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Abstract

This paper studies optimal monetary policy in a framework that explicitly accounts for policymakers�

uncertainty about the channels of transmission of oil prices into the economy. More speci�cally, I examine

the robust response to the real price of oil that US monetary authorities would have been recommended to

implement in the period 1970� 2009; had they used the approach proposed by Cogley and Sargent (2005b)
to incorporate model uncertainty and learning into policy decisions. In this context, I investigate the extent

to which regulators�changing beliefs over di¤erent models of the economy play a role in the policy selection

process. The main conclusion of this work is that, in the speci�c environment under analysis, one of the

underlying models dominates the optimal interest rate response to oil prices. This result persists even when

alternative assumptions on the models�priors change the pattern of the relative posterior probabilities, and

can thus be attributed to the presence of model uncertainty itself.
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1 Introduction

This paper investigates the role of model uncertainty in an environment in which the monetary authority ac-

knowledges the existence of di¤erent competing mechanisms through which oil prices might a¤ect economic

performance. More speci�cally, this work focuses on the policy recommendations originating from an opti-

mization problem that explicitly incorporates policymakers�uncertainty over a �nite number of possible model

representations of the economy. Using US data for the period 1970 � 2009, this study aims to provide an
analysis of the extent to which the optimal response to oil prices is a¤ected by policymakers�changing belief

over the model to be adopted for policy decisions. In addition, this paper wants to o¤er some insights on

the dimensions in which the robust policy recommendation relates to the optimal policies suggested by the

individual underlying models.
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A number of contributions have analyzed the response of economic variables to changes in the price of oil.1

These studies suggest that oil prices can a¤ect economic activity in many di¤erent ways. First of all, an increase

in the price of oil is likely to increase the general price level, which in turn can reduce employment if wages

exhibit some degree of rigidity (Solow, 1980; Pindyck, 1980; Blanchard and Gali, 2007). Second, petroleum

derivatives are directly used in a variety of production processes as inputs, and they are employed to provide

supporting services as for instance energy and transportation. It follows that changes in their price will directly

a¤ect the cost of production for a large number of goods and services (Rasche and Tatom, 1977; Kim and

Loungani, 1992). In this context, additional e¤ects might be generated by changes in capacity utilization rates

(Finn, 2000), or changes in business markups (Rotemberg and Woodford, 1996). Last, increases in the price of

oil might lead to a reallocation of resources between sectors of the economy (Hamilton, 1988), and/or induce a

reduction in the purchases of durable and investment goods (Bernanke, 1983).

The large literature studying the e¤ects of oil prices on economic variables has not reached a consensus on

which of the described mechanisms should be the main channel through which a change in the price of oil is

transmitted in the economy. As a consequence, a number of works have also been debating on the optimal

policy response to oil price shocks and, more generally, on the ability of policy to contrast the consequences of

oil price variations on economic activity. An example is provided by the argument between Bernanke, Gertler

and Watson (1997, 2004) and Hamilton and Herrera (2004) about the role of monetary policy in the economic

downturns following the oil price shock episodes of the postwar period.

In this environment, some support can be provided by the literature on model uncertainty in economic

policy. In recent years, the two major directions of work that have emerged are the minimax approach (Hansen

and Sargent, 2001a; 2001b; 2008) and the Bayesian approach (Brock, Durlauf and West, 2003; 2007). In this

second direction, the contribution of Cogley and Sargent (2005b) extends the Bayesian method to incorporate

policymakers�learning over the model that best approximates the true data generating process. More speci�-

cally, the monetary authority is assumed to base his decisions on a composite framework encompassing a few

alternative models of the economy, in which each model is weighted based on its relative posterior probability.

These weights, together with the estimated model parameters, are updated in every period as new data becomes

available.

In this paper, I consider the problem of a policymaker who is uncertain about three alternative speci�cations

of the mechanism through which oil prices a¤ect the economy, and who wants to use the approach proposed

by Cogley and Sargent (2005b) to incorporate this form of uncertainty in the policy decision process. In this

context, I study the pattern of the model weights, which can be interpreted as policymakers�beliefs over the

true data generating process, and I focus on their relationship with the optimal response to oil prices in the

1970 � 2009 period. I �nd that in this environment model uncertainty has important e¤ects on the optimal
policy recommended by a composite linear quadratic regulator problem that includes the alternative models

of the economy. Indeed, I show that uncertainty itself matters more than the actual pattern of the weights

attached to each model, as long as these weights are di¤erent from zero. In addition, I �nd that, for a large

fraction of the period under analysis, the robust interest rate is lower than the optimal policy recommended

by each of the underlying individual models. This result is a consequence of the speci�c approach used in

this paper to account for model uncertainty, in which the policy instrument can generate interactions between

the variables of interest in directions that are precluded in the individual models. This �nding is consistent

with a number of previous works studying monetary policy in contexts characterized by imperfect knowledge

of the true data generating process, which also concluded that uncertainty might induce an attenuated policy

response to economic variables (see, for instance, Brainard, 1967; Wieland, 2000a; Svensson, 1999; Rudebusch,

1Mork (1994), Hamilton (2005) and Segal (2007) provide excellent reviews of this literature.
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2001; Söderström, 2000, Tetlow and von zur Muehlen, 2001 for the case of structured model uncertainty).2

This paper contributes to the existing literature in economics in several aspects. First, my work is related

to the large literature studying the impact of oil prices on economic activity. This study does not aim to take

a stance in the debate over the di¤erent models that have been proposed to explain the e¤ects of oil prices on

economic performance. Rather, it wants to point out that an issue of model uncertainty in this area in fact

exists. Indeed, I show that the three alternative model speci�cations considered in this study are characterized

by posterior probabilities that are relatively similar in the period under analysis. This implies that the available

data does not clearly favour one of these three approximating models over the others. This work is also related

to the literature studying the role of monetary policy in contrasting the impact of oil prices on economic

variables. In particular, it provides an analysis of the e¤ects of learning and model uncertainty on the optimal

policy response to changes in the price of oil. Finally, this paper o¤ers a minor methodological contribution,

and a more important empirical contribution, to the literature on model uncertainty and learning in economic

policy. From the methodological point of view, this paper provides a simple extension of the approach proposed

by Cogley and Sargent (2005b) to bivariate models in which the policy instrument is assumed to be the interest

rate instead of the in�ation rate. From the empirical point of view, this study proposes an application of the

method introduced by Cogley and Sargent (2005b) to an environment in which the lack of consensus over the

true model of the economy makes the inclusion of uncertainty in the policy decision process essential to sound

policymaking.

The remainder of the paper is organized as follows. Section 2 presents the general setting and explains the

policy decision process. Section 3 reports the robust policy results, and compares them with the policy recom-

mendations obtained from the underlying individual models. Section 4 provides an analysis of the sensitivity of

the results to changes in some of the assumptions adopted in section 3. Section 5 discusses the issue of private

agents�expectations of future in�ation in frameworks characterized by model uncertainty. Section 6 concludes.

2 General framework

The central assumption of this paper is that the policymaker does not know the true data generating process

and chooses to base his decisions on a statistical approximating model. At the same time, he acknowledges

that di¤erent speci�cations could be used for this purpose. In particular, I assume that the monetary authority

considers a small number of alternative approximating models, each one incorporating a di¤erent theory on

the channel through which oil prices a¤ect economic variables. Each model speci�cation is composed of three

equations, one for the output gap, yt, one for the in�ation rate, �t and one for the real price of oil, st: This

last is common to all models. In each model, the policy instrument is the interest rate, it, which is selected

according to the procedure that will be explained in the last part of this section.

As previously discussed, the literature in economics has proposed many di¤erent mechanisms through which

oil prices can a¤ect economic performance. In this work, policymakers believe that the true model of the

economy can be approximated by one of three alternative econometric speci�cations.3 In all the speci�cations,

the real price of oil is assumed to (potentially) have a direct impact on both the output gap, because of the

repercussions of the price of petroleum derivatives on the cost of production, and core CPI in�ation, because

2However, other studies focused on environments in which uncertainty resulted in a stronger response of the policy instrument
to �uctuations in the variables of interest. See, for instance, Giannoni, 2007; Söderström, 2002; and Tetlow and von zur Muehlen,
2001, for the case of unstructured model uncertainty.

3The model speci�cations that I consider in this study are similar to the ones I examine in a related work (Rondina, 2010).
However, while in this last I focus on the evaluation of the performance of alternative policy rules, here I provide an historical
analysis of the e¤ect of model uncertainty and learning on the optimal policy response to oil prices. Moreover, Rondina (2010)
considers additional forms of model uncertainty that are disregarded here.
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of the possible pass-through to the general price level. However, the alternative models di¤er with respect to

the presence, and the nature, of additional e¤ects of oil prices on the variables of interest.

The �rst approximating model is in the spirit of Solow (1980). In Solow�s view, an important channel

through which oil prices a¤ect output is nominal wage rigidities. More speci�cally, Solow argues that variations

in the price of oil induce changes in the overall price level, and this in turn a¤ects employment and real variables

due to the assumption of nominal wage rigidities. The Solow (S) model is represented by the equations:

yt = �
S
y (L) yt�1 + �

S
� (L) [�t�1 � Et�2 (�t�1)] + �Ss (L) st�1 + !Sy;t (1)

�t = �
S
� (L)�t�1 + �

S
y (L) yt�1 + �

S
i (L) it�1 + �

S
s (L) st�1 + !

S
�;t (2)

where !Sy;t and !
S
�;t are i.i.d. N (0;�S). In this framework, the term for unanticipated in�ation in the output

equation aims to capture the additional e¤ect of oil prices on output through nominal wage rigidities.

The second model is inspired by Blanchard and Gali (2007). In this framework, the main channel through

which oil prices have an impact on economic activity is real wage and price rigidities. In particular, Blanchard

and Gali think that the major consequence of a change in oil prices is a change in the overall price level, which

in turn a¤ects employment and real variables due to the assumption of real wage rigidities and Calvo pricing.

The Blanchard and Gali (BG) speci�cation is described by the following equations:

yt = �
BG
y (L) yt�1 + �

BG
i (L) [it�1 � Et�1 (�t)] + �BGs (L) st�1 + !

BG
y;t (3)

��t = �
BG
� (L)��t�1 + �

BG
y (L) yt�1 + �

BG
s (L) st�1 + !

BG
�;t (4)

where !BGy;t and !
BG
�;t are i.i.d. N (0;�BG). This model is similar to a standard new Keynesian framework (see,

for instance, Rudebusch and Svensson, 1999), with the main di¤erence being the addition of the real price of

oil in both the output and in�ation equations. The restriction on the in�ation coe¢ cients in (4) is included in

order to enforce the long run neutrality of the Phillips curve. This is a common assumption in the empirical

frameworks inspired by the new Keynesian Phillips curve (see, for instance, Brock, Durlauf and West, 2007;

Cogley and Sargent, 2005b; Primiceri, 2006; Rudebusch, 2001; Rudebusch and Svensson, 1999).

The last approximating model is in the spirit of Kim and Loungani (1992) and Hamilton (1988, 1996, 2005).

In an economy characterized by perfect competition and �exible prices and wages, changes in the price of oil

a¤ect employment and output directly through a change in the wage level and productivity. In this framework,

monetary policy is not able to contrast the consequences of a change in oil prices on output, but it might

have a signi�cant role in controlling its e¤ects on the in�ation rate. Therefore, the Hamilton (H) model is

characterized by the equations:

yt = �
H
y (L) yt�1 + �

H
s (L) st�1 + !

H
y;t (5)

�t = �
H
y (L) yt�1 + �

H
� (L)�t�1 + �

H
i (L) it�1 + �

H
s (L) st�1 + !

H
�;t (6)

where !Hy;t and !
H
�;t are i.i.d. N (0;�H).

2.1 The process for the real price of oil

The three approximating models that the policymaker wants to consider for policy decisions are completed by

a description of the process for the real price of oil:

st = �t + �st�1 + ot (7)
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This AR(1) process is characterized by a time-varying intercept �t, and by a constant autoregressive coe¢ cient

�: The innovation ot is a transitory oil price shock, which is assumed to be uncorrelated over time, and to have

mean zero and constant variance �2o: The process described by (7) aims to capture the features of nonlinearity

and nonstationarity that seem to characterize the behavior of the real price of oil,4 and is a generalization of

the representation used in Blanchard and Gali (2007), which simply set �t = 0 at each time t.5

The process in (7) can be written in matrix form as:

st = X
0
s;t�s;t + ot (8)

where �s;t = [�t �]
0 and Xs;t = [1 st�1]

0. The vector of coe¢ cients �s;t in (8) is time dependent because of

the time-varying intercept �t. I assume that:

�s;t = �s;t�1 + "s;t (9)

where "s;t = ["t 0]
0 and "t is i.i.d. Gaussian, with mean zero and variance �2". The variance of the vector

"s;t, denoted by Q, is then a 2 � 2 matrix with zeros everywhere except for the element in the �rst row, �rst
column, which is �2": Thus, the process for the real price of oil is a¤ected by two types of shocks: one, ot, which

is transitory (even if, given the estimated value of �; it turns out to be very persistent) and one, "t, which

represents the drift of the intercept �t; and is permanent instead. I make the simplifying assumption that:

E

 
ot

"s;t

!�
ot "s;t

�
= V =

"
�2o 0

0 Q

#
(10)

which implies that the innovation to �t is uncorrelated to the oil price shock ot.6 Finally, both shocks are

assumed to be uncorrelated to the innovations in the output and in�ation equations in each model.

