
W
o

rk
in

g
 p

ap
er

s
W

o
rk

in
g

 p
ap

er
s

n
g

 p
ap

er
s

Pascal Mossay and Pierre M. Picard

On spatial equilibria in a social 
interaction modelad

serie

WP-AD 2010 -14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6501451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
 
 
Los documentos de trabajo del Ivie ofrecen un avance de los resultados de las 
investigaciones económicas en curso, con objeto de generar un proceso de 
discusión previo a su remisión a las revistas científicas. Al publicar este 
documento de trabajo, el Ivie no asume responsabilidad sobre su contenido.  
 
Ivie working papers offer in advance the results of economic research under way 
in order to encourage a discussion process before sending them to scientific 
journals for their final publication. Ivie’s decision to publish this working paper 
does not imply any responsibility for its content. 
 
 
La Serie AD es continuadora de la labor iniciada por el Departamento de 
Fundamentos de Análisis Económico de la Universidad de Alicante en su 
colección “A DISCUSIÓN” y difunde trabajos de marcado contenido teórico. 
Esta serie es coordinada por Carmen Herrero. 
 
The AD series, coordinated by Carmen Herrero, is a continuation of the work 
initiated by the Department of Economic Analysis of the Universidad de 
Alicante in its collection “A DISCUSIÓN”, providing and distributing papers 
marked by their theoretical content. 
 
 
Todos los documentos de trabajo están disponibles de forma gratuita en la web 
del Ivie http://www.ivie.es, así como las instrucciones para los autores que 
desean publicar en nuestras series. 
 
Working papers can be downloaded free of charge from the Ivie website 
http://www.ivie.es, as well as the instructions for authors who are interested in 
publishing in our series. 
 
 
 
 
 
 
 
 
 
Edita / Published by: Instituto Valenciano de Investigaciones Económicas, S.A. 
 
Depósito Legal / Legal Deposit no.: V-1400-2010 
 
Impreso en España (marzo 2010) / Printed in Spain (March 2010)  



 
WP-AD 2010-14 

 

On spatial equilibria  
in a social interaction model*

 

Pascal Mossay and Pierre M. Picard**

 
 
 
 

Abstract 
 
Social interactions are at the essence of societies and explain the 
gathering of individuals in villages, agglomerations, or cities. We study the 
emergence of multiple agglomerations as resulting from the interplay 
between spatial interaction externalities and competition in the land 
market. We show that the geographical nature of the residential space 
tremendously affects the properties of spatial equilibria. In particular, 
when agents locate on an open land strip (line segment), a single city 
emerges in equilibrium. In contrast, when the spatial economy extends 
along a closed land strip (circumference), multiple equilibria with odd 
numbers of cities arise. Spatial equilibrium configurations involve a high 
degree of spatial symmetry in terms of city size and location, and can be 
Pareto-ranked. 
 
Keywords: social interaction, multiple agglomerations, spatial economy. 
 
JEL Classification: R10, R12, R13 
 
 
 
 
 
 
 
 
 
 
 
* We thank Jacques Thisse, Dominique Peeters, Ping Wang, and seminar participants in 
CORE, the Regional Science Association International Meeting in Toronto and the 
Public Economic Theory Conference in Seoul for fruitful comments. 
 
** P. Mossay: University of Reading and University of Alicante. Contact author: 
p.mossay@reading.ac.uk. P.M. Picard: University of Luxembourg and CORE. 

 3

mailto:p.mossay@reading.ac.uk


1 Introduction

A major source of spatial heterogeneity stems from non-market interactions. Social inter-

actions through face-to-face contacts are at the essence of our societies and explain the

gathering of individuals in villages, agglomerations, or cities. They translate a psycholog-

ical need for maintaining relationships with one another, and favor a constant exchange

of ideas; see Krugman (1991), Glaeser and Scheinkman (2003), and Fujita and Thisse

(2002). In this paper we address the issue of the emergence of multiple agglomerations as

the result of the interplay between social interactions and competition in the land market.

The present paper builds on Beckmann’s (1976) model. This model provides a sim-

ple rationale for the spatial agglomeration of agents as the result of spatial interaction

externalities. Agents are distributed along some geographical space and benefit from so-

cial interactions with other agents. These social interactions provide individuals with a

social interaction benefit while entailing an individual cost as each one must access to

distant agents. Moreover the return of spatial interactions is also balanced by a cost

of residence as agents compete for land space. When the benefit of social interactions

is larger than the commuting and residence costs, agents prefer to locate close to each

other, which leads to the formation of agglomerations. In his original work, Beckmann

considered the case of a one-dimensional spatial economy extending along an open land

strip (line segment). The resulting equilibrium consists in a uni-modal symmetric - bell-

shaped - spatial distribution, where agents agglomerate around the city centre, see Fujita

and Thisse (2002).

In this paper, first we revisit Beckmann (1976)’s model and then extend it to the

case of a spatial economy extending along a closed land strip (circumference). While the

modelling along an open land strip seems appropriate to describe the internal structure of

cities, the formulation along a closed land strip provides a natural framework to analyze

the interaction between multiple agglomerations. Circular spatial frameworks have been

studied in ‘racetrack economy’ models in the context of the New Economic Geography

literature, see e.g. Fujita et al. (1999), Mossay (2003), or Picard and Tabuchi (2009). Yet,
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because of the complexity of market interactions, this strand of literature has been able

to characterize only a small subset of equilibrium distributions (e.g. the uniform spatial

distribution of agents, often referred to as the ‘flat-earth’ distribution, or constant-access

equilibria). As a consequence, this strand of literature has left unresolved issues dealing

with the nature and structure of other equilibrium distributions. Among these issues,

are the multiplicity of those other equilibria, their possible spatial symmetry, and the

allocation of land between inhabited areas and empty hinterlands. Because our social

interaction model has a much simpler structure than that involved in market interaction

models, we are able to address the above issues and characterize spatial equilibria.

