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1 Introduction

Corporate finance and macroeconomics have studied in depth the effects of financial constraints on

firm value, capital investment, and business cycles.1 A small but growing asset pricing literature

asks how these constraints affect risk and expected returns. Using the Kaplan and Zingales (1997)

index of financial constraints, Lamont, Polk, and Saá-Requejo (2001) report a puzzling finding that

more constrained firms earn lower average returns than less constrained firms. However, using an

alternative index estimated from investment Euler equation, Whited and Wu (2006) find that more

constrained firms earn higher average returns than less constrained firms, although the difference

is insignificant. Finally, Gomes, Yaron, and Zhang (2006) find that financial constraints provide

a common factor for the cross section of returns, but somewhat surprisingly, the shadow price of

external funds is procyclical, so that financial constraints are more binding in economic booms.

We use neoclassical economics to study the structural relations between financial constraints,

stock returns, and economic fluctuations. Conflicting evidence and competing interpretations are

difficult to evaluate without models that tie the characteristics in question to risk and expected

returns. We try to fill this gap using two dynamic models. In Model 1, firms face dividend nonneg-

ativity constraints without access to external equity or debt. Model 2 is more realistic as firms can

retain earnings, raise debt and equity, but face collateral constraints that limit their debt capacity.

Despite their diverse structures, these two models share largely similar predictions. Small firms,

less profitable firms, and firms already in debt are more likely to be constrained. More important,

more constrained firms are riskier and earn higher expected returns than less constrained firms.

However, this effect can largely be subsumed quantitatively by market capitalization and book-to-

market equity. Further, financial constraints are more binding in economic booms, a pattern driven

by the stochastic discount factor that makes capital investment more sensitive to aggregate shocks.

1An incomplete list of this voluminous literature includes Fazzari, Hubbard, and Petersen (1988), Bernanke and
Gertler (1989), Whited (1992), Bond and Meghir (1994), Gertler and Gilchrist (1994), Kaplan and Zingales (1997),
Kiyotaki and Moore (1997), Bernanke, Gertler, and Gilchrist (1999), Gomes (2001), Hennessy (2004), Moyen (2004),
Almeida and Campello (2005), and Henessy and Whited (2006).
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Our explicitly-solved models provide rich insights on the precise economic mechanisms driving

the model predictions. Intuitively, the shadow price of new funds for a given firm is determined

by its financial gap, the difference between its investment demand and internal funds. The higher

the gap, the more financially constrained the firm will be. For small firms with small scale of

production, internal funds are low, but investment demands are high because of decreasing return to

scale. Moreover, all else equal, firms with more debt have less internal funds available for investment

because of debt payments. Accordingly, small firms and firms already in debt are more constrained.

Aggregate and firm-specific productivity shocks have two offsetting effects on the financial gap.

A positive shock raises internal funds, but it also raises investment demands because the shock

increases the conditional mean of productivity. For firm-specific shocks, the effect on internal funds

dominates, therefore more profitable firms are less constrained. For aggregate shocks, the effect on

investment demands dominates, therefore firms are more constrained in economic booms.

Our first contribution concerns the role of the stochastic discount factor in driving the pro-

cyclical shadow price of external funds. Unlike firm-specific shocks, aggregate shocks can affect the

stochastic discount factor, which provides a discount-rate channel through which aggregate shocks

can impact capital investment. Specifically, when a positive aggregate shock hits a firm, its real

investment increases because its capital stock becomes more productive (the cash-flow channel).

But the positive aggregate shock also causes the aggregate discount rate to fall, which in turn

causes the net present value of an additional unit of investment to go up, stimulating investment

even further (the discount-rate channel). The increase in investment demands exceeds the increase

in internal funds, generating a higher financial gap after the positive aggregate shock.

Our analysis explains why traditional, partial equilibrium investment models cannot generate

procyclical financial constraints. These models typically assume constant discount factors. Aggre-

gate and firm-specific shocks affect investment symmetrically, therefore firms are more constrained

in bad times for the same reason why less profitable firms are more constrained. Our analysis

also suggests that procyclical financial constraints should appear in general equilibrium models
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with stochastic discount factors. Indeed, Gomes, Yaron, and Zhang (2003) show that the implied

shadow price of new funds is procyclical in several well-known general equilibrium models (e.g.,

Bernanke and Gertler 1989; Carlstrom and Fuerst 1997; Bernanke, Gertler, and Gilchrist 1999).

Our second contribution concerns the relation between financial constraints and expected re-

turns. In our models, the shadow price of external funds is determined jointly with risk and expected

returns by underlying state variables. In equilibrium, small firms, less profitable firms, and firms

in debt are riskier and earn higher expected returns. But these firms are also more financially con-

strained, suggesting that more constrained firms are riskier and earn higher expected returns than

less constrained firms. This prediction arises because the shadow price contains information on the

underlying state variables that drive risk and expected returns. However, market capitalization

and book-to-market contain similar information. Using computational experiments, we find that

sorting on the shadow price alone generates significant average-return spreads, but the shadow price

largely loses its explanatory power once we control for market capitalization and book-to-market.

We also use our explicitly-solved models as laboratories to study quantitatively the empirical

determinants of the shadow price of external funds. Consistent with the evidence in Kaplan and

Zingales (1997) and Whited and Wu (2006), our quantitative results show that firms will be more

constrained financially if they have lower cash flow to assets, higher debt to assets, lower sales and

sales growth, lower dividends to assets, lower liquid assets or cash to assets, and higher Tobin’s Q.

More interesting, we run a horse race between the Kaplan-Zingales index and the Whited-Wu index

on our simulated data to evaluate their relative quality as empirical proxies for the shadow price

of external funds. We find that, although both indexes are positively correlated with the shadow

price, the Whited-Wu index appears more powerful than the Kaplan-Zingales index.

Our paper provides a comprehensive, theoretical analysis of the structural relation between

financial constraints and stock returns, facilitating the interpretation of the evidence in Lamont,

Polk, and Saá-Requejo (2001), Gomes, Yaron, and Zhang (2006), and Whited and Wu (2006). Our

modeling of debt dynamics is heavily influenced by Hennessy and Whited (2005, 2006), but we add
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aggregate shocks and asset pricing dynamics. More generally, our work belongs to the literature

that connects the cross section of returns to corporate policies and the real economy (e.g., Cochrane

1991, 1996; Berk, Green, and Naik 1999).2 We contribute to this literature by studying the impact

of financial constraints and debt dynamics on risk and expected returns.

The rest of the itinerary is as follows. Section 2 constructs the dynamic models. Sections 3 and

4 present qualitative and quantitative analyses of the models, respectively. Section 5 concludes.

2 The Dynamic Models

We present two dynamic models of financial constraints. In Model 1, firms have no access to external

equity markets, and cannot retain earnings or borrow debts. Although simplistic, this framework

has been used in much of the related literature, thereby providing a natural benchmark to start our

analysis. In Model 2, we allow firms to issue costly external equity, retain earnings, and borrow at

a risk-free rate. When borrowing, firms face collateral constraints that limit their debt capacity.

2.1 The Common Environment

We first present the environment common to both Models 1 and 2.

Technology

The production function is given by:

yjt = ext+zjtkα
jt (1)

where yjt and kjt are the output and capital stock of firm j at period t, respectively. 0<α<1, so

the production technology exhibits decreasing returns to scale. Production is subject to both an

aggregate shock, xt, and a firm-specific shock, zjt.

The aggregate productivity shock has a stationary and monotone Markov transition function,

2An incomplete list of other examples includes Berk (1995), Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and
Giammarino (2004, 2006), Kogan (2004), Pástor and Veronesi (2005), Zhang (2005), Cooper (2006), and Gala (2006).
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denoted Qx(xt+1|xt), as follows:

xt+1 = x (1 − ρx) + ρxxt + σxεx
t+1 (2)

where εx
t+1 is an i.i.d. standard normal shock. In our models, the aggregate shock is the driving

force of economic fluctuations and systematic risk.

The firm-specific productivity shocks, denoted zjt, are uncorrelated across firms, indexed by j,

and have a common stationary and monotone Markov transition function, denoted Qz(zjt+1|zjt):

zjt+1 = ρzzjt + σzε
z
jt+1 (3)

where εz
jt+1 is an i.i.d. standard normal shock. εz

jt+1 and εz
it+1 are uncorrelated with each other

for any pair (i, j) with i 6= j. Moreover, εx
t+1 is independent of εz

jt+1 for all j. In our models, the

firm-specific shock is the ultimate driving force of firm heterogeneity.

Stochastic Discount Factor

Following Berk, Green, and Naik (1999), we use partial equilibrium models to focus on the link

between corporate policies and expected returns. The omission of consumer behavior can hopefully

be compensated by firm dynamics often absent from consumption-based asset pricing models.

Specifically, we parameterize the stochastic discount factor as follows:

log mt+1 = log η + γt (xt − xt+1) (4)

γt = γ0 + γ1(xt − x) (5)

where mt+1 denotes the stochastic discount factor from time t to t+1. 1>η>0, γ0 >0, and γ1 <0

are constant parameters. Equation (4) can be motivated as a reduced-form representation of the

intertemporal rate of substitution for a fictitious representative consumer. Following Zhang (2005),

we assume in equation (5) that γt decreases in xt−x̄ to capture time-varying price of risk.3

3We remain agnostic about the precise economic sources driving the countercyclical price of risk. Potential sources
include time-varying risk aversion in Campbell and Cochrane (1999), loss aversion in Barberis, Huang, and Santos
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The Operating-Profit Function

The operating-profit function for firm j with capital stock kjt, idiosyncratic productivity zjt, and

aggregate productivity xt is:

π(kjt, zjt, xt) = ext+zjtkα
jt − f (6)

where f >0 is nonnegative fixed costs of production, which must be paid every period.

The Investment-Cost Function

When investing, firms incur purchase costs and capital adjustment costs. The total investment-cost

function, φ(ijt, kjt), is assumed to be asymmetric and quadratic:

φ(ijt, kjt) ≡ ijt +
aP 1i

jt + aN (1 − 1i
jt)

2

(
ijt
kjt

)2

kjt (7)

where 1i
jt ≡ 1{ijt≥0} with 1{·} being the indicator function that equals one if the event described

in {·} is true and zero otherwise. We assume aN >aP >0 to capture costly reversibility (e.g., Abel

and Eberly 1994, 1996; Hall 2001); intuitively, firms face higher costs per unit of adjustment in

cutting than expanding their capital stocks. Zhang (2005) uses asymmetric adjustment costs to

address the value premium, the stylized fact that value firms with high book-to-market ratios earn

higher returns on average than growth firms with low book-to-market ratios. We instead use the

neoclassical framework to address the relation between financial constraints and expected returns.