The three approximating models described by (1)� (6) and (7) have the common feature of being backward
looking speci�cations. This decision can be interpreted as the response of policymakers to an additional concern

for robustness. More speci�cally, I assume that faced with uncertainty on the direction of the contemporaneous

relationship between the variables of interest, the monetary authority simply decides to use approximating

speci�cations that do not explicitly model this feature. This choice is in the spirit of limiting the restrictions

that are imposed to the models used for policy purposes, so that the obtained policy recommendations can be

valid in a more general set of possible data generating processes.

In addition to the assumption of backward looking speci�cations, equations (7)� (10) characterize a process
for the real price of oil that is exogenous and not a¤ected by the behavior of output and core CPI in�ation. This

choice is consistent with previous studies considering oil prices as determined before domestic variables (for

instance, Hamilton, 1983 and 1996; Bernanke, Gertler and Watson, 1997; Blanchard and Gali, 2007). However,

there is also a large literature suggesting that oil prices might have been a¤ected by world demand, and thus

US domestic output, especially in the last two/three decades (among the others, Rotemberg and Woodford,

1996; Baumeister and Peersman, 2008; Kilian, 2008; Lippi and Nobili, 2008; Herrera and Pesavento, 2009).

4Pindyck (1999) shows that the long-run behavior of oil prices is best forecasted by models of reversion to stochastically
�uctuating trend lines. Blanchard and Gali (2007) use a stationary AR(1) process for the real price of oil, but they suggest that
this variable would be better described as non-stationary.

5While the process described by (7) will be used in the baseline scenario, section 4 studies the optimal policy recommendation
in the case the real price of oil is de�ned as in Blanchard and Gali (2007).

6This assumption is motivated by a need to reduce the computational burden in the estimation of the parameters of the process
for st.
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The assumption of an exogenous process for the real price of oil was motivated by a necessity to simplify the

environment under analysis, mostly for computational issues. This assumption might seem quite restrictive;

however, there are two reasons why I believe that, in this speci�c framework, the consequences of this choice

are not too severe. First, I considered the possibility of allowing the oil price shock ot to be correlated with

the innovations in the output and in�ation equations in each model. This extension would have been able

to account for a possible contemporaneous relationship between the real price of oil and domestic variables,

without imposing any restrictions on the direction of this relationship. The estimation of the parameters of

each approximating model in this more general framework was relatively straightforward. However, I found

that the covariances between the innovation ot and the innovations in the output and in�ation equation were so

small that these parameters did not change much relative to the baseline case, and the estimated process for the

real price of oil was very similar in all the models. At the same time, this extension, added a lot of complexity

to the procedure used for the computation of the posterior probabilities for each model, which were needed

for the policy decision process.7 Thus, my conclusion was that allowing for a contemporaneous relationship

between the real price of oil and domestic variables did not add much information relative to the assumption

of an exogenous process for the real price of oil, while at the same time increasing the computation time

signi�cantly. A second reason why the choice of an exogenous process for st has smaller repercussions in this

framework is related to the speci�c characterization in (7)� (10), and in particular to the assumption of a drift
in the intercept �t. Indeed, this assumption allows for some additional �exibility, which partially reduces the

limitations imposed by the exogeneity of st: For instance, it implies that the covariances between the variables

of interest evolve over time, which might encompass some of the postulated changes in the relationship between

the real price of oil and output.

I believe that it would be very interesting to investigate alternative ways of accounting for the possible

endogeneity of the process for the real price of oil and, more generally, for the uncertainty on the direction

of the contemporaneous relationships between the variables in (1) � (7). However, I decided to start with a
simpler setting and to leave this extension for further research.

2.2 Learning

Following the recent literature on policy design and evaluation in uncertain environments, the policymaker

wants to adopt an approach that incorporates the three approximating models described by (1)� (6) and (7)
in the policy decision process. As I already mentioned, the monetary authority chooses to follow the procedure

proposed by Cogley and Sargent (2005b), which is based on the Bayesian model averaging techniques introduced

by Brock, Durlauf and West (2003, 2007). This procedure accounts for the fact that each model speci�cation

has a di¤erent probability of being the true data generating process, and that this probability might change

over time as new information becomes available. More speci�cally, in each period the policymaker learns from

the new data on two di¤erent levels. First, he reviews the estimates of the parameters of each model. Second,

he updates the relative posterior probability attached to each one of the three approximating speci�cations.

2.2.1 Learning on the process for the real price of oil

The process for the real price of oil is characterized by a vector of coe¢ cients �s;t, which drifts over time,

and by a constant covariance matrix V: These variables are unknown to the policymaker, and they need to be

estimated and updated in each period as new data becomes available.

7More speci�cally, this extension required the posterior probabilities to be computed numerically, while in the baseline framework
used in this paper they can be computed using simple analytical formulas.
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The initial state for the vector �s; denoted as �s;0; and the hyperparameters in the covariance matrix V are

assumed to be independent of each other and across blocks, so that we have:

p (�s;0; V ) = p (�s;0) p
�
�2o
�
p (Q) (11)

In addition, the process assumed in (9) implies a very speci�c form for the matrix Q, which has �2" as the element

in the �rst row, �rst column, and zero elsewhere. Thus: p (Q) = p
�
�2"
�
: The priors for the hyperparameters

�2o and �
2
" are assumed to be inverse Wishart distributions, so that the prior for the covariance matrix V can

be written as:

p (V ) = p
�
�2o
�
p (Q) = p

�
�2o
�
p
�
�2"
�

= IW
�
Bo;0j0; vo;0

�
IW

�
B";0j0; v";0

�
(12)

where Bo;0j0 and B";0j0 are initial inverse scale parameters and vo;0 and v";0 are initial degrees of freedom. On

the other hand, the prior on the vector of coe¢ cients, p (�s;0), is a multivariate normal distribution:

p (�s;0) = N (�s;0; Ps;0) (13)

One of the central assumptions of this paper is that policymakers learn from the new data that becomes

available in each period. This process of learning will be re�ected in (11), and in particular in the prior for the

covariance matrix V . The vector of coe¢ cients �s drifts over time, and it seems plausible that new data will

not motivate policymakers to revise their prior on the value of the coe¢ cients at time zero. However, things

are di¤erent for V . Indeed, this covariance matrix is assumed to be time invariant, so that it is reasonable

to think that the monetary authority will want to account for the new information that becomes available by

updating the prior for V over time. Thus, in the learning process over the history of st, I will allow (12) to

change. The empirical section and Appendix 2 describe how I computed the parameters in (12) and (13), and

how the prior p (V ) is updated in each period.

Now, let st summarize the history of st up to time t. In each period, the policymaker is interested in the

joint posterior p
�
�ts; V j st

�
:8 This posterior distribution is unknown, and a MCMC algorithm, in the form of

a Gibbs sampler, is used to simulate draws from it. In particular, the procedure that I employ is very similar

to that described in Cogley and Sargent (2001). Further details on the implementation of the Gibbs sampler

in this framework are given in Appendix 2; for a more technical description of this approach, see Cogley and

Sargent (2001).

2.2.2 Learning on the parameters of the approximating models

The process of learning on the models�estimated parameters follows Cogley and Sargent (2005b). The frame-

work that I adopt in this paper requires a few technical adjustments relative to Cogley and Sargent�s work,

which pertain to the distribution of the parameters and their updating formulas. These changes are minor, and

are only due to the fact that here each approximating model is characterized by a bivariate distribution (over

output gap and core CPI in�ation) instead of a univariate distribution.

8Actually, at each t the policymaker is ultimately interested in estimating the vector of parameters �s;t, which is the information
he needs for policy decisions. If V was known, we could simply estimate �s;t using the Kalman �lter. However, since the covariance
matrix V is assumed to be unknown, the entire history �ts and V need to be jointly estimated.
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The output and in�ation equations in (1)� (6) can be written in more general terms as:

yt = X
0
y;t�y + !y;t (14)

�t = X
0
�;t�� + !�;t (15)

where Xy;t and X�;t are vectors of right hand side variables, and �y and �� are vectors of coe¢ cients. The

dimension of Xy;t and �y is ky, while the dimension of X�;t and �� is k�: Each approximating model can also

be rewritten in the general form:

Yt = X
0
t� + !t (16)

where Yt = [yt �t]
0 is a 2 � 1 vector of left-hand side variables, Xt = Xy;t �X�;t =

"
Xy;t 0

0 X�;t

#
is a k � 2

matrix of regressors, with k = ky + k�, �t =
�
�0y �0�

�0
is a k � 1 vector of coe¢ cients and !t = [!y;t !�;t]

0 is

the 2� 1 vector of innovations, with covariance matrix �.
For each model, the vector of coe¢ cients � in (16) and the matrix � are unknown, and they need to be

estimated. Given the assumptions on the innovations in (1)� (6), this can be done using standard techniques.
As for the process for the real price of oil, the estimates of these parameters will re�ect all the information

available in each period, and will be updated with the arrival of new data. However, the vector � is not

assumed to drift over time. This makes the estimation and updating procedure for � and � a lot simpler than

the approach used for �ts and V .

I assume that the policymaker adopts a normal-inverse Wishart prior on the joint distribution p (�0;�):

p (�0;�) = p (�0 j �) p (�) (17)

with:

p (�) = IW (B0; v0)

p (�0 j �) = N (�0; P0)

The empirical section describes how I computed the parameters of these distributions. The prior (17) at time

zero will be used to obtain the posterior for the �rst period. Then, this posterior will be used as the prior

for the following period, and so on until the end of the sample. For each model, the representation in (16)

is linear, given the vector � and the covariance matrix �, and the innovations are i.i.d. and conditionally

normal given the right hand variables. Therefore, each approximating model is characterized by a multivariate

normal conditional likelihood. The normal-inverse Wishart distribution is a conjugate prior for the multivariate

normal likelihood, which implies that the parameters�posterior probabilities follow a normal-inverse Wishart

distribution as well.9 As a consequence, the mean values of the joint posterior for � and � can be computed

in each period using simple formulas. Appendix 2 describes this procedure in more detail, and provides the

updating formulas for the parameters of the joint posterior distributions for the vector of coe¢ cients � and

covariance matrix �.
9For more details on the properties of conjugate distributions, see Gelman, Carlin, Stern and Rubin (2003).
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2.2.3 Learning on the model weights

As for the models�parameters, policymakers�learning on the models�relative weights also follows Cogley and

Sargent (2005b). In the policy decision process, each model is weighted based on its posterior probability,

which is computed using the available information. Let Zt = (Y t; Xt) summarize the history of the left hand

and right hand variables, up to time t. The posterior probability of model i given data up to time t is de�ned

according to Bayes�s theorem as:

p
�
Mi j Zt

�
/ mit � p (Mi) � wit (18)

where p (Mi) and p (Mi j Zt) are the prior and posterior probabilities of model i respectively, while mit is the

marginalized likelihood function for model i at date t.

In this framework, the policymaker considers the S, BG and H speci�cations as the only possible alternative

approximating models in his policy decision process. Therefore, he will normalize the model weights so that in

each period they add up to one. For any model i, i = fS;BG;Hg ; the normalized weight for time t can thus
be obtained as:

�it =
wit

wS;t + wBG;t + wH;t
(19)

Appendix 2 provides a de�nition of the marginalized likelihood function in this framework, and describes the

procedure used to compute and update the model weights.

2.3 Interest rate setting

The monetary authority is assumed to control the policy instrument xt, which is related to the interest rate it
according to the following rule:

it = xtjt�1 + �t (20)

where �t is an i.i.d. normal shock with mean zero and variance �
2
� : Here, xtjt�1 denotes the value of the

instrument for time t, computed using information up to time t � 1. In each period, the value of xtjt�1 is
obtained as the solution to a linear quadratic dynamic programming problem which will be described in the

following of this section.10

A central assumption in the policy decision process is that, in each period, the monetary authority considers

the estimated coe¢ cients as if they were constant and not (possibly) changing over time. This is true for the

parameters in the output and in�ation equations, as well as for those in the process for the real price of oil.