Our results are the following. First we determine the equilibrium and first-best spa-

tial distributions of agents along an open land strip. Social interactions generate the

emergence of a single city, meaning that multiple cities can’t be sustained in equilib-

rium along a line. This result is similar to that obtained by Berliant et al. (2002) who

also showed the emergence of a unique centre in the case of production externalities. In

accordance to Fujita and Thisse (2002), the first-best distribution is more concentrated

than the equilibrium one; see also Tabuchi (1986). At equilibrium agents choose a too

large lot size because they do not internalize other agents’ preferences when making their

own lot choice. Second we provide the characterization of spatial equilibria emerging

along a closed land strip (circular geographical space). In equilibrium, cities are identical

and evenly spaced: cities share the same spatial structure and successive firms along the

circumference are equidistant. We also show that equilibrium configurations involve an

odd number of cities. Furthermore spatial equilibria can be Pareto-ranked. The total

welfare of the spatial economy decreases with the number of cities so that the one-city

configuration Pareto dominates all the other configurations. Like in the open land strip

framework, the first-best distribution corresponds to a single city structure which is more

concentrated than the equilibrium distribution.

Our paper deals with the endogenous formation of multiple-centre configurations. A

contribution of Berliant et al. (2002) is that the nature of spatial externalities matters and
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affects the properties of spatial equilibria. In Fujita and Ogawa (1980, 1982), multiplicity

of equilibria arises because of a fixed factor in the production process. In contrast, the

spatial production externalities analyzed by Berliant et al. (2002) lead to the formation of

a single centre in equilibrium. Our paper identifies another factor affecting the properties

of spatial equilibria, namely the nature of the geographical space itself. Our results

suggest that loops within a network favour the emergence of multiple cities as opposed to

the unique centre emerging along a line segment. To our knowledge, this paper constitutes

the very first step toward the characterization of interacting economies extending along

spatial (road) networks that involve a loop. In constrast to Fujita and Ogawa (1980,

1982) and Berliant et al. (2002), our model is analytically tractable because of the linear

structure of the model. For that reason we are able to perform a full general equilibrium

analysis, without assuming inelastic land consumption or relying on simulations.

Our paper also contributes to the literature on city structure in a particular way.

Since von Thunen, most theoretical works about city structures make the assumption

of revolution symmetry around the city centre in order to reduce the spatial dimension

from 2 to 1. Recent works on endogenous city formation still make that convenient

assumption (e.g. Lucas and Rossi-Hansberg, 2002). As such, it is important to check

whether revolution symmetry can be derived as an equilibrium property of a spatial

economy where agents can locate freely. Since revolution symmetry does not obtain in

our model, our paper sheds some doubt on the use of the revolution symmetry assumption

made in the existing literature.

We present the model of social interactions in Section 2. We derive the equilibrium and

the first-best spatial distributions of the model along an open line in Section 3. Section

4 characterizes spatial equilibria along a circumference. Section 5 ranks these various

equilibria and compares them with the socially optimal distribution.
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2 The Model

In this Section we present the economic environment. A unit-mass of agents is distributed

along a one-dimensional geographical space according to the density λ(x) with
R
λ(x)dx =

1. Agents travel along the one-dimensional road and benefit from social contacts with

other agents. The social utility that an agent in location x derives from interacting with

other agents is given by

S(x) = A−
Z

λ(y)T (x− y)dy (1)

The first term A denotes the total return from interacting with other agents. The second

term reflects the cost of trips of accessing to distant agents.1 We consider the case of a

linear cost function T (x − y) = 2τ |x− y|, where τ measures the intensity of travelling

costs. In our model each agent interacts with all the other agents meaning that A will be

assumed to be large enough to ensure that S(x) ≥ 0, for any location x. The surplus S(x)

can be interpreted in a context of certainty or uncertainty. Indeed, it can be interpreted

literally as the utility derived by an individual who plans to interact with all other agents

with probability 1. It can also be interpreted as the expected utility of an individual who

plans to interact with a subset of agents whom location and identity are not known at the

time of the residence choice. Such an interpretation applied to the case of shopkeepers,

sellers, as well as workers who expect to hold several jobs at different locations during their

lifetime, or employers who do not have a precise idea about future workers’ residences.

In each location x, the residential area is longitudinal to the main road. It is a strip

of land space with unit width, which is connected by its edge to the main road. Agents

in location x consume a composite good z(x) and some land space s(x). Their utility U

is given by

U(x) = S (x) + z(x)− β

2 s(x)

1Note that the term (
R
λ(y)T (x − y)dy) could be formulated as a monetary cost. Anyway such a

reformulation would have no incidence on our analysis.
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where S(x) is the social utility as given by relation (1) and β reflects the preference for

land. The budget constraint faced by agents is

z(x) +R(x)s(x) = Y

where Y is the income and R(x) denotes the land rent in x.2 By using this budget

constraint, the utility derived in location x can be rewritten as

U(x) = S (x)− β

2 s(x)
− s(x)R(x) + Y (2)

This formulation of the utility function differs from Beckmann’s formulation in one

respect only: we consider an hyperbolic preference for land instead of the logarithmic

preference used in Beckmann (1976) and Fujita and Thisse (2002). This will allow us to

simplify considerably the characterization of equilibria.

Landlords raise the land rent until no worker moves. Let U∗ be an equilibrium utility

of workers. The bid rent function is given by

Ψ(x) = max
s

S (x)− β/(2s) + Y − U∗

s

which yields the optimal land consumption s∗(x) as determined by β/[2s∗(x)] = s∗ (x)Ψ∗(x)

= [S∗ (x)+Y −U∗]/2. At the residential equilibrium, land rents are equal to the bid rents

so that R∗(x) = Ψ∗(x), which implies that s∗R∗(x) = β/(2s∗(x)). The indirect utility can

then be written as U(x) = S (x) − β/s∗(x) + Y . Since the land strip has a unit width,

the individual land consumption s∗(x) corresponds to 1/λ(x), so that the indirect utility

in location x can be written in terms of the population density λ(x) as

V (x) = S (x)− βλ(x) + Y (3)

This means that the residents’ utility at location x linearly increases with the social

return S(x) and linearly decreases with the residential density λ(x). Utility decreases

2In the context of a general equilibrium, the variable Y should be interpreted as the valuation of an

initial endowment of the composite good z.
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with the residential density because agents compete for land space and thus face higher

land prices in more populated areas. We will take advantage of this linear structure to

characterize spatial equilibria and the optimal spatial distribution. The characterization

of these spatial configurations constitutes the major contribution of our paper to the

existing literature. In what follows we assume without much loss of generality that land

has no other use than residence so that the opportunity cost of land is zero.