2.2 Model 1: Dividend Nonnegativity Constraints

Model 1 captures financial constraints by shutting down the external equity markets.

Dividend Nonnegativity Constraints

We first model financial constraints parsimoniously as follows:

djt ≡ π(kjt, zjt, xt) − φ(ijt, kjt) ≥ 0 (8)

(2001), and time-varying economic uncertainty in Bansal and Yaron (2004).
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Because negative dividends are equivalent to costless external equity, equation (8) basically denies

firms access to external equity. We also assume that firms cannot borrow or retain earnings.

Although simplistic, the dividend constraints are standard in the literature (e.g., Whited 1992,

Bond and Meghir 1994, Cooper and Ejarque 2003, Moyen 2004, Whited and Wu 2006, and Gomes,

Yaron, and Zhang 2006). We therefore use equation (8) as a natural benchmark to start our analysis.

Dynamic Value Maximization

Let v(kjt, zjt, xt) denote the market value of firm j. Using Bellman’s Principle of Optimality, we

can state firm j’s dynamic value-maximization problem as:

v(kjt, zjt, xt) = max
{kjt+1,ijt}

{π(kjt, zjt, xt) − φ(ijt, kjt) + Et [mt+1v(kjt+1, zjt+1, xt+1)]} (9)

subject to the equation of capital accumulation:

kjt+1 = ijt + (1 − δ)kjt (10)

and the dividend nonnegativity constraint (8). The first two terms on the right-hand side of (9)

reflect current dividends that equal profits minus total investment costs.

The Shadow Price of New Equity

Let µjt≡µ(kjt, zjt, xt) be the Lagrange multiplier associated with the dividend nonnegativity con-

straint in equation (8). The multiplier can be interpreted as the shadow price of external equity;

the higher µjt is, the more financially constrained firm j will be.

We show in Appendix A that:

µjt =
vk(kjt, zjt, xt)

dk(kjt, ijt, zjt, xt)
− 1 (11)

where vk and dk denote the first-order derivatives of firm value and dividend, respectively, with

respect to capital stock, kjt. The interpretation of equation (11) is straightforward. All else equal,

firms with higher vk are more likely to be constrained. Intuitively, firms with higher marginal value
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of capital will have higher investment demands, and therefore higher demands for external equity.

Moreover, firms in which an additional unit of capital can generate more dividend or dk is higher

are less financially constrained. This effect is again intuitive because higher internal funds alleviate

the demands for external equity.

Risk and Expected Excess Return

Evaluating the value function in equation (9) at the optimum yields:

vjt = djt + Et [mt+1vjt+1]

which is equivalent to 1=Et [mt+1rjt+1], where the stock return rjt+1≡vjt+1/(vjt − djt). Note that

vjt is the cum-dividend firm value because it is measured before the dividend is paid out. We can

further rewrite 1=Et [mt+1rjt+1] as the beta-pricing form (e.g., Cochrane 2001, p. 19):

Et[rjt+1] − rft = βjtζmt (12)

where rft≡1/Et[mt+1] is the real interest rate from period t to t+1, risk is defined by:

βjt ≡
−Covt[rjt+1,mt+1]

Vart[mt+1]
(13)

and the price of risk is given by ζmt≡Vart[mt+1]/Et[mt+1].

2.3 Model 2: Collateral Constraints

Although useful as a first stab at dynamic modeling of financial constraints, Model 1 has several

unrealistic features. In particular, firms cannot issue equity, borrow debt, or retain earnings. We

now introduce a more realistic but more complex model in which the unpalatable assumptions

in Model 1 are relaxed. In this alternative model, financial constraints are captured as collateral

constraints on the maximum amount of debt that firms can borrow.

9



The Collateral Constraints

For tractability, we follow Hennessy and Whited (2005) and model only single-period debt. Let

bjt+1 represent the face value of one-period debt chosen by firm j at beginning of period t with

payment due at the beginning of period t+1. Positive values of bjt+1 imply that the firm is borrowing

and negative values of bjt+1 imply that the firm is saving or retaining earnings.

When borrowing, firms face collateral constraints which require that the liquidation value of

capital net of depreciation is at least as high as the promised debt payment:

bjt+1 ≤ s(1 − δ)kjt+1 (14)

where 0 < s < 1 is a constant parameter. Effectively, we assume that in the event of liquidation,

capital can only be sold at a depressed price, s < 1. The portion (1−s) of capital is lost in the

liquidation process due to, for example, bankruptcy costs.

Because the collateral constraints guarantee that lenders always get repaid in full, all corporate

debts are riskless and their interest rates equal to the risk-free rate rft. Accordingly, by committing

to repay bjt+1 at the beginning of t+1, firm j obtains cash inflow bjt+1/rft at the beginning of

period t. For tractability, we do not model defaultable bonds.

Retained Earnings

Because of the collateral constraints, firms are not indifferent between savings and cash distribu-

tions. If a firm distributes a dollar to the shareholders today, this dollar invested on the Treasury

bills will be worth rft next period. But the cost of distributing this dollar equals the cost of borrow-

ing this dollar, rft, plus the shadow price of an additional dollar of borrowing when the collateral

constraints are binding. Firms thus strictly prefer savings to distributions. If the interest rate

earned by corporate savings, denoted rst, equals the risk-free borrowing rate, rft, firms will save

all the free cash flow and never distribute.

In practice, firms do distribute cash to shareholders because there are costs associated with
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holding cash. Graham (2000) report that cash retentions are tax-disadvantaged because tax rates

generally exceed tax rates on interest income for bondholders. To capture this effect, we follow Hen-

nessy, Levy, and Whited (2005) and assume that the saving rate is strictly less than the borrowing

rate, i.e., rst <rft. Specifically:

rst = rft − κ (15)

where κ>0 is a constant wedge between borrowing and saving rates. Cooley and Quadrini (2001)

provide further justification for rst < rft. Suppose the two interest rates are equal, then in the

economy with financial frictions, firms would strictly prefer to reinvest profits. Doing so would

generate an excessive supply of loanable funds and the subsequent reduction in the saving rate, rst.

For notational simplicity, let 1b
jt+1≡1{bjt+1≥0} be the indicator function that equals one if firm

j borrows new debt at time t and zero otherwise. Because bjt+1 is a choice variable, 1b
jt+1 is known

at the beginning of time t. Further, we let

ιjt ≡ 1b
jt+1rft + (1 − 1b

jt+1)rst (16)

denote the interest rate applicable to firm j from time t to time t+1, known at the beginning of time t.

Costly External Equity

When the sum of the investment costs, φ(ijt, kjt), and promised debt repayment, bjt, exceeds the

sum of internal funds, πjt, and cash inflows from issuing new debt, bjt+1/ιjt, the firm can raise new

equity capital, ejt, to compensate for the financial slack:

ejt ≡ max

(
φ(ijt, kjt) + bjt − π(kjt, zjt, xt) −

bjt+1

ιjt
, 0

)
(17)

Motivated by empirical evidence (e.g., Smith 1977, Lee, Lochhead, Ritter, and Zhao 1996, and

Altinkilic and Hansen 2000), we assume that there are costs of issuing external equity. We specify
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the total cost of issuing equity as:

λ(ejt, kjt) = λ01
e
jt +

λ1

2

(
ejt

kjt

)2

kjt (18)

where λ0, λ1 >0 and 1e
jt≡1{ejt>0} is the indicator function that equals one if firm j issues external

equity and zero otherwise. The first term in the right hand side of equation (18) captures the fixed

costs of issuing equity and the second term captures the convex, variable costs.

On the other hand, when the sum of investment costs and debt repayments is lower than the

sum of internal funds and cash inflows from new debt, firms distribute the difference back to share-

holders. We assume that firms do not incur any costs when distributing cash. We do not model

specific forms of the payout, cash dividends or open market share repurchases; the model only pins

down the total amount of payout.

Market Value of Equity, Risk, and Expected Returns

Define the effective dividend accrued to the shareholders as:

ojt ≡ π(kjt, zjt, xt) +
bjt+1

ιjt
− φ(ijt, kjt) − bjt − λ(ejt, kjt) (19)

ojt can be negative because the new equity ejt from equation (17) can be positive.

Let v(kjt, bjt, zjt, xt) denote the market value of equity for firm j. Using Bellman’s Principle of

Optimality, we can formulate its dynamic value-maximization problem as:

v(kjt, bjt, zjt, xt) = max
{ijt,kjt+1,bjt+1}

{ojt + Et [mt+1v(kjt+1, bjt+1, zjt+1, xt+1)]} (20)

subject to the collateral-constraint equation (14) and the capital-accumulation equation (10).

The definition of risk and expected excess return in Model 2 is similar to that in Model 1. Eval-

uating the value function in equation (20) at the optimum yields vjt =ojt +Et [mt+1vjt+1] or equiv-

alently, 1=Et [mt+1rjt+1], where the stock return rjt+1≡vjt+1/(vjt − ojt). With rjt+1 defined, ex-

pected excess returns and risk can be defined in a similar way as equations (12) and (13) in Model 1.
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The Shadow Price of New Debt

Let νjt ≡ ν(kjt, bjt, zjt, xt) be the Lagrange multiplier associated with the collateral constraint in

equation (14), or the shadow price of new debt. The higher νjt is, the more financially constrained

firms will be. As shown in Appendix A, the first-order condition with respect to bjt+1 implies that:

νjt =
1

rft
λe(ejt, kjt)1

e
jt − Et[mt+1λe(ejt+1, kjt+1)1

e
jt+1] (21)

where λe(ejt, kjt) is the first derivative of λ with respect to ejt when ejt >0.

The interpretation of equation (21) is straightforward. Because debt and equity are two sources

of external funds, the shadow price of new debt depends on the tradeoff between debt and equity

finance. On the one hand, one additional unit of debt saves firm j an amount that equals the

marginal cost of equity finance, λe(ejt, kjt)1
e
jt. This marginal benefit of new debt must be dis-

counted by rft because the firm only raises 1/rft dollar at the beginning of time t by agreeing to

pay one additional unit of debt, bjt+1, at the beginning of period t+1. On the other hand, there are

costs associated with borrowing one additional unit of debt because it must be repaid. Having to

repay the debt at the beginning of period t+1 means that the firm must pay the marginal cost of

equity finance λe(ejt+1, kjt+1)1
e
jt+1. This (stochastic) cost of borrowing must be discounted back

to the beginning of time t, as shown in the second term in equation (21).

