyclical variation in the consumption to wealth ratio

affect future expected returns. Although our model is presented in the log-utility case for

simplicity, which implies a constant consumption to wealth ratio, the same results of this

paper can be obtained with higher degrees of risk aversions, as shown in the appendix. In

this case, one can show that the consumption to wealth ratio is a non-linear but decreasing

function of the labor income to consumption ratio. Hence, this model predicts that the

Income plus Transfer payments to persons less Personal Contribution to Social Insurance. Finally, Disposable
Income equals Total Income less Personal Taxes.

27Of course, and as emphasized in the introduction, our model cannot explain the level of this covariance.
28The sample period in these portfolios is 1963-1990.

28



consumption to wealth ratio should also be a predictor of future returns, a finding that is

well documented in LLa.
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Appendix

I. Proofs and extensions

In this appendix we generalize some of the results obtained in the body of the paper. We start
with a more general model for the vector process for shares st =

(
s1
t , ..., s

n
t

)
. Let st be a 1 × n

vector evolving according to the stochastic differential equations

dsi
t = [stΛ]i dt + si

tσi (st) dBt (30)

where s0 = ŝ with
∑n

i=1 ŝi = 1, Λ is a matrix with the property that λij ≥ 0 for all ij and
λii = −

∑
j 6=i λij and finally

σi (st) =

νi −
n∑

j=1

sj
tνj


and where νi and 1 × n vectors. In other words, (30) is the continuous time analog of a standard
multivariate autoregressive process for the fractions si, with some restrictions on Λ and σi (s) to
make sure that

∑n
i=1 si (t) = 1 for all t. Notice that by choosing the parametrization of the matrix

Λ as λij = asi for i 6= j, where
∑n

j=1 sj = 1 (which implies λii = asi − a) yields the case studied
in the body of the paper, namely

dsi = a (si − si) dt + siσi (st) dBt (31)

We next assume that

U (C, t) =

{
e−φt C1−γ

1−γ for γ 6= 1

e−φt log (C) for γ = 1

We now prove the following:
Proposition A1 Let either of the following assumptions hold:

I. Investors have log-utility: U(t, C) = e−φt log (C).

II. Investors have power utility ( γ 6= 1) but consumption growth is µc,t = µc +
∑n

i=1 si
tθi, where

µc is constant and θi = νiσ
′
c .

Then the stock market price is

P i
t =

n∑
j=1

BijD
j
t
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where D1
t = wt and the coefficients Bij are the ij elements of the matrix B given by

B =
(
φI− Λ′

)−1

in case (a); and

B =
(
Θ̂− Λ′

)−1

with Θ̂ = diag
(
θ̂1, ..., θ̂n

)
with θ̂i = φ + (γ − 1) (µc + θi)− 1

2γ (γ − 1) σ2
c in case (b), respec-

tively.

We first prove the following Lemma. For notational convenience, let β = 1− γ.
Lemma A1: For all i = 1, .., n, let µc,t = µc +

∑n
j=1 sj

tθj, θ̂i = φ− β (µc + θi)− 1
2β (β − 1) σ2

c

and Θ̂ = diag
(
θ̂1, ..., θ̂n

)
. Then

Et

[
Cβ

u si
u

]
=

n∑
k=1

Cβ
t sk

t

n∑
j=1

w−1
jk wije

ωj(u−t)

where ωj are the eigenvalues of Λ′ =
(
Λ′ + φI− Θ̂

)
and wij are associated eigenvectors and

w−1
ij = [W−1]ij.

Proof of Lemma A1: Let
Xi

t = Cβ
t si

t (32)

Apply Ito’s lemma to find

dX i
t = βCβ−1

t si
tdCt +

1
2
β(β − 1)Cβ−2

t si
tdC2

t (33)

+Cβ
t dsi

t + βCβ−1
t dsi

tdCt (34)

= βCβ−1
t si

tCtµc,tdt + βCβ−1
t si

tCtσcdBt (35)

+
1
2
β (β − 1) Cβ−2

t si
tC

2
t σ2

cdt (36)

+Cβ
t [stΛ]i dt + Cβ

t si
tσi (st) dBt + βCβ−1

t si
tσi(st)σ′cCt (37)

=
{

βX i
tµc,t +

1
2
β (β − 1) Xi

tσ
2
c + [XtΛ]i + βXi

tσi(st)σ′c

}
dt (38)