3 Spatial Equilibrium along a Line Segment

In this Section we formulate our social interaction model along a line segment as studied

in Beckmann (1976) and Fujita and Thisse (2002, Chapter 6).

3.1 Spatial Equilibrium

A distribution of agents λ(.) constitutes a spatial equilibrium if agents have no incentive

to relocate. In other words, λ(x) is a spatial equilibrium if V (x) = V when λ(x) > 0

and V (x) ≤ V when λ(x) = 0. Because agents reach the same utility over all inhabited

locations, we have that V 0(x) = V 00(x) = 0 for all x where λ(x) > 0. In this paper, any

area with a positive population is referred to as a city. We now characterize the spatial

distribution along a line segment and show that spatial equilibrium implies the emergence

of a single city.

First let us consider a single city located along the interval [−b, b], b > 0. By differen-

tiating the social utility expression (1) with respect to x, we have that

S0(x) = 2τ

Z b

x

λ(y)dy − 2τ
Z x

−b
λ(y)dy

S00(x) = −2τ λ(x)− 2τ λ(x) = −4τ λ(x)

Because of linear travel costs, S00(x) reduces to a linear function of λ. Hence, by using

relation (3), a necessary condition for equilibrium is V 00(x) = S00 (x)− βλ00(x) = 0, which
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leads to

λ00(x) + δ2λ(x) = 0 where δ2 ≡ 4τ/β (4)

The solution to this differential equation is given by

λ(x) = C cos[δ (x− xo)] (5)

where C and xo are constants to be determined. We can assume that the city is centered at

xo = 0 without loss of generality. Because R∗(±b) = [λ(±b)]2β/2 = 0 and
R
λ(x)dx = 1,

the equilibrium spatial structure and the boundary of the city are given by

λ∗(x) =
δ

2
cos(δx) and b∗ =

π

2δ
(6)

This describes the spatial structure of a single city. The density is a concave function of

x. We must also ensure that each agent is willing to interact with all the other agents so

that S(x) > 0 for all x in (−b∗, b∗). We need to assume that A >
R b
−b λ

∗(y)T (y − b)dy or

equivalently that A > τπ/δ = π
√
βτ/2. Note that the equilibrium utility level is given by

V ∗ = V ∗(x = 0) = A−
Z b

−b
λ∗(y)T (y)dy − βλ∗(0) + Y

= A− π − 2
δ

τ − 1
2
βδ + Y = A− π

2

p
βτ + Y

An important issue is whether multiple cities can co-exist in equilibrium. The answer

turns out to be negative. To show this, consider a set of cities possibly separated by

empty hinterlands. Let the supports of the M ≥ 2 cities be the closed intervals [am, bm],

m = 1, 2, 3, ..., M, with bm < am+1. Indeed, within each city m, Equation (4) holds

and R∗(am) = R∗(bm) = 0, so that λ(x) can be written as λm(x) = Cm cos[δ(x − xm)],

∀x ∈ [am, bm], with xm = (bm − am)/2. From Relations (1) and (3), we get

V (x) = A− 2τ
MX

m=1

Z bm

am

λ(y) |x− y| dy − βλ(x) + Y

We show that some residents living in city M have an incentive to relocate. By differen-

tiating previous expression, we get

V 0(x) = −2τ
∙
1−

Z bM

aM

λM(y)dy

¸
−2τ

Z x

aM

λM(y)dy+2τ

Z bM

x

λM(y)dy−βλ0M(x), ∀x ∈ [aM , bM ]
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When a resident relocates to his right, he looses access to the residents to his left, who

live either in other cities (first term) or in his own city (second term). He also gains a

better access to the residents to his right within his own city (third term). Finally, this

resident faces an increase in land rent if x ∈ [aM , xM ] or a decrease in this land rent if

x ∈ [xM , bM ]) (last term). In particular, at the centre of city M , λ0M(xM) = 0 and

V 0(xM) = −2τ
∙
1−

Z bM

aM

λM(y)dy

¸
= −2τ(1− LM) < 0

where LM denotes the population in city M . Therefore, residents living at the centre

of city M have always an incentive to move leftward, and no spatial configuration with

M ≥ 2 cities can’t be sustained in equilibrium.

We summarize our results in the following Proposition.

Proposition 1 If A > π
√
βτ/2, the spatial equilibrium along a line segment is unique

and involves a single unimodal city. The equilibrium utility level decreases with the

travel cost (τ) and the preference for residential space (β).

The spatial equilibrium distribution is symmetric with respect to location x = 0 and

concave. This distribution is similar to that obtained by Beckmann except that here the

city structure is nowhere convex because of our hyperbolic preference for residential space

and the zero opportunity cost of land.

Also the spatial equilibrium distribution involves a unique centre. This result is similar

to that obtained by Berliant et al. (2002) in the case of spatial knowledge spillovers.

3.2 First-Best Spatial Distribution

In this subsection we determine the first-best distribution of agents as opposed to the

equilibrium distribution analyzed so far. A utilitarian planner chooses the best spatial

distribution of agents λ(.) and the city border b so as to maximize the total welfare denoted

by W . In the first best, the planner chooses the residents’ locations so that there is no

land market: R(x) = 0. The planner’s program is therefore
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max
λ(.),b

W =
R b
−bU(x)λ(x)dx =

R b
−b[S(x) + z(x)− β

2 s(x)
]λ(x)dx (7)

subject to the budget balance
R b
−b[Y −z(x)]λ(x)dx = 0 and the total population constraintR b

−bλ(x)dx = 1. Substituting the budget balance into the above expression yields

max
λ(.),b

W =
R b
−b[S(x)−

β

2 s(x)
+ Y ]λ(x)dx

=
R b
−b[A−

R b
−bλ(y)T (x− y)dy − β/2λ(x) + Y ]λ(x)dx

By using varational analysis, we show in Appendix A that the first-best distribution

satisfies the following relationships

S(x)− β

2
λ(x) =

A+ μ− Y

2

λ(b) + λ(−b) = 0 (8)

where μ > 0 is the Lagrange multiplier associated with the total population constraint.