3 Qualitative Analysis

Section 3.1 calibrates the model parameters and discusses briefly the numerical issues involved in

solving the models. Section 3.2 and 3.3 then provide qualitative analysis on the solutions to Models

1 and 2, respectively. Appendix B details the numerical algorithms.

3.1 Calibration

We calibrate all model parameters at the monthly frequency to be consistent with the empirical

literature. Table 1 reports the parameters. Following Gomes (2001) and Zhang (2005), we set the

13



capital share α to be 0.30 and the monthly rate of depreciation δ to be 0.01, which implies an annual

rate of 12%. The persistence of aggregate productivity process, ρx, is set to be 0.951/3 =0.983, and

its conditional volatility, σx, 0.007/3=0.0023. With the first-order autoregressive specification for

xt in equation (2), these monthly values correspond to 0.95 and 0.007 at the quarterly frequency,

respectively, consistent with Cooley and Prescott (1995).

Following Zhang (2005), we pin down the three parameters governing the stochastic discount fac-

tor, η, γ0, and γ1 to match three aggregate return moments: the average Sharpe ratio; the average

real interest rate; and the volatility of real interest rate.4 This procedure yields η=0.994, γ0 =50,

and γ1 =−1000, which generate an average Sharpe ratio of 0.41, an average annual real interest

rate of 2.2%, and an annual volatility of real interest rate of 2.9%, similar to those in the data.

The adjustment-cost parameters, aP and aN , can be interpreted as the periods required to

expanding and cutting the capital stock, respectively, given one unit of change in the marginal q.

We set aP = 15 and aN = 150 months, respectively, close to the average estimates in the empiri-

cal investment literature. To calibrate the persistence ρz and the conditional volatility σz for the

firm-specific productivity in equation (3), we set ρz =0.96 and σz =0.10. These values are chosen

to obtain an average annual cross-sectional volatility of individual stock returns around 27%. The

fixed cost of production f is set to be 0.0275.

There are also three parameters specific to Model 2, including the liquidation cost parameter s,

the fixed floatation-cost parameter λ0, and the flow floatation-cost parameter λ1. We let s = 0.85

which implies proportional liquidation costs of 15%, largely consistent with available evidence. For

example, Altman (1984) estimates the average bankruptcy costs to be 12% of the firm value three

years prior to the petition date and 16.7% at the petition date. Andrade and Kaplan (1998) esti-

mate direct and indirect financial distress costs to be between 10–20% of firms value. And Hennessy

and Whited (2006) estimate bankrupt costs to be 10.4% of the value of assets with a p-value of

4From equations (4) and (5), the real interest rate rft and the maximum Sharpe ratio St can be written

as rft = 1/Et[mt+1] = 1

η
e−µ

m
− 1

2
σ2

m and St = σt[mt+1]/Et[mt+1] =
q

eσ2
m(eσ2

m − 1)/eσ2

m
/2, respectively, where

µm≡ [γ0 + γ1(xt − x̄)](1 − ρx)(xt − x̄) and σm ≡σx[γ0 + γ1(xt − x̄)].
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6%. For the equity financing costs, we calibrate the fixed floatation cost λ0 to be 0.08 and the flow

floatation cost λ1 to be 0.025. These parameter values are the same as those in Gomes (2001), who

estimate these parameters based on Smith (1977).

Armed with these parameter values, we use value function iteration techniques to solve the

models. It is worthwhile pointing out that solving the models, especially Model 2, is technically

challenging. (The solution algorithm for Model 2 coded in MATLAB takes about 30 days to run on

a Dell workstation with dual Xeon 2Ghz CPUs and 1.00 GB of RAM.) The reason is that Model 2

is subject to the “curse of dimensionality” (e.g., Judd 1998, p. 430). In an effort to be reasonably

realistic, Model 2 has in total four state variables including capital stock kjt, current-period debt

bjt, firm-specific productivity zjt, and aggregate productivity xt. Further complicating the solution

algorithm are the two control variables, next-period capital kjt+1 and next-period debt bjt+1.

By way of contrast, Hennessy and Whited (2005) have two controls and three states, and Hen-

nessy and Whited (2006) have two controls and two states. More important, Hennessy and Whited

calibrate and solve their models in annual frequency, but our asset pricing applications require that

we calibrate and solve our models in monthly frequency. The high frequency lowers the speed of

convergence of our solution algorithm by an order of magnitude relative to their algorithm. Another

informative comparison is with Zhang (2005), who solves his model with four states in monthly

frequency, but he has only one control. Despite the curse of dimensionality, we opt to use the value

function iteration algorithm because of its well-known stability and precision.

3.2 Model 1: Qualitative Analysis

Using the numerical solution to Model 1, we plot and discuss the value and policy functions, risk

and expected excess returns, and the multiplier as functions of the underlying state variables.

Because there are three state variables in Model 1 (capital stock kjt, aggregate productivity xt,

and firm-specific productivity zjt), Panels A and C in Figures 1 and 2 plot the variables against kjt

and zjt, while fixing xt at its long-run average level x̄. Each one of these panels has a set of curves
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corresponding to different values of zjt, and the arrow in each panel indicates the direction along

which zjt increases. Panels B and D then plot the variables against kjt and xt only, while fixing zjt

at its long run average level z̄j =0. Each one of these panels has a set of curves corresponding to

different values of xt, and the arrow in each panel indicates the direction along which xt increases.

From Panels A and B in Figure 1, firms with relatively small capital stocks and high firm-specific

productivity have relatively high market-to-book ratios. These predictions are largely consistent

with the empirical evidence in Fama and French (1992, 1995). Moreover, firms have relatively high

market-to-book ratios when the general economic conditions are relatively good, consistent with

the evidence on time series predictability associated with aggregate book-to-market (e.g., Kothari

and Shanken 1997, Pontiff and Schall 1999).

The optimal investment-to-capital ratio largely inherits the properties of the market-to-book

ratio. From Panels C and D in Figure 1, firms with relatively small capital stocks and firms with

relatively high firm-specific profitability invest more relative to their capital stocks and grow faster,

consistent with the evidence in Fama and French (1995). Because investment-to-capital is indepen-

dent of capital stock with constant return to scale, the driving force behind our model-implied in-

verse relation between investment-to-capital and capital stock is therefore decreasing return to scale.

The Multiplier

The multiplier associated with the dividend nonnegativity constraint in equation (11) is at the cen-

ter of our analysis. Panel A of Figure 2 shows that the multiplier decreases in capital stock, kjt, and

in firm-specific productivity, zjt, suggesting that financial constraints are more binding for small

and less profitable firms. These patterns are intuitive and are consistent with the evidence (e.g.,

Chan and Chen 1991; Gertler and Gilchrist 1994; Perez-Quiros and Timmermann 2000; Lamont,

Polk, and Saá-Requejo (2001); Whited and Wu 2006). Moreover, Panel B shows that the multiplier

increases in the aggregate productivity, xt, suggesting that financial constraints are more binding

when the aggregate economic conditions are relatively good. Although somewhat surprising, this
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pattern is consistent with the evidence in Gomes, Yaron, and Zhang (2006).

More important, why does the shadow price of new equity respond negatively to firm-specific

shocks but positively to aggregate shocks? The crux is the stochastic discount factor, mt+1, modeled

in equation (4). Aggregate shocks affect mt+1, but firm-specific shocks do not.

Intuitively, the multiplier for a given firm is determined by the gap between its investment

demands and internal funds. The firm is financially constrained if its investment demands exceed

internal funds. The higher the gap, the higher the shadow price of external funds, and the more

constrained the firm will be.

Productivity shocks have two offsetting effects on the financial gap. A positive shock increases

internal funds and thereby reduces the gap, but it also increases investment demands and thereby

increases the gap. For firm-specific shocks, the first effect dominates quantitatively, therefore firms

with higher firm-specific productivity are less constrained.

The two offsetting effects also apply to aggregate shocks. Most important, aggregate shocks

differ from firm-specific shocks because aggregate shocks affect the stochastic discount factor. Ag-

gregate shocks can therefore affect investment demands through an additional, discount-rate chan-

nel. Specifically, when a positive aggregate shock hits a firm, it will increase investment demands

through the usual cash flow channel because its capital stock becomes more productive. But a

positive aggregate shock also gives rise to a higher discount factor, mt+1, or loosely speaking, a

lower discount rate, 1/mt+1. This discount-rate effect in turn increases the expected continuation

value, Et[mt+1v(kjt+1, zjt+1, xt+1)] in equation (9), stimulating investment demands even further.

The increase in investment demands dominates quantitatively the increase in internal funds from

the positive aggregate shock. Consequently, the financial gap increases.

As a corollary, the discount-rate channel on the multiplier should disappear without the stochas-

tic discount factor. And the multiplier should be countercyclical when mt+1 is constant. This out-

come is indeed what happens in the model. Panels C and D in Figure 2 plot the multiplier against

underlying state variables in Model 1 with a constant discount factor, γ0 =γ1 =0. From Panel D,
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the multiplier now decreases in the aggregate productivity xt. Effectively, with the constant dis-

count factor, aggregate and firm-specific productivity shocks enter the value-maximization problem

of firms symmetrically. In the same way that firms with low firm-specific productivity are more

constrained, firms are more constrained when aggregate economic conditions are relatively bad.5

Risk and Expected Excess Return

Figure 3 plots expected excess returns and risk, defined in equations (12) and (13), respectively.

From Panels A and C, firms with small scale of production and low firm-specific productivity are

riskier and earn higher expected returns than firms with large scale of production and high firm-

specific productivity. More important, as shown in Panel A of Figure 2, small and less profitable

firms are also most likely to be financially constrained. Collectively, the panels show that more

financially constrained firms are riskier and earn higher expected returns than less financially con-

strained firms. These predictions lend support to Chan and Chen (1991) and Perez-Quiros and

Timmermann (2000). These authors interpret their evidence as suggesting that small firms and

relatively unprofitable firms earn higher average returns because these firms are more adversely

affected by lower liquidity in tight credit market conditions.

However, market value of equity and book-to-market are determined jointly and endogenously

with the multiplier by the underlying state variables in equilibrium. To quantify the incremental

effects of the multiplier on risk and expected returns independent of size and book-to-market, we

must use computational experiments. We take up this task in Section 4.