This assumption follows Cogley and Sargent (2005b) and, as already observed in their work, has important

implications for the policy decision process. First of all, this assumption allows to bypass the issue of parameter

uncertainty highlighted by Brainard (1967), since the decision rule will not depend on posterior variances or

higher moments of the parameters�distribution. For st in particular, this assumption greatly simpli�es the

optimization process since the uncertainty about the estimated value of V would not only a¤ect the past

history �ts, but also the probability distribution of future trajectories of the vector �s. Second, the assumption

of constant parameters originates a learning process that has been de�ned "passive", since the policymaker

takes into account the new information that becomes available but ignores the e¤ects of current decisions on

the future value of the models�parameters and posterior probabilities. This approach to learning eliminates the

incentives for experimentation that might arise from exploiting the connection between policymakers�current

10The relationships between xtjt�1 and it described by (20) is only relevant in the regulator problem, since it establishes how the
policy instruments xtjt�1 a¤ects the outcomes of interest. However, it has no e¤ect on the estimation of the models�parameters
and posterior probabilities. Indeed, these are computed and updated in each period using the actual value of it obtained from the
data, not the value of policy instrument.
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decisions and future beliefs.11

The assumption that the estimated parameters do not change over time produces a policy recommendation

that is suboptimal, because it does not include all the information available to the policymaker at the time

the policy is set. However, incorporating parameter uncertainty, and accounting for the relationship between

policy decisions and future information would make the problem signi�cantly more di¢ cult to solve. In this

speci�c framework, this might not be worthwhile, since the optimal policy is only implemented for one period,

and then revised in the following period given the new estimates of the models�parameters and weights. In

other words, while the optimization process will suggest a pattern of policies for every future t, the policymaker

is essentially only interested in the policy recommendation for the next period, since this is the only one that

will actually be implemented given the estimated set of parameters and posterior probabilities. For this reason,

the approach adopted in Cogley and Sargent (2005b) and followed in this work seems to be an e¢ cient way of

de�ning the regulator problem in an environment characterized by model uncertainty and learning.

Under the assumption of passive learning, and because the policymaker will refrain from including parameter

uncertainty into policy decision-making, the optimization problem becomes standard and can be solved in each

period given the estimated value of the models�parameters and weights. The setup of the regulator problem

follows Cogley and Sargent (2005b). Each of the models described by (1)� (7) has a state-space representation
in the form:12

Si;t = AiSi;t�1 +Bixtjt�1 + Ci!i;t (21)

The policymaker considers a composite problem in which each model speci�cation is weighted based on its

relative posterior probability, de�ned by (19). The loss function for the composite problem is in the standard

linear quadratic form:

LE = Et�1

1X
j=0

�j
h
y2t+j + �� (�t+j � ��)

2
+ �i (it+j � it+j�1)2

i
= Et�1

1X
j=0

�j
�
S0E;t+jQE;tSE;t+j

�
(22)

where �� is the target in�ation rate, �� is the weight attached to in�ation relative to the output gap, and �i
is a cost that policymakers incur for changing the value of the policy instrument.

The matrix SE;t is the state for the composite problem, de�ned as:

SE;t = AESE;t�1 +BExtjt�1 + CE!E;t (23)

with SE;t =
�
S0S;t S

0
BG;t S

0
H;t

�0
; !E;t =

�
!0S;t !

0
BG;t !

0
H;t

�0
and

AE =

264AS 0 0

0 ABG 0

0 0 AH

375 (24)

BE =
h
B0S B0BG B0H

i0
(25)

11These incentives for experimentation are investigated in the works of Wieland (2000a, 2000b), Beck and Wieland (2002), and
Cogley, Colacito and Sargent (2007).
12Additional details on the state vector and matrices of coe¢ cients for each model are given in Appendix 3.
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CE =

264CS 0 0

0 CBG 0

0 0 CH

375 (26)

The matrix QE is a weighting matrix counting each model in proportion to its posterior probability. In

more detail:

QE =

264�SM
0
SQMS 0 0

0 �BGM
0
BGQMBG 0

0 0 �HM
0
HQMH

375 (27)

where �S , �BG and �H are the model weights and Mi is a selection matrix that has the function to pick the

target variables from the state vector Si;t: The matrix Q takes the form:

Q =

2641 0 0

0 �� 0

0 0 �i

375
The weights �S ; �BG and �H and the matrices AE ; BE ; CE and QE change from period to period as the

policymaker updates his beliefs in light of the new information that becomes available.

In each period, this problem delivers an optimal policy rule that is a linear function of the composite state:

xtjt�1 = �FESE;t�1, where FE is a row vector of policy coe¢ cients. Given the optimal policy, the state space
representation can be rewritten as:

SE;t = (AE �BEFE)SE;t�1 + CE!E;t (28)

with (AE �BEFE) representing the deterministic portion of the transition law for the composite state vector.

3 Empirical results

The approximating models were estimated using the number of lags reported in table 1. For all the variables,

the exclusion from one or more of the equations was dictated by the structure of each individual model, as

described in (1)�(6). The lags for the included variables were chosen using the Bayesian information criterion.13

Finally, constant terms were also incorporated in all estimations.

Table 1 - Lags used in the estimation procedure

l.h.v y � i s

S y 3 2 0 1

� 1 3 2 1

BG y 3 0 1 1

� 2 3 0 1

H y 3 0 0 1

� 1 3 2 1

Note: number of lags of the output gap (y), in�ation (�), interest rate (i) and real price of oil (s) included in each equation (with
left hand variable y or �) for each approximating model: Solow (S), Blanchard-Gali (BG) and Hamilton (H).

13This work does not account for policymakers� uncertainty about the number of lags to be used in the estimation of each
approximating model. This form of uncertainty is considered in Rondina (2010).
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There is some debate in the literature about the number of lags of the oil variable that should be included

in empirical analysis (see Hamilton and Herrera, 2004). Here, the Bayesian criterion favors models that only

include one lag of the real price of oil. This might appear to limit the e¤ects of oil prices on the other variables of

interest and, consequently, to induce a reduced policy response to their variations. However, the speci�c process

for st that I assume in this framework implies that shocks to the real price of oil are either very persistent or

permanent, which suggests that policymakers will still want to respond to changes in this variable.14

I assume that private agents forms expectations using a backward-looking approach, so that: Et�1 (�t) =

1
4

4P
j=1

�t�j . This assumption precludes all types of forward looking behavior on the side of the public, thus

eliminating any issues related to the role of model uncertainty in the expectation formation process. Section

5 provides a more extensive discussion about the de�nition of expectations of future variables in a model

uncertainty environment.

In the process for the real price of oil, the parameters in (11) need to be selected. For the inverse Wishart

distributions, Bo;0j0 was set as the sum of squared residuals from the OLS estimates of a stationary process

for (7) using an initial training sample, while B";0j0 was set as the variance of the OLS estimate for � in the

same stationary process multiplied by the degrees of freedom. Both vo;0 and v";0 were set equal to the degrees

of freedom in the initial training sample. For the vector of coe¢ cients, �s;0 was set as the OLS point estimate

in the stationary process mentioned above, and Ps;0 as the corresponding variance. These choices for the prior

distributions are quite standard, even if for the covariance matrix V the prior is more informative than those

usually adopted in the literature (see, for instance, Cogley and Sargent, 2001 and 2005a or Primiceri, 2005).

This choice was motivated by the fact that at the beginning of the sample period the policymaker will need

to estimate the posterior distribution p
�
�ts; V j st

�
from a very small number of observations. In addition, just

at the beginning of the sample, the process for the real price of oil is subject to large changes due to the �rst

oil price shock of 1973 � 74. In these circumstances, a more disperse prior on the covariance matrix V would

not deliver a good convergence of the Gibbs sampler within a reasonable number of iterations.15 Moreover,

this framework is characterized by learning, which also involves the prior p (V ). Thus, even if the prior on the

covariance matrix V is tighter than usually assumed in the literature, the addition of learning still enables the

data to have a central role in determining the posterior distribution p
�
�ts; V j st

�
.16 Section 3 examines the

sensitivity of the results to alternative prior speci�cations.

At each time t, I simulated draws from the posterior distribution p
�
�ts; V j st

�
by performing 10; 000 itera-

tions of the Gibbs sampler and discarding the �rst 2; 000 for convergence.17 The history �ts and the variances

�2o;t and �
2
o;t were then estimated by computing the averages in the retained draws. In the regulator problem,

the policymaker will use the estimated value of � from �ts as the autoregressive coe¢ cient in the process for the

real price of oil18 , while the value of �t in �s;t will be the starting point of future trajectories for the intercept

of this process. Finally, the policymaker will use the estimated variances �2o;t and �
2
o;t to update p(V ) in (11).

14As a robustness check, I looked at the number of lags recommended by the Akaike criterion. This criterion would favor models
with a higher number of lags of y, � and i, in particular in the in�ation equations. However, for the real price of oil the number
of selected lags was one, as in the Bayesian criterion.
15Here, I need to perform a number of iterations of the sampler in each period. In addition, the history to be estimated increases

in length in each period. For this reason, it is necessary to keep the iterations performed by the Gibbs sampler to a limited number
in order to make the computation manageable in terms of time.
16As a robustness check, I estimated the joint posterior p

�
�Ts ; V j sT

�
, T = 2009 : III, using the entire sample and a very

disperse prior for both V and �s;0. I veri�ed that the estimates obtained in the paper with the described priors and the learning
process on p(V ) eventually converge to values that are consistent with those obtained from this exercise.
17 I assessed the convergence of the Gibbs sampler by looking at the autocorrelation functions of the draws. The 20th order

autocorrelations were all very small, well below 0:1, which suggests e¢ ciency of the algorithm in converging to the distribution of
interest.
18 In the process described by (7) - (10), the value of � is assumed to be time invariant: The algorithm used to estimate �ts will

actually deliver this result; see Appendix 2 for a discussion.
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This new prior will be denoted as: p(V ) = IW
�
Bo;0jt; vo;0

�
IW

�
B";0jt; v";0

�
: Given this new prior and the new

observation st+1, the Gibbs sampling algorithm can be repeated to obtain draws from the posterior distribution

p
�
�t+1s ; V j st+1

�
, and so on until the end of the sample. Notice that the history �ts to be estimated increases

in length as time passes, thus making the problem computationally longer in each period.

The estimation procedure for p (�;� j Zt) is simpler than the one required for the join posterior p
�
�ts; V j st

�
.

For each model, the parameters in (17) were computed from the OLS estimates obtained using the initial

training sample. More speci�cally, in the inverse Wishart distribution B0 was set as the estimated sum of

squared residuals, and v0 as the degrees of freedom in the training sample, while in the Gaussian distribution,

�0 was set as the point estimate from the OLS regression, and P0 as its covariance matrix. As I previously

mentioned, the normal-inverse Wishart distribution is a conjugate prior for the multivariate normal likelihood,

which implies that the posterior on the parameters of each approximating model is also a normal-inverse

Wishart distribution. In particular, at any time t the posterior will be:

p
�
�;� j Zt

�
= p

�
� j �; Zt

�
p
�
� j Zt

�
(29)

with:

p
�
� j Zt

�
= IW (Bt; vt)

p
�
� j �; Zt

�
= N (�t; Pt)

where vt = vt�1 + 1: The formulas used to compute Bt; �t and Pt are provided in Appendix 2. The posterior

for time t can then be used as the prior for time t+ 1, and so on until the end of the sample. In each period,

the policymaker will use the estimated mean of p (� j �; Zt) for each model as the value of the coe¢ cients in
the policy decision process.

Finally, standard values are assumed for the parameters in the regulator�s loss function. The discount factor

� is set so that the annual discount rate is 4%. In the matrix Q, �� is set to one, re�ecting an equal weight

of in�ation and unemployment (as in Cogley and Sargent, 2005b, and Brock, Durlauf and West, 2007), while

the cost of changing the policy instrument is �i = 0:1 (as in Brock, Durlauf and West, 2007). This choice of

weights is also in the range considered by Levin and Williams (2003). The value of the target in�ation rate is

set to 2%, as in Primiceri (2006). In the baseline case the initial model weights are �S;0 = �BG;0 = �H;0 = 1=3;

re�ecting an uniform prior across the three approximating models.19

The data used in the estimation procedure is described in Appendix 1. The recursion starts in the �rst

quarter of 1970.

