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1. Introduction

Several months ago, during an International Meeting on Game Theory was held, we
had a very interesting conversation, with an expert on this subject, about the cost
allocation that a major company undertook after receiving a detailed report carried
out by an economics research group. As a conclusion, the report provided two possible
cost distributions, corresponding to the Nucleolus (Schmeidler (1969)) and the Shapley
value (Shapley (1953)) of the TU-game associated with the real distribution problem.
Furthermore, with the aim of making the choice between the two proposals easier, the
properties supporting each one were speci�ed. Surprisingly enough, the company�s �nal
decision was to distribute the cost according to the average of them.

This paper attempts to �nd an explanation to the previous conduct, which in our
opinion is not merely anecdotal, it is in fact quite the opposite. We think that this
action re�ects a way of thinking applied in so many and so di¤erent situations that it
could represent the popular proverb �Virtue lies in the middle ground�.

We were particularly interested in the normative approach to sharing problems,
which rarely leads to a single proposal. In fact,a trade-o¤ can usually be found between
properties, interpreted as di¤erent �equity principles�, which are ful�lled by the various
solution concepts.

This idea was superbly expressed by Young (1994): "Fairness does not boil down to
a single formula, but represents a balance between competing principle of need, desert
and social utility".

In this context, we have concentrated on transferable utility distribution problems
with two di¤erent proposals that highlight discrepancy, i.e., problems that involve shar-
ing a given amount of a perfectly divisible �good�among a group of agents with two
focal viewpoints.

Firstly, we introduce the bifocal distribution problems by adding, to a generic dis-
tribution problem, two solution concepts interpreted as prominent proposals for solving
them. We then model these kinds of problems as transferable utility cooperative games
(referred to hereinafter as TU-games) as follows. We associate with each coalition the
smallest quantity of the �good�that such a coalition would receive according to the two
proposed allocations.

The analysis of these games, known as bifocal distribution games, provides �solid�
theoretical grounds in defense of intermediate compromises.

Speci�cally, we provide a necessary condition for sharing to be in the Core of these
games: a quantity belonging to the interval de�ned by the extremes corresponding to
the focal proposals must be recommended for each agent. Furthermore, although these
games are not convex in general, we �nd that not only is the Shapley value a Core
selection, it also coincides with the Nucleolus. We also show that the recommendations
made by these two solution concepts is the �average of the two focal distributions�.
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Unfortunately, our main results can not be generalized for distribution problems with
more than two focal proposals, but our modeling is of great interest when applied to
some certain problem types in which bipolarity may usually take place.

In this regard, the previous general results are then applied to bankruptcy problems:
a particular kind of distribution problems in which individuals have di¤erent incompat-
ible rights, summarized in a claims vector, so the available amount of the �good�should
be rationed. In bankruptcy problems two signi�cant viewpoints naturally arise as any
distribution can be observed by focusing either on gains or on losses. This fact together
with the idea that the general desirable social goal is to treat everybody as evenly as
possible, captured by the Lorenz criterion, (Lorenz (1905)), provide a new basis for the
�average of the Constrained Equal Awards and the Constrained Equal Losses bankruptcy
solutions�, two proposals put forward by Maimonides in the twelfth century.

Finally, we establish the connections between bifocal distributions games and other
well-known types of games.

The paper is organized as follows. Section 2 formally introduces bifocal distribution
problems. Section 3 provides the interpretation of problems such as TU-games and
presents their main characteristics. Section 4 applies previous ideas to bankruptcy
problems. Section 5 summarizes our conclusions. The Appendices contains our technical
proofs.

2. Distribution problems with transferable utility

In order to analyze distribution problems in which two prominent proposals are con-
sidered equally fair from di¤erent reasonable viewpoints, this section introduces the
concepts of bifocal distribution problems and bifocal distribution rules.

A distribution problem with transferable utility, D, (referred to hereinafter
as a distribution problem) is formally described by a pair D = (M;CN ) where
M 2 R++ represents a given amount of a perfectly divisible �good�, a valuable resource
that should be distributed among the agents in N = f1; : : : ; i; : : : ; ng. And CN is a
set of relevant information, concerning the agents, which should somehow be taken into
account when solving the problem. Let D denote the type of all distribution problems.
In this general context a distribution rule is a function, f : D ! Rn, which proposes
an e¢ cient allocation of the resource for each distribution problem D 2 D, that is,P
i2N
fi(D) =M . Let F be a family of rules.

A wide range of real situations can be modeled in this way, such as bankruptcy
problems (Thomson (2003)) and certain important types of TU-games: market games
(Shapley and Shubik (1969)), cost allocation games (Young (1985)) and simple games
(Shapley (1962)). In a bankruptcy problem, M is the estate, usually denoted by E,
and CN is a vector c 2 Rn++ representing the agents�rights that are incompatible, that
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is, E <
P
i2N
ci (see Section 4). In a cooperative TU-game M is the worth of the grand

coalition and CN is the characteristic function (see Section 3).