Finally, Panels B and D in Figure 3 show that conditional betas, βjt, increase but expected ex-

cess returns decrease with the aggregate productivity, xt. These two effects can be reconciled by the

countercyclical price of risk, ζmt, implied by the pricing kernel in equation (4). Although the amount

of risk is high in good times, the price of risk is low, giving rise to low expected excess returns.

5In a previous version of this paper, we also report that market-to-book and investment-to-capital in the constant-
discount-factor case are much less sensitive to aggregate shocks than their counterparts in the benchmark stochastic-
discount-factor case. These results are omitted for brevity but are available upon request.
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3.3 Model 2: Qualitative Analysis

We now ask whether our central insights on the determinants of the multiplier, risk, and expected

returns from Model 1 are robust if we relax its restrictive assumptions. The answer is largely

affirmative. To this end, we turn to Model 2 with collateral constraints.

Panels A and B of Figure 4 show that, in Model 2, the market-to-book ratio, vjt/kjt, is strictly

decreasing with the current-period debt, bjt. This result is expected because the Envelope Theo-

rem implies that vb(kjt, bjt, zjt, xt) =−(1 + λe(ejt, kjt)1
e
jt) < 0. Further, this pattern is consistent

with the inverse relation between market-to-book and leverage ratios documented by, for example,

Smith and Watts (1992). From Panels C and D, firms with large amount of debt invest less than

firms with small amount of debt and firms with corporate liquidity, a pattern often called “debt

overhang” (e.g., Myers 1977; Hennessy 2004).6

Figure 5 reports the optimal next-period-debt-to-capital ratio, bjt+1/kjt, as functions of the

underlying state variables. Several intuitive patterns arise. First, firms with relatively small scale

of production, kjt, and low firm-specific profitability, zjt, borrow more (Panel A). Second, firms also

borrow more in good times (Panel B). Third, the debt-to-capital ratio is persistent because firms

with more debt in the current period are likely to borrow more, and firms with more corporate

savings are likely to save more (Panels C and D). Fourth, given capital stock, more profitable firms

save more and borrow less (Panels A and C). Finally, depending on their current debt levels, firms

tend to save more and borrow more in economic booms (Panel D). Although optimal debt policy

is not the focus of our study, we notice that these predictions are largely consistent with empirical

evidence on debt (e.g., Titman and Wessels 1988; Smith and Watts 1992; Rajan and Zingales 1995).

The Multiplier

The properties of the multiplier in Model 2 are largely similar to those in Model 1. From Panels

A and B of Figure 6, the shadow price of new debt, νjt, is decreasing with capital stock, kjt, and

6We also find that, in Model 2, both market-to-book and investment-to-capital are decreasing and convex in
capital stock, and are both increasing in aggregate and firm-specific productivity. These results are similar to those
from Model 1, and are omitted to avoid redundancy with Figure 1. Details are available upon request.
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weakly decreasing firm-specific productivity, zjt. Panels B and D show that the multiplier νjt is

weakly increasing in aggregate productivity xt, suggesting that firms are again more constrained

in good times. From Panels C and D, firms with positive corporate liquidity (and low current debt

levels) are unconstrained financially, and firms with high current debt levels are more constrained.

Moreover, the behavior of new-equity-to-capital, ejt/kjt, is very similar to that of the multiplier.

Firms with small capital stock and large debt overhang issue more equity, but the new equity is

much less sensitive to either aggregate or firm-specific productivity shocks.7

More important, although the multipliers from Models 1 and 2 share similar properties, compar-

ing Figures 2 and 6 shows that the multiplier in Model 2 appears much less sensitive quantitatively

to changes in aggregate and firm-specific productivity shocks. This pattern is noteworthy because,

as shown in Table 1, 12 out of 16 parameters in Model 2 are directly from Model 1. The remaining

four parameters are specific to the structure in Model 2. The differences in quantitative magnitude

are therefore more likely to be driven by structural differences, not different parameters across the

models. Intuitively, the collateral constraints in Model 2 restrict only debt financing; firms can still

finance investments with new equity. In contrast, the dividend nonnegativity constraints in Model 1

are much more restrictive, effectively ruling out all new funds, debt or equity. It is therefore natural

that the multiplier from Model 1 is more sensitive to shocks than the multiplier from Model 2.

Debt, Liquidity, Risk, and Expected Excess Returns

In Model 2, the structural relations between risk and expected excess returns on the one side, and

capital stock and productivity shocks on the other, are similar to those in Model 1. Specifically,

firms with small capital stocks and low firm-specific productivity are riskier and earn higher ex-

pected excess returns than firms with large capital stocks and high firm-specific productivity.8 As

shown in Figure 6, small and less profitable firms in Model 2 are also more constrained financially.

Therefore, as in Model 1, Model 2 also predicts that more constrained firms are riskier and earn

7The details are omitted to avoid redundancy with Figure 6, but are available upon request.
8The details are omitted to avoid redundancy with Figure 3, but are available upon request.
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higher expected returns than less constrained firms.

More interesting, Model 2 allows us to study how current-period debt, bjt, affects risk and

expected returns. From all panels in Figure 7, all else equal, firms with high current debt are riskier

and earn higher expected returns than firms with low current debt and firms with corporate savings.

The positive relation between current debt and risk and expected returns is even more dramatic for

less profitable firms (Panels A and C). Further, because Figure 6 shows that firms with high current

debt and low profitability are more constrained financially, Figure 7 reinforces our conclusion that

more constrained firms are riskier and earn higher expected returns than less constrained firms.

4 Quantitative Implications

We now study quantitative implications of our models. We continue to focus on two key issues, the

relation between financial constraints and stock returns and the cyclicality of financial constraints.

Our experiment design follows that of Kydland and Prescott (1982) and Berk, Green, and Naik

(1999). We simulate 100 artificial panels, each of which has 3000 firms and 480 months. The sample

size is similar to that used in empirical studies based on the CRSP-COMPUSTATE merged dataset.

We implement a variety of empirical procedures on each artificial panel and report the across-

simulation averaged results. Whenever possible, we compare model moments with those in the data.

4.1 Financial Constraints and Stock Returns

We first look at the quantitative relations between the multipliers and average returns. Using the

Fama and French (1993) portfolio approach, we construct portfolios by sorting on the multipliers,

with and without controlling for size and book-to-market. Because the multipliers are the pre-

cise measures of financial constraints in our models, our results can help interpret the evidence in

Lamont, Polk, and Saá-Requejo (2001) and Whited and Wu (2006).
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One-Way Sort

Table 2 reports the average monthly stock returns for ten portfolios sorted annually on the mul-

tipliers in simulated panels. Besides Models 1 and 2 reported in Panels A and B, we also report

results from two alternative calibrations of Model 2. Panel C considers the high-liquidation-cost

case for Model 2, in which the liquidation value per unit of capital, s, is reset to be 0.70, lower

than its benchmark calibration of 0.85. We consider this case because Hennessy and Whited (2005)

estimate the parameter s to be 0.59, albeit with a high p-value of 0.35. Panel D considers the

low-fixed-floatation-cost case for Model 2, in which the fixed floatation cost parameter, λ0, is reset

to be 0.02. Between the benchmark and the two alternative cases of Model 2, we cover a broad

range of empirically plausible parameter values for s and λ0.
9

From Panel A of Table 2, the one-way sort on the multiplier, µjt, in Model 1 generates a

positive relation between the multiplier and average returns. The average value-weighted return

increases monotonically from 0.65% per month for the low-multiplier (least constrained) portfolio

to 1.24% per month for the high-multiplier (most constrained) portfolio. And the average-return

difference between the two extreme deciles is 0.59% with a significant t-statistic of 5.11. Using

equally-weighted returns yields a similar return spread of 0.57 (t-statistic = 5.13).

As shown in Panel B of Table 2, sorting on the multiplier, νjt, from Model 2 also produces a

positive, monotonic relation between the multiplier and average returns. However, the average-

return spread between the two extremes is only 0.30% per month (t-statistic = 4.42) in the

benchmark case of Model 2, only about one half of the return spread in Model 1. This quantitative

result is consistent with our earlier observation that the multiplier is less sensitive to shocks in Model

2 than that in Model 1. The reason is that firms in Model 2 have multiple sources of external finance,

and are more flexible financially than firms in Model 1. Finally, from Panels C and D, raising the

liquidation-cost parameter and lowering the fixed-floatation-cost parameter both serve to increase

9We have also tried comparative statics for the cases with symmetric adjustment cost, aP = aN = 15, low fixed
cost of production, f =0.025, high fixed cost of production, f =0.030, low conditional volatility of firm-specific shock,
σz =0.075, and high conditional volatility of firm-specific shock, σz =0.125. Our results are basically unchanged.
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somewhat the average-return spread between the most-constrained and the least-constrained

portfolios. And our basic conclusion regarding the positive multiplier-return relation is unchanged.

Controlling for Size and Book-to-Market

Using their respective measures of financial constraints, Lamont, Polk, and Saá-Requejo (2001)

and Whited and Wu (2006) document that, after controlling for market capitalization, the average-

return spread between the most constrained and the least constrained firms is statistically indis-

tinguishable from zero. We now ask whether our models are consistent with this finding.

Specifically, we conduct on artificial panels two-way sorts on the multiplier—µjt from Model 1

and νjt from Model 2—and the market capitalization, measured as the ex-dividend market value

of equity—vjt−djt in Model 1 and vjt−ojt in Model 2. Following Lamont, Polk, and Saá-Requejo

(2001) and Whited and Wu (2006), we define small-cap firms (S), mid-cap firms (M), and large-cap

firms (L) as firms in the bottom 40%, the middle 20%, and the top 40% of the sample sorted on the

market capitalization, respectively. Similarly, low-, middle-, and high-multiplier portfolios contain

firms in the bottom 40% (L), the middle 20% (M), and the top 40% (H) of the sample sorted on

the multiplier, respectively. We then define the average high-multiplier portfolio as HIGHFC =

(BH + MH + SH)/3, and the average low-multiplier portfolio as LOWFC = (BL + ML + SL)/3,

and the financial constraints factor as FC = HIGHFC − LOWFC.