3.1 The process for the real price of oil

Figure 1 shows the pattern of the real price of oil in the period 1970 : I � 2009 : III. Figure 2 reports the
estimated parameters for the process described by (7) � (10). The top panel illustrates the behavior of the
coe¢ cients �t and � in (7) and the bottom panel the pattern of the variances �2" and �

2
o in V . These values are

the averages of the retained draws from the posterior p
�
�ts; V j st

�
generated using the Gibbs sampler.

Figure 2 shows that policymakers�estimates of �2o drastically changed right after the �rst large increase in

oil prices in 1973 � 74; while the value of �2" remained very low in the same period. If we think about these
values as policymakers�beliefs over the true variances �2" and �

2
o, then this pattern suggests that the regulator

initially interpreted the �rst oil price shock as being due to a larger than expected value of ot, rather than

19Section 3 studies the sensitivity of the results to changes in the initial model weights and in some of the parameters in the
regulator�s loss function.
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to a permanent shift in the mean of the process for st. However, after this �rst adjustment, the estimated

value of �2o decreased rapidly, while �
2
" started increasing, particularly since the early 1980s. Thus, over time

policymakers adjusted their beliefs in the light of the new data, and became persuaded of the fact that, in

addition to the transitory shock ot, the process for the real price of oil was also a¤ected by relevant permanent

changes. Eventually, the estimated �2o reached a relatively stable value in the late 1980s: On the other hand,

the learning process on �2" led to an initial overestimate of its value, which was then reviewed during the 1990s

and reached a nearly stable value after the year 2000.

Figure 1 - The real price of oil

Note: The real price of oil in the period 1970 : I � 2009 : III . See Appendix 1 for a description of the data.

Figure 2 - Parameters in the process for the real price of oil

Note: Pattern of the parameters in the process for the real price of oil. The top panel reports the time-varying intercept �t (left)
and autoregressive coe¢ cient � (right) in (7). The bottom panel reports the variances �2" (left) and �

2
o (right). These parameters

were estimated using the Gibbs sampler procedure described in Appendix 2.

The pattern of the variances �2" and �
2
o is re�ected in the estimated values of �t and �: In the 1970s and

1980s, the value of �2" was still quite small, even if increasing. For this reason, the time-varying intercept

displays a limited reaction to the two large oil price increases of 1973� 74 and 1979� 80; while starting from
the early 1990s this variable captures a larger fraction of the variation in st: The estimated value of � decreased

in the period under analysis, especially after the second oil price shock of 1979 � 1980 and was always lower
than 0:97, the value chosen by Blanchard and Gali (2007). As for �2" and �

2
o, the estimated patterns of �t and

� can be interpreted in terms of policymakers�beliefs over the behavior of the process for the real price of oil.
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In this view, we can infer that since the second large oil price increase of 1979�80; the monetary authority has
been attributing a larger fraction of the variation in st to permanent changes in the structure of this process,

while the perceived persistence of the transitory shock ot has decreased.

Figure 3 - Learning on the history of the time-varying intercept �t

Note: Each line is the estimated history �t; using information up to time t. The dotted line is the estimated history computed at
T = 2009 : III using all the available information.

The learning process assumed in this framework implies that, at each time t, policymakers re-estimate the

variances �2" and �
2
o; and the entire history of �s;t up to the current period. Given that the prior on �s;0 is not

updated over time, the adjustments of the history �ts are due to the arrival of new data and to policymakers�

changing beliefs over the covariance matrix V . Figure 2 provides some information on this learning process, by

showing how the estimated values of �t; �; �2o and �
2
" were modi�ed during the sample period under analysis.

Figure 3 o¤ers some additional insights by reporting the estimated history of the time-varying intercept �t for

each t = 1; :::; T: The dotted line represent the estimate obtained at T = 2009 : III; using all the available

information. From this �gure, it is evident that in more than one occasion the believed history �t was subject

to signi�cant revisions in later periods. Thus, �gure 2 and 3 provide evidence on the fact that the process of

learning on the real price of oil was substantial.

3.2 The robust policy response to oil prices

The robust policy recommendation was obtained using the approach described in Section 2. As I already

mentioned, this approach requires the policymaker to de�ne a composite model of the economy, in which

each of the approximating speci�cations is weighted based on its relative posterior probability. In interpreting

the results, these weights can be thought of as policymakers�beliefs over the extent to which the considered

speci�cations approximate the true data generating process.

Figure 4 reports the pattern of the weights attached to each of the approximating models in the policy

decision process. The �rst observation that we can make is that over time none of the three models became

clearly predominant in terms of posterior probability. The period until the mid 1980s is characterized by large

and rapid changes, especially for the BG and H models. In particular, while during the �rst large increase in

the real price of oil of 1973� 74 the data seems to favor the BG model, the second oil price shock of 1979� 80
induces a change in the relative posteriors in favor of the H model. The decrease in the real price of oil in

the �rst half of the 1980s is characterized by the H and BG models rapidly alternating as the model with the

highest posterior, followed by a few periods in which the relative posterior probabilities of the three models are
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very similar in magnitude. Since the mid 1980s the weights attached to each model have remained relatively

more stable. The H model has maintained the highest relative posterior from the mid 1980s until around 2000;

while during the long and steady increase in the real price of oil that started around 2000 the data seems to

have favored the S model. Finally, during the rapid drop in the real price of oil that characterized the last few

periods of the sample, the relative posteriors of the H and S models have increased at the expenses of the BG

model.

Figure 4 - Model weights

Note: Relative posterior probability of each approximating model, computed using the procedure explained in Appendix 2.

We can interpret the pattern of the model weights in terms of policymakers�beliefs over the speci�cation

that best approximates the true data generating process. This interpretation allows to make some conjectures

about how these weights could have a¤ected the optimal policy recommended by the regulator problem. In

the years around the �rst oil price shock, the policymaker believed that the BG model closely approximated

the true model of the economy. As a consequence, he believed that monetary policy could play an important

role in contrasting the e¤ects of a change in oil prices on the economy, and in particular on the output gap.

On the other hand, in the years around the second oil price shock, and from the second half of the 1980s to

around 2000, policymakers�beliefs over the true data generating process changed in favor of the H model, in

which the policy instruments cannot alter the impact of oil prices on output. Then, we might expect that in

these years the response of monetary policy to changes in the real price of oil was mostly directed to reduce its

consequences on the in�ation rate. Finally, since 2000 the data seems to favor the S model, in which monetary

policy has an indirect e¤ect on the output gap through unanticipated in�ation. Depending on the estimated

magnitude of this e¤ect, the monetary authority might believe that policy has again a role in limiting the

e¤ects of a change in oil prices on output. In the remainder of this section, I will show that these conjectures

on the relationship between policymakers�beliefs and decisions are actually not always correct. This happens

because one of the approximating models under consideration, namely the BG model, tends to dominate policy

decisions, even when its weight is relatively small compared to the other two speci�cations.

Figure 5 reports the optimal (and robust to model uncertainty) policy recommendations obtained from the

regulator problem described in section 2. The left-hand panel shows the value of the policy instrument xtjt�1,20

while the right-hand panel focuses on the fraction of the optimal policy that is due to the direct response to the

real price of oil.21 There are a few observations that can be made from this �gure. First, the optimal interest

20 I imposed no restrictions on the value of the control variable in the regulator problem; this is the reason why the optimal
interest rate is negative in a few periods. This problem could be avoided by incorporating some interest rate target level, which I
didn�t do for simplicity of the analysis.
21 In this setup, the time-varying intercept �t enters in the state for each model (see Appendix 3 for a description of the state
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rate recommended by the composite regulator problem reproduces much of the increases and decreases in the

Federal funds rate during the entire sample under analysis. In addition, starting from 1985; it is also very close

in magnitude. This result persists even if I eliminate the interest rate smoothing term in the policymaker�s

loss function. Therefore, the model uncertainty and learning framework employed in this paper seems to be

able to capture some relevant features of the actual decision process during this time period. Second, both

the optimal policy recommendation and the direct response to oil prices are a lot more volatile until the �rst

half of the 1980s. This is due to several reasons. First, all the variables included in the approximating models

are more volatile in this �rst part of the sample (the period after 1985 is usually referred to as "the great

moderation"). The procedure described in section 2 delivers an optimal policy that is a linear function of the

models�variables and that, as a consequence, follows their behavior. In addition, in this framework a higher

volatility of the models�variables implies that the estimates of the models�parameters are subject to rapid

and large adjustments, also because a smaller number of observations are available in this �rst portion of the

sample. These changes are re�ected in the matrices of the state space representation, so they a¤ect the optimal

policy recommendation. Finally, the pattern of the model weights is also changing quite rapidly in the period

until the mid 1980s, and this has an e¤ect on the linear regulator problem as well, since these weights appear

in the policymaker�s loss function.

Figure 5 - Policy recommendation - composite model

Note: The left-hand panel reports the policy recommended by the optimization problem described in section 2 (dashed line)
together with the annual Federal Funds rate (continuous line). The right-hand panel reports the fraction of the optimal policy
that represents the direct response to the real price of oil.

An important factor that emerges from the right-hand panel of �gure 5 is that during almost the entire

sample period, the direct policy response to the real price of oil is negative. As I mentioned, the optimal policy

recommended by the regulator problem described in section 2 is a linear function of the models� variables.

Since the real price of oil, with the exception of a handful of data points in the early 1970s and late 1990s, is

almost always positive, this implies that in the optimal policy rule the coe¢ cients attached to the oil variables

are negative in most periods. Therefore, in most periods the robust regulator problem urged policymakers to

react to an increase in the real price of oil by decreasing the nominal interest rate, that is, by implementing

an expansionary policy. Two relevant exceptions to this conclusion are the large oil price shocks of 1973 � 74
and 1979 � 80, in which the direct response to oil prices becomes positive. In the next section I will propose
space representation for each model). Therefore, the direct policy response to the real price of oil has been computed as the
response to �t in addition to the response to st: However, since the real price of oil has an impact on output and on the in�ation
rate as well, the overall e¤ect of oil prices on the policy recommendation might actually be larger than the simple response to �t
and st. It is in principle possible to study the overall impact of the real price of oil on the optimal policy, but I preferred to focus
on the direct response for clarity of exposition.
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an explanation to these exceptions based on the optimal policies emerging from the individual models during

these two historical events.

Finally, the right hand panel of �gure 5 also shows that the robust response to oil prices is reduced in

magnitude, and in average closer to zero, in the period that goes from the mid 1980s until around 2005. This

result is actually consistent with the empirical literature studying the reaction of the Federal Reserve to oil

price shocks. For instance, Bernanke, Gertler and Watson (1997) show that the response of the Federal funds

rate to a 1% oil price shock is signi�cantly smaller in the period 1986� 1995 compared to the previous portion
of their sample, and Kilian and Lewis (2009) argue that there is no evidence of systematic monetary policy

responses to oil price shocks after 1987.

3.3 The role of uncertainty

The previous subsection studied the optimal policy recommended by a composite problem that explicitly

accounts for model uncertainty and learning. How is this policy a¤ected by policymakers�changing beliefs on

the model that best approximates the true data generating process? In other words, how does the pattern of

the model weights reproduced in �gure 4 relate to the optimal policy and direct response to the real price of

oil reported in �gure 5? To provide more insight into this question, I compare the policy obtained from the

composite model with the optimal interest rate recommended by each individual approximating model. The

results of this exercise are reported in �gure 6 and �gure 7.

Figure 6 - Policy recommendation - composite and individual models

Note: Optimal policy recommendation (dashed line) and direct response to the real price of oil (continuous line) in the composite
and individual models.

A �rst observation that we can draw from �gure 6 is that both the optimal policy and the direct response to

the real price of oil are very similar in the S and H models.22 This happens because the estimated coe¢ cients

in the lag polynomial �S� (L) turn out to be very small, even if signi�cantly di¤erent from zero. Since the

term �S� (L) [�t�1 � Et�2 (�t�1)] is the only di¤erence between the S and the H approximating models, this

22There are some di¤erences only in the early 1980s and after 2005.
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implies that when estimated these two models are indeed very similar, and therefore imply similar policies

recommendations. Thus, for clarity of exposition, the S model has been omitted from �gure 7.

Figure 7 - Policy recommendation - composite, BG and H models

Note: The left-hand panel reports the policies recommended by the composite problem described in section 2, the BG model and
the H model. The right-hand panel reports the direct response to the real price of oil for the same models.