This characterization yields two conclusions. First, it should be that λ(b) = λ(−b) = 0

since λ(x) ≥ 0. Second, the function S(x) − (β/2)λ(x) is constant so that its first and

second derivatives should be nil. Note that this function is similar to the expression of

the indirect utility derived in the decentralized equilibrium analysis, see expression (3),

except that β is to be replaced by β/2. Therefore, it should be that at the optimum

λ00(x) + (δo)2λ(x), where (δo)2 = 4τ/(β/2) = 2δ2. This means that λo(x) = Co cos δox

with the city border bo determined by λo(bo) = 0, that is bo = π/(2δo), and Co = δo/2

given the total population constraint.

Hence we oberve that the optimal city has a narrower support than the decentralized

city, bo < b∗. Because the first-best and the equilibrium cities host the same number of

residents, the density of residents must be larger at the first-best, Co > C∗.

We summarize our results in the following Proposition.

Proposition 2 The first-best spatial distribution is unimodal and the optimal city is

more concentrated than the equilibrium city.

12



In accordance to Fujita and Thisse (2002), the first-best distribution is more concen-

trated than the equilibrium one; see also Tabuchi (1986). At equilibrium agents choose a

too large lot size because they do not internalize other agents’ preferences when making

their own lot choice.

4 Spatial Equilibrium along a Circumference

In this Section we consider the robustness of previous results with respect to another form

of geographical space. In particular we want to check whether spatial interactions along

a line which is closed, such as a circumference, lead to the formation of a single city or to

the emergence of multiple centres. The equilibrium characterization is more difficult to

obtain along such a geographical space. For the sake of comparison with the equilibrium

on a line segment, we therefore focus on the formation of unimodal cities and show that

spatial equilibria can involve multiple cities. A major contribution of this paper is to

provide the characterization of such multiple agglomerations in equilibrium.

To obtain our results, we proceed in several steps. Like in previous Section, we first de-

rive a necessary equilibrium condition (Lemma 1). This condition expresses the trade-off

between the residence cost and the accessing cost to other agents. We then derive another

necessary equilibrium condition (Lemma 2) which simply states that an equilibrium dis-

tribution is of made of pieces, each of which having the shape of the cosine function as

obtained along the line segment in Section 3. We show that in equilibrium antipodal cities

can’t exist (i.e. cities can’t face each other along the circumference) (Lemma 3). This

subsequently implies that no equilibrium with an even number of cities can exist (Lemma

4). Finally we show that in equilibrium cities are equally populated and evenly spaced

(successive cities are equidistant) along the circumference (Proposition 3). Whereas it

may be intuitive that these spatial distributions constitute equilibria, it is far from obvi-

ous a priori to exclude other asymmetric distributions in terms of size or location. In this

Section we present our results as well as their interpretation.
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We discuss spatial configurations involving cities separated by empty hinterlands along

a circumference of unit perimeter. M denotes the total number of cities and [am, bm] the

support of city m so that the support of the spatial distribution λ can be written as

suppλ =
SM

m=1[am, bm]. Let H be the set of empty hinterlands that is the set of ’empty’

locations so that H = [0, 1]/suppλ. At equilibrium we must have that V (x) = V ∗,

∀x ∈suppλ and V (x) ≤ V ∗, ∀x ∈ H.

Consider some agent located in city m so that x ∈ [am, bm]. We define P+(x) (resp.

P−(x)) as the population that is located at a clockwise (resp. counterclockwise) distance

from x smaller than 1/2. This means that P+(x) and P−(x) divide the total population

into that at the right and that at the left of x. A first order differentiation of the indirect

utitity V (x) yields the following lemma.

Lemma 1 In equilibrium P+(x)− P−(x) = βλ0(x)/(2τ), ∀x ∈suppλ.

Proof. See Appendix B.1.

This condition expresses the trade-off between the residence cost and the accessing

cost: in equilibrium an increase in residence cost must be compensated by a better access

to distant agents.3 So as to illustrate Lemma 1, suppose that λ0(x) < 0, so that an

agent located at x enjoys a lower residence cost by moving clockwise. Lemma 1 says that

this gain in terms of residence cost should be balanced by a larger accessing cost. This

means that the population that the agent gets closer to (i.e. the population at his right,

P+) should be less numerous that the population he gets further away from (i.e. the

population at his left P−). The marginal residential cost of moving to the right or to the

left corresponds to the marginal gain of accessing to other agents.

Because agents may access to other agents by travelling to the right or to the left, they

will be sensitive to the fact that other agents may be located in the opposite location along

the circumference. For this reason, it is useful to rely on the concept of antipodal cities

3This condition between the residence and accessing costs is similar to Muth’s (1969) gradient condition

on land rents and commuting costs.
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which are defined as cities ‘facing’ each other along the circumference. More precisely,

the spatial distribution λ(.) is said to admit antipodal cities if there exist two inhabited

locations x and x + 1/2, i.e. λ(x)λ(x + 1/2) > 0. By contrast, there are no antipodal

cities if λ(x)λ(x+ 1/2) = 0 for every location x ∈ [am, bm], m = 1, ...,M.

Differentiating once more the spatial indirect utility V (x) yields another necessary

condition, namely V 00(x) = 0. First we consider the case in the absence of antipodal

cities and show that each piece of the equilibrium distribution is determined by a spatial

structure similar to that given by expression (5). This is summarized in the following

Lemma.

Lemma 2 Consider a spatial structure involving M cities of support [am, bm] , m =

1, ...,M . Suppose that there are no antipodal cities. Then, an equilibrium dis-

tribution is given by λ(x) = Cm cos[δ(x − xm)], ∀x ∈suppλ, where δ2 = 4τ/β,

δ(bm − am) = π, xm = (bm − am)/2, and Cm is a positive constant.

Proof. See Appendix B.2.

The structure of cities is given by the same cosine function as in the case of an economy

extending along a line segment, see expression (6). Note that Lemma 2 applies to spatial

economies with no antipodal cities only. In what follows we show that in fact no antipodal

cities can exist. In order to illustrate this, we show that a spatial configuration consisting

of 2 symmetric antipodal cities located at the North and the South of the circumference

(x = 0 and x = 1/2) can not be sustained in equilibrium. The supports of these cities are

denoted by [−b, b] and [1/2− b, 1/2 + b], see left panel in Figure 1. By applying Lemma

1 in locations x ∈ [−b, b] and x+ 1/2, we get

λ0(x) + λ0(x+ 1/2) =
2τ

β

£
P+(x)− P−(x) + P+(x+ 1/2)− P−(x+ 1/2)

¤
Given that P+(x) = P−(x + 1/2) and P−(x) = P+(x + 1/2), the RHS of the above

relation is equal to 0, which leads to an inconsistency given that in our example, λ0(x) =

λ0(x + 1/2) 6= 0 if x 6= 0. The above condition actually implies that if λ0(x) > 0 then
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λ0(x + 1/2) < 0: if equilibrium land rents increase in location x, they should necessarily

decrease in location x+ 1/2. As a consequence, if λ0(−b) > 0, then λ0(1/2− b) should be

negative which would imply some negative population levels. This situation is illustrated

in the left panel of Figure 1.