Table 3 reports the model-implied average returns of the two-way sorted portfolios in excess of

the risk-free rate, rft, and compares the model moments with the data moments. From the last two

columns of the table, Lamont, Polk, and Saá-Requejo (2001) and Whited and Wu (2006) estimate

the average return of FC to be −0.13% per month (t-statistic = −1.17) and 0.18% (t-statistic =

0.95), respectively. (The t-statistic for the average FC-return from Lamont et al. is calculated by

the authors based on the information reported in their Table 5.) The average FC return in Model

1 is 0.42% per month (t-statistic = 2.05). And Model 2 appears to do a better job in matching

the data moments; its implied average FC return is 0.19% (t-statistic = 0.76) in the benchmark
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parametrization. Changing the liquidation-cost parameter and the fixed-floatation-cost parameter

does not materially affect our quantitative results on the financial constraints factor.

A natural question arises: Why does the relation between financial constraints and average

returns appear significant in the one-way sort but largely insignificant in the two-way sort? The

reason is that risk and expected returns are determined jointly with other endogenous variables

such as size, book-to-market, and the multipliers by the underlying state variables. In Model 1,

firms differ in capital stock kjt and firm-specific productivity zjt. In Model 2, firms also differ in

current debt, bjt. The cross section of risk and expected returns is ultimately determined by these

firm-specific state variables, and the cross section also varies over time, depending on aggregate

productivity, xt (see Figures 3 and 7). The multipliers are correlated with risk and expected returns

because they contain information about the state variables that determine risk and expected re-

turns. More important, the information in the multipliers is not all independent of the information

in size and book-to-market because of their joint determination.

Table 4 shows that size and book-to-market in our models largely subsume the effects of fi-

nancial constraints on risk and expected returns. Using simulated data, the table reports the

Fama-MacBeth (1973) monthly cross-sectional regressions of stock returns, rjt+1, from the begin-

ning of time t to the beginning of time t+1, onto the multiplier, size, and book-to-market equity, all

measured at the beginning of time t. Size is measured as the logarithm of the market value of equity,

and book-to-market equity is measured as ln[kjt/(vjt−djt)] in Model 1 and ln[(kjt−bjt)/(vjt−ojt)]

in Model 2. The tables reports that the slopes of the multipliers are all positive and significant in

univariate regressions, but become insignificant and even slightly negative in multiple regressions

once we control for size and book-to-market equity.

4.2 Financial Constraints, Firm Characteristics, and Business Cycles

Because the shadow price of new funds is unobservable in the data, researchers are forced to use

observable firm characteristics to serve as proxies for financial constraints. In the model simula-
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tions, however, we can calculate the Lagrange multipliers associated with financial constraints as

precise measures of the shadow prices of new funds. It is therefore interesting to ask, using our

theoretical models as natural laboratories, how well the characteristics commonly used in practice

can proxy for financial constraints. The answer is fairly positive.

The first set of characteristics we study is motivated from Whited and Wu (2006), who use

cash flow to assets (CFjt, measured as πjt/kjt in both models); debt to assets (TLTDjt, measured

as bjt1
b
jt/kjt in Model 2, undefined in Model 1); the logarithm of assets (LNTAjt, measured as

log(kjt)); sales growth (SGjt, measured as yjt/yjt−1); and a dividend dummy (DIV POSjt, which

takes the value of one if djt > 0 in Model 1 and if ojt > 0 in Model 2). Whited and Wu estimate

the Lagrange multiplier on a dividend nonnegativity constraint in a framework similar to Model 1,

and define the estimated multiplier as the Whited-Wu (WW ) index of financial constraints:10

WWjt = −0.091CFjt − 0.062DIV POSjt + 0.021TLTDjt − 0.044LNTAjt − 0.035SGjt (22)

Panel A of Table 5 reports Fama-MacBeth (1973) cross-sectional regressions of the Lagrange

multipliers onto contemporaneous firm characteristics motivated from Whited and Wu (2006). Con-

sistent with their evidence, our simulations show that firms are more constrained financially if they

have lower ratios of cash flow to assets, higher ratios of debt to assets, lower sales, lower contem-

poraneous sales growth, and zero rather than positive dividend payments. Moreover, the slope

coefficients of these characteristics are reasonably close to those reported in the data.

We also consider a set of firm characteristics used by Lamont, Polk, and Saá-Requejo (2001)

to proxy for financial constraints, characteristics in turn motivated from Kaplan and Zingales

(1997). The list includes cash flow to assets (CFjt), debt to assets (TLTDjt), dividends to assets

(TDIVjt, measured as djt/kjt in Model 1, and ojt(1 − 1e
jt)/kjt in Model 2), liquid assets or cash to

10Whited and Wu (2006) also use industry sales growth in their financial constraints index. We do not use this
variable in our simulations because our one-sector models provide no cross-sectional variations in industry sales
growth. If we include this term in the estimation, it will simply be absorbed into the intercept term. Our models
can equivalently be interpreted as multi-sector models by treating firm-specific shocks as industry shocks. But then
industry sales growth coincides with firm-level sales growth, SGjt.
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assets, (CASHjt, measured as −bjt(1 − 1b
jt)/kjt in Model 2, undefined in Model 1), and Tobin’s Q

measured as (vjt − djt)/kjt in Model 1 and (vjt − ojt + bjt)/kjt in Model 2. Kaplan and Zingales

classify firms on a scale from one to four on financial constraints, and perform an ordered logit of

the scale onto the above characteristics. Lamont et al. then use these logit coefficients to construct

an index of financial constraints, called the Kaplan-Zingales (KZ) index, as:

KZjt = −1.002CFjt + 3.139TLTDjt − 39.368TDIVjt − 1.315CASHjt + 0.283Qjt (23)

Panel B of Table 5 reports Fama-MacBeth (1973) cross-sectional regressions of the multipliers

onto contemporaneous firm characteristics motivated from Kaplan and Zingales (1997). Consistent

with their evidence, our simulations show that firms are more constrained financially if they have

lower cash flow relative to assets, higher debt relative to assets, lower ratios of dividends to assets,

lower liquid assets or cash relative to total assets, and higher Tobin’s Q. It is tempting to compare

quantitatively the slopes from the models to those reported in Lamont, Polk, and Saá-Requejo

(2001). However, doing so is inappropriate because the slopes in the data are from ordered logit

regressions. We opt to use more precise OLS regressions in simulations because we can calculate

precisely the multipliers using simulated data.

More interesting, armed with the effectively observable multipliers in model simulations, we can

use Model 2 as a laboratory to evaluate the relative quality of the KZ index and the WW index as

measures of financial constraints. Model 1 is unfit for this task because debt to assets and cash to

assets are not defined in that model. Specifically, we perform Fama-MacBeth (1973) cross-sectional

regressions of the multiplier, νjt, onto the indexes, KZjt and WWjt, both separately and jointly.

And we use the relative magnitudes of the slopes and the average cross-sectional R2s as measures of

relative quality for the indexes. To make the magnitudes of their slopes comparable, we standardize

both indexes by dividing their demeaned values with their respective standard deviations before

using them in the cross-sectional regressions.

From Table 6, both the KZ index and the WW index are positively correlated with the true
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multiplier. More important, the WW index appears to do a much better job than the KZ index

as a proxy for the multiplier. From Panel A, in Model 2 with the benchmark parametrization, the

average cross-sectional R2 from regressing the multiplier onto the WW index alone is 33.10%, almost

three times higher than the R2 from using the KZ index as the regressor, which is only 12.87%.

The slope of the WW index in the joint regression with both indexes is 0.0576, more than eight

times of the magnitude for the KZ slope, 0.0070. The two alternative parameterizations of Model 2

yield quantitatively similar, if not stronger, results. In the joint regression in Panel C with low fixed

floatation costs, the slope of the WW index is 0.15 with a significant t-statistic of 6.94. In contrast,

the slope of the KZ index is now negative, −0.0161, albeit insignificant. To sum up, the KZ index

largely looses its explanatory power for financial constraints in the presence of the WW index.

Finally, there also exists some evidence on the cyclical properties of financial constraints. Using

data on cross-sectional returns, Gomes, Yaron, and Zhang (2006) report that the shadow price of

new equity is procyclical. In untabulated results, we find that the population, time-series correla-

tions between the multiplier averaged across firms and aggregate productivity are 0.63 in Model 1,

0.60 in the benchmark parametrization of Model 2, and 0.59 and 0.69 in the high-liquidation-cost

and low-fixed-floatation-cost cases of Model 2, respectively. These quantitative results are con-

sistent with our earlier analysis based on Figures 2 and 6. Replacing aggregate productivity by

aggregate investment-to-capital, measured as
∑3000

j=1 ijt/
∑3000

j=1 kjt in simulations, lowers the corre-

sponding correlations to 0.39, 0.36, 0.31, and 0.31, respectively. The correlations are lower because

the aggregate investment-to-capital is an imperfect proxy for aggregate productivity. Our models

thus provide a microfoundation for the interpretation in Gomes et al. that financial constraints are

more binding when aggregate economic conditions are relatively good.

5 Conclusion

We construct two dynamic, neoclassical models to study the structural relations between financial

constraints, stock returns, and business cycles. In Model 1, firms face dividend nonnegativity con-
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straints in a simple setting without debt or retained earnings. Model 2 is more realistic because

firms can retained earnings, raise debt and equity, and face collateral constraints on debt capacity.

The models predict that small firms, less profitable firms, and firms in debt are more likely to be

financially constrained. These firms are also riskier and earn higher expected returns, although

the effects of financial constraints on risk and expected returns can largely be subsumed quantita-

tively by market capitalization and book-to-market equity. Finally, because the stochastic discount

factor makes capital investment more sensitive to aggregate shocks, financial constraints are more

important when aggregate economic conditions are relatively good.
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A Derivations of the Lagrange Multipliers

To derive equation (11), we combine the dividend nonnegativity constraint in equation (8) with the
value function in equation (9). The resultant Lagrangian formulation of the value function, when
evaluated at optimum, can be written as:

v(kjt, zjt, xt) = (1 + µjt)d(kjt, ijt, zjt, xt) + Et [mt+1v(kjt+1, zjt+1, xt+1)]

Since d(kjt, ijt, zjt, xt) is continuously differentiable with respect to kjt, v(kjt, zjt, xt) is also differ-
entiable with respect to kjt (see, for example, Theorem 9.10 in Stokey and Lucas with Prescott
1989). Equation (11) follows by differentiating both sides with respect to kjt and using the Envelope
Theorem (see, for example, Theorem M.L.1 in Mas-Colell, Whinston, and Green 1995).