We then introduce the type of all bifocal distribution problems, denoted by B, where
discrepancy for sharing the valuable resource is considered by means of the existence of
two �xed focal proposals.

De�nition 2.1. A bifocal distribution problem, B 2 B, is a triplet B = (D; f; g)
where D =

�
M;CN

�
2 D and both f and g are ��xed�distribution rules representing

two prominent proposals in a particular society.

This modelling becomes even more interesting when applied to speci�c subclasses of
distribution problems. For example, in bankruptcy problems societies could only con-
sider admissible bankruptcy rules that meet the following requirements: Non-Negativity
(for each i 2 N , 0 � fi(E; c)) and Claims-Boundedness (for each i 2 N , fi(E; c) � ci).
These properties are in fact part of the de�nition of the bankruptcy rule in the literature.
In taxation problems, which are formally identical to bankruptcy problems but assess
a �xed amount of taxes, E, as a function of the agents�income, c, societies could �nd
it �fair� to add the property of Progressivity in Losses (for each i; j 2 N; if 0 < cj � ci;
[ci � fi(E; c)] =ci � [cj � fj(E; c)] =cj) to the previous restrictions. Therefore, as far as
narrowing the data interpretation of distribution problems, consensus on the social ac-
ceptability of �equity principles� would be greater, which would facilitate compromises
around certain proposals.

We now demand the bifocal distribution solutions to provide allocations which, for
each agent, belong to the interval determined by the extremes corresponding to the two
focal proposals. We intuitively think that this is a very logical requirement as it is a fact
usually observed when solving any real bifocal distribution problem. In this respect,
Yeh and Thomson (2006), among others (see also Yeh and Thomson (2008)) introduced
the convexity operator between rules for bankruptcy problems as follows: "When two
rules express opposite viewpoints on how to solve a bankruptcy problem, it is natural
to compromise between them by averaging".

Our subsequent theoretical analysis provides a di¤erent rationale (apart from the
fact that it corresponds with reality) to support the previous idea. Formally,

De�nition 2.2. A bifocal distribution rule is a function ' : B ! Rn, such that for
each bifocal distribution problem B = (D; f; g) 2 B, ' is a distribution rule,

P
i2N
'i(D) =

M; which associates to each i 2 N a part of the resource satisfying

minffi(D); gi(D)g � 'i (D) � maxffi(D); gi(D)g:
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3. Bifocal distribution TU-games: characteristics and results

In this sections we analyze a new type of games in coalitional form, named bifocal distri-
bution games, which are an appropriate interpretation of bifocal distribution problems
in terms of TU-games. We then present the basic concept of the model.

A TU-game involving a set of agents N can be described as a function V; known as
the characteristic function, which associates a real number to each subset of agents, or
coalitions, S contained in N . Formally, a TU-game is a pair (N;V ), where V : 2N ! R.
For each coalition S � N , V (S) is commonly called its worth and denotes the quantity
that agents in S can guarantee for themselves if they cooperate. Therefore, it is assumed
that V (?) = 0: It is also often supposed that (N;V ) is superadditive, i.e., for any pair
of coalitions S; T � N such that S \ T = ?; V (S [ T ) � V (S) + V (T ); so that there is
incentive for the grand coalition that N forms. Because we do not consider changes in
the agents�population, we summarize a TU-game by V .

A solution for TU-games is a correspondence which for each TU-game selects a
set of shares of the worth of the grand coalition among the agents. When a TU-game
solution is single-valued, i.e., it consists of a unique sharing-out of the worth of the
grand coalition, then it is called a TU-value.

Let G be a family of TU-games with agents set N . A TU-value is a function

 : G !Rn; such that for each TU-game V 2 G,

P
i2N

i(V ) = V (N):

The way we de�ne the game corresponding to a bifocal distribution problem is by
associating to the smallest quantity of the �good� that each coalition would receive
according to the two focal solution concepts.

De�nition 3.1. Given B = (D; f; g) 2 B; the corresponding bifocal distribution
game is the TU-game V B which associates to each coalition S � N , the real value

V B(S) = min

(X
i2S
fi(D);

X
i2S
gi(D)

)
:

In the bifocal distribution games type we go on to analyze three well-known solution
concepts for TU-games: the Core, which is de�ned formally by Gillies (1953) and Shap-
ley (1953), the Nucleolus (Schmeidler (1969)) and the Shapley value (Shapley (1953)).
All of these solutions have been extensively studied in the game-theoretic literature,
where formal de�nitions and several axiomatic bases can be found (see, for instance,
Kannai (1992), Peleg (1992), Maschler (1992) and Winter (2002)).