+Xi
t {βσc + σi(st)} dBt (39)

This stochastic differential equation is non-linear in the drift, due to the covariance term βX i
tσi(st)σ′c =

βX i
t

(
θi −

∑n
j=1 sj

tθj

)
. However, in both cases (a) and (b) we find that it actually becomes lin-

ear: In case (a) we have β = 0 (which also implies that Xi
t = si

t) while in case (b) we assumed
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µc = µc +
∑n

j=1 sjθj , which cancels with the non-linear part of the drift. In either case (by setting
β = 0 in case (a), we then obtain

dX i
t =

{
βX i

tµc +
1
2
β (β − 1) Xi

tσ
2
c + [XtΛ]i + βX i

tθi

}
dt

+Xi
t {βσc + σi(st)} dBt

=
[
Xt

(
Λ + φI− Θ̂

)]
i
dt + Xi

t {βσc + σi(st)} dBt

Defining Λ =
(
Λ + φI− Θ̂

)
and σ̂i(st) = βσc + σi(s) we can rewrite

dXi
t =

[
XtΛ

]
i
dt + Xi

t σ̂i(st)dBt

Using the vector notation, with X =
(
X1, ..., Xn

)
as a 1 × n vector, we can rewrite this in its

integral form as

Xu = Xt +
∫ u

t
XτΛdτ +

∫ u

t
Xτ Σ̂(sτ )dBτ (40)

Notice that also that for all i, Xi
t < Ci

t . Hence, all the integral below exist as long as the expected
present value of future consumption can be computed, which in turn is ensured by choosing φ

sufficiently large. Let X̃u = Et (Xu). Since Σ̂(s) is bounded,

Et

[∫ u

t
Xτ Σ̂(sτ )dBu

]
= 0

Hence, taking expectations on both sides of (40) with respect to time t we obtain

X̃u = Xt +
∫ u

t
X̃τΛdτ

or
dX̃
dτ

= X̃Λ

This is a linear system of differential equations with initial condition X̃0 = Xt. If Λ′ admits real
and distinct eigenvalues, its general solution is then given by

X̃i
u =

n∑
j=1

kjwije
ωj(u−t)

where ωj are the eigenvalues of Λ′ and wij are associated eigenvectors. From the initial condition
X̃0 = Xt we obtain that Xt = W × κ where W = [w1, .., wn] is the matrix whose columns are the
eigenvectors of Λ′. Hence, κ = W−1 ×Xt or

κj =
∑

k

w−1
jk Xk

t
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which implies

X̃i
u =

n∑
j=1

n∑
k=1

w−1
jk Xk

t wije
ωj(u−t) =

n∑
k=1

Xk
t

n∑
j=1

w−1
jk wije

ωj(u−t)

where w−1
ij = [W−1]ij . This concludes the proof of Lemma A1.�

Proof of Proposition A1: Consider the usual pricing equation

P i
t = Et

[∫ ∞

t

UC(Cu, u)
UC(Ct, t)

Di
udu

]
= Et

[∫ ∞

t
e−φ(u−t)

(
Cu

Ct

)−γ (
si
uCu

)
du

]

= Cγ
t Et

[∫ ∞

t
e−φ(u−t)C1−γ

u si
udu

]
We can prove both (a) and (b) at the same time by making use of Lemma A1. The only difference
is on γ. From (32) by setting β = 1− γ we have

P i
t = Cγ

t Et

[∫ ∞

t
e−φ(u−t)C1−γ

u si
udu

]
= Cγ

t Et

[∫ ∞

t
e−φ(u−t)Xi

udu

]
(41)

= Cγ
t

n∑
k=1

Xk
t

n∑
j=1

w−1
jk wij

∫ ∞

t
e−(φ−ωj)(u−t)du (42)

= Cγ
t

n∑
k=1

C1−γ
t sk

t

n∑
j=1

w−1
jk wij

∫ ∞

t
e−(φ−ωj)(u−t)du (43)

= Ct

n∑
k=1

sk
t

 n∑
j=1

w−1
jk wij

1
φ− ωj

 =
n∑

k=1

Cts
k
t

 n∑
j=1

w−1
jk wij

1
φ− ωj

 (44)

=
n∑

k=1

Dk
t

 n∑
j=i

w−1
jk wij

1
φ− ωj

 (45)