The main conclusion that we can infer from �gures 6 and 7 is that the BG model seems to dominate the

optimal policy obtained from the composite model, regardless of the pattern of the model weights. For the

policy instrument, this is particularly true in the �rst part of the sample, up to around 1985. On the other hand,

in the direct policy response to the real price of oil, the composite model closely follows the BG model during

the entire sample, except for a few time periods in the 1980s and in between 2000 and 2005. In the 1980s, this

di¤erence might be due to the rapid increase in the weights attached to the S and H models, together with the

fact that these two models were recommending a quite di¤erent response to oil prices in this period (a strong

contractionary instead of the expansionary response suggested by the BG model). In between 2000 and 2005,

the weight attached to the BG model reached near zero values, and this likely pushed the direct response to

oil prices in the composite model closer to the recommendations of the H and S models.

What is the reason why the BG model drives policymakers�response to the real price of oil? The conclusion

that one or a few of the speci�cations in the model space play a central role in the regulator problem is not

uncommon in the literature using the Bayesian approach to account for model uncertainty.23 Typically, this

happens because some model speci�cations are more di¢ cult to stabilize, and generate high losses under a

wide range of policies. For this reason, in a model uncertainty framework the concern for robustness motivates

policymakers to grant these speci�cations a particular treatment. In other words, in a regulator problem like the

one described in section 2, models that imply very high (sometimes close to in�nity) losses in a large set of policy

choices will tend to dominate the optimal policy recommendation, even when their weight in the composite loss

function is low. In this framework, it is di¢ cult to provide an exhaustive analysis of the stability features of the

S, BG and H speci�cations, not only because they depend on the set of policies under consideration but also

because they change over time as the policymaker updates his estimates of the models�parameters. However,

there are some pieces of evidence from which it is possible to infer that the greater di¢ culty in stabilizing the

BG model is an important part of the story in this environment as well. For instance, it is easy to show that

the adoption of a �xed interest rate, that does not respond to changes in the state of the economy, generates

dominant eigenvalues that exceed the stability boundary of ��1=2 in the BG model, but not in the S and H

models. More generally, in the sample period under analysis the BG model is the only one that is never stable

23For instance, Cogley and Sargent (2005b) found that their "Samuelson-Solow" model was strongly a¤ecting the optimal policy
in the composite problem even when its weight was relatively low compared to the other models.
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without policymakers� intervention, thus requiring an active policy in order to be stabilized. It follows that

the BG speci�cation can be viewed as a worst-case model, to which the Bayesian policymaker needs to devote

particular attention, even when its weight in the decision process is very low. This conclusion also reveals a

connection with the minimax approach proposed by Hansen and Sargent (2001a; 2001b; 2008)24 , in which the

regulator always implements the policy that allows him to protect against the worst-case scenario, regardless

of the probability of this scenario to actually happen.

The characteristics of the BG model can be used to provide an economic interpretation of its central role

in the policy decision process. Among the three approximating models, the BG is the one in which oil prices

have potentially the greatest e¤ect on the variables of interest. This is because in addition to the direct e¤ect

on output and in�ation (which given the estimated coe¢ cients is comparable in magnitude to the S and H

models), this speci�cation also implies a feedback of output on in�ation and of (expected) in�ation on output.

This last e¤ect is not present in the H model, and it is negligible in the S model. At the same time, the BG

model is the one in which monetary policy can potentially control the impact of oil prices on the economy to

the greatest extent. In particular, it is the only model in which monetary policy can directly reduce the impact

on output, and the subsequent transmission to in�ation through output and back to output through expected

in�ation.25 Thus, the economic relationships implied by the BG model provide an additional interpretation

of the reasons why policymakers might want to give this speci�cation primary attention in the policy decision

process.

The dominance of the BG model in the direct response to oil prices facilitates the understanding of the

recommended reaction to speci�c events in the postwar period. In general, the part of the sample going from

the �rst oil price shock to the early 1980s is characterized by rapid changes in the response to oil prices, for

the reasons that I have already described above. In most periods this response is negative, thus suggesting

that an increase in the real price of oil should be followed by a decrease in the nominal interest rate. This

result can be viewed as a consequence of the structure of the BG model, in which regulators can contrast the

negative e¤ects of oil prices on output by implementing an expansionary policy. However, for a few periods,

in particular right after the large oil price increases of 1973 � 74 and 1979 � 80, the response to oil prices is
positive. In these periods the estimated parameters in the BG model imply an overall positive impact of the

real price of oil on the variables of interest to policymakers. In these circumstances, an increase in oil prices

will require a contractionary policy response in order to contrast the origin of potentially explosive patterns.26

In the remainder of the sample starting from the early 1980s, the policy response to oil prices in the composite

model is almost always negative, but more moderate and stable than in the previous years, because of the

greater stability of both economic variables and estimated parameters in this period.

One last important result emerges from the left panel of �gure 7. For a long period of time, from around

1985 until roughly 2005, the optimal interest rate obtained from the composite problem is lower than the

interest rate recommended by each of the approximating models. At �rst impact, this result might seem

puzzling; why should model uncertainty make policymakers less precautionary in their policy choices? The

answer to this question can be obtained by analyzing the optimal regulator problem described in section 2;

together with the individual characteristics of the approximating model considered in this work. In the BG

model, the policymaker can a¤ect output directly and in�ation indirectly through lagged output. In the H

model, the policymaker can a¤ect in�ation but not output, nor directly or indirectly. In the S model, the
24Cogley and Sargent (2005b) already noticed this connection in the framework under analysis in their paper.
25Some evidence on the larger role of policy in the BG model is provided by Rondina (2010) which, using a framework similar

to the one adopted in this paper, presents some impulse-response exercises comparing the reaction of the models�variables to an
oil price shock in the di¤erent approximating models under di¤erent policy rules.
26More speci�cally, in these periods the increase in in�ation caused by oil prices has a larger impact on output (through the real

interest rate) than oil prices themselves. This might originate trajectories in which the values of both yt and �t diverge to in�nity.
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policymaker can a¤ect output indirectly through in�ation, but as I already mentioned this e¤ect is quite small.

The composite model is a weighted average of these three approximating models, in which the optimal policy

instrument simultaneously responds to all variables in the state vector, that is to all the variables included in

all models. As a consequence, in the robust problem the policy instrument can generate (and use) relationships

between variables that are not possible in the underlying models. This rationalizes departures from the policies

recommended by the individual models, and explains the optimal policy in the years 1985� 2005.
The ability of the policy instrument to create correlations between variables in the di¤erent models is a

consequence of the approach used to incorporate model uncertainty in this environment and it is not related to

the introduction of oil prices in the economy. From a formal point of view, this outcome is caused by the fact

that the transition law in (28) looses the original block diagonal form implied by (21) once the optimal policy

rule for xtjt�1 is obtained from the linear regulator problem. The additional relationships between variables

that characterize (28) relative to the individual models are of two forms. First, the recommendation for the

policy instrument xtjt�1 is a linear function of the composite state SE;t�1, which includes all variables present

in all models. Therefore, by implementing the optimal policy the regulator will make each individual model

depend also on those variables that were originally included only in other models. In this sense, the Bayesian

optimal control problem allows policymakers to reduce model uncertainty by equalizing the set of variables

that a¤ect each individual model. Second, the state vector SE;t�1 also contains variables that are included

in more than one model. Again, in the optimal policy rule the instrument xtjt�1 is a function of SE;t�1, and

this potentially generates relationships between all variables in all models, even between the same variable

in di¤erent models. In other words, the robust regulator problem assumes that policymakers act as perfect

forecasters of possible future patterns for the variables of interest, and these patterns account for the uncertainty

on the model from which future variables will be generated. In expectation, these future trajectories can exhibit

interactions between variables in the di¤erent models, which are generated and a¤ected by the optimal policy

rule. Thus, the Bayesian optimal control problem allows for potential gains from model uncertainty, in the

sense that (in expectation) policymakers will be able to exploit correlations that do not exist in the individual

models. In practice, whether the composite regulator problem described in section 2 will recommend a less

or more precautionary optimal policy relative to the individual models depends on the speci�c models under

analysis, and on the channels of transmission of monetary policy that they imply. In this framework, for a

number of periods the correlations between variables allow regulators to implement a robust interest rate that

is lower than the optimal interest rate obtained from the S, BG and H models. My conjecture is that this

result is likely to emerge in other environments in which the speci�cations in the model space are characterized

by a very di¤erent impact of the policy instrument on the variables of interest to the policymaker.

As I already mentioned, the possibility to use interactions between the variables in the composite state

vector is due to the speci�c approach proposed by Cogley and Sargent (2005b) and employed in this paper,

which incorporates Bayesian model averaging to an optimal control type of problem. This result is not present

in previous works in which Bayesian model averaging was adopted to select a robust policy among a prede�ned

set of simple policy rules (see, for instance, Brock, Durlauf and West, 2007; Brock et al., 2007; Cogley et al.,

2009; Rondina, 2010). It follows that a composite regulator problem as the one described in this work has

relevant implications on the way policymakers view model uncertainty, and important consequences on the

interpretation of the optimal policy recommendation. However, the literature is lacking a comprehensive treat-

ment of the properties of this approach, particularly with respect to the di¤erences with the other techniques

that have been proposed to account for model uncertainty in economic policy. For this reason, I believe that

further investigation in this direction could o¤er interesting insights, and provide a fuller understanding of the

implications that di¤erent methods have for policymakers�behavior in face of model uncertainty.
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4 Sensitivity analysis

In this section, I explore the sensitivity of the results to changes in some of the baseline assumptions. First, I

study the e¤ects of di¤erent model priors on the pattern of the posterior probabilities, and the resulting impact

on the optimal policy rule. Second, I investigate the robustness of the results to changes in the process for st
and in the procedure used to estimate its parameters. Last, I analyze the role of policymakers�preferences, and

in particular I examine how the recommended policy would have been di¤erent had the regulator only focused

on a target for core CPI in�ation.

4.1 Model priors

In the baseline case, an equal initial prior of 1=3 was attached to each of the approximating models. As I already

mentioned, the literature in economics has proposed many di¤erent mechanisms through which oil prices can

a¤ect economic performance. In particular, some of these studies have focused on the demand-side e¤ects of

changes in the price of oil, while some other works have analyzed the impact of oil prices on the supply side of

the economy. The S and BG models fall into the �rst group, while the H model can be considered as part of

the latter. Therefore, it seems natural to consider a combination of model priors that takes into account this

classi�cation. In this spirit, half of the initial probability weight can be split equally between the demand-side

speci�cations, and half can be attached to the supply-side speci�cation. This originates the following initial

priors: �S;0 = �BG;0 = 1=4; �H;0 = 1=2:

Figure 8 - Model weights - �S;0 = �BG;0 = 1=4; �H;0 = 1=2

Note: Relative posterior probability of each approximating model, computed using the procedure explained in Appendix 2, with
the alternative prior speci�cation �S;0= �BG;0= 1=4; �H;0= 1=2.

Figure 8 reports the pattern of the model weights when this di¤erent set of prior probabilities is adopted.

Figure 9 shows the corresponding optimal policy recommendation and direct response to oil prices. The pattern

of the relative posterior probabilities is very similar to the benchmark case, but the higher prior of theH model is

re�ected on a higher weight attached to this model in the entire sample period. The policy recommendation and

the direct response to the real price of oil are almost the same as in the baseline case. This result was somehow

expected, since the pattern of the model weights is not greatly a¤ected by the change in prior probabilities, so

the BG model still dominates the optimal regulator problem.
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Figure 9 - Policy recommendation - composite model, �S;0 = �BG;0 = 1=4; �H;0 = 1=2.

Note: The left-hand panel reports the policy recommended by the optimization problem described in section 2 (dashed line)
together with the annual Federal Funds rate (continuous line). The right-hand panel reports the fraction of the optimal policy
that represents the direct response to the real price of oil. The initial priors are �S;0= �BG;0= 1=4; �H;0= 1=2:

Finally, I considered two more sets of prior probabilities. In the �rst case, I attached a low initial prior

(1=10) to the supply-side speci�cation. In the second case, the low prior was attached to the demand-side

speci�cations. The pattern of the model weights and the optimal policy recommend by the regulator problem

in these two cases are reported in �gure 10 and �gure 11. These �gures show that more extreme departures

from the baseline set of priors considerably a¤ect the behavior of the model weights, even if some patterns,

like the increase in the relative posterior of the BG model around the �rst oil price shock, remain. In general,

a higher prior increases the relative posterior of the approximating model for the entire length of the sample.

This result is due to the fact that the changes in posterior probabilities generated by the new data are quite

similar across the approximating models.27 Thus, the relative posterior probabilities are only slightly a¤ected

by the new information that becomes available over time, and the impact of the initial priors on the model

weights is carried throughout the sample.