To characterize the multiplier given in equation (21) for Model 2, we first write down the
infinite-horizon, Lagrangian formulation of the value function, denoted L, as follows:

Ljt = · · · + π(kjt, zjt, xt) +
bjt+1

ιjt
− φ(ijt, kjt) − bjt − λ(ejt, kjt) − νjt(bjt+1 − s(1 − δ)kjt+1) +

Et

[
mt+1

(
π(kjt+1, zjt+1, xt+1) +

bjt+2

ιjt+1
− φ(ijt+1, kjt+1) − bjt+1 − λ(ejt+1, kjt+1) − νjt+1(bjt+2 − s(1 − δ)kjt+2) + · · ·

)]

Note that Ljt is differentiable almost everywhere except when π(kjt, zjt, xt)+bjt+1/ιjt−φ(ijt, kjt)−
bjt =0. Thus, we can characterize νjt analytically only in the case when ejt is strictly positive.

When ejt >0, differentiating Ljt with respect to bjt+1 and recognizing

ejt = φ(ijt, kjt) + bjt − π(kjt, zjt, xt) −
bjt+1

ιjt

we obtain

∂Ljt

∂bjt+1
=

1

ιjt
+

1

ιjt
λe(ejt, kjt)1

e
jt − νjt − Et[mt+1(1 + λe(ejt+1, kjt+1)1

e
jt+1)] = 0

Solving for νjt gives us:

νjt =
1

ιjt
[1 + λe(ejt, kjt)1

e
jt] − Et[mt+1(1 + λe(ejt+1, kjt+1)1

e
jt+1)] (A1)

We can simplify equation (A1) further by noting that the collateral constraint binds (νjt >0) when
bjt+1 >0 and ιjt =rft =1/Et[mt+1]. Equation (A1) then becomes:

νjt =
1

rft
λe(ejt, kjt)1

e
jt − Et[mt+1λe(ejt+1, kjt+1)1

e
jt+1] (A2)

B Computation

We use the discrete-state value function iteration technique to solve the dynamic value-
maximization problems of firms in both Models 1 and 2. Piecewise linear interpolation is used
extensively to obtain firm value and policy functions which do not lie directly on the grid points.
The Matlab programs used to solve the dynamic programming problems and the C++ programs
used to simulate the models in this paper are available upon request.
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B.1 Model 1: Dividend Nonnegativity Constraints

For Model 1, the value function and the optimal investment policy are solved on a grid in a discrete
state space. We specify a grid with 50 points for the capital stock with an upper bound k (large
enough to be nonbinding at all times). Following McGrattan (1999), we construct the grid for
capital stock recursively, i.e., ki =ki−1 + ck1 exp (ck2 (i − 2)), where i=1, . . . , 50 is the index of grid
points, and ck1 and ck2 are two constants chosen to provide the desired number of grid points and
k, given a pre-specified lower bound k. The advantage of this recursive construction is that more
grid points are assigned around k, where the value function has most of its curvature.

The state variables x and z are defined on continuous state spaces that can be transformed into
discrete state spaces using the Rouwenhorst (1995) methods. We use three grid points for the x
process and five points for the z process. In all cases our results are robust to finer grids. Once the
discrete state space is available, the conditional expectation operator can be carried out as a matrix
multiplication. The expected return Et[rjt+1] = Et[vjt+1]/(vjt−djt) can be calculated in a similar
way. Piecewise linear interpolation is used extensively to obtain firm value, optimal investment, and
expected return, which do not lie directly on the grid points. Finally, to solve for the Lagrange multi-
plier on the grid according to equation (11), we use numerical differentiation to calculate the first or-
der derivative vk with quadratic accuracy (e.g., Judd 1998, p.281). dk can be calculated analytically.

B.2 Model 2: Collateral Constraints

Model 2 is substantially more challenging to solve than Model 1.

The capital stock in each period is constrained to be an element of the linear finite time-invariant
set K = {k1, ..., kNK

}, with total of NK = 50 elements (grid points). For any optimal capital stock
on the grid, the finer grid used for the interpolation consists of 1000 evenly spaced points. The
face value of one-period debt, b, in each period is constrained to be an element of the linear finite
time-invariant set B = {b1, ..., bNB

}, centered around zero with total of NB = 2NK + 1 = 101
elements (grid points). The boundaries of the set, {b1, bNB

} are the same for any ki ∈ K are chosen
to satisfy a weaker form of the collateral constraints:

{b1, bNB
} = ±s(1 − δ)kNK

For any optimal debt on the grid chosen from a first-pass optimization, the finer grid used for
the interpolation consists of 1001 evenly spaced points. The state variables x ∈ X and z ∈ Z are
defined on continuous state spaces. We again transform the state spaces into discrete ones using the
Rouwenhorst (1995) methods. We use nine points for the z process and five points for the x process.

We can formulate the dynamic value-maximization problem on the grid as follows:

vn(ki, bj, zl, xm) = max
{k′,b′}∈K′×B′

{π(ki, zl, xm) +
b′

ι(xm)
− bj − φ(k′, ki) − λ(e(ki, bj , zl, xm, k′, b′), kj)+

+

9∑

l=1

5∑

m=1

ηe(γ0+γ1(xm−x))(xm−x′)ṽn−1(k′, b′, zl′ , xm′)Qz(zl′ |zl)Qx(xm′ |xm) (A3)

where ṽ incorporates the collateral constraint as follows:

ṽn = vn1{b′≤s(1−δ)k′} − 1010(1 − 1{b′≤s(1−δ)k′})
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and n indicates the number of value iterations. vn : K × B × X × Z is a list of 227,250 values as
compared to 8,250 values used for Model 1.

The algorithm can be described as follows:

• Make a guess for vn−1(k, b, z, x) on the right hand side of (A3). It will be an 25 × 51 × 9 × 5
object.

• For each {k, b, z, x} ∈ K × B × X × Z point use local linear interpolation to construct
vn−1(k′, b′, z, x). In Matlab, reshape the vn−1 into a traditional K × B matrix and again
reshape after the interpolation to form a three-dimensional object vn−1(k′, b′, z, x). Since
K × B is not a square matrix, it requires to perform interpolation along each dimension
separately. The order is not important.

• On the K′ × B′grid construct 1{b′≤s(1−δ)k′} which is a three-dimensional object of zeros and
ones and use it to construct ṽn−1(k′, b′, z, x).

• For each {k, b, z, x} ∈ K × B ×X × Z solve for optimal {k∗(k, b, z, x), b∗(k, b, z, x)} ∈ K′ ×B′

from

{k′(k, b, z, x), b′(k, b, z, x)} = arg max
{k′,b′}∈K′×B′

{
b′

ι(xm)
− φ(k′, ki) − λ(e(ki, bj , zl, xm, k′, b′), kj)+

+

9∑

l=1

5∑

m=1

ηe(γ0+γ1(xm−x))(xm−x′)Qz(zl′ |zl)Qx(xm′ |xm)ṽn−1(k′, b′, zl′ , xm′)}

by doing a simple grid search along k′ holding b′ fixed and then along b′ for each k∗.

• Construct vn(k, b, z, x) from equation (A3).

• Check for conversion using maximum error algorithm

max
∣∣vn(k, b, z, x) − vn−1(k, b, z, x)

∣∣ < ǫ = 10−5.

• If the conversion criteria is not satisfied set vn(k, b, z, x) as a new guess and repeat all of the
above steps.

35



Table 1 : Benchmark Parameter Values

This table lists the benchmark parameter values used to solve and simulate Model 1 with the dividend nonnegativity constraints and Model 2 with the collateral

constraints. Panel A reports the parameters common to both models, and Panel B reports the parameters specific to Model 2.

Notation Parameter Value Description

Panel A: Parameters Common to Both Models 1 and 2

α 0.30 Capital share in production
δ 0.01 Monthly rate of capital depreciation

ρx 0.951/3 Persistence coefficient of aggregate productivity
σx 0.007/3 Conditional volatility of aggregate productivity
η 0.994 Time-preference coefficient
γ0 50 Constant price of risk parameter
γ1 −1000 Time-varying price of risk parameter
aP 15 Adjustment-cost parameter when investment is positive
aN 150 Adjustment-cost parameter when investment is negative
ρz 0.96 Persistence coefficient of firm-specific productivity
σz 0.10 Conditional volatility of firm-specific productivity
f 0.0275 Fixed cost of production

Panel B: Parameters Specific to Model 2

s 0.85 Liquation value per unit of capital net of bankruptcy cost
λ0 0.08 Fixed floatation cost parameter
λ1 0.025 Proportional floatation cost parameter
κ 0.50%/12 Monthly wedge between the borrowing and saving rates of interest
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Table 2 : Monthly Stock Returns of Portfolios Based on One-Way Sorts on the Multiplier in Model Simulations

This table reports descriptive statistics for ten value-weighted and ten equal-weighted portfolios from one-way sorts on the Lagrange multiplier from Models 1 and

2. We report average returns in percent per month for each portfolio as well as the average high-minus-low portfolios and its t-statistics. We sort all firms based

on their Lagrange multipliers at the beginning of each year and then hold the portfolios for the whole year. For each model, we simulate 100 artificial panels,

each of which has 3000 firms and 480 monthly observations, and we then report the across-simulation averaged results. Panel A reports the quantitative results

from Model 1, in which all firms face the dividend nonnegativity constraints without corporate saving and borrowing. Panel B reports the results from Model

2, in which all firms can save but face the collateral constraints on borrowing. And Panel B reports the simulation results from Model 2 using the benchmark

parameters reported in Table 1. Panel C reports the simulation results from Model 2 using the benchmark parameters except that the liquidation value per unit

of capital net of liquidation costs, s, is set to be 0.70. Finally, Panel D reports the simulation results from Model 2 using the benchmark parameters except that

the fixed cost of equity financing, λ0, is set to be 0.02.