=
n∑

k=1

Dk
t Bik (46)

where

Bik =
n∑

j=i

w−1
jk wij

1
φ− ωj

We finally prove that n∑
j=1

w−1
jk w2j

1
φ− ωj

 = Bik = ei

(
Θ̂− Λ′

)−1
ek = ei

(
φI−Λ′

)−1
ek
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By definition Λ =
(
Λ + φI− Θ̂

)
and hence Λ′ =

(
Λ′ + φI− Θ̂

)
. Let Ω the diagonal matrix with

the eigenvalues ωj of Λ′ on the principal diagonal. We then have:

B = W (Iφ− Ω)−1 W−1 (47)

In fact, by letting D = (Iφ− Ω)−1 in this case the ik element of B can be written as

Bik =
∑

j

∑
`

wijDj`w
−1
`k =

n∑
j=1

wijw
−1
jk

φ− ωj

The identity W (Iφ− Ω)−1 W−1 =
(
φI −Λ′

)−1
yields the result. This concludes the proof. �

Proposition A2. For the log-utility case with the share process evolving as

dsi
t = a

(
si − si

t

)
dt + σ (st) dBt

we have that the cross-sectional expected returns are

Et

[
dRi

t

]
= βi (st) Et

[
dRTW

t

]
with

βi (st) = 1 +

 θi

σcσ′c

(
1 + a

φ

(
si

si
t

))
 sw

t +

 1

σcσ′c

(
1 + a

φ

(
si

si
t

))
 ∑

j 6=1,i

sj
t (θi − θj) (48)

Proof : First, notice that from the pricing relation (11) the value of the total wealth portfolio
is

P TW
t =

n∑
i=1

P i
t = Ct

{
a
∑n

i=1 si

φ (a + φ)
+
∑n

i=1 si
t

a + φ

}
=

1
φ

Ct (49)

Hence, we have that the excess returns on the total wealth portfolio

dRTW
t =

dP TW
t +

(
wt +

∑n
i=2 Di

t

)
dt

P TW
t

− rtdt

evolves according to the process

dRTW
t =

dCt

Ct
+ (φ− rt) dt = µR,TW dt + σR,TW dBt (50)

with
Et [dRTW ] = µcdt + (φ− rt) dt = σcσ

′
cdt and σR,TW = σc (51)

36



From the Consumption CAPM equilibrium condition Et

[
dRi

t

]
= covt

(
dRi

t,
dCt
Ct

)
it follows that

Et

[
dRi

t

]
= covt

(
dRi

t, dRTW
t

)
which, by using (51) can be turned into

Et

[
dRi

t

]
=

covt

(
dRi

t, dRTW
t

)
vart

(
dRTW

t

) Et

[
dRTW

i

]
Finally, by Ito’s lemma on the excess return

dRi
t =

dP i
t + Di

tdt

P i
t

− rtdt

we find dRi
t = µi

R,tdt + σi
R (st) dBt with

σi
R (st) = σc +

νi −
∑n

k=1 sk
t νk(

1 + asi

φsi
t

)
Finally, by recalling again that σR,TW = σc the “beta” can be computed directly as

βi (st) =
covt

(
dRi

t, dRTW
t

)
vart

(
dRTW

t

) =
σi

R (st)
′ σR,TW

σ′R,TW σR,TW

=
1

σcσ′c

σcσ
′
c +

θi −
∑n

k=1 sk
t θk(

1 + asi

φsi
t

)


= 1 +
θi

σcσ′c

(
1 + asi

φsi
t

)sw
t +

1

σcσ′c

(
1 + asi

φsi
t

) ∑
j 6=1,i

sj
t (θi − θj)

where we also used the fact that in (6) and (7) that

θi −
n∑

j=1

sjθj = covt

(
dsi

t

si
t

,
dCt

Ct

)
= sw

t θi +
∑
j 6=1,i

sj
t (θi − θj)

Appendix II. Spurious regression tests

We describe the particular spurious regression tests as presented in Torous and Yan (1999),
who closely follow Richardson and Stock (1989). Suppose that we have the pair of series

yt+1 = a + bxt + ut+1 (52)

xt+1 = α + φxt + vt+1 (53)
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where yt = log (Rt) is the log return and where εt = (ut, vt)
′ is a martingale difference sequence

such that E [εtε
′
t|εt−1, εt−2...] = Σ and such that ut and vt have only contemporaneous correlation