The following Lemma generalizes the argument made above and rules out any spatial

distribution involving antipodal cities in equilibrium.

Lemma 3 There exists no spatial equilibrium with antipodal cities, except the uniform

distribution.

A first implication of Lemma 3 is that, except the uniform equilibrium, any spatial

equilibrium distribution involves empty hinterlands. Such spatial equilibria result from

the natural tension between the supply and the residents’ self-organized use of space.

Indeed, in equilibrium, when residents in a particular city have no arbitrage opportunity,

the population density follows the law given in Lemma 2. This law determines not only the

use of space in each city but also the city support (i.e. [am, bm]). As a consequence, there

is no reason for which the union of city supports,
S

m[am, bm], should fit the available

space on the circumference. This is what explains the existence of empty hinterlands

between cities. The present characterization of equilibria contrasts with that obtained

in the existing racetrack models of spatial agglomeration that faced a sharp difficulty

to identify equilibria other than the uniform spatial distribution, called ‘flat earth’, and
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constant-access equilibria (see for instance Fujita et al. (1999), Mossay (2003), and Picard

and Tabuchi (2009)). The present paper identifies a new class of spatial equilibria ignored

so far in the existing literature.

A second implication of Lemma 3 lies in the impossibility to get equilibria with an

even number of cities. As an illustration, let us explain the argument for a configuration

that would involve an even number of identical cities. By Lemma 3, we know that these

cities can’t be antipodal. Suppose that cities are located at asymmetric distances. The

case of 2 such cities is depicted in the right panel of Figure 1. By applying Lemma 1 at

the centre xm of a city, we get that P+(xm) = P−(xm) because the land rent gradient is

nil at the city centre (λ0(xm) = 0). This means that the populations at the right and at

the left of the city centre xm should be equal, which is inconsistent with our example since

one side of the city will involve an even number of cities while the other side will involve

an odd number of cities, given that the total number of cities is even. In this example,

the argument applies because cities are of equal size. The following Lemma extends the

argument to the case of spatial distributions involving cities of different size.

Lemma 4 Any non-uniform spatial equilibrium displays an odd number of cities.

Proof. See Appendix B.3.

What is now left to be determined is the size of cities and their location along the

circumference. In Appendix B.4, we apply an argument used in Lemma 4 to pairs of

cities located on the circumference. Then we show that such pairs of cities have an

identical population size in equilibrium. By inference, all cities must have the same size.

Furthermore, once cities have an identical size, it is easy to understand why they should be

evemly spaced along the circumference. This is because any asymmetry in the location

of these cities would necessarily confer an advantage to residents of some city and a

disavantage to residents of some other city, thus precluding equilibrium. We summarize

our results in the following Proposition.

Proposition 3 The set of spatial equilibria consists of the uniform distribution (the
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‘flat earth’ distribution) as well as any odd number of identical and evenly spaced

non-antipodal cities, each of which having an internal structure as given by Lemma

2.

Proof. See Appendix B.4.

In contrast to Beckmann’s result (1976) and Fujita and Thisse (2002), multiple-city

configurations do emerge along a circular geographical space. The characterization of spa-

tial equilibria is obtained in the context of a general equilibrium analysis due to the linear

structure of the model. It implies the existence of empty hinterlands and a high degree

of spatial symmetry in terms of size and location. According to Lemma 4, configurations

with an even number of cities do not exist, and antipodal cities can’t be sustained, see

Lemma 3.

In equilibrium, the support of cities should fit the unit perimeter of the circumference

(2Mπ/δ < 1), so that the maximum number of cities is given by Mmax =int(δ/(2π)). On

the other hand, since the total population is 1, we have that M
R π

2δ

− π
2δ
C cos (δx) dx = 1,

meaning that Cm = C = δ/(2M), ∀m. These two last conditions put an upper bound

Mmax on the admissible number of cities and relate the amplitude C of each city to the

total number of cities M .

The existing literature already emphasized the type of spatial externalities in deter-

mining the number of centres emerging in equilibrium, see Berliant et al. (2002). Our

results contribute heavily to the theoretical understanding of multiple centres. Proposi-

tions 1 and 3 identify the geographical space itself (circumference vs. line segment) as

affecting the properties of spatial equilibria (multiplicity vs. uniqueness of centres).

Since von Thunen, most theoretical works related to the study of urban agglomerations

have assumed (revolution) symmetry around city centres. Recent works on endogenous

city formation still make that convientient assumption, e.g. Lucas and Rossi-Hansberg

(2002). In our social interaction model, revolution symmetry does not necessarily hold

along a circumference. As such, our analysis sheds some doubt on the use of that assump-

tion made in the literature.
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5 Pareto-Ranking of Equilibria and Optimum

In this Section we rank the spatial equilibria obtained in Section 4 in the sense of Pareto.

Then we compare the Pareto dominating equilibrium with the first-best distribution.

Consider a spatial equilibrium with an odd numberM of identical evenly spaced non-

antipodal cities as given by Proposition 3. With no loss of generality, we assume that the

first city is centered at x = 0. In equilibrium the utility is the same for all residents and

corresponds to the utility of residents located at x = 0, which is given by

V ∗(M) = A− βλ(a1 +
π

2δ
)−

XM

m=1

Z am+
π
δ

am

T (a1 +
π

2δ
, y)λ(y)dy + Y

where am corresponds to the left-border of city m. Developments given in Appendix C.1

lead to

V ∗(M) = A− τ
π − 2
δM

− τ
M2 − 1
2M2

− 2τ

δM
+ Y

The first term represents the benefit of social interactions, the second one the agent’s

travel cost to other agents in their own city, the third one the travel cost to agents living

in other cities, and the next to last one the land rent. It can be shown that V ∗(M) is a

decreasing function in the admissible interval [1, δ/(2π)]. Therefore spatial equilibria can

be ranked as sumarized in the following Proposition.