The intuitive idea of a Core distribution is that no set of agents could collectively
improve their share by their own cooperation. Formally, let V be a TU-game. The
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Core of such a game, denoted by C(V ), is the set

C(V ) =

(
x 2 Rn :

X
i2N
xi = V (N);

X
i2S
xi � V (S) 8S � N

)
:

Let us note that a bifocal distribution game, V B with B = (D; f; g) 2 B, has a
non-empty Core, since both f(D) and g(D) belong to it. The next proposition provides
a set of necessary conditions for a proposal to be in the Core of a such game. These
conditions coincide with the �natural�requirements for a distribution rule to be consid-
ered a bifocal distribution rule (see De�nition 2.2). This result, therefore, shows that
the agents�behavior regarding bifocal distribution problems has, albeit unconsciously,
strong theoretical support.

Proposition 3.2. Given B = (D; f; g) 2 B; if x 2 C(V B) then, for all i 2 N ,

minffi(D); gi(D)g � xi � maxffi(D); gi(D)g:

Proof. See Appendix 1

The following example shows that previous conditions do not always guarantee that
an allocation belongs to the Core. it is not, therefore, a su¢ cient requirement.

Example 3.3. Let us consider the bifocal distribution problem B = (D; f; g), in which
M = 170; f(D) = (35; 45; 45; 45) and g(D) = (28:75; 38:75; 48:75; 53:75). Then, on the
one hand V B(f1; 3g) = minf35 + 45; 28:75 + 48:75g = 77:5. On the other hand, let
us consider the allocation x that distributes the resources, M = 170, among agents as
follows, x = (30; 40:25; 46; 53:75). This distribution is, for each agent, between those of
the two focal proposals. However,

x1 + x3 = 76 < V
B(f1; 3g) = 77:5;

therefore x does not belongs to C
�
V B
�
.

Next, we informally introduce the Nucleolus and the Shapley value.
The excess of a coalition S in a reference to an allocation x,

P
i2S
xi� V (S), is

taken as a measure of satisfaction of such a coalition. The Nucleolus, 
Nu; looks for
a distribution in which the lowest excess is as high as possible. If there is more than
one such distribution among them, it pays attention to the second-lowest excess and
will look for a distribution in this set in which the second-lowest excess is as high as
possible, and so on.
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Shapley (1953) gives the following interpretation of the Shapley value, 
Sh: "The
players in N agree to play the game V in a grand coalition, formed in the following way:
(i) Starting with a single member, the coalition adds one player at a time until everybody
has been admitted. (ii) The order in which the players are to join is determined by
chance, with all arrangements equally probable. (iii) Each player, on his admission,
demands and is promised the amount which his adherence contributes to the value of
the coalition (as determined by the function V ). The grand coalition then plays the
game �e¢ ciently�so as to obtain V (N), exactly enough to meet all promises."

It is well known that the Nucleolus is a Core selection but the Shapley value could
recommend, in general, a distribution outside the Core, although for convex games,
de�ned below, it is also a Core selection.

Before presenting the subclass of convex TU-games additional notation is needed.
Hereafter, given a TU-game V , for each agent i 2 N and each coalition S � N , we

call the marginal contribution of agent i to coalition S, denoted by �iV (S) ; the
amount which its adherence contributes to the value of the coalition, which is

�iV (S) = V (SUfig)� V (S):

A TU-game is convex if agents have increasing returns to cooperation, which means
that the larger the coalition that an agent joins, the larger his marginal contribution.
Formally, a TU-game V is convex if and only if, for all i 2 N;

�iV (S) � �iV (T ) for all S � T � N n fig :

The following example shows that bifocal distribution games need not be convex.

Example 3.4. Let us consider the bifocal distribution problem B = (D; f; g); in which
M = 30; f(D) = (7:5; 7:5; 7:5; 7:5) and g(D) = (5; 7; 8; 10). It can be easily veri�ed
that V B(f1g) = 5; V B(f1; 3g) = 13; V B(f1; 4g) = 15 and V B(f1; 3; 4g) = 22:5: Thus,
�3V

B (f1; 4g) < �3V B(f1g) since

V B(f1; 3; 4g)� V B(f1; 4g) = 7:5 and V B(f1; 3g)� V B(f1g) = 8:

Therefore, given that f1g � f1; 4g, V B is not convex.

In principle, this example would lead us to focus on the Nucleolus, given the pos-
sibility that the Shapley value does not belong to the Core. However, as shown in our
main result, not only can it be guaranteed that the Shapley value is a Core selection
but also that it coincides with the Nucleolus for any bifocal distribution game. The
PS-game concept is used to justify this coincidence.

