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Abstract 
 
Innovations are known to arrive more highly clustered than if they were purely random and 
independent. Their distribution of importance (as measured in returns or citation rates) is 
highly skewed and appears to obey a power law or lognormal distribution. Technological 
change has been seen by many scholars as following ‘technological trajectories’ in some 
space of technological characteristics and being subject to ‘paradigm’ shifts from time to 
time. Innovations appear to arrive in clusters. Thus the innovation process is clearly more 
highly structured than a simple random process, but is still characterized by high unpredict-
ability and risk. We first summarize some of these empirical observations, drawing on well-
known as well as innovative statistical measures. We then briefly review a ‘percolation’ 
model of the innovation process (Silverberg 2002, Silverberg and Verspagen 2002) and ana-
lyze its statistical properties on simulated data with respect to these measures. The model is 
able to generate similar patterns of clustering in both ‘space’ and time, highly skewed distri-
bution ranging between a pure-Pareto in the tails to a lognormal, and structured technological 
trajectories. 
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1. Introduction 
 
The paradoxical characteristic of innovations is that their nature, significance and date of arri-
val are intrinsically unknowable in advance – if we knew them in detail, then the innovation 
would in effect have already happened. It is this property of intrinsic uncertainty that makes 
innovations so central and different from other factors in the theory of long-term economic 
evolution. On the assumption of total ignorance and independence, the natural approach 
would be to regard discrete innovations as generated by a simple stochastic point process such 
as the time-homogeneous Poisson. At the same time we know that technologies are not picked 
out of a hat at random times in random orders – to some extent there is a logical order in 
which they can be discovered, and they build on each other. Modern computers could not ex-
ist without a mastery of electronics (although Babbage tried and failed to make a purely me-
chanical one in the 19th century), electronics without a mastery of electricity, and electricity 
without the metallurgical skills necessary to make wires. Thus we shall argue in the follow-
ing, based both on empirical evidence and a theoretical model, that the innovation process, 
while highly uncertain and stochastic, is still more structured in important respects than such a 
null hypothesis would suggest.  
 While the study of the statistical properties of the innovation process is scientifically 
interesting in its own right, it also has important implications for economic theory and innova-
tion management. If innovations are drawn from a highly skewed and even infinite variance 
process (Pareto), then economic growth may be even more erratic than if they are of constant 
‘size’ but generated by a Poisson process (see Sornette and Zajdenweber 1999 on the former 
case, Silverberg and Lehnert 1996 on the latter). And if they are drawn from an infinite vari-
ance and even infinite mean process, than R&D risk management and portfolio policy are 
confronted with such risk that the standard tools of capital asset management theory are inap-
plicable (Scherer and Harhoff 2000). 

We tend to think of innovations as distinct, easily identifiable entities. However, closer 
inspection reveals that they are anything but: they can be resolved into smaller sub-steps, 
making the definition and dating of important innovations controversial and somewhat arbi-
trary (this has serious implications for patent litigation). Nevertheless, when the minimum 
number of essential subunits comes together, one does have the feeling that the innovation 
‘pops out’ and becomes a recognizable ‘Gestalt.’ Thus a seemingly simple innovation such as 
the bicycle has been shown to be a concatenation of many sub-innovations spread out over 
time: 
 

In 1818, K.V. Drais de Sauerborn presented his Draisine, a kind of walk-drive bicycle 
(Laufrad). In 1839 Mannilau demonstrated how wheels can be driven by pedals, and in 
1861 at the latest pedals were built into the Draisine. In 1867 they were used on the 
front wheel by Michaux, and during the next few years the bicycle industry in France 
grew rapidly. A model of the bicycle approaching the one we are accustomed to today 
was constructed by Lawson in 1879, but a commercially successful ‘safety bike’ was 
not introduced by Starley until 1885. If we take 1818, 1839 or 1861 alternatively as 
years of invention, and 1867, 1879 or 1885 alternatively as years of basic innovation, 
we can obtain 9 different results for the time-span between invention and innovation. 
[Brockhoff (1972, p. 283), cited by Kleinknecht (1987, p. 61)] 