Figure 10 - Model weights and policy recommendation - �S;0= �BG;0= 9=20; �H;0= 1=10

Note: The left-hand panel reports the relative posterior probability of each model speci�cation, computed using the procedure
explained in Appendix 2. The right-hand panel reports the optimal policy (dotted line), the direct response to the real price of oil
(dashed line), and the actual Federal Funds rate (continuous line). The initial priors are: �S;0= �BG;0= 9=20; �H;0= 1=10.

The di¤erent patterns of the model weights implied by the di¤erent assumptions on the initial priors a¤ect

both the optimal interest rate and the direct policy response to oil prices. This statement can be veri�ed by

comparing the right panels in �gures 10 and 11 with �gure 5, that reported the results for the baseline scenario.

27This �nding actually con�rms the evidence that this environment is characterized by a problem of model uncertainty.
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However, while the model weights change signi�cantly based on the chosen set of priors, the optimal policy is

a¤ected to a much smaller extent. In particular, the policy recommendations are subject to some variations

in magnitude but their general pattern in the sample period under analysis remains almost unchanged.28

Therefore, we can conclude that the BG model keeps playing a dominant role in the regulator problem, even

when its weight is close to zero. In this sense, in this environment the presence of model uncertainty itself is

more important than the actual pattern of the weights attached to each approximating model.

Figure 11 - Model weights and policy recommendation - �S;0= �BG;0= 1=20; �H;0= 9=10

Note: The left-hand panel reports the relative posterior probability of each model speci�cation, computed using the procedure
explained in Appendix 2. The right-hand panel reports the optimal policy (dashed line), the direct response to the real price of oil
(dashed line), and the actual Federal Funds rate (continuous line). The initial priors are: �S;0= �BG;0= 1=20; �H;0= 9=10.

4.2 The process for the real price of oil

In this subsection I investigate the extent to which the optimal policy is a¤ected by the de�nition of the

process for the real price of oil and by the assumptions used to estimate its parameters. Notice that alternative

formulations of st will not modify the models�relative posterior probabilities, since this process does not di¤er

across speci�cations. Thus, none of the variations that I consider in this section will change the pattern of the

weights reported in �gure 4. However, the real price of oil a¤ects the behavior of the variables of interest to

policymakers, so that changes in (7) and in the pattern of its estimated parameters have consequences on the

regulator problem and can potentially alter the optimal policy recommendations.

4.2.1 Estimation priors

Previous works using MCMC methods to estimate processes in the form of (7) have shown that the assumptions

on the initial prior distributions are important for the speed of convergence of the algorithm, and for the value

of the estimated parameters (see, for instance, Cogley and Sargent, 2001 and 2005a; Primiceri, 2005). Thus,

in this subsection I investigate how the baseline results are a¤ected by changes in the inverse Wishart priors

IW
�
Bo;0j0; vo;0

�
and IW

�
B";0j0; v";0

�
; and in the Gaussian prior N (�s;0; Ps;0).

As explained above, in the baseline scenario the prior p (V ) is tighter than those usually adopted in the

literature. A decrease in the degrees of freedom vo;0 and v";0 would make this prior more disperse and less

informative, hence allowing the data to play a larger role in the estimation of �2o and �
2
". However, given

28Notice that the robust interest rate is lower in periods in which the relative posterior probability of the H model moves closer to
one. In these circumstances, the composite optimization problem attaches a near one weight to a speci�cation in which monetary
policy has a very limited impact on the variables of interest to policymakers. As a consequence, this is a situation in which the
relationships between models created by the robust policy rule have the potential to deliver the greatest bene�ts.
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the high volatility in the historical series for st, reducing the initial degrees of freedom could slow the speed

of convergence of the algorithm and require additional adjustments that do not seem consistent with the

assumption of learning on the side of the policymaker.29 In the baseline scenario, vo;0 = v";0 = 43 (the degrees

of freedom in the training sample). I experimented with a few alternative numbers for the initial degrees of

freedom, decreasing them as long as the convergence of the algorithm was providing acceptable results. Setting

the degrees of freedom to 15 would already raise the convergence issues mentioned above. Therefore, in �gures

12 I report the results for vo;0 = v";0 = 20:

The main di¤erence with the baseline scenario is that in this case the policymaker substantially overestimates

the variance �2" in the �rst part of the sample. Then, he reviews his beliefs over time, and eventually converges

to values that are similar to those obtained in the baseline estimation. The consequences on the estimated

autoregressive coe¢ cient and time-varying intercept are that � decreases more quickly, while the pattern of �t
reaches higher values in the initial part of the sample, when �2" is higher. However, the di¤erences with the

values of � and �t displayed in �gure 2 are not very large, so the resulting optimal policy and direct response

to the real price of oil are similar to the baseline scenario, and are not reported.

Figure 12 - Parameters in the process for the real price of oil

Note: Pattern of the parameters in the process for the real price of oil, in the case vo;0= v";0= 20. The top panel reports the
time-varying intercept �t (left) and autoregressive coe¢ cient � (right) in (7). The bottom panel reports the variances �2" (right)
and �2o (left). These parameters were estimated using the Gibbs sampler procedure described in Appendix 2.

In a second exercise, I set vo;0 = v";0 = 15, IW
�
0:92Bo;0jt; vo;0

�
, IW

�
0:92B";0jt; v";0

�
and N

�
�s;0; 5

2Ps;0
�
,

for any t = 0; :::; T with T = 2009 : III. In this way, the prior on V attaches a smaller weight to the estimates

of �2o and �
2
" coming from the previous period, and the Gaussian prior on the value of �s at time 0 is a lot

more disperse than in the baseline scenario. Given the lower degrees of freedom, the decrease in the scale

parameters in the inverse Wishart priors was introduced to facilitate the convergence of the sampler. On the

other hand, the increase in the variance of the Gaussian prior ensures that the total time variation is consistent

with that in the baseline scenario. This choice of prior distributions allows the data to play a greater role in

29More speci�cally, reducing the degrees of freedom might require the policymaker to signi�cantly reduce bBo;0j0 and bB";0j0 in
order to guarantee a quick convergence of the Gibbs sampler. At each time t, this would make the estimation of the joint posterior
p
�
�ts; V j st

�
heavily dependent on the data alone, with almost no role for the value of the covariance matrix V estimated at time

t� 1. This result does not appear to be consistent with the idea of a policymaker learning over time and it seems more suggestive
of an environment in which the monetary authority changes in every period and decides not to take into account the estimates of
their predecessors.
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the estimation of the joint posterior p
�
�ts; V j st

�
. Figure 13 shows that in this case �2" moves more rapidly to

values in the range of its �nal estimate and, as a consequence, � decreases more quickly than in the baseline

scenario. However, in the last part of the sample, the autocorrelations between the draws obtained from the

Gibbs sampler are not as small as in the previous choices of priors, especially for �2". This suggests that a higher

number of draws might have been necessary to obtain a better convergence of the algorithm. In addition, this

prior parameterization generates estimates of �2" that are more volatile. In the �rst few periods, this produces a

value of � that is higher than in the baseline scenario, and that makes the composite problem not stabilizable.

Apart from this initial part of the sample, the optimal policy and direct response to oil prices obtained using

the estimates depicted in �gure 13 are again very close to those in the baseline scenario.

A lower number of degrees of freedom would require even smaller values of the scale parameters in the

inverse Wishart priors which, as I previously mentioned, does not seem consistent with the idea of learning. On

the other hand, leaving IW
�
Bo;0jt; vo;0

�
and IW

�
B";0jt; v";0

�
as in the baseline scenario while increasing the

variance in the Gaussian prior would just increase the amount of time variation without changing the pattern

of �2o and �
2
":

Figure 13 - Parameters in the process for the real price of oil

Note: Pattern of the parameters in the process for the real price of oil, in the case vo;0= v";0= 15; IW (0:9
2
Bo;0jt; vo;0),

IW (0:9
2
B";0jt; v";0) and N(�s;0; 5

2Ps;0). The top panel reports the time-varying intercept �t (left) and autoregressive

coe¢ cient � (right) in (7). The bottom panel reports the variances �2" (right) and �
2
o (left). These parameters were estimated

using the Gibbs sampler procedure described in Appendix 2.

Finally, I also considered asymmetric changes in IW
�
Bo;0j0; vo;0

�
and IW

�
B";0j0; v";0

�
by allowing one of

the two prior distributions be more disperse than the other. The choice: IW
�
Bo;0jt; vo;0

�
, IW

�
0:92B";0jt; v";0

�
and N

�
�s;0; 5

2Ps;0
�
; with vo;0 = 43 and v";0 = 20 generated results that were similar to those reported in

�gure 13, even if the estimated value of �2" was smaller in magnitude. Allowing for less degrees of freedom did

not guarantee convergence of the algorithm, especially around the large oil price shocks and sometimes at the

end of the sample period. Other asymmetric parameterizations of the joint prior p (�s;0; V ) delivered results

that were either quite similar to the baseline scenario or uninteresting, because one of the two variances was

capturing the entire variation in st:
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4.2.2 The mean shifting component

In the baseline framework, the process for the real price of oil was described by (7) � (10). In this section, I
investigate whether the results reported in section 3 change if I assume that st follows an exogenous zero-mean

AR(1) process in the form:

st = �st�1 + ot (30)

with � = 0:97: This is the speci�cation adopted by Blanchard and Gali (2007).

Figure 14 show that the optimal policy, and especially the direct response to the real price of oil, are less

volatile when (7) is substituted by (30). This result was somehow expected, since the process for the real price

of oil described by (30) is not subject to changes in mean, and because its autoregressive coe¢ cient is not

adjusted over time. The di¤erences with the baseline scenario are emphasized in the right-hand panel of �gure

14: These di¤erences are larger (a few percentage points) is some periods; however, they are in general not too

big in magnitude. This happens for two reasons. First, policymakers are still assumed to estimate and update

the parameters of (1) � (6) using the approach described in section 2. Therefore, even if the process for the
real price of oil is di¤erent, the way it a¤ects the other variables of interest is not. Second, even if there is no

permanent innovation "t in (30), ot is still extremely persistent, and this feature seems to have a large impact

on the magnitude of the optimal policy recommendation.30

Figure 14 - Policy recommendation - process for st as in Blanchard and Gali (2007)

Note: The left-hand panel reports the optimal policy (dotted line), the direct response to the real price of oil (dashed line), and
the actual Federal Funds rate (continuous line), in the case the process for the real price of oil is as in Blanchard and Gali (2007).
The right-hand panel compares the results for this case (dotted lines) with those obtained in the baseline scenario (continuous
lines).

4.3 Policymakers�preferences

Last, I examined the e¤ects of a change in policymakers�preferences. In particular, I investigated the extent

to which the optimal policy recommendations would have been di¤erent had the monetary authority decided

to adopt an in�ation targeting type of objective. Given that in this framework the di¤erent approximating

models vary in terms of the variables that can be directly a¤ected by monetary policy, changes in the relative

weight of the output gap and in�ation rate in policymakers�loss function have the potential to deliver results

that are di¤erent from the baseline case. Notice, however, that policy decisions do not a¤ect the parameter

distributions; for this reason, variations in regulators�preferences will not alter the pattern of the model weights

reported in �gure 4.

30 Indeed, I experimented with values of � in the range 0:6 � 0:8 and I obtained that both the optimal policy and the direct
response to oil prices were several percentage points apart from the results of the baseline scenario.
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In�ation targeting was introduced in the optimization problem by changing the matrix Q in (27). In

particular, I de�ned an alternative matrix Q0 as:

Q
0
=

2640 0 0

0 �� 0

0 0 �i

375
with �� = 1 and �i = 0:1 as in the baseline scenario.31 If �� = 2%; substituting Q

0
for Q in the regulator

problem implies that policymakers are aiming for a 2% target on core CPI in�ation, while stabilizing the output

gap is no longer in their objective function.

I found that the optimal policy and the direct response to the real price of oil in the case of in�ation targeting

are almost the same as in the baseline scenario. This suggests that the policy recommendations obtained in

section 3 are mostly driven by policymakers�concern for stabilizing the core in�ation rate, so that assuming an

in�ation targeting type of policy does not change their priorities relative to the baseline problem. Moreover,

given the asymmetric role of the three approximating models in the composite problem, this result implies that,

ultimately, the central factor in�uencing the robust policy rule is the need to control core CPI in�ation in the

Blanchard-Gali model. The conclusion that the optimal policy recommendations are primarily determined by

the behavior of the in�ation variable is supported by the fact that, on the other hand, the value of the policy

instrument changes signi�cantly if the monetary authority is assumed to care more about the output gap than

core CPI in�ation. This statement can be easily veri�ed by considering an optimization problem in which the

original Q matrix with a smaller value of �� is used instead.32

I also considered a few additional variations in policymakers�preferences. I found that the results in the

baseline scenario are robust to changes in the value of the target in�ation �� in the range 0:5%� 4%: Finally,
setting �i = 0 only makes the policy recommendations more volatile in the fraction of the sample before 1985,

while it leaves both the optimal policy and the direct response to oil prices almost unchanged after this year.