ρ = Corr (ut, vt). Tourus and Yan (1999) study the asymptotic distribution of the least square
estimator obtained by regressing the long-term return yt+1 (K) =

∑K
i=1 yt+i onto the predictive

variable xt under the null hypothesis that there is no relation between yt and xt but through
the contemporaneous correlation of the series. That is, the null-hypothesis is H0 : b = 0. They
show that indeed the for given K, the estimated β (K) is consistent as T → ∞, but its Newey-
West adjusted t-statistic tβ(K) has a non-standard distribution which depends on the correlation
ρ between ut and vt. If ρ = 0, then tβ(K) has indeed a standard normal distribution. They also
show that if the number of non-overlapping intervals does not grow to infinity with T , that is if
T/K → c, constant, then β (K) is no longer consistent and tβ(K) has a non-standard distribution
that depends on both ρ and c.

In order to check the robustness of our results, we take the suggestions contained in Torous and
Yan (1999) and obtain more robust confidence intervals for the coefficient β (K) in our predictive
regressions by means of Monte Carlo Simulations. More specifically, we perform the following
exercise: Let xt in equation (53) be any of the regressors used in the forecasting regressions, i.e.
the labor-income to consumption ratio sw,t, the (log) dividend price ratio log (Dt/Pt), both of them
or the interaction term sw,t log (Dt/Pt). For each of them, we first compute the parameters α and φ

in equation (53) from a time-series regression and the matrix Σ = E [εtε
′
t] to take into account the

correlation between ut and vt (recall that if the correlation ρ = 0, then β (K) is indeed consistent
as T → ∞ and tβ(K) is indeed distributed as a standard normal distribution. In this case all the
results in the previous section hold.) Given our sample size T = 216 for the period 1946-1999,
we simulate 10,000 paths of the system (52)-(53) under the null hypothesis that b = 0. For each
sample, we compute the predictive regressions as in equations (23)-(26) and obtain a distribution
for β (K). This is tabulated in Table VII. We repeated the experiment using both the estimations
of the relevant parameters of (52)-(53) and the sample sizes corresponding to the periods 1952-1999
and 1952-1994 and obtained extremely similar cutoff values for β (K), which we do not report for
brevity.
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TABLE I

Summary Statistics: 1946:01 - 1999:04

mean (quarterly) st.dev. (quarterly) 1st. Autcorrelation β OLS Dickey Fuller
Returns 0.0172 0.0798 0.0442 0.024 -

log(D/P ) −3.36 0.34 0.9746 0.9987 −.2819
w/C 0.8307 0.0374 0.9753 0.9876 −2.674

Correlation Matrix
Returns log(D/P ) w/C

Returns 1 - -
log(D/P ) −0.1271 1 -

w/C −0.1338 0.4306 1

Notes for Table I: Summary statistics of time series data. The last two columns

report the value of the regression coefficient of an OLS regression on own lagged

variable. The Dickey-Fuller statistic is also reported. Rejection of unit-root

hypothesis at 1%, 5% and 10% level is for statistics below −13.6, −8.0 and −5.7,

respectively.
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TABLE II A

Forecasting Future Returns

Sample: 1946:01 - 1999:04

Forecasting Horizon

K 1 4 8 12 16

w/C −0.308 −1.121 −2.275 −3.588 −4.902

t-stat. (−2.140) (−2.407) (−3.029) (−3.721) (−4.028)

(adj) R2 0.016 0.061 0.143 0.250 0.346

log(D/P ) 0.022 0.105 0.213 0.338 0.475

t-stat. (1.394) (1.648) (1.445) (1.590) (1.840)

(adj) R2 0.003 0.039 0.084 0.142 0.207

w/C −0.467 −1.660 −2.995 −4.237 −5.315

t-stat. (−2.955) (−2.960) (−3.525) (−4.371) (−4.733)

log(D/P ) 0.043 0.173 0.312 0.435 0.538

t-stat. (2.800) (3.008) (3.150) (3.931) (4.229)

(adj) R2 0.038 0.162 0.317 0.484 0.613

w/C × log(D/P ) 0.059 0.243 0.456 0.654 0.826

t-stat. (2.992) (3.083) (3.358) (4.769) (6.221)