A TU-game is a PS-game (Kar et al. (2009)) in which the sum of a player�s marginal
contribution to any pair of coalitions T; T � such that T [T � = Nnfig is a player speci�c
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constant. Formally, a TU-game V is a PS-game if for each i 2 N; there exists ki 2 R
such that, for all T � N� fig,

�iV (T ) + �iV (N� [T [ fig]) = ki:

The following result not only shows that bifocal distribution games are a subclass
of PS-games, but also that the speci�c constant, for each agent, obtained by adding its
marginal contribution to any coalition S and its complement N� [S [ fig] ; is the sum
of the recommendations for him made by the two focal proposals.

Proposition 3.5. Given B = (D; f; g) 2 B; the associated bifocal distribution game,
V B; is a PS-game such that for all i 2 N and for all coalition T � N� fig,

�iV
B (T ) + �iV

B (N� [T [ fig]) = fi(D) + gi(D):

Proof. See Appendix 2

Our main result, the proof of which is based on the previous proposition, states
with su¢ cient clarity how to solve distribution bifocal games. In a way, it provides
solid grounds for selecting the average of the two focal viewpoints from among all the
intermediate compromises. It also rati�es the practice regularly observed in these sit-
uations, as shown by the behavior of the company mentioned in the Introduction and
which motivated our research. However, we do not really believe that the company had
these concepts in mind when making its decision.

Theorem 3.6. For each bifocal distribution game, V B; where B = (D; f; g) 2 B; the
Shapley value and the Nucleolus coincide and they are obtained in the average of the
two focal distributions rules, that is,


Sh(V B) = 
Nu(V B) = 1=2 (f (D) + g (D)) :

Proof. See Appendix 3

An alternative wording, though less formal, of this result could be the popular
proverb �Virtue lies in the middle ground�.

Finally, we show through the next example that the previous result can not be
extended for distribution problems with more than two focal proposals.

Example 3.7. Let us consider the distribution problem D; in which M = 60 and
there are three focal distribution rules, f , g and h, providing f(D) = (10; 25; 25);
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g(D) = (0; 27:5; 32:5) and h(D) = (10; 22:5; 27:5). If the associated TU-game is de�ned
by

V (D;f;g;h)(S) = min

(X
i2S
fi(D);

X
i2S
gi(D);

X
i2S
hi(D)

)
;

it is easy to verify that V (D;f;g;h)(f1g) = 0; V (D;f;g;h)(f2g) = 22:5; V (D;f;g;h)(f3g) =
25, V (D;f;g;h)(f1; 2g) = 27:5; V (D;f;g;h)(f1; 3g) = 32:5; V (D;f;g;h)(f2; 3g) = 50 and
V (D;f;g;h)(f1; 2; 3g) = 60: Then 
Sh(V (D;f;g;h)) = (5:42; 25:42; 29:16) ; 
Nu(V (D;f;g;h)) =
(6:25; 25; 28:75) and (f+g+h)=3 = (6 + (2=3); 25; 28 + (1=3)) : Therefore, the Nucleolus
and the Shapley value do not coincide, and neither corresponds to the average of the
three focal allocations. It should be noted that in this example the three focal distribu-
tion rules are involved in specifying the coalitions worth and this fact causes the loss of
the PS-game quality. Furthermore, even h only determines the worth of player 2; none
of the players i; i 2 f1; 2; 3g; has a constant sum of his marginal contribution to all pairs
of coalitions whose union is Nnfig:

�1V (f2g) + �1V (f3g) = 12:5 6= 10 = �1V (f?g) + �1V (f2; 3g) ;
�2V (f1g) + �2V (f3g) = 52:5 6= 50 = �2V (f?g) + �2V (f1; 3g) and
�3V (f1g) + �3V (f2g) = 60 6= 57:5 = �3V (f?g) + �3V (f1; 2g) :

Taking the previous example into account, our main result is somewhat limited, as, in
general, there are not just two prominent solutions when facing distribution problems. In
this regard, it is important to stress the continuous evolution of the numerous solutions
proposed for bankruptcy problems, some of them gathered by Thomson (2003), and
the interesting framework in which the most important single-valued solutions in the
literature of TU-games are jointly analyzed by Arin (2007). However, the following two
facts should also be noted. On the one hand, with the aim of being operative, societies
establish mechanisms for reducing the number of proposals in controversial situations.
On the other hand, once a society has speci�ed the criteria to apply for solving a type
of distribution problem, the number of acceptable proposals is greatly reduced and they
sometimes lead to the natural form of bipolarity, as shown in the next section.