5 Expectations formation

The formalization of expectations on future variables in an environment characterized by model uncertainty is

not straightforward. The main problem refers to the de�nition of private agents�information set, with regard

in particular to the inclusion in this set of the uncertainty on the true data generating process. In other words,

should model uncertainty be incorporated in the public�s expectations of future in�ation? And should the

public�s uncertainty be of the same form as the one that characterizes policymakers�decision process? And

more, if the public�s and the policymaker�s information sets, upon which expectations and policy decisions are

based, are di¤erent, how should we think about possible iterations between them?

The literature on policy design and evaluation in environments characterized by model uncertainty hasn�t

provided an organic answer to these questions, yet. A recent contribution by Cogley et al. (2009) has opted

for expectations to be formed rationally, but internally in each model. In other words, each of the approxi-

mating models included in the policy decision process is estimated under the assumption that the public has

rational expectations and believes that this speci�c model generates the data. This approach eliminates all

issues (for instance, signal extraction and/or higher order expectations) that might arise when the public and

policymakers both account for model uncertainty, but using di¤erent information on the true data generating

31Thus, I assume that the policymaker still has a preference for interest rate smoothing.
32The di¤erences with the baseline scenario become particularly evident if �� is decreased to less than 0:5.
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process.33 However, it generates expectations on the same future variable that are di¤erent in the di¤erent

model speci�cations, and this result might be undesirable in some circumstances. An alternative approach

is the use of survey data, as in Brock, Durlauf and West (2007). However, this technique is sometimes not

feasible, especially when the focus of the analysis is the interpretation of historical behavior, because survey

data is often only available for relatively recent years.34

A di¤erent procedure, proposed again by Brock, Durlauf and West (2007), is to allow the regulator problem

to account for alternative ways in which expectations might be formed. More speci�cally, policymakers can

treat the imperfect knowledge on the way private agents form their expectations as an additional form of model

uncertainty, and incorporate it into policy evaluation. This is a sound way to proceed, but it might signi�cantly

increase the dimension of the model space, especially in environments in which the monetary authority is already

concerned about several other forms of uncertainty.

The issue of expectations formation in an environment characterized by model uncertainty and learning

is not minor. Indeed, di¤erent assumptions on the way the public forms its expectations can a¤ect not only

the models�estimated parameters, but also their posterior probabilities and policymakers�learning on the true

data generating process. Intuitively, there might be circumstances in which expectations will help the regulator

discriminate among di¤erent model speci�cations, and others in which the opposite will happen. The purpose

of this work was to focus on the consequences for monetary policy of the uncertainty about the channel of

transmission of oil prices into the economy. For this reason, I decided to sidestep the issues related to the

expectation formation process, and I assumed that the public adopts a simple backward rule for predicting the

value of future variables. However, I am aware of the fact that this assumption is quite restrictive, and I do

believe that further research in this direction could provide interesting insights.

6 Conclusions

Using US postwar data, this paper examined the optimal policy recommended by a regulator problem that

explicitly accounts for the uncertainty on the channel through which oil prices a¤ect the economy, and in

which policymakers learns from the new data that becomes available over time. In this environment, I �nd

that model uncertainty plays a relevant role on two dimensions. First, in terms of the direct response to the

real price of oil, this paper shows that one of the approximating models under consideration, namely the BG

model, drives policymakers�decisions. This result is robust to changes in the pattern of the weights attached

to the individual models in the optimization process, and can therefore be attributed to the presence of model

uncertainty itself. Second, I show that for a large portion of the sample period under analysis the optimal

interest rate for the composite model encompassing model uncertainty is lower than the optimal interest rate

for any of the underlying models of the economy. This result is due to the speci�c approach adopted in this

work to compute the robust policy rule, i.e. a linear quadratic dynamic programming problem incorporating

Bayesian model averaging, which allows regulators to exploit correlations between variables that do not exist

in the individual models.

The role of learning over the parameters and posterior probabilities of the approximating models is also in-

vestigated. I show that policymakers�beliefs over the model that best approximates the data, which correspond

33This issue seems to be particularly relevant in environments characterized by learning, as in this paper.
34For instance, Brock, Durlauf and West (2007) use price expectations from the Survey of Professional Forecasters to compute

expected in�ation. This data only goes back to 1968, so in the framework adopted in this paper it would not provide enough
information to be able to estimate the initial beliefs on the parameters of each model. One possible solution would be to set the
initial beliefs to some arbitrary value, and use the data from the Survey of Professional Forecasters in the learning process starting
from 1970 : I. This extension of the paper is left for future research.
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to the models�relative posterior probabilities, are a¤ected by the chosen set of priors. This happens because the

changes in posteriors are very similar across models, which suggests that the arrival of new data does not o¤er

much support in discriminating among the di¤erent speci�cations. This conclusion con�rms previous �ndings

about the presence of model uncertainty in this environment. In the process for the real price of oil, I similarly

�nd that policymakers�learning pattern is in�uenced by the chosen prior distributions. However, the perceived

persistence of this variable, which seems to be a leading factor for policy decisions, is only marginally a¤ected

by these changes.

This work could be extended in a few directions. First, I examined the measure in which di¤erent assump-

tions on the process for the real price of oil can change the optimal policy recommendation. However, all the

speci�cations that I considered in this study modeled oil prices as an exogenous variable. Given that, as I

mentioned in the main text, there is some debate in the literature about the direction of the contemporaneous

relationship between oil prices and domestic variables, I think it would be interesting to consider alternative

de�nitions of the process for the real price of oil that can account for this issue.

Second, this paper shows that the implementation of Bayesian model averaging in a optimal linear regulator

type of problem as proposed by Cogley and Sargent (2005b) has important consequences on policymakers�

approach to model uncertainty. In particular, the way in which the composite regulator problem creates

relationships between variables in the di¤erent models is new in the literature using Bayesian methods to

incorporate model uncertainty into policy evaluation. I believe that further investigation in this direction could

provide a better understanding of the implications of the di¤erent techniques, and o¤er important insights for

the interpretation of the robust policies.

Finally, as discussed in the last section of the paper, I think that it would be very interesting to examine

possible ways of embodying expectations formation in this framework. This would require taking a position on

whether, and to what extent, private agents should share policymakers�concern for model uncertainty.
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Appendix 1

Data description

The variables used in the empirical analysis are the following:

� yt is the output gap, computed as the di¤erence between real GDP and the CBO estimate of potential

GDP, both expressed in logs.

� �t is the annualized di¤erence in log core CPI, where core CPI is the "CPI for all urban consumers: all
items less energy products".

� st is the real price of oil, de�ned as the di¤erence between the nominal price of oil and core CPI, both
expressed in logs. The nominal price of oil is the West Texas Intermediate spot oil price, while core CPI

is the same used to compute �t. The variable was rescaled so that s1970�I = 0:

� it is the annualized average Federal Funds rate.

All the data was obtained from the Federal Reserve Bank of St. Louis web site. The data is quarterly and

includes observations from 1957 � II to 2009 � III. The training sample used to estimate the parameters in
the initial priors (11) and (17) goes from 1957� II to 1969� IV , with data from 1957� II to 1958� III used
to provide lags. The optimization and learning recursion starts in 1970� I.

Appendix 2

Updating the parameters in the process for st

I use a MCMC algorithm in the form of a Gibbs sampler to simulate draws from the joint posterior p
�
�ts; V j st

�
;

which are then used to obtain estimates of �ts; �
2
o and �

2
": This algorithm is repeated in each period to account

for the new information that becomes available. More speci�cally, the Gibbs sampler and learning procedure

that I use in this paper can be summarized in the following three steps. The �rst two steps are the same as in

Cogley and Sargent (2001); the third step is added to incorporate policymakers�learning from the new data.

Step 1: drawing �ts given the history of data s
t and the covariance matrix V .

Given information up to time t � 1 and before information for time t is revealed, the policymaker starts
with the prior p (�s;0) speci�ed by (13), and with the prior p (V ) = IW

�
Bo;0jt�1; vo;0

�
IW

�
B";0jt�1; v";0

�
: At

time t = 1, p (V ) assumes the parameterization de�ned by (12).

Given the history of data and V , p
�
�ts j st; V

�
is Gaussian, and can be factored as:

p
�
�ts j st; V

�
= p

�
�s;t j st; V

� t�1Q
j=1

p
�
�s;j j �s;j+1; sj ; V

�
(31)

For j = 1; :::; t, let �s;jjj = E
�
�s;j j sj ; V

�
; Ps;jjj�1 = V ar

�
�s;j j sj�1; V

�
; Ps;jjj = V ar

�
�s;j j sj ; V

�
: These

conditional means and variances can be updated recursively using the Kalman �lter, given the initial values

�s;0 and Ps;0, and given the values of �2o and �
2
" estimated in the previous period. In the framework adopted

in this paper, the updating formulas are:
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Ks;j = Ps;jjj�1Xs;j
�
X 0
s;jPs;jjj�1Xs;j + �

2
o

��1
�s;jjj = �s;j�1jj�1 +Ks;j

�
sj �X 0

s;j�s;j�1jj�1
�

Ps;jjj�1 = Ps;j�1jj�1 +Q

Ps;jjj = Ps;jjj�1 �Ks;jX
0
s;jPs;jjj�1

This forward recursion delivers the mean and variance of the vector of coe¢ cients �s;t at the terminal period

t :

p
�
�s;t j st; V

�
= N

�
�s;tjt; Ps;tjt

�
(32)

A value for �s;t can be drawn from this distribution. This value, together with the output of the forward Kalman

recursion, can be used to compute the mean and variances of p
�
�s;j j �s;j+1; sj ; V

�
; for any j = 1; :::; t � 1.

More speci�cally, de�ne: �s;jjj+1 = E
�
�s;j j �s;j+1; sj ; V

�
; Ps;jjj+1 = V ar

�
�s;j j �s;j+1; sj ; V

�
: Then, we have:

p
�
�s;j j �s;j+1; sj ; V

�
= N

�
�s;jjj+1; Ps;jjj+1

�
j = 1; : : : ; t� 1 (33)

The parameters in these distributions can be computed using the following backward recursion:

�s;jjj+1 = �s;jjj + Ps;jjjP
�1
s;j+1jj

�
�s;j+1 � �s;jjj

�
Ps;jjj+1 = Ps;jjj � Ps;jjjP�1s;j+1jjPs;jjj

Then, starting from a draw of �s;t from (32), a complete history of the vector of parameters �s can be drawn

using (33).

Notice that here, because of the particular structure of the framework under analysis, this backward recursion

is much simpli�ed. It is easy to show that he updating formulas in the Kalman recursion imply that Ps;jjj+1
is a matrix of zeros, except for the term in the �rst row, �rst column. In other words, Ps;jjj+1 has the same

structure as Q. This implies that we will obtain an history only for the element in the �rst row of �s, i.e. �,

while for � we have: �j = �jjj+1. In addition, from the backward recursion formulas, it can be shown that for

� we have: �jjj+1 = �j+1. Then, �j = �j+1 for any j = 1; :::; t � 1; which is consistent with the assumptions
on the parameters in the process for the real price of oil. In other words, at each time t, the sampler delivers a

complete history �t and a single value for �: This also implies that (33) can be rewritten as:

p
�
�s;j j �s;j+1; sj ; V

�
= N

�
�jjj+1; P

11
s;jjj+1

�
j = 1; : : : ; t� 1 (34)

where �jjj+1 is the �rst element in the vector �s;tjt+1; and P 11s;tjt+1 is the element in the �rst row, �rst column

of the matrix Ps;tjt+1. The fact that, in each iteration of the Gibbs sampler, we can draw a backward history

only for one element of the vector of coe¢ cients reduces the computational burden of the estimation.35

Step 2: drawing V given the history of data st and �ts.

Given the history of data and parameters, and given the transition law in (9), the innovations are i.i.d.

conditionally normal random variables. In addition, given st and �ts, they are observable. Therefore, a draw

for V can be obtained from:

p
�
V j �ts; st

�
= p

�
�2o j �ts; st

�
� p
�
�2" j �ts; st

�
35Notice, however, that even if we need to draw a complete backward history only for the �rst element of �s, because of the

covariances between coe¢ cients, we still need to carry the complete vectors �s;j+1 and �s;jjj for computing the �rst element of
�s;jjj+1:
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where:

p
�
�2o j �ts; st

�
= IW (Bo;tjt�1; vo;t)

Bo;tjt�1 = Bo;0jt�1 +
tP

j=1

bojbo0j
vo;t = vo;0 + t

and

p
�
�2" j �ts; st

�
= IW (B";tjt�1; v";t)

B";tjt�1 = B";0jt�1 +
tP

j=1

b"jb"0j
v";t = v";0 + t

where boj and b"j are the observed innovations for period j.
Under regularity conditions36 , the sequence of draws from the Gibbs sampler converges to a draw from the

joint distribution p
�
�ts; V j st

�
:

Step 3: updating the prior p (V ).