(adj) R2 0.028 0.134 0.264 0.398 0.509

Notes for Table II A: The table shows the result of the predictive regression

rt,t+K = α+ β (k)xt + εt+K

where xt = wt/Ct; or log (Dt/Pt) , or both; where K is the numbers of quarter

ahead and rt,t+K is the cumulative log excess return over K quarters. Number

in parenthesis show Newey-West adjusted t-statistics. The sample is 1946:01-

1999:04.
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TABLE II B
Forecasting Future Returns

Sample: 1948:01 - 1999:04

Forecasting Horizon
K 1 4 8 12 16

w/C −0.342 −1.211 −2.493 −3.761 −4.920
t-stat. (−2.315) (−2.548) (−3.289) (−3.674) (−3.761)

(adj) R2 0.020 0.071 0.165 0.266 0.334

log(D/P ) 0.023 0.109 0.223 0.333 0.456
t-stat. (1.425) (1.689) (1.486) (1.550) (1.736)

(adj) R2 0.004 0.042 0.091 0.137 0.190

w/C −0.552 −1.918 −3.485 −4.674 −5.598
t-stat. (−3.315) (−3.381) (−4.500) (−4.916) (−4.780)

log(D/P ) 0.050 0.198 0.359 0.469 0.557
t-stat. (3.113) (3.484) (4.077) (4.676) (4.737)

(adj) R2 0.051 0.196 0.385 0.529 0.617

w/C × log(D/P ) 0.065 0.266 0.503 0.685 0.834
t-stat. (3.130) (3.303) (3.744) (4.844) (6.063)

(adj) R2 0.034 0.153 0.303 0.416 0.496

Notes for Table II B: The table shows the result of the predictive regression

rt,t+K = α+ β (k)xt + εt+K

where xt = wt/Ct; or log (Dt/Pt) , or both; where K is the numbers of quarter ahead and

rt,t+K is the cumulative log excess return over K quarters. Number in parenthesis show

Newey-West adjusted t-statistics. The sample is 1948:01-1999:04.
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TABLE III

Forecasting Future Returns

Sample: 1952:01 - 1994:04

Forecasting Horizon

K 1 4 8 12 16

w/C −0.297 −1.037 −2.124 −3.131 −4.291

t-stat. (−1.425) (−1.459) (−1.979) (−2.300) (−2.610)

(adj) R2 0.007 0.030 0.081 0.145 0.226

log(D/P ) 0.085 0.347 0.597 0.730 0.779

t-stat. (3.055) (3.779) (3.507) (3.458) (3.577)

(adj) R2 0.043 0.188 0.330 0.404 0.414

w/C −0.430 −1.428 −2.456 −3.243 −4.128

t-stat. (−2.143) (−2.264) (−3.459) (−4.260) (−4.122)

log(D/P ) 0.098 0.377 0.624 0.740 0.763

t-stat. (3.496) (4.221) (4.539) (4.532) (5.014)

(adj) R2 0.063 0.251 0.443 0.564 0.627

w/C × log(D/P ) 0.116 0.438 0.733 0.888 0.966

t-stat. (3.836) (4.108) (5.111) (6.007) (7.202)

(adj) R2 0.067 0.255 0.451 0.566 0.616

Notes for Table III: The table shows the result of the predictive regression

rt,t+K = α+ β (k)xt + εt+K

where xt = wt/Ct; or log (Dt/Pt) , or both; where K is the numbers of quarter

ahead and rt,t+K is the cumulative log excess return over K quarters. Number

in parenthesis show Newey-West adjusted t-statistics.
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TABLE IV
Forecasting Future Returns

Sample: 1952:01 - 1999:04

Forecasting Horizon
K 1 4 8 12 16

w/C −0.345 −1.218 −2.370 −3.542 -4.687
t-stat. (−2.324) (−2.575) (−3.170) (−3.595) (−3.809)

(adj) R2 0.021 0.074 0.160 0.259 0.354

log(D/P ) 0.016 0.086 0.177 0.251 0.310
t-stat. (0.823) (1.117) (0.943) (0.894) (0.935)

(adj) R2 −0.002 0.018 0.042 0.056 0.066

w/C −0.621 −2.175 −3.754 −4.887 −5.786
t-stat. (−3.463) (−3.433) (−4.300) (−4.720) (−4.748)

log(D/P ) 0.061 0.238 0.419 0.522 0.559
t-stat. (2.856) (3.059) (3.263) (3.475) (3.689)

(adj) R2 0.050 0.196 0.365 0.486 0.565

w/C × log(D/P ) 0.074 0.309 0.578 0.758 0.862
t-stat. (2.683) (2.799) (3.093) (3.803) (4.637)