 
Numerous other examples could undoubtedly be found in the history of technology to 

reinforce this point. What we normally perceive as a unitary entity, a radical innovation, in 
reality is usually composed of a number of smaller steps dispersed in time, often involving 
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borrowing from other fields or dependent on specific unrelated advances in order to make the 
final step possible. In the bicycle case we could add the availability of pneumatic tires and 
ball bearings (and thus precision machining, the precision grinding machine …) as essential 
complementary innovations without which the bicycle boom of the 1890s would have been 
unthinkable. The bicycle is not one innovation but a succession of several smaller ones. In 
fact, our problem is not reducible à la Schumpeter to just radical vs. incremental innovations; 
rather innovations come in all sizes, suggesting a fractal structure to the process of innovation 

This ambiguity regarding the timing and definition of innovations is not merely a mat-
ter of historical curiosity. It can also be profitably exploited in a representation of technology 
as consisting of a multitude of elemental small inventive steps that must come together, much 
like the pieces of a mosaic, to form a coherent whole and constitute an innovation. The pur-
pose of this paper is to present a model of the dynamics of this process making as few as-
sumption about the nature of technology as possible except that it is in some sense complex 
and shrouded in uncertainty, and confront it with certain stylized but quantifiable empirical 
facts derived from innovation research.  
 The paper is organized as follows. In Section 2 we briefly present some stylized facts 
about technical change and innovation and some empirical data highlighting a number of dis-
tinctive statistical patterns associated with the innovative process. Section 3 outlines the 
framework of the model, which was first sketched in Silverberg (2002) and explored numeri-
cally in Silverberg and Verspagen (2002). Section 4 presents the results of extensive numeri-
cal simulations analyzed from the perspective of the clustering properties revealed in Section 
2. In Section 5 we review the comparison of empirical and simulated data, relate our frame-
work with related approaches such as evolutionary landscape models, and draw some conclu-
sions. 
 

2. Stylized Facts about Innovation and Technological Change 
 
The historical development of technology is by now a much-studied subject, by historians of 
technology as well as social scientists such as economists. For the economist, the impact of 
technology on variables such as economic growth, industrial development and structural 
change is of prime interest. But economics has also suggested that economic factors, such as, 
for example, profit-driven search in technology space, or learning-by-doing in production 
processes drive technological development. From this point of view, several stylized facts 
about the innovation and technology development process (in relation to economic factors) 
have been put forward. Some of these are by now well founded in empirical, quantitative evi-
dence, while others still remain somewhat speculative. The model we analyze in this paper 
provides a causal structure geared at explaining several of these stylized facts, in particular 
those that have been put forward by scholars in the evolutionary economics tradition. 

The aim of this section is to outline these stylized facts that will be ‘explained’ by our 
model. We will briefly discuss their context in the literature on economics and technology, 
and present some illustrative data as well as suggested techniques for analysis of the data. The 
techniques will also be applied in later sections analyzing the (artificial) data generated by the 
model, so that we may compare the simulation outcomes to the patterns found in the empirical 
data. The stylized facts we will discuss are clustering of major innovations in time, clustering 
of innovations in ‘technology space’, and the empirical distributions of the size of innova-
tions. 
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2.1. Temporal clustering of (major) innovations 
 
The debate on temporal clustering of innovations was initiated by what appears, with hind-
sight, to be a rather casual remark in Schumpeter’s seminal work Business Cycles: “[Innova-
tions] are not evenly distributed in time, but (…) on the contrary they tend to cluster, to come 
about in bunches, simply because first some, and then most firms follow in the wake of suc-
cessful innovation” (Schumpeter, 1939, p. 75). For Schumpeter, such ‘bunches’ of major 
(radical) innovations were the driving force of long waves of 50-60 years duration, such as the 
ones Kondratieff (1926/1935) claimed to have discovered in the historical data. Kuznets 
(1940), in a review of Schumpeter’s two volumes, already pointed to the lack of causal expla-
nation of Schumpeter’s temporal clustering hypothesis. This became the subject of a lively 
debate in the 1970s and 1980s after Mensch (1975/1979) put forward actual empirical time 
series data together with a new causal explanation for the temporal clustering effect. The 
causal explanation offered by Mensch was that depression periods of the long wave, by the 
low profit rates they cause, would trigger search for new technological opportunities, while 
during boom times, entrepreneurial spirits would mainly take the form of exploiting the fresh 
profit opportunities of the newly introduced major innovations.  