Proposition 4 The smaller the number of cities, the larger the total welfare of the

equilibrium distribution. If δ > 2π (resp. δ < 2π), then the Pareto-dominating

spatial equilibrium configuration corresponds to a single city distribution (resp. the

uniform distribution).

Proof. Appendix C.2

Of course, when no city as given by Lemma 2 can fit the unit perimeter of the cir-

cumference, the only possible equilibrium is the uniform distribution λ(x) = 1. Now we

determine the first-best distribution of residents along the circumference.
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Proposition 5 When δ > π (resp. δ < π), the optimal spatial configuration corresponds

to a single city distribution with welfare A− π
√
βτ/(2

√
2) + Y (resp. the uniform

spatial distribution of agents with welfare A− β − τ/2 + Y ).

Proof. Appendix C.3

Like in Beckmann’s framework in Section 3.2, the social optimum involves a single

city which is more concentrated than the equilibrium distribution. Of course, this occurs

provided that the optimal city can fit the unit perimeter. Otherwise, the first-best distri-

bution corresponds to the uniform distribution of agents. While an increase of the travel

cost (τ) favours the optimal agglomeration, an increase of the preference for residential

space (β) favours the optimal uniform distribution of residents.

6 Conclusion

We have studied a spatial model of social interactions. We have shown that only a single

city can emerge along a line segment. On the other hand, along a circumference, multiple

equilibria can emerge. We have shown that in equilibrium, cities are identical, in odd

numbers, and evenly spaced along the circumference. The smaller the number of cities, the

larger the total welfare of the spatial economy. The first-best distribution corresponds to

a single city which is more concentrated than the equilibrium city. Our paper constitutes

a very first analysis toward the characterization of spatial equilibria along spatial (road)

networks that include loops. It identifies the geographical space itself as a very important

factor affecting the properties of spatial equilibria (multiplicity, size, spacing). 
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Appendix

6.1 Appendix A: Proof of S(x) − β/2λ(x) = (A + μ − Y )/2 and

λ(b) + λ(−b) = 0

Proof. The Lagrange functional L of problem (7) can be written as

L =
R b
−b[S(x)−

β

2
λ(x) + Y ]λ(x)dx− μ[

R b
−bλ(x)dx− 1]

where μ is the Lagrange multiplier associated with the total population constraint and

we used λ(x) = 1/s(x).

First, we determine a first-order condition with respect to the city border b. By

differentiating the above expression with respect to b, we get

[S(b)− β

2
λ(b) + Y − μ]λ(b) + [S(−b)− β

2
λ(−b) + Y − μ]λ(−b) = 0 (9)

Second, we determine the first-order condition with respect to the spatial distribution

λ. By using Relation (1), the Lagrange functional can be rewritten as

L =
R b
−b[A−

R b
−bλ(y)T (x− y)dy − β/2λ(x) + Y ]λ(x)dx− μ[

R b
−bλ(x)dx− 1]

Now consider some infinitesimally small variation eλ(x) around the optimal solution λ(x).
The variation of L is given by

eL = R b−b[(A+ Y − μ)− βλ(x)]eλ(x)dx
−
R b
−b
R b
−bT (x− y)λ(y)eλ(x)dxdy − R b−bR b−bT (x− y)λ(x)eλ(y)dxdy

=
R b
−b[(A+ Y − μ)− βλ(x)− 2

R b
−bT (x− y)dyλ(y)]eλ(x)dx

given that
R b
−b
R b
−bT (x − y)λ(x)eλ(y)dxdy = R b−bR b−bT (y − x)λ(y)eλ(x)dxdy = R b−bR b−bT (x −

y)λ(y)eλ(x)dxdy by using the symmetry of T (x). At the optimum, eL must be equal to
zero for any admissible variation eλ(x) around the optimal distribution λ(x). This implies

successively

(A+ Y − μ)− βλ(x)− 2
R b
−bT (x− y)dyλ(y) = 0

2[A−
R b
−bT (x− y)dyλ(y)]− βλ(x) = A+ μ− Y
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S(x)− β

2
λ(x) =

A+ μ− Y

2

Therefore the function S(x) − (β/2)λ(x) is a constant. Finally, by substituting this

last expression evaluated in x = b and x = −b into expression (9), we get

[
A+ μ− Y

2
+ Y − μ][λ(b) + λ(−b)] = 0

which yields λ(b) + λ(−b) = 0.

6.2 Appendix B.1: Proof of Lemma 1

Proof. The set of intervals {[am, bm]}m=1,...,M denote the city supports. We need to

introduce additional definitions to describe the location of cities with respect to each

other. We denote by I+m (resp. I−m) the set of indices of cities that are located at a

clockwise (resp. counterclockwise) distance from interval m inferior to 1/2. We consider

an agent located at x ∈ [am, bm]. When x+ 1/2 /∈ H, we denote by jm the interval index

to which x+1/2 belongs to. The utility of an agent located in x ∈ [am, bm] in city m can

then be written as

V (x) = A− 2τ [
P

i∈I+m
R bi
ai
(y − x)λ(y)dy +

P
i∈I−m

R bi
ai
(1− (y − x))λ(y)dy]

− 2τ [
R x
am
(x− y)λ(y)dy +

R bm
x
(y − x)λ(y)dy]− βλ(x)

− 2τχsuppλ(x+ 1/2)
hR x+1/2

ajm
(y − x)λ(y)dy +

R bjm
x+1/2

(1− (y − x))λ(y)dy
i
+ Y

where χsuppλ denotes a characteristic function so that χsuppλ(x) is equal 1, if x ∈suppλ,

and 0 otherwise. By differentiation with respect to x, we get

−2τ
P

i∈I+m
R bi
ai
(−1)λ(y)dy − 2τ

P
i∈I−m

R bi
ai
(1)λ(y)dy − 2τ

R x
am
(1)λ(y)dy − 2τ

R bm
x
(−1)λ(y)dy

+2τχsuppλ(x+ 1/2)
hR x+1/2

ajm
λ(y)dy −

R bjm
x+1/2

λ(y)dy
i
− βλ0(x) = 0

We get the stated result by writing P+(x) =
³P

i∈I+m
R bi
ai
+
R bm
x
+ χsuppλ(x+ 1/2)