The �rst two steps of the algorithm provide a number of draws from the posterior p
�
�ts; V j st

�
. We can

compute the estimated history �ts and variances �
2
o and �

2
" as the averages of the retained draws. Then, we

can use this information to update the prior p (V ) : More speci�cally, let �2o;t and �
2
";t be the estimated values

obtained in period t using information up to that time. Then, the prior for period t+ 1 will be set as:

p (V ) = IW
�
Bo;0jt; vo;0

�
� IW

�
B";0jt; v";0

�
where: Bo;0jt = vo;0 � �2o;t and B";0jt = v";0 � �2";t:

Updating the parameters of the approximating models

For each model, the prior distribution on the model parameters before the information about time t is

revealed, is given by:

p
�
�;� j Zt�1

�
= p

�
� j �; Zt�1

�
� p
�
� j Zt�1

�
= N (�t�1; Pt�1) � IW (Bt�1; vt�1)

As discussed in the main text, in each model the conditional likelihood function is a multivariate normal

distribution. Thus, the posterior distribution on the model parameters after data for time t is observed will

also be a normal-inverse Wishart distribution:

p
�
�;� j Zt

�
= p

�
� j �; Zt

�
� p
�
� j Zt

�
= N (�t; Pt) � IW (Bt; vt)

Starting from the initial values �0; P0; B0 and v0, the updating formulas for the parameters of these

distributions are:
36Further details can be found in Roberts and Smith (1992).

33



Bt =
tP

j=1

�
Yj �X 0

j�t
� �
Yj �X 0

j�t
�0
=

2664
tP

j=1

�
yj �X 0

y;j�y;t
�2 tP

j=1

�
yj �X 0

y;j�y;t
� �
�j �X 0

�;j��;t
�

tP
j=1

�
yj �X 0

y;j�y;t
� �
�j �X 0

�;j��;t
� tP

j=1

�
�j �X 0

�;j��;t
�2

3775
vt = vt�1 + 1

The covariance matrix �t can be estimated as: �t =

"
�2y;t �y�;t

�y�;t �2�;t

#
= Bt=vt

For the vector of coe¢ cients we have:

�t = R
�1
t (Rt�1�t�1 +XtYt)

or

�t =
h
�0y;t �0�;t

i0
�y;t = R

�1
y;t (Ry;t�1�y;t�1 +Xy;tyt)

��;t = R
�1
�;t (R�;t�1��;t�1 +X�;t�t)

where:

Ry;t = Ry;t�1 +Xy;tX
0
y;t

R�;t = R�;t�1 +X�;tX
0
�;t

Rt = Ry;t �R�;t = Rt�1 +XtX 0
t

Here, Rt is a k � k matrix, Ry;t a ky � ky matrix, and R�;t a k� � k� matrix. The initial values of these

matrices were computed using data from the training sample: Ry;0 =
T0P
j=1

Xy;jX
0
y;j , R�;0 =

T0P
j=1

X�;jX
0
�;j and

R0 = Ry;0 �R�;0 where T0 is the length of the training sample.
For the covariance matrix Pt we have:

Pt = R
�1
t

"
tP

j=1

Xj�tX
0
j

#
R�1t =

266664
�2y;tR

�1
y;t �y�;t

"
R�1y;t

 
tP

j=1

Xy;jX
0
�;j

!
R�1�;t

#

�y�;t

"
R�1y;t

 
tP

j=1

Xy;jX
0
�;j

!
R�1�;t

#0
�2�;tR

�1
�;t

377775

Updating the model weights

The procedure used to update the model weights follows Cogley and Sargent (2005b). The marginalized

likelihood function mit in (18) is:

mit =

Z Z
l
�
Y ti ; X

t
i ; �i;�i

�
p (�i;�i) d�id�i
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where l (Y ti ; X
t
i ; �i;�i) is the conditional likelihood for model i through date t, de�ned as:

l
�
Y t; Xt; �;�

�
=

t

�
j=1
p (Yj j Xj ; �;�) (35)

Using Bayes�s Theorem, mit can also be obtained as (see Cogley and Sargent, 2005b, for the derivation of this

expression):

mit =
l (Y ti ; X

t
i ; �i;�i) p (�i;�i)

p (�i;�i j Zti )
(36)

In the regulator problem, each model is weighted based on its posterior probability, which is computed in

every period given the available data. From (18), the unnormalized weight attached to model i is de�ned as:

wit = mit � p (Mi)

Then, following Cogley and Sargent (2005b), we can develop a recursion for wit :

wit+1
wit

=
mit+1 � p (Mi)

mit � p (Mi)

= p (Yit+1 j Xit+1; �i;�i)
p
�
�i;�i j Zt+1i

�
p (�i;�i j Zti )

and taking logs:

logwit+1 = logwit + log p (Yit+1 j Xit+1; �i;�i)� log
p
�
�i;�i j Y t+1; Xt+1

�
p (�i;�i j Y t; Xt)

(37)

where p (Yit+1 j Xit+1; �i;�i) is the conditional likelihood for observation t + 1 and p (�i;�i j Y t; Xt) is the

posterior distribution of the model�s parameters given information up to date t. We know that the conditional

likelihood p (Yit+1 j Xit+1; �i;�i) is a bivariate normal distribution, while the posterior p (�i;�i j Y t; Xt) is a

normal-inverse Wishart distribution. In each period, I computed logwit+1 by evaluating these distribution at

the mean values of �i and �i:

Finally, the value of the normalized model weights �it can be obtained from (19) or using the log posteriors

odd ratios with the formula reported in Cogley and Sargent (2005b).
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Appendix 3

State Space representation

Solow model

The full equations for the Solow model are:

yt = �S0 + �
S
y1yt�1 + �

S
y2yt�2 + �

S
y3yt�3 + �

S
�1

"
�t�1 � 1

4

4P
j=1

�t�1�j

#
+

�S�2

"
�t�2 � 1

4

4P
j=1

�t�2�j

#
+ �Ss1st�1 + !

S
y;t (38)

�t = �S0 + �
S
y1yt�1 + �

S
�1�t�1 + �

S
�2�t�2 + �

S
�3�t�3 + �

S
i1it�1 + �

S
i2it�2

+�Ss1st�1 + !
S
�;t (39)

The process for the real price of oil is described by (7). The state space representation takes the form:

A0;SSS;t = A1;SSS;t�1 +B1;Sit + !S;t (40)

where the state vector is composed of 14 variables and it is de�ned as:

SS;t = [yt yt�1 yt�2 �t �t�1 �t�2 �t�3 �t�4 �t�5 it it�1 st �t 1]
0

(41)

the vector attached to the policy instrument is B1;S = [0 0 0 0 0 0 0 0 0 1 0 0 0 0]
0 and the vector of residuals

is:

!S;t =
�
!Sy;t 0 0 !

S
�;t 0 0 0 0 �t 0 ot "t 0

�0
The matrix A0;S is a 14�14 matrix, with A0;S (12; 13) = �1; ones in the main diagonal, and zeros elsewhere.

The matrix A1;S is de�ned as:2666666666666666666666666666664

�Sy1 �Sy2 �Sy3 �S�1 �S�2�
�S�1
4 ��S�2+�

S
�1

4 ��S�2+�
S
�1

4 ��S�2+�
S
�1

4 ��S�2
4 0 0 �Ss1 0 �S0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

�Sy1 0 0 �S�1 �S�2 �S�3 0 0 0 �Si1 �Si2 �Ss1 0 �S0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 � 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

3777777777777777777777777777775
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Using this information we can rewrite the state space representation in (40) as:

SS;t = ASSS;t�1 +BSit + CS!S;t (42)

where AS = (A0;S)
�1
A1;S , BS = (A0;S)

�1
B1;S and CS = (A0;S)

�1.

Finally, the selection matrix MS in the policymaker�s loss function is de�ned as:

MS=

2641 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 ���

0 0 0 0 0 0 0 0 0 1 �1 0 0 0

375

Blanchard-Gali model

The full equations for the Blanchard-Gali model are:

yt = �BG0 + �BGy1 yt�1 + �
BG
y2 yt�2 + �

BG
y3 yt�3 + �

BG
i

 
it�1 � 1

4

4P
j=1

�t�j

!
+

+�BGs1 st�1 + !
BG
y;t (43)

��t = �BG0 + �BGy1 yt�1 + �
BG
y2 yt�2 + �

BG
�1 ��t�1 + �

BG
�2 ��t�2 +

+�BGs1 st�1 + !
BG
�;t (44)

The process for the real price of oil is described by (7). The state space representation takes the form:

A0;BGSBG;t = A1;BGSBG;t�1 +B1;BGit + !BG;t (45)

In this case, the state vector is composed of 12 variables: SBG;t = [yt yt�1 yt�2 �t �t�1 �t�2 �t�3 it it�1 st �t 1]
0
:

The vector of coe¢ cients attached to the policy instrument it is B1;BG = [0 0 0 0 0 0 0 1 0 0 0 0]
0
: The vector

of residuals is: !BG;t =
�
!BGy;t 0 0 !

BG
�;t 0 0 0 �t 0 ot "t 0

�0
:

The matrix A0;BG is a 12 � 12 matrix, with A0;BG (10; 11) = �1; ones in the main diagonal, and zeros
elsewhere. The matrix A1;BG is de�ned as:26666666666666666666666664

�BGy1 �BGy2 �BGy3 ��BGi
4 ��BGi

4 ��BGi
4 ��BGi

4 �BGi 0 �BGs1 0 �BG0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

�BGy1 �BGy2 0
�
1 + �BG�1

� �
�BG�2 � �BG�1

�
��BG�2 0 0 0 �BGs1 0 �BG0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 � 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

37777777777777777777777775
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Again, using this information we can rewrite the state space representation in (45) as:

SBG;t = ABGSBG;t�1 +BBGit + CBG!BG;t (46)

where ABG = (A0;BG)
�1
A1;BG, BBG = (A0;BG)

�1
B1;BG and CBG = (A0;BG)

�1.

Finally, the selection matrix MBG in the policymaker�s loss function is similar to MS , with changes due to

the di¤erent state vector in the two model:

MBG=

2641 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 ���

0 0 0 0 0 0 0 1 �1 0 0 0

375

Hamilton model

The full equations for the Hamilton model are:

yt = �
H
0 + �

H
y1yt�1 + �

H
y2yt�2 + �

H
y3yt�3 + �

H
s1st�1 + !

H
y;t (47)

�t = �H0 + �
H
y1yt�1 + �

H
�1�t�1 + �

H
�2�t�2 + �

H
�3�t�3

+�Hi1 it�1 + �
H
i2 it�2 + �

H
s1st�1 + !

H
�;t (48)

with the process for the real price of oil described by (7). The state space representation takes the form:

A0;HSH;t = A1;HSH;t�1 +B1;Hit + !H;t (49)

In this case, the state vector is composed of 11 variables: SH;t = [yt yt�1 yt�2 �t �t�1 �t�2 it it�1 st �t 1]
0
:

The vector of coe¢ cients attached to the policy instrument it is BH = [0 0 0 0 0 0 1 0 0 0 0]
0
: The vector of

residuals is: !H;t =
�
!Hy;t 0 0 !

H
�;t 0 0 �t 0 ot "t 0

�0
:

Similarly to the other models, the matrix A0;H is a 11 � 11 matrix, with A0;H (9; 10) = �1; ones in the
main diagonal, and zeros elsewhere. The matrix of coe¢ cients A1;H is:26666666666666666666664

�Hy1 �Hy2 �Hy3 0 0 0 0 0 �Hs1 0 �H0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

�Hy1 0 0 �H�1 �H�2 �H�3 �Hi1 �Hi2 �Hs1 0 �H0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 � 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

37777777777777777777775
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Again, we can rewrite the state space representation in (49) as:

SH;t = AHSH;t�1 +BHit + CH!H;t (50)

where AH = (A0;H)
�1
A1;H , BH = (A0;H)

�1
B1;H and CH = (A0;H)

�1.

Finally, the selection matrix MH in the policymaker�s loss function is similar to the other two models, with

di¤erences due to the di¤erences in the state vectors:

MH=

2641 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 ���

0 0 0 0 0 0 1 �1 0 0 0

375
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