The empirical evidence presented by Mensch was challenged by Freeman, Clark and 
Soete (1982), as well as Solomou (1986), while Kleinknecht (1987, 1990) found support for 
the clustering hypothesis. All these tests were based on time series of basic (major) innova-
tions, taken from historical works such as Jewkes, Sawers and Stillerman (1958). The con-
structed time series all took the form of the number of basic innovations that took place each 
year. Obviously, there are at least two arbitrary procedures involved in the construction of 
these data: the exact time (year) of innovation, and the assessment of what constitutes a major 
innovation, and what falls below this threshold. In an earlier paper, Silverberg and Verspagen 
(2003), we merged the existing time series for basic innovations into one series combining the 
observations by the different authors who have contributed to this field. This time series, 
along with some trend estimates that we will explain below, are depicted in Figure 1. 

0
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9

raw data fit nb fit Poisson
 

Figure 1. Poisson-regression analysis of radical innovation time series for first and third degree polyno-
mial trends of the log of the arrival rate. While the point estimates of the Poisson and negative-binomial 
models are virtually identical, the latter is statistically preferred. The long-term trend is also apparent. 
Source: Silverberg and Verspagen (2003). 
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It is clear from Figure 1 that the number of major innovations observed every year is rela-
tively small, with a substantial number of years with zero observed innovations. This suggests 
the use of probability distributions that are well suited to describe so-called count (or integer-
valued) data, such as the Poisson distribution. As early as 1974, Sahal (1974) suggested using 
a statistical method based on the Poisson and negative binomial distributions to describe time 
series of incremental innovation. Visual inspection of the histograms of the data in Figure 1 
and similar time series also suggests a Poisson-like process (Silverberg and Verspagen, 2003). 
According to the Poisson distribution, the probability P of y events (innovations) during a 
time interval T is given by: 

,
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where λ is the parameter measuring the (fixed) arrival rate of innovations. It is easily shown 
that the expected number of events per unit time is λ, which also happens to be the variance of 
the distribution. Note that time series generated from a time-homogeneous Poisson process 
will not display a completely uniform pattern of occurrences of the random event. In other 
words, to the naive eye some clustering will characterize even this simplest point process. 
 Empirical data often show a larger variance than mean for the dependent variable, a 
phenomenon termed ‘overdispersion.’ Hausman, Hall and Griliches (1984) for example ob-
served overdispersion in their firm-level patent database. A model that can account for 
overdispersion may be obtained by adding an unobserved random effect to the mean of the 
Poisson distribution (Hausman, Hall and Griliches, 1984). This leads to a modified probabil-
ity distribution of the type: 
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where u is a random variable for which some distribution must be assumed (see Greene 1995, 
p. 939). The variable u may, for example, reflect random noise, or cross-sectional heterogene-
ity (when the model is estimated in the cross-sectional dimension). Assuming that u is gamma 
distributed, one obtains the following unconditional distribution (Cameron and Trivedi 1998, 
p. 71): 
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This distribution is known as the negative binomial distribution and has mean λ and variance 
λ(1+αλ) for α > 0. When α approaches 0, the model reduces to a standard Poisson model, and 
the variance becomes equal to λ again. A test of the Poisson against the negative binomial 
distribution can be implemented by the null hypothesis α = 0. 
 The Poisson and negative binomial models were used by Silverberg and Verspagen 
(2003) to test various hypotheses about temporal clustering of basic innovations. The first one 
was that the arrival rate of innovations varies in time, either in a strictly periodic way, or fol-
lowing the movements of some macroeconomic variable such as the profit rate. No evidence 
was found in favor of this hypothesis. A second hypothesis tested for cumulative forces at 
work in the technology-generating process, leading to autocorrelation in the observed time 
series. This hypothesis was tested using an autoregressive model. Although some significant 
autoregressive terms were found, these did not take on parameter values that led to long per-
sistence of random shocks to the arrival rate of innovations. Rather, the shocks in the arrival 
rate were observed to die out quite quickly, there again not finding any support for this form 
of temporal clustering. 
 In fact, the only form of clustering for which strong evidence was found was overdis-
persion: the parameter α in the negative binomial model was always significant, implying that 
the variance of the processes observed in the data is high as compared to the standard Poisson 
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model. In other words, compared to the Poisson benchmark, there are periods of relatively 
high and low activity in the time series for basic innovations. Obviously, this is a statistical 
measure of temporal clustering, or concentration, which remains unexplained in economic or 
technological terms. In fact, as the above summary of results points out, any economic or 
technological explanation that relies on strict periodicity in the arrival rate of innovations, or a 
close relation to aggregate macroeconomic variables, seems to be without support in the data. 
Concluding, we may set as a task for our model below to explain temporal clustering 
(overdispersion) in the time series for major innovations, without resorting to a behavioral 
mechanism based on the assumption that the intensity or direction of technological search 
changes systematically with (macro)economic variables. 
 