(adj) R2 0.029 0.140 0.275 0.359 0.399

Notes for Table IV: The table shows the result of the predictive regression

rt,t+K = α+ β (k)xt + εt+K

where xt = wt/Ct; or log (Dt/Pt) , or both; where K is the numbers of quarter

ahead and rt,t+K is the cumulative log excess return over K quarters. Number

in parenthesis show Newey-West adjusted t-statistics
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TABLE V
Fama-French Portfolios: 1946-1998
CAPM Fama-MacBeth Regressions

Panel A
Const. RM swRM Rw swRw R2 [Adj]

1 3.90 −1.32 13%
t-stat. (3.92) (−1.16) [10%]

[3.87] [−1.15]
2 3.78 −1.19 −0.20 14%

t-stat. (3.84) (−1.07) (−.54) [6%]
[3.75] [−1.05] [−0.53]

3 5.75 −3.30 0.32 48%
t-stat (5.07) (−2.72) (3.19) [43%]

[3.36] [−1.92] [2.14]
4 5.52 −3.06 0.34 −0.55 53%

t-stat (4.87) (−2.53) (3.48) (−1.62) [47%]
[2.98] [−1.66] [2.16] [−1.00]

5 3.94 −1.47 −0.36 −0.05 40%
t-stat (3.96) (−1.30) (−1.01) (−3.74) [32%]

[2.30] [−0.82] [−0.60] [−2.19]
6 5.22 −2.79 0.27 −0.55 −0.03 58%

t-stat. (4.81) (−2.38) (3.04) (−1.62) (−2.75) [49%]
[2.99] [−1.58] [1.92] [−1.03] [−1.75]

Panel B
Const. RM sw swRM swRw R2 [Adj]

1 6.58 −4.38 3.76 50%
t-stat. (5.10) (−3.18) (2.79) [45%]

[3.39] [−2.21] [1.87]
2 6.74 −4.48 2.95 0.18 58%

t-stat (5.12) (−3.21) (2.36) (2.79) [52%]
[3.39] [−2.23] [1.58] [1.90]

3 6.67 −4.44 3.28 0.18 −0.74 68%
t-stat (5.07) (−3.18) (2.62) (2.77) (−2.70) [61%]

[2.94] [−1.96] [1.54] [1.66] [−1.60]

Notes to Table V: See Notes for Table VII.
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TABLE VI
Fama-French Portfolios: 1963-1998
CAPM Fama-MacBeth Regressions

Panel A
Const. RM swRM Rw swRw R2 [Adj]

1 2.80 −0.46 2%
t-stat. (2.94) (−0.38) [−2%]

[2.93] [−0.38]
2 2.35 0.00 −0.32 3%

t-stat. (2.54) (0.00) (−1.01) [-0%]
[2.43] [0.00] [−0.97]

3 3.90 −1.89 0.34 51%
t-stat (3.86) (−1.55) (2.97) [46%]

[2.73] [−1.20] [2.14]
4 2.76 −0.76 0.36 −0.79 60%

t-stat (2.88) (−0.64) (3.07) (−2.74) [55%]
[1.74] [−0.44] [1.89] [−1.71]

5 3.79 −1.77 −0.30 −0.04 36%
t-stat (3.40) (−1.37) (−0.94) (−2.90) [27%]

[1.99] [−0.89] [−0.57] [−1.72]
6 3.10 −1.14 0.32 −0.73 −0.01 62%

t-stat. (3.04) (−0.93) (3.11) (−2.42) (−1.48) [54%]
[1.89] [−0.65] [1.99] [−1.55] [−0.94]

Panel B
Const. RM sw swRM swRw R2 [Adj]

1 5.10 −3.26 3.90 45%
t-stat. (4.12) (−2.29) (2.62) [40%]

[2.95] [−1.75] [1.90]
2 4.65 −2.78 2.53 0.22 56%

t-stat (3.98) (−2.04) (1.95) (2.92) [49%]
[2.94] [−1.61] [1.46] [2.23]

3 3.56 −1.72 1.75 0.23 −0.77 68%
t-stat (3.24) (−1.31) (1.37) (2.99) (−3.34) [61%]

[2.07] [−0.92] [0.89] [1.99] [−2.20]