4. An application: Lorenz-bifocal bankruptcy games

This section is devoted to specifying of our previous analysis to bankruptcy problems:
that is, distribution problems in which the agents�demand for a good exceeds its supply
and the resources therefore need to be rationed. Formally,

A bankruptcy problem is a distribution problem, (M;CN ); where the set of
agents, N , also called creditors or claimants, face a situation where M = E is the
estate and CN = c 2 Rn++ is the vector of their claims, the aggregate worth of which is
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greater than the estate, that is, E <
P
i2N
ci: Let D� � D denote the set of all bankruptcy

problems.
A bankruptcy rule is a distribution rule (a function f : D� ! Rn such that for

each (E; c) 2 D�
P
i2N
fi(E; c) = E) satisfying, for each bankruptcy problem (E; c) 2 D�;

the following constrains:

(a) Non-Negativity: for each i 2 N; 0 � fi(E; c), and
(b) Claims-Boundedness: for each i 2 N; fi(E; c) � ci.
Let F� denote the family of bankruptcy rules.
At this point, it is worth emphasizing that for each bankruptcy problem, (E; c) 2 D�,

given that there is no enough to share, any recommendation of a bankruptcy rule f could
be interpreted as both a gains allocation, f(E; c), and a losses allocation, c � f(E; c).
These two perspectives arise in a natural way when solving these problems.

We then present formal de�nitions of the Constrained Equal Awards and the Con-
strained Equal Losses bankruptcy rules, two proposal focusing respectively on the men-
tioned interpretations, and introduced by Maimonides in the twelfth century.

The Constrained Equal Awards bankruptcy rule, CEA, (Maimonides, 12th cen-
tury, among others) recommends equal awards to all claimants subject to no-one receiv-
ing more than their claim. That is, for each (E; c) 2 D� and each i 2 N;

CEAi(E; c) � min fci; �g ;

where � is chosen so that
P
i2N

min fci; �g = E:

Given a bankruptcy rule f; its dual, denoted by [f ]� ; which, as is known, is well-
de�ned, divides the aggregate loss in the same way as f divides the endowment (Aumann
and Maschler (1985)): for each (E; c) 2 D� and each i 2 N; [f ]�i (E; c) = ci � fi(

P
i2N
ci �

E; c):

The Constrained Equal Losses rule, CEL, discussed by Maimonides (Aumann
and Maschler (1985)), is the dual of the Constrained Equal Awards bankruptcy rule
(Herrero (1)). It chooses the awards vector at which losses from the claims vector are
the same for all agents, subject to no-one receiving a negative amount. That is, for each
(E; c) 2 D� and each i 2 N;

CELi(E; c) � max f0; ci � �g ;

where � is chosen so that
P
i2N

max f0; ci � �g = E.

Our next analysis is somewhat in the line of Dutta and Ray (1989). With the aim
of determining the two focal distribution rules, which by de�nition respect individual
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rights, we consider a society that applies the Lorenz criterion on bankruptcy rules but
that has found no compelling reasons for focusing exclusively neither on gains nor on
losses (Lorenz comparisons of bankruptcy rules from the gains viewpoint can be found
in Bosmans and Lauwers (2007) and in Thomson (2007b)).

Given x 2 RN ; we denote by �(x) the vector that results from x by permuting the
coordinates in such a way that �1(x) � �2(x) � ::: � �n(x):

Let x; y 2 RN , we say that x Lorenz dominates y, denoted by x �L y, if �1(x) �
�1(y); �1(x) + �2(x) � �2(x) + �2(x); and so on, with at least one strict inequality1.

If the partial sums are equal for �(x) and �(y), the two vectors x and y are Lorenz
equivalent, denoted by x �L y:

Given a set A, we de�ne the set of Lorenz undominated elements of A as follows:

L(A) = fx 2 A j there is no y 2 A such that y �L xg:

Elements of L(A) are called Lorenz maximal elements on A.
Given two bankruptcy rules f and g, f Lorenz-gains dominates g if for each

(E; c) 2 D�, f (E; c) �L g (E; c). A bankruptcy rule f is Lorenz-gains maximal,
LM g, if there is no other g such that, for each (E; c) 2 D�, g (E; c) �L f (E; c) :

Similarly, f Lorenz-losses dominates g if for each (E; c) 2 D�, c � f (E; c) �L
c� g (E; c) : A bankruptcy rule f is Lorenz-losses maximal, LM l; if there is no other
g such that, for each (E; c) 2 D�; c� g (E; c) �L c� f (E; c) :

For the considered society, if there exist, previous reasoning provides the two fo-
cal bankruptcy solutions, f and g; which are the only ones Lorenz-gains maximal and
Lorenz-losses maximal, respectively, in the set of all bankruptcy rules. In this regard,
Schummer and Thomson (1997) showed that the Constrained Equal Awards bankruptcy
rule is the only Lorenz-gains maximal. Furthermore, by starting with this result and us-
ing the concept of dual bankruptcy rule, it can be directly deduced that the Constrained
Equal Losses bankruptcy rule is the only Lorenz-losses maximal.