R x+1/2
ajm

´
λ(y)dy

and P−(x) =
³P

i∈I−m
R bi
ai
+
R x
am
+ χsuppλ(x+ 1/2)

R bjm
x+1/2

´
λ(y)dy.
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Appendix B.2. : Proof of Lemma 2

Proof. Like in Appendix B.1, I+m (resp. I−m) denote the set of indices of cities that

are located at a clockwise (resp. counterclockwise) distance from interval m inferior to

1/2. Let us consider some agent located in city m at x ∈ [am, bm]. Given that no city is

antipodal to city m, we have that x + 1/2 ∈ H. Given this, the First Order Condition

(FOC) provided in the Proof of Lemma 1 in Appendix B.1, V 0(x) = 0, can be written

now as

−2τ
P

i∈I+m
R bi
ai
(−1)λ(y)dy − 2τ

P
i∈I−m

R bi
ai
(1)λ(y)dy

−2τ
R x
am
(1)λ(y)dy − 2τ

R bm
x
(−1)λ(y)dy − βλ0(x) = 0

By further differentiation with respect to x, we get

−2τλ(x)− 2τλ(x)− βλ
00
(x) = 0

λ00(x) + δ2λ(x) = 0

where δ2 = 4τ/β. The general solution to this differential equation is given by

λ(x) = Cm cos[δ (x− xm)]

where Cm and xm are constants to be determined. Note that in equilibrium, λ(am) and

λ(bm) can’t be strictly positive. For instance, if λ(bm) were strictly positive, then agents

in location bm would have an incentive to move to the hinterland in location bm + ε with

ε > 0 infinitesimally small. By doing so they would save a finite marginal residence cost

while facing only an infinitesimal marginal accessing cost. Therefore δ(bm− am) = π and

xm = (bm − am)/2.
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Appendix B.3: Proof of Lemma 4

Proof. By applying Lemma 1 at the centre xm of each citym, we get P+(xm)−P−(xm) =

0, m = 1, 2, ...,M . These conditions can be written in the following matrix form⎡⎢⎢⎢⎢⎢⎢⎣
0 a12 · · · a1M

−a12 0 · · · a2M
...

...
. . .

...

−a1M −a2M · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }

A

⎡⎢⎢⎢⎢⎢⎢⎣
P1

P2
...

PM

⎤⎥⎥⎥⎥⎥⎥⎦ = 0

where aij ∈ {−1,+1} indicates whether j ∈ I−i (city j is a right-neighbor of city i) or

j ∈ I+i (city j is a left-neighbor of city i). We refer to matrix A as the ’neighborhood’

matrix.

It turns out that the determinant of a matrix can be expressed as detA =
P

γ∈Γε(γ)
Q

γi
aiγi,

where γ is a permutation of {1, 2, ...,M}, Γ the set of derangements of {1, 2, ...,M}, and

ε : Γ → {−1, 1}. Given that the number of such derangements is odd when M is even

and aij ∈ {−1, 1} for j 6= i, detA corresponds to a sum of an odd number of terms equal

to −1 or +1. Given this, whenever M is even, detA is non-zero and the only solution

to the linear system A P = 0, is P = 0. Note that when M is odd, detA = 0 because

A = −AT .

Appendix B.4: Proof of Proposition 3

As is the case in racetrack models of spatial agglomeration, the uniform distribution is a

trivial equilibrium. The point of our analysis is to focus on the characterization of other

equilibria.

First we prove that cities such as given by Lemma 2 should be equally populated and

that they should be evenly spaced along the circumference. Let M be an odd number of

cities that are clockwisely indexed. Let Pm be the population of city m and #I+m (resp.

#I−m) be the number of cities that are located on the right (resp. left) of city m. We

define the following symmetry concept in the location of cities.
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Definition (Neighborhood Symmetry) A spatial distribution displays the neighbor-

hood symmetry if each city has the same number of cities on its left and on its right:

#I+m = #I
−
m = (M − 1)/2, ∀m = 1, ...,M .

We also define pairs of cities located on the circumference as follows.

Definition (Paired Cities) Consider the centre xm of some city m and its symmetric

location xm+1/2 ≡ xm + 1/2. From that location, move clockwise (resp. coun-

terclockwise) to the next first city, say city j with centre xj. Then consider the

symmetric location of that centre xj, xj+1/2 ≡ xj + 1/2. Cities m and j are said to

be clockwisely paired (resp. counterclockwisely paired) if there is no other city in

the interval (xm, xj+1/2) (resp. (xj+1/2, xm)).

Given these definitions, we establish the three following Lemmas.

Lemma B.4.1 If cities m and j are paired, then Pm = Pj.

Proof. Consider 2 paired citiesm and j being clockwisely paired. By applying Lemma

1 at the centres of cities m and j, we have that P+(xm) = P−(xm) and P+(xj) = P−(xj).

This necessarily implies that Pm = Pj.

Lemma B.4.2 Under neighborhood symmetry, Pm = P , ∀m.

Proof. First we show by contradiction that under neighborhood symmetry, each city

can be clockwisely and counterclockwisely paired. Assume that some city m can’t be

paired. By assumption it has (M−1)/2 right- and left- neighbors (i.e. #I+m = #I−m). If it

can’t be paired, then there is a city, say city h, in the interval (xm, xj+1/2) or in the interval

(xj+1/2, xm), as described in the pairing construction. This implies that#I+h 6= #I−h which

violates the neighborhood symmetry.

As each city m can be paired to cities m + M+1
2

and m + M−1
2
, Pm = Pm+M+1

2
=

Pm+M−1
2
, meaning that Pm = P , ∀m.
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Lemma B.4.3 Neighborhood symmetry holds.

Proof. We show that if neighborhood symmetry didn’t hold, then there would be a

city with a negative population.

Step 1. We show that if neighborhood symmetry does not hold, then there exists some

city m that can’t be paired clockwisely. By assumption, there is some city m for which

the numbers of right- and left-neighbors are different (i.e. #I+m 6= #I−m). Consider the

clockwise pairing of cities, but city m. The maximum number of cities that can be paired

clockwisely is given by 2min(#I+m, #I
−
m). This means the number of cities that remain

unpaired among the M − 1 cities is at least given by max(#I+m,#I−m)-min(#I+m,#I−m).