Low 2 3 4 5 6 7 8 9 High FC tFC

Panel A: Model 1

Value-weighted 0.65 0.68 0.72 0.74 0.79 0.83 0.85 0.87 0.98 1.24 0.59 (5.11)
Equally-weighted 0.61 0.63 0.67 0.70 0.73 0.79 0.80 0.82 0.93 1.18 0.57 (5.13)

Panel B: Model 2 (the Benchmark Parametrization)

Value-weighted 0.54 0.61 0.64 0.67 0.68 0.70 0.74 0.76 0.78 0.84 0.30 (4.42)
Equally-weighted 0.42 0.49 0.52 0.55 0.56 0.59 0.62 0.65 0.67 0.73 0.31 (3.76)

Panel C: Model 2 (High Liquidation Cost, s = 0.70)

Value-weighted 0.33 0.37 0.39 0.44 0.48 0.49 0.55 0.57 0.60 0.71 0.38 (4.87)
Equally-weighted 0.27 0.31 0.33 0.37 0.39 0.39 0.44 0.47 0.51 0.62 0.35 (4.08)

Panel D: Model 2 (Low Floatation Cost, λ0 = 0.02)

Value-weighted 0.50 0.60 0.64 0.71 0.74 0.74 0.79 0.83 0.89 1.03 0.53 (5.44)
Equally-weighted 0.38 0.47 0.52 0.59 0.62 0.62 0.68 0.71 0.77 0.91 0.53 (4.87)

37



Table 3 : Average Monthly Percentage Returns for Portfolios Sorted on the Multiplier and Market Capitalization in Model
Simulations

This table reports average returns in monthly percent for nine value-weighted portfolios sorted on the market capitalization and the Lagrange multiplier in model

simulations. The rankings are performed annually and independently such that each portfolio contains firms both in a given size category and a given financial

constraints category. Following Lamont, Polk, and Saá-Requejo (2001) and Whited and Wu (2006), we define small-cap firms (S) as firms that are in the bottom

40% of the sample sorted on market capitalization, mid-cap firms (M) are firms in the middle 20% of the sample, and large-cap firms (B) are firms in the top 40%

of the sample. Similarly, low-, middle-, and high-multiplier are firms in the bottom 40% (L), the middle 20% (M), and the top 40% (H) of the sample sorted on

the multiplier, respectively. We also define the average high-FC portfolio as HIGHFC = (BH + MH + SH)/3, and the average low-FC portfolio as LOWFC =

(BL + ML + SL)/3, and the financial constraints factor as FC = HIGHFC − LOWFC. For each model, we simulate 100 artificial panels, each of which has 3000

firms and 480 monthly observations, and we then report the across-simulation averaged results. The third column reports the quantitative results from Model

1, in which all firms face the dividend nonnegativity constraints. The fourth column reports the results from Model 2, in which all firms can save but face the

collateral constraints on borrowing. This column reports the simulation results from Model 2 using the benchmark parameters reported in Table 1. The fifth

column reports the simulation results from Model 2 using the benchmark parameters except that the liquidation value per unit of capital net of liquidation costs,

s, is set to be 0.70. And the sixth column reports the simulation results from Model 2 using the benchmark parameters except that the fixed floatation cost of

equity, λ0, is set to be 0.02. The last two columns report those from Table I of Lamont et al. and from Table 4 of Whited and Wu (2006).

Category Model 1 Model 2 Model 2 Model 2 Lamont et al. Whited and Wu
(Benchmark) (s = 0.70) (λ0 = 0.02) (2001) (2005)

Small-cap firms
Low FC SL 1.32 0.81 0.12 0.86 0.45 0.89
Middle FC SM 1.62 0.85 0.32 0.95 0.67 0.66
High FC SH 2.40 0.91 0.55 1.05 0.38 0.83

Mid-cap firms
Low FC ML 1.03 0.69 0.07 0.70 0.37 0.65
Middle FC MM 1.27 0.70 0.19 0.73 0.56 0.81
High FC MH 0.97 0.72 0.09 0.79 0.26 0.74

Large-cap firms
Low FC BL 0.86 0.35 0.04 0.50 0.47 0.71
Middle FC BM 0.89 0.56 0.06 0.56 0.53 0.96
High FC BH 1.11 0.79 0.10 0.63 0.25 1.23

HIGHFC 1.49 0.81 0.25 0.82 0.30 0.93
LOWFC 1.07 0.62 0.08 0.69 0.43 0.75

FC 0.42 0.19 0.17 0.13 −0.13 0.18
t-statistics of FC (2.05) (0.76) (0.81) (0.50) (−1.17) (0.95)
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Table 4 : Fama-MacBeth (1973) Monthly Cross-Sectional Regressions of Percentage Stock Returns onto Lagrange Multiplier,
Size, and Book-to-Market in Model Simulations

This table reports the Fama-MacBeth (1973) monthly cross-sectional regressions of stock returns, rjt+1, onto the Lagrange multiplier, size, and book-to-market,

all measured at the beginning of month t. µjt denotes the multiplier in Model 1, and νjt denotes the multiplier in Model 2. ln(ME) is the logarithm of the

total market value of equity, measured as ln(vjt − djt) in Model 1 and ln(vjt − ojt) in Model 2. ln(BE/ME) is the logarithm of the book-to-market equity ratio,

measured as ln(kjt/(vjt −djt)) in Model 1 and ln((kjt− bjt)/(vjt −ojt)) in Model 2. For each model, we simulate 100 artificial panels, each of which has 3000 firms

and 480 monthly observations, and then report the across-simulation averaged Fama-MacBeth slopes and t-statistics. Panel A reports the quantitative results

from Model 1, in which all firms face the dividend nonnegativity constraints without corporate saving and borrowing. Panel B reports the results from Model 2,

in which all firms can save but face the collateral constraints on borrowing. Panel B reports the simulation results from Model 2 using the benchmark parameters

reported in Table 1. Panel C reports the simulation results from Model 2 using the benchmark parameters except that the liquidation value per unit of capital

net of liquidation costs, s, is set to be 0.70. Finally, Panel D reports the simulation results from Model 2 using the benchmark parameters except that the fixed

floatation cost, λ0, is set to be 0.02.

Panel A: Model 1 Panel B: Model 2 (The Benchmark Parametrization)

µjt ln(ME) ln(BE/ME) νjt ln(ME) ln(BE/ME)

1.39 6.23
(2.98) (2.79)

0.99 −15.93 12.78 2.60 −2.99 0.42
(1.81) (−2.46) (2.53) (0.65) (−2.51) (2.60)

Panel C: Model 2 (High Liquidation Cost, s = 0.70) Panel D: Model 2 (Low Fixed Floatation Cost, λ0 = 0.02)

νjt ln(ME) ln(BM) νjt ln(ME) ln(BM)

2.56 5.15
(2.83) (3.22)

1.20 −1.54 0.76 −0.11 −3.10 0.24
(1.16) (−2.21) (1.92) (−0.14) (−2.36) (1.61)
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Table 5 : Cross-Sectional Determinants of the Lagrange Multipliers in Model Simulations

This table reports Fama-MacBeth (1973) monthly cross-sectional regressions of the multipliers. Panel A reports the regression similar to that reported in column

4 of Table I in Whited and Wu (2006): µjt (or νjt)=b0 + b1CF jt + b2TLTDjt + b3LNTAjt + b4SGjt + b5 DIV POSjt + ǫjt, where µjt is the multiplier in Model

(Mod) 1 and νjt is the multiplier in Model 2 for firm j during month t. CFjt is the cash flow-to-asset ratio, TLTDjt is the total debt-to-assets ratio, LNTAjt

is the logarithm of the total assets, SGjt is the firm-level sales growth, and DIV POSjt is a dummy variable that equals one if firm j has paid dividends during

month t, and equals zero otherwise. Panel B reports the regression similar to that reported in Table 9 in Lamont, Polk, and Saá-Requejo (2001), the regression

which is in turn based on Kaplan and Zingales (1997): µjt (or νjt)= b0 + b1CF jt + b2TLTDjt + b3TDIV jt + b4CASHjt + b5Qjt + ǫjt, where CFjt is the cash

flow-to-asset ratio, TLTDjt is the total debt-to-assets ratio, TDIVjt is the dividend-to-assets ratio, CASHjt is the ratio of total amount of liquid assets or cash

divided by assets, and Qjt is Tobin’s Q. The t-statistics are shown in parentheses. We report quantitative results for Model 1, in which all firms face the dividend

nonnegativity constraints, and three parameterizations of Model 2, in which all firms can save but face the collateral constraints on borrowing. These three cases

include the benchmark parametrization reported in Table 1; the high-liquidation-cost case with the liquidation value per unit of capital net of liquidation costs,

s, being 0.70; and the low fixed-floatation-cost case with the fixed floatation cost of equity, λ0, being 0.02. For each case, we simulate 100 artificial panels, each of

which has 3000 firms and 480 months, and we then report the across-simulation averaged results. We also compare our simulated results to those from Lamont

et al. and Whited and Wu (reported in the “Data” column).

Panel A: µjt (or νjt)=b0 + b1CF jt + b2TLTDjt + b3LNTAjt + b4SGjt + b5 DIV POSjt + ǫjt, motivated from Whited and Wu (2006)

Cash Flow/Assets, CF Total Debt/Assets, TLTD log(Sales), LNTA Sales Growth, SG Dividend Dummy, DIV POS

Data Mod 1 Mod 2 Data Mod 1 Mod 2 Data Mod 1 Mod 2 Data Mod 1 Mod 2 Data Mod 1 Mod 2

−0.09 −0.13 −0.14 0.02 − 0.01 −0.04 −0.15 −0.03 −0.04 −0.18 −0.00 −0.06 −0.00 −0.05
(−2.94) (−8.77) (−8.02) (1.91) − (3.66) (−1.91) (−8.89) (−7.39) (−1.52) (−5.28) (−2.15) (−2.14) (−1.73) (−2.69)

Mod 2 (s=0.70) (λ0 =0.02) Mod 2 (s=0.70) (λ0 =0.02) Mod 2 (s=0.70) (λ0 =0.02) Mod 2 (s=0.70) (λ0 =0.02) Mod 2 (s=0.70) (λ0 =0.02)

−0.02 −0.20 0.03 0.03 −0.03 −0.03 −0.00 −0.00 −0.02 −0.09
(−4.17) (−3.91) (3.84) (2.40) (−6.11) (−3.20) (−3.58) (−2.05) (−2.10) (−2.09)

Panel B: µjt (or νjt)=b0 + b1CF jt + b2TLTDjt + b3TDIV jt + b4CASHjt + b5Qjt + ǫjt, motivated from Kaplan and Zingales (1997)

Cash Flow/Assets, CF Total Debt/Assets, TLTD Dividends/Assets, TDIV Cash/Assets, CASH Tobin’s Q, Q

Data Mod 1 Mod 2 Data Mod 1 Mod 2 Data Mod 1 Mod 2 Data Mod 1 Mod 2 Data Mod 1 Mod 2

−1.00 −2.88 −1.06 3.14 − 1.78 −39.37 −17.34 −6.28 −1.32 − −0.86 0.28 1.27 0.37
(−4.28) (−6.66) (−4.67) (6.99) − (3.79) (−6.46) (−6.91) (−8.99) (−4.55) − (−2.11) (3.63) (6.04) (5.28)

Mod 2 (s=0.70) (λ0 =0.02) Mod 2 (s=0.70) (λ0 =0.02) Mod 2 (s=0.70) (λ0 =0.02) Mod 2 (s=0.70) (λ0 =0.02) Mod 2 (s=0.70) (λ0 =0.02)

−0.73 −2.22 1.84 0.93 −6.33 −6.49 −1.01 −0.56 0.77 0.52
(−4.61) (−6.75) (7.36) (3.38) (−5.10) (−8.64) (−5.68) (−3.05) (6.20) (5.92)
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Table 6 : Fama-MacBeth (1973) Cross-Sectional Regressions of the Lagrange Multiplier onto the Kaplan and Zingales (1997)
Index and the Whited and Wu (2006) Index of Financial Constraints, Model 2 with the Collateral Constraints

Using simulated panels from Model 2 with collateral constraints, this table reports the Fama-MacBeth (1973) monthly cross-sectional regressions of the Lagrange

multiplier, νjt, onto the Kaplan and Zingles (1997, KZ) index and the Whited and Wu (2006, WW ) index of financial constraints, both separately and jointly.