As a result, this subclass of bifocal distributions problems, denoted by BL� � B
and called Lorenz-bifocal bankruptcy problems, is well-de�ned, its elements being
triplets BL� = ((E; c); CEA;CEL) where (E; c) 2 D�: Within this subclass, we then
present the concepts of the bifocal distribution rule and the bifocal distribution game,
which we call the Lorenz-bifocal bankruptcy rule and the Lorenz-bifocal bankruptcy
game, respectively.

A Lorenz-bifocal bankruptcy rule is a function ' : BL� ! Rn, such that for each
Lorenz-bifocal bankruptcy problem BL� = ((E; c); CEA;CEL) 2 BL� , ' is a bankruptcy
rule and for all i 2 N;

minfCEAi(E; c); CELi(E; c)g � 'i
�
BL�
�
� maxfCEAi(E; c); CELi(E; c)g:

1Given x; y 2 RN , we do not impose the condition
P
i2N

xi =
P
i2N

yi on these vectors to apply the

Lorenz domination criterion (see Arin (2007)).



11

For each Lorenz-bifocal bankruptcy problem, BL� 2 BL� ; the associated Lorenz-
bifocal bankruptcy game, denoted by V B

L
� ; is the TU-game de�ned by the function

V LB : 2N ! R+ which associates with each coalition S � N , the minimum worth that
it would receive according to the two focal proposals, i.e., the real value

V B
L
� (S) = min

(X
i2S
CEAi(E; c);

X
i2S
CELi(E; c)

)
:

Because the class of Lorenz-bifocal bankruptcy games is a subclass of the gen-
eral class of bifocal distribution games and Examples 3.3 and 3.4 have been con-
structed so that they corresponds to Lorenz-bifocal distribution problems with (E; c) =
(170; (35; 45; 55; 60)) and (E; c) = (30; (10; 12; 13; 15)) respectively, all the characteristics
and results set out in the previous section still hold.

In particular, our main result, Theorem 3.6, on Lorenz-bifocal bankruptcy games is
dealt with in the following corollary. It represents a game-theoretic support of a new
bankruptcy rule, partially analyzed by Thomson (2007a): the average of two well-known
old solutions representing opposite viewpoints.

Corollary 4.1. For each bifocal bankruptcy game, V B
L
� , the Shapley value and the

Nucleolus coincide. They are also de�ned by the Average of the Constrained Equal
Awards and the Constrained Equal Losses rules, that is,


Sh(V B
L
� ) = 
Nu(V B

L
� ) = 1=2 [CEA (E; c) + CEL (E; c)] :

At this point it should be noted that the compromise reached by the society that
we have considered could be classed as coherent, at least, for two reasons. The �rst of
these is that the properties that the society has applied to restrict the set of admissible
distribution rules, Non-Negativity and Claims-Boundedness, are also satis�ed by the
�nal agreement. The second reason is that the �equity criterion� on which the society
bases its choices, Lorenz domination, is preserved, although the application of such a
criterion is carried out in di¤erent domains, each one corresponding to the problem fac-
ing society at each time (allocations for bankruptcy problems and excesses of coalitions
for bankruptcy games). In this regard, it is well known that, for each TU-game V , the
Nucleolus selects the allocation of the resource providing the maximal Lorenz element
on the set of vectors the coordinates of which are the excesses of all coalitions referring
to e¢ cient and individually rational distributions, x = V (N) and xi � V (fig for all
i 2 N; (see Arin (2007)).

Our modeling could be applied to other societies, represented either by di¤erent
desirable social goals or by di¤erent requirements to the admissible distribution rules.
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By way of illustration, let us consider a society which to solve bankruptcy problems
applies the Lorenz criterion but imposes to bankruptcy rules Non-Negativity, Claims-
Boundedness, Midpoint Property and Resource Monotonicity (see Thomson (2003) for
formal de�nitions of these properties). It can be shown straightforwardly that our model
provides a new bankruptcy solution: the Average of the Constrained Egalitarian rule
and its dual (see Chun, Schummer and Thomson (2001) for the identi�cation of the
Lorenz-gains maximal rule in this context). Similarly, adding the property of Super-
Modularity to the previous restrictions on solutions, the average of Piniles rule and its
dual will arise by means of our previous analysis when the Lorenz criterion applies (see
Thomson (2003) and Bosmans and Lauwers (2007)).

It is clear that coherence, in the previously mentioned sense, is a characteristic that
cannot be generalized for any society2. Therefore, a trade-o¤ between �fairness�and
�resoluteness�could arise. However, the following two facts, which in our view reduce
such a con�ict, should be noted. Firstly, Yeh and Thomson (2006) write: "Concerning
the extent of preserving properties, the convexity operator tend to be the least disrup-
tive". Secondly, our analysis states that: "Concerning the extent of preserving �equity
criteria�, at several of them meet the reached compromise: those ones corresponding to
the Shapley value and the Nucleolus".