This number is necessarily even. Even when accounting for the clockwise pairing of city

m, there will always remain at least a city that can’t be paired.

Step 2. Partition cities into cities that can be clockwisely paired and those that cannot

be. Consider two successive cities m (that can’t be clockwisely paired ) and m+ 1 (that

can be clockwisely paired). Applying Lemma 1 at the centre of those cities implies that

Pm + Pm+1 = 0 so that the population of some city should be negative.

From Lemmas B.4.2 and B.4.3, it naturally follows that cities are equally populated.

Lemma B.4.4 All cities are equally populated, Pm = P = 1/M , ∀m.

Given this Lemma we can show that successive cities along the circumference are

equidistant.

Lemma B.4.5 Cities are evenly spaced along the circumference (i.e. xm−xm−1 = 1/M ,

∀m).

Proof. By Lemma B.4.4, we know that Pm = 1/M . The interaction costs for agents

located in city centres are given by

m < (M − 1)/2 : ICm = 2τ{
Pk=m+(M−1)/2

k=1 |xk − xm|+
PM

k=m−(M−1)/2+M [1− (xk − xm)}

m = (M − 1)/2 : IC(M−1)/2 = 2τ{
P

k 6=(M−1)/2
¯̄
xk − x(M−1)/2

¯̄
m > (M − 1)/2 : ICm = 2τ{

Pk=M
k=m−(M−1)/2+1 |xk − xm|+

Pm+(M−1)/2−M
k=1 [1− (xm − xk)]}
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Because of the neighborhood symmetry and Lemma B.4.4, these costs ICm should be

equal - say to C-. We then have

Ax = b

where bT = [C − (M − 1)/2, ..., C − 1, C, C + 1, ..., C + (M − 1)/2] /(2τ), and A is the

neighborhood matrix introduced in Appendix B.3.

It turns out that matrix A has rank M − 1. This is because the minor (m,m) of A is

a neighborhood matrix corresponding to a configuration where city m has been removed,

and thus is of rank M − 1 since the determinant of a neighborhood matrix is non zero

when the number of cities is even, see Proof of Lemma 4 in Appendix B.3. Then the

unique solution to Ax = b is necessarily xm − xm−1 =M−1, ∀m.

Appendix C.1: Proof of V ∗(M) = A− τ π−2
δM − τM2−1

2M2 − 2τ
δM + Y

Consider an equilibrium with an odd number M of identical evenly spaced cities. The

equilibrium utility is given by

V ∗(M) = A− βλ(a1 +
π

2δ
)−

XM

m=1

Z am+
π
δ

am

T (a1 +
π

2δ
, y)λ(y)dy + Y

= A− βλ(a1 +
π

2δ
)−

Z a1+
π
δ

a1

T (a1 +
π

2δ
, y)λ(y)dy

−
XM+1

2

m=2

Z am+
π
δ

am

T (a1 +
π

2δ
, y)λ(y)dy −

XM

m=M+1
2
+1

Z am+
π
δ

am

T (a1 +
π

2δ
, y)λ(y)dy + Y
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which gives

V ∗(M) = A− βλ(a1 +
π

2δ
)− 2τ

Z a1+
π
2δ

a1

(a1 +
π

2δ
− y)λ(y)dy

− 2τ
Z a1+

π
δ

a1+
π
2δ

(y − (a1 +
π

2δ
))λ(y)dy + Y

− 2τ
XM+1

2

m=2

Z am+
π
δ

am

(y − (a1 +
π

2δ
))λ(y)dy

− 2τ
XM

m=M+1
2
+1

Z am+
π
δ

am

(1− (y − (a1 +
π

2δ
)))λ(y)dy

= A− 4τ
δ2

δ

2M
− 2τ π − 2

δ2
δ

2M
− τ

M2 − 1
2M2

+ Y

= A− 2τ

δM
− τ

π − 2
δM

− τ
M2 − 1
2M2

+ Y (10)

Appendix C.2: Proof of Proposition 4

Proof. As ∂MV ∗ = Mπ−δ
M3δ

τ , ∂MV ∗ = 0 for M = δ/π > 1 since δ > 2π. This means that

∂MV ∗ < 0 in the interval [1, δ/(2π)]. Thus V ∗(M) decreases with M , and the maximum

of V ∗(M) is reached when M = 1. On the other hand, the flat-earth welfare is given

by V (flat earth) =
Z 1

0

∙
A− β −

Z 1

0

T (x, y)dy + Y

¸
dx = A − β − τ/2 + Y . It is always

inferior to V ∗(M = 1) when the single city fits the circumference perimeter (δ > 2π).

6.3 Appendix C.3: Proof of Proposition 5

Now we derive the first best spatial distribution. By assuming that the opportunity cost

of land is 0, the first best spatial configuration solves the following problem

max
λ(.)

Z ∙
A−

Z
T (x, y)λ(y)dy − β

2
λ(x) + Y

¸
λ(x)dx

st.
Z
λ(x)dx = 1

The Lagrange functional L is given by

L =

Z ∙
A−

Z
T (x, y)λ(y)dy − β

2
λ(x) + Y

¸
λ(x)dx− μ(

Z
λ(x)dx− 1)
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where μ is the Lagrange multiplier associated with the total population constraint. The

first variation of L is given byZ ∙
A− μ− βλ(x)− 2

Z
T (x, y)λ(y)dy + Y

¸ eλ(x)dx
Since at the optimum, this variation should be zero, we haveZ

T (x, y)λ(y)dy +
β

2
λ(x) =

A− μ+ Y

2

Given that S(x) − β
2
λ(x) = A −

Z
T (x, y)λ(y)dy − β

2
λ(x), the above expression can

rewritten as

S(x)− β

2
λ(x) =

A+ μ− Y

2

It means that at the optimum V (x) = S(x) − β
2
λ(x) is constant. Compared to the

decentralized equilibrium, β/2 appears instead of β. As a consequence the optimal city

is more concentrated than the equilibrium city. The optimal welfare is then given by

Relation (10),

V ∗(M = 1, β/2) = A− τ

2
+

τ

2
− π

τq
4τ
β/2

= A− π

2
√
2

p
τβ

provided that the optimal city fits the circumference perimeter (δ > π).
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