Notes to Table VI: See Notes for Table VII.
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TABLE VII
Fama-French Portfolios: 1963-1998
CAPM Fama-MacBeth Regressions
The Case of Lagged Labor Income

Panel A
Const. RM swRM Rw swRw R2 [Adj]

1 2.80 −0.46 2%
t-stat. (2.94) (−0.38) [−2%]

[2.93] [−0.38]
2 4.49 −2.36 0.94 24%

t-stat. (3.93) (−1.82) (2.01) [17%]
[2.84] [−1.42] [1.46]

3 3.90 −1.89 0.34 51%
t-stat (3.86) (−1.55) (2.97) [46%]

[2.73] [−1.20] [2.14]
4 4.24 −2.26 0.31 0.28 51%

t-stat (3.86) (−1.76) (3.42) (0.75) [45%]
[2.79] [−1.38] [2.54] [0.55]

5 2.65 −0.69 0.48 −0.07 60%
t-stat (2.90) (−0.60) (1.25) (−3.82) [54%]

[1.29] [−0.32] [0.57] [−1.72]
6 3.01 −1.08 0.23 0.28 −0.06 64%

t-stat. (3.10) (−0.91) (2.88) (0.75) (−3.42) [57%]
[1.65] [−0.56] [1.62] [0.41] [−1.85]

Panel B
Const. RM sw swRM swRw R2 [Adj]

1 5.10 −3.26 3.90 45%
t-stat. (4.12) (−2.29) (2.62) [40%]

[2.95] [−1.75] [1.90]
2 4.65 −2.78 2.53 0.22 56%

t-stat (3.98) (−2.04) (1.95) (2.92) [49%]
[2.94] [−1.61] [1.46] [2.23]

3 4.53 −2.68 2.80 0.22 −0.26 56%
t-stat (2.74) (−1.49) (1.68) (2.14) (−0.78) [48%]

[2.74] [−1.49] [1.68] [2.15] [−0.79]

46



Notes for Tables V, VI and VII: The tables present estimates of cross-sectional

Fama-MacBeth regressions using the 25 Fama-French portfolios. In parenthe-

sis we report the uncorrected Fama-MacBeth t−statistic. The Shanken (1992)

corrected t−statistic are reported in brackets. The unadjusted and adjusted (in

brackets) R2 are reported in the last column. swRM denotes the component of

swRM orthogonal to RM . Similarly swRw denotes the component of swRw or-

thogonal to Rw. Panel A reports the specifications that are supported by the

model introduced in section II. Panel B reports results where the variable sw is

introduced independently.

Table V shows the results for the sample period 1946-1998. Table VI shows the

results for the sample period 1963-1998. Table VII shows the results for the sam-

ple period 1963-1998 and using the dating convention advocated by Jagannathan

and Wang (1996).
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TABLE VIII
CCAPM Fama-MacBeth Regressions

Panel A: Sample 1946-1998
Const. ∆c sw sw ×∆c R2 [Adj]

1 2.27 0.05 0%
t-stat. (3.32) (0.15) [0%]

[3.31] [0.15]
2 3.40 −0.27 1.66 7%

t-stat. (4.65) (−0.94) (1.60) [0%]
[4.00] [−0.81] [1.39]

3 2.37 −0.01 0.00 0%
t-stat. (3.65) (−0.05) (0.23) [0%]

[3.64] [−0.05] [0.23]
4 3.49 .22 2.43 −0.02 14%

t-stat. (4.69) (0.83) (2.08) (−1.83) [2%]
[3.21] [0.57] [1.44] [−1.26]

Panel B: Sample 1963-1998
Const. ∆c sw sw ×∆c R2 [Adj]

1 1.63 0.18 5%
t-stat. (2.15) (0.61) [1%]

[2.07] [0.58]
2 3.27 −0.18 2.72 22%

t-stat. (3.85) (−0.67) (2.23) [15%]
[3.13] [−0.55] [1.84]

3 1.94 0.05 0.01 6%
t-stat. (2.78) (0.26) (0.74) [0%]

[2.72] [0.26] [0.73]
4 3.63 0.14 3.13 −0.02 39%

t-stat. (3.90) (0.74) (2.40) (−2.08) [30%]
[2.50] [0.49] [1.57] [−1.35]
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Notes for Table VIII: This table presents estimates of cross-sectional Fama-