5. Conclusions

Firstly, this section clari�es some of the relationship between bifocal distributions games
and other well-known classes of TU-games.

It is straightforward to verify that bifocal distributions games are minimum games
of two additive games with equal worths for the grand coalition, so that they are a very
speci�c subclass of �ow games (see Kalai and Zemel (1982)). They are also a subclass
of exact games (see Smeidler (1972)). As far as we know, no subclasses of these classes
of games have been identi�ed for which the two prominent single-valued TU-games
solutions, the Shapley value and the Nucleolus, coincide. In fact, until the recent paper
by Kar et al. (2009), we have found no on their coinciding apart from work on the
so-called 2-games, a special class of the k-games de�ned by Deng and Papadimitriou
(1994) (see also van den Nouweland et al. (1996) and Chun and Hokari (2007)). In this
regard, an inclusion relation between 2-games and bifocal distributions games cannot
be established, although the intersection of these two classes of games is non-empty.
Finally, we remark that both 2 -games and bifocal distribution games are PS-games,
but not all of the 2 -games nor all of the bifocal distribution games are PS -games.

2 It is well known that Constrained Equal Awards and the Constrained Equal Losses bankruptcy
rules satisfy Consistency but, as Thomson (2007a) points out, there is no strict convex combination of
them with �xed weights for all the agents that satis�es Consistency.
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By way of a conclusion, the following highlights the scope, from our viewpoint, of
our main result.

(i) It o¤ers game-theoretic grounds for meeting people half-way.
(ii) It reinforces the subclass of PS -games by identifying within it a broad range

of real situations and bifocal distribution problems, modeled as TU-games in a very
�natural�way. Up to now, only di¤erent games underlying queueing problems had been
identi�ed as PS -games (see Maniquet (2003), Chun (2006) and Kar et al. (2009)).

(iii) It provides powerful theoretical solution concepts with an extremely simple
calculation not only for bifocal distribution games, but also for other classes of games,
such as certain speci�c �ow games, which are useful for modeling problems of pro�t
sharing in an integrated production system with alternative production routes.

(iv) It shows how to introduce new applications of game theory and, consequently,
new solution concepts by following the line of argument of Section 4.

In summary and to return to our initial motivation, this paper uses cooperative game
theory to support very simple, current and commonly observed collective decisions.
They are so common as to be expressed in the popular proverb: �Virtue lies in the
middle ground�. It therefore involves both simplicity and the matching of theory with
real life, producing an interesting combination.
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APPENDIX 1.

Proof of Proposition 3.2.
Let B = (D; f; g) 2 B and let x 2 C

�
V B
�
: Then, by de�nition of both the distrib-

ution rule and the Core distribution,X
i2N
fi(D) =

X
i2N
gi(D) =

X
i2N
xi = V

B (N) =M (5.1)

and

xi � V B (fig) = min ffi(D); gi(D)g for all i 2 N:

Now, we only have to prove that xi � max ffi(D); gi(D)g for all i 2 N:

Let us suppose that there i 2 N exists such that xi > max ffi(D); gi(D)g and,
without loss of generality, let us assume that

fi(D) � gi(D):

Then
xi > gi(D): (5.2)

Let S = fj 2 Nnig : Then, on the one hand, by Conditions 5.1 and 5.2,X
j2S
xj <

X
j2S
gj(D) (5.3)

and on the other hand, since fi(D) � gi(D), Condition 5.1 impliesX
j2S
fj(D) �

X
j2S
gj(D): (5.4)

Therefore, by Conditions 5.4 and 5.3,

V B (S) = min

8<:X
j2S
fj(D);

X
j2S
gj(D)

9=; =
X
j2S
gj(D) >

X
j2S
xj ;

in contradiction with the fact that x 2 C
�
V B
�
: Thus,

xi � max ffi(D); gi(D)g for all i 2 N:
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APPENDIX 2.

Proof of Proposition 3.5.
Let B = (D; f; g) 2 B: By De�nition 3.1, the corresponding bifocal distribution

game, V B, is such that V B(?) = 0 and, for each coalition S;? 6= S � N;

V B(S) = min

(X
i2S
fi(D);

X
i2S
gi(D)

)
:

Let �i = gi(D)� fi(D) for all i 2 N: Then, the worth of each coalition S � N can
be expressed as follows:

V B(S) =

8><>:
P
j2S
fj(D) if

P
j2S
�j � 0P

j2S
gj(D) if

P
j2S
�j � 0

9>=>; : (5.5)

Next, we calculate the marginal contribution of any agent i 2 N to any coalition
T � Nnfig, that is, �iV B(T ) = V B(T [fig)�V B(T ): The following four cases exhaust
all the possibilities:

Case 1 :
P
j2T
�j � 0 and �i +

P
j2T
�j � 0:

By Condition 5.5, V B(T ) =
P
j2T
fj(D) and V B(T [ fig) =

P
j2T
fj(D) + fi(D). Thus,

�iV
B(T ) = fi(D): (5.6)

Case 2 :
P
j2T
�j � 0 and �i +

P
j2T
�j � 0

By Condition 5.5, V B(T ) =
P
j2T
fj(D) and V B(T [ fig) =

P
j2T
gj(D) + gi(D). Thus,

�iV
B(T ) = gi(D) +

X
j2T
gj(D)�

X
j2T
fj(D) = gi(D) +

X
j2T
�j : (5.7)

Case 3 :
P
j2T
�j � 0 and �i +

P
j2T
�j � 0

By Condition 5.5, V B(T ) =
P
j2T
gj(D) and V B(T [ fig) =

P
j2T
gj(D) + gi(D). Thus,

�iV
B(T ) = gi(D): (5.8)



19

Case 4 :
P
j2T
�j � 0 and �i +

P
j2T
�j � 0

By Condition 5.5, V B(T ) =
P
j2T
gj(D) and V B(T [ fig) =

P
j2T
fj(D) + fi(D). Thus

�iV
B(T ) = fi(D) +

X
j2T
fj(D)�

X
j2T
gj(D) = fi(D)�

X
j2T
�j : (5.9)

Next, we calculate the sum of the marginal contributions of any agent i 2 N to any
pair of coalitions T; T � such that T [T � = Nnfig:With this aim, let us note that, given
that both f and g are distribution rules,X

i2N
�i =

X
i2N
gi(D)�

X
i2N
fi(D) = 0:

Therefore, X
k2T �

�k = �

0@�i +X
j2T
�j

1A : (5.10)

Here again we consider four cases for coalition T , which exhaust all the possibilities:

Case 1 :
P
j2T
�j � 0 and �i +

P
j2T
�j � 0: Then, by Condition 5.10,

P
k2T �

�k � 0 and

�i +
P
k2T �

�k � 0: Now, applying Condition 5.6 to coalition T and Condition 5.8

to coalition T �; we have

�iV
B(T ) + �iV

B(T �) = fi(D) + gi(D):

Case 2 :
P
j2T
�j � 0 and �i +

P
j2T
�j � 0: Then, by Condition 5.10,

P
k2T �

�k � 0 and

�i +
P
k2T �

�k � 0: Now, applying Condition 5.7 to both coalitions T and T �; we

have
�iV

B(T ) + �iV
B(T �) = gi(D) +

X
j2T
�j + gi(D) +

X
k2T �

�k =

= gi(D) + gi(D)� �i = gi(D) + gi(D)� gi(D) + fi(D) =

= fi(D) + gi(D):
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Case 3 :
P
j2T
�j � 0 and �i +

P
j2T
�j � 0: Then, by Condition 5.10,

P
k2T �

�k � 0 and

�i +
P
k2T �

�k � 0: Now, applying Condition 5.8 to coalition T and Condition 5.6

to coalition T �; we have

�iV
B(T ) + �iV

B(T �) = gi(D) + fiD):

Case 4 :
P
j2T
�j � 0 and �i +

P
j2T
�j � 0: Then, by Condition 5.10,

P
k2T �

�k � 0 and

�i +
P
k2T �

�k � 0: Now, applying Condition 5.9 to both coalitions T and T �; we

have
�iV

B(T ) + �iV
B(T �) = fi(D)�

X
j2T
�j + fi(D)�

X
k2T �

�k =

= fi(D) + fi(D) + �i = fi(D) + fi(D) + gi(D)� fi(D) =

= fi(D) + gi(D):

APPENDIX 3.

Proof of Theorem 3.6.
Taking into account Proposition 3.5 and applying, to V B; with B = (D; f; g) 2 B;

the main result in Kar et al. (2009), gathered below, we obtain that for all i 2 N;

Shi (V

B) = 
PNui (V B) = (fi(D) + gi(D)) =2; where 
PNu denotes the Prenucleolus.
Now, given that, by the de�nition of V B; 
PNu(V B) satis�es individual rationality,
that is, 
PNui (V B) � V B(fig) for all i 2 N; we have that 
Nu(V B) = 
PNu(V B):

Main Result in Kar, Mitra and Wutuswami (2009): If a TU-game V is a
PS-game, then for all i 2 N; 
Shi (V ) = 
PNui (V ) = ki=2; where 
PNu denotes the
Prenucleolus and ki is the player i0s speci�c constant corresponding to the sum of his
marginal contribution to any pair of coalitions T; T � such that T [ T � = Nnfig:
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