We simulate 100 artificial panels, each of which has 3000 firms and 480 monthly observations, and then report the across-simulation averaged Fama-MacBeth

slopes, heteroscedasticity and autocorrelation-consistent t-statistics (in parentheses), and average cross-sectional R2s. We also report the average cross-sectional

correlation between the KZ index and the WW index. Panel A reports the quantitative results from the benchmark parametrization of Model 2 with the

parameter values in Table 1. Panel B reports the results from Model 2 using the benchmark parameters except that the liquidation value per unit of capital net

of liquidation costs, s, is set to be 0.70. Finally, Panel C reports the results from Model 2 using the benchmark parameters except that the fixed floatation cost,

λ0, is set to be 0.02.

Panel A: Model 2 (the Benchmark Case)

KZ R2 WW R2 KZ WW R2 Corr(KZ, WW )

0.0269 12.87% 0.0579 33.10% 0.0070 0.0576 36.88% 0.50
(13.13) (10.52) (3.54) (8.65)

Panel B: Model 2 (the High-Liquidation-Cost Case)

KZ R2 WW R2 KZ WW R2 Corr(KZ, WW )

0.0241 21.44% 0.0748 55.41% 0.0027 0.0735 56.52% 0.56
(14.57) (13.30) (2.88) (11.75)

Panel C: Model 2 (the Low-Floatation-Cost Case)

KZ R2 WW R2 KZ WW R2 Corr(KZ, WW )

0.0287 7.04% 0.1413 46.01% −0.0161 0.1548 49.04% 0.47
(2.16) (7.35) (−1.13) (6.94)
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Figure 1 : The Value and Investment-Policy Functions Against Underlying State Variables,
Model 1 with the Dividend Nonnegativity Constraint

This figure plots for Model 1 the market-to-book ratio (vjt/kjt, Panels A and B) and the investment-to-capital ratio

(ijt/kjt, Panels C and D) as functions of the state variables. Panels A and C plot the variables as functions of capital

stock kjt and firm-specific productivity zjt, while fixing the aggregate productivity xt at its long run average level

x̄. Both Panels A and C have a class of curves corresponding to different values of zjt, and the arrow in each panel

indicates the direction along which zjt increases. Panels B and D plot the variables as functions of capital stock kjt

and the aggregate productivity xt, while fixing the firm-specific productivity zjt at its long run average level z̄j =0.

Panels B and D have a class of curves corresponding to different values of xt, and the arrows indicate the direction

along which x increases.

Panel A: vjt(kjt, zjt, x̄)/kjt Panel B: vjt(kjt, z̄j , xt)/kjt
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Figure 2 : The Multiplier Against Underlying State Variables: Model 1 with the Dividend
Nonnegativity Constraint, the Benchmark Case and the Constant-Discount-Factor Case

For Model 1 under the benchmark parametrization with stochastic discount factor (γ0 = 50, γ1 = −1000), Panels

A and B plot the multiplier, µjt, against underlying state variables. Panels C and D do the same but for Model

1 with constant discount factor (γ0 = γ1 = 0). Panels A and C plot the variables as functions of capital stock kjt

and firm-specific productivity zjt, while fixing the aggregate productivity xt at its long run average level x̄. Both

Panels A and C have a set of curves corresponding to different values of zjt, and the arrow in each panel indicates

the direction along which zjt increases. Panels B and D plot the variables as functions of capital stock kjt and the

aggregate productivity xt, while fixing the firm-specific productivity zjt at its long run average level z̄j =0. Panels

B and D have a class of curves corresponding to different values of xt, and the arrows indicate the direction along

which xt increases.

Panel A: µjt(kjt, zjt, x̄), Stochastic-Discount-Factor Panel B: µjt(kjt, z̄j , xt), Stochastic-Discount-Factor
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Figure 3 : Risk and Expected Excess Return Against Underlying State Variables: Model 1
with the Dividend Nonnegativity Constraint

This figure plots for Model 1 risk (βjt, Panels A and B) and expected excess return (Et[rjt+1] − rft, Panels C and

D) as functions of the underlying state variables. Panels A and C plot the variables as functions of capital stock kjt

and firm-specific productivity zjt, fixing the aggregate productivity xt at its long run average level x̄. Panels A and

C report a class of curves corresponding to different values of zjt, and the arrow in each panel indicates the direction

along which zjt increases. Panels B and D plot the variables as functions of capital stock kjt and the aggregate

productivity xt, fixing the firm-specific productivity zjt at its long run average level z̄j =0. Panels B and D report

a class of curves corresponding to different values of xt, and the arrow in each panel indicates the direction along

which xt increases.

Panel A: βjt(kjt, zjt, x̄) Panel B: βjt(kjt, z̄j , xt)
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Figure 4 : The Value and Investment-Policy Functions Against Underlying State Variables,
Model 2 with the Collateral Constraint

This figure plots for Model 2 the ratio of market value of equity to capital (vjt/kjt, Panels A and B) and the optimal

investment-to-capital ratio (ijt/kjt, Panels C and D) as functions of underlying state variables. Panels A and C plot

the variables as functions of current-period debt, bjt, and firm-specific productivity, zjt, while fixing the aggregate

productivity xt and capital stock kjt at their respective long run average levels, x̄ and k̄ (k̄ is determined in model

simulations). Panels A and C have a class of curves, corresponding to different values of zjt, and the arrow in each

panel indicates the direction along which zjt increases. Panels B and D plot the variables as functions of current-

period debt, bjt, and the aggregate productivity xt, fixing the firm-specific productivity zjt and capital stock kjt at

their long run average levels. Panels B and D have a class of curves corresponding to different values of xt, and the

arrows indicate the direction along which xt increases.

Panel A: vjt(k̄, bjt, zjt, x̄)/kjt Panel B: vjt(k̄, bjt, z̄j , xt)/kjt
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Figure 5 : The Optimal Debt-Policy Function Against Underlying State Variables, Model 2
with the Collateral Constraint

This figure plots for Model 2 the optimal next-period-debt-to-capital ratio, bjt+1/kjt, as functions of underlying state

variables. Panel A plots the debt-policy function against capital stock kjt and firm-specific productivity zjt, while

fixing aggregate productivity xt and current-period debt bjt at their respective long run average levels, x̄ and b̄ (b̄

is determined in model simulations). Panel B plots the optimal debt-policy function against capital stock kjt and

aggregate productivity xt, while fixing zjt and bjt at their respective long run average levels, z̄j =0 and b̄. Panel C

plots the debt-policy function against current-period debt bjt and firm-specific productivity zjt, while fixing aggregate

productivity xt and capital stock kjt at their respective long run average levels, x̄ and k̄ (k̄ is determined in model

simulations). Finally, Panel D plots the debt-policy function against bjt and xt, while fixing zjt and kjt at their

respective long run average levels. Panels A and C have a class of curves, corresponding to different values of zjt,

and the arrow in each panel indicates the direction along which zjt increases. Panels B and D have a class of curves

corresponding to different values of xt, and the arrows indicate the direction along which xt increases.

Panel A: bjt+1(kjt, b̄, zjt, x̄)/kjt Panel B: bjt+1(kjt, b̄, z̄j , xt)/kjt
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Figure 6 : The Multiplier Against Underlying State Variables, Model 2 with the Collateral
Constraint

This figure plots for Model 2 the multiplier, νjt, associated with the collateral constraints as functions of underlying

state variables. Panel A plots the multiplier against capital stock kjt and firm-specific productivity zjt, while fixing

aggregate productivity xt and current-period debt bjt at their respective long run average levels, x̄ and b̄ (b̄ is

determined in model simulations). Panel B plots the multiplier against capital stock kjt and aggregate productivity

xt, while fixing zjt and bjt at their respective long run average levels, z̄j = 0 and b̄. Panel C plots the multiplier

against current-period debt bjt and firm-specific productivity zjt, while fixing aggregate productivity xt and capital

stock kjt at their respective long run average levels, x̄ and k̄ (k̄ is determined in model simulations). And Panel D

plots the multiplier against bjt and xt, while fixing zjt and kjt at their respective long run average levels. Panels

A and C have a class of curves, corresponding to different values of zjt, and the arrow in each panel indicates the

direction along which zjt increases. Panels B and D have a class of curves corresponding to different values of xt,

and the arrows indicate the direction along which xt increases.

Panel A: νjt(kjt, b̄, zjt, x̄) Panel B: νjt(kjt, b̄, z̄j , xt)
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Figure 7 : Risk and Expected Excess Return Against Underlying State Variables, Model 2
with the Collateral Constraint

This figure plots for Model 2 risk, βjt, in Panels A and B, and expected excess return, Et[rjt+1]−rft in Panels C and

D against underlying state variables. Panels A and C plot the variables against current debt, bjt, and firm-specific

productivity, zjt, while fixing aggregate productivity, xt, and capital stock, kjt, at their respective long run average

levels, x̄ and k̄ (k̄ is determined in model simulations). In Panels A and C, we plot a class of curves, corresponding

to different values of zjt, and the arrow in each panel indicates the direction along which zjt increases. Panels B and

D plot the variables against current debt, bjt, and aggregate productivity, xt, while fixing firm-specific productivity,

zjt, and capital stock, kjt, at their respective long run average levels, z̄j =0 and k̄. In Panels B and D, we report a

class of curves corresponding to different values of xt, and the arrows indicate the direction along which xt increases.
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