MacBeth Regressions using the 25 Fama-French portfolios. In parenthesis we

report the uncorrected Fama-MacBeth t−statistic. The Shanken (1992) cor-

rected t−statistic are reported in brackets. The unadjusted and adjusted (in

brackets) R2 are reported in the last column. ∆c denotes consumption growth,

sw is the share of labor income to consumption, sw ×∆c denotes the component

of consumption growth scaled by the share of labor income to consumption that

is orthogonal to ∆c.
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TABLE IX

Simulated Coefficients for Spurious Regression

Percentiles
K xt 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

1 sw -0.469 -0.381 -0.309 -0.225 -0.003 0.208 0.282 0.349 0.441
4 ” -1.879 -1.507 -1.189 -0.888 -0.019 0.8186 1.108 1.366 1.663
8 ” -3.642 -2.914 -2.322 -1.753 -0.029 1.6196 2.163 2.608 3.198
12 ” -5.186 -4.228 -3.435 -2.577 -0.071 2.3876 3.165 3.865 4.717
16 ” -6.705 -5.405 -4.441 -3.356 -0.076 3.1034 4.119 5.073 6.138

1 ln(D
P ) -0.008 -0.005 -0.003 0.0007 0.016 0.0466 0.059 0.073 0.087

4 ” -0.033 -0.021 -0.010 0.003 0.063 0.182 0.230 0.277 0.329
8 ” -0.07 -0.043 -0.021 0.0056 0.128 0.3495 0.434 0.516 0.611
12 ” -0.109 -0.067 -0.034 0.0081 0.191 0.5011 0.613 0.709 0.845
16 ” -0.149 -0.095 -0.049 0.0096 0.251 0.6381 0.765 0.884 1.014

1 ln(D
P ) -0.008 -0.005 -0.002 0.0016 0.019 0.0551 0.07 0.085 0.102

sw -0.628 -0.517 -0.424 -0.325 -0.029 0.2725 0.363 0.455 0.578
4 ” -0.033 -0.021 -0.007 0.006 0.078 0.2108 0.265 0.316 0.375

” -2.317 -1.941 -1.615 -1.245 -0.112 1.0356 1.396 1.740 2.162
8 ” -0.072 -0.042 -0.017 0.012 0.1529 0.3979 0.487 0.571 0.666

” -4.35 -3.633 -3.034 -2.346 -0.205 1.9677 2.61 3.225 4.004
12 ” -0.11 -0.068 -0.026 0.0151 0.2241 0.5579 0.672 0.772 0.886

” -6.071 -5.066 -4.233 -3.304 -0.307 2.7667 3.672 4.498 5.573
16 ” -0.155 -0.089 -0.038 0.017 0.292 0.6995 0.828 0.936 1.059

” -7.535 -6.311 -5.318 -4.129 -0.369 3.5187 4.636 5.703 7.017

1 ln
(

D
P

)
× sw -0.023 -0.019 -0.014 -0.009 0.017 0.0606 0.077 0.092 0.110

4 ” -0.095 -0.075 -0.056 -0.035 0.068 0.2257 0.280 0.334 0.392
8 ” -0.187 -0.15 -0.111 -0.067 0.137 0.421 0.514 0.594 0.697
12 ” -0.277 -0.226 -0.165 -0.094 0.202 0.5878 0.705 0.804 0.925
16 ” -0.371 -0.291 -0.215 -0.120 0.269 0.7281 0.865 0.971 1.119
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Notes for Table IX: The table shows the distribution of predictive regression

coefficients obtained from 10,000 simulations of the system yt = a + ut, xt =

α + φxt−1 + vt where for each simulation, a K period ahead OLS regression is

performed. That is, yt (K) =
∑K

i=1 yt+i is regressed on xt−1. The parameters a,

α and φ as well as Σ = E (εt, ε
′
t) with εt = (ut, vt)

′ are given by their real sample

estimates for each regressor xt as in the table.
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Iljxuh 6= Orqj0whup Uhwxuq dqg Oderu Lqfrph wr Frqvxpswlrq Udwlr
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Iljxuh 7= Frqglwlrqdo FDSP
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(C) Unconditional CAPM (1963-1998)
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Iljxuh 8= Frqglwlrqdo FDSP zlwk Odjjhg Oderu Lqfrph
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(C) Unconditional CAPM (1963-1998)
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(D) Conditional CAPM (1963-1998)
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Iljxuh 9= Frqglwlrqdo F0FDSP
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(C) Unconditional CCAPM (1963-1998)
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