 

2.2. Clustering of innovations in technology space 
 
In the economic literature analyzing the development of technological change there are nu-
merous suggestions that the innovative process follows relatively ordered pathways, as can be 
measured ex post in technology characteristics space. Examples of propositions in this direc-
tion are Nelson and Winter’s (1977) natural trajectories, Sahal’s (1981) technological guide-
posts, and Dosi’s (1982) technological paradigms. Empirically oriented contributions that 
illustrate the point are, e.g., Foray and Grübler (1990), Saviotti (1996) and Frenken and 
Leydesdorf (2000). 
 These concepts are often used in explaining the specific direction in which a technol-
ogy develops after an initial radical breakthrough takes place. The factors that may influence 
such a trajectory are incremental improvements that take place during the diffusion process of 
the basic design, and external circumstances such as characteristics of demand, factor prices, 
patterns of industrial conflict, etc. Dosi describes the result of this as a “model and pattern of 
solution of selected technological problems, based on selected principles from the natural sci-
ences and on selected material technologies”. From all the possible directions technological 
development may take, only a small portion are realized.  
 Along the development of the trajectory, incremental innovation and diffusion go hand 
in hand. Diffusion of the basic design is stimulated by the incremental improvements, which 
increase the value of the technology and thus make it more attractive for users. At the same 
time, diffusion increases the scale at which the technology is used, and hence makes it more 
attractive to develop improvements. Incremental innovation is also used as a means of compe-
tition between the suppliers of the technology.  
 The direction of the trajectory is governed by the specific circumstances in which the 
technology develops. For example, von Tunzelmann (1978) shows how the trajectory of in-
novation in steam engines in Cornwall in the 19th century was strongly influenced by the dear-
ness of coal. These engines were employed to pump water from flooded copper and tin mines 
in a region far from coalmines. Thus, the coal needed to fuel the engines had to be brought 
into the Cornish area, and this made it relatively expensive to operate an engine. Hence, the 
main aim for engineers in the business of designing engines for Cornish miners was to get as 
much work done as possible per bushel of coal, and this goal dominated their design efforts. 
This led to a trajectory of increasing steam pressure and engine cylinder size. Under different 
circumstances, different trajectories in steam technology were pursued, leading to substan-
tially different designs (see, e.g., Frenken and Nuvolari, 2002).  
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Figure 2: Distribution of the Cornish mining engines, cylinder size in inches on the vertical axis, time on 
the horizontal axis, darker shades indicate a higher percentage of total HP delivered by the total popula-
tion (source and details about calculations and sample: Nuvolari and Verspagen, 2002) 

 
The Cornish case is illustrated in Figure 2. Until the early 1820s, engines are concentrated in 
the size bracket around 70”. After this, the size gradually increases to around 90”. This can be 
shown to go hand-in-hand with a marked increase in performance. After 1850, the trajectory 
breaks up, and seems to split into two separate trajectories: one at a cylinder size around 60”, 
and one around 80”. Thus, besides the development of a single trajectory, the case also shows 
how trajectories may bifurcate.  
 The notions of trajectories, paradigms or guideposts again suggest clustering of inno-
vation. The clustering effect is now set in technology space, rather than in time, as in the case 
of the previous subsection. Another difference is that clustering in technology space is largely 
a matter of incremental innovation, rather than the radical breakthroughs in Schumpeter’s 
theory. As an explanation for the clustering in technology space, the literature mainly seems 
to offer the localized nature of technological search, together with specific designer’s aims 
dictated by external circumstances. We will set it as a task for future research to investigate 
how the localness of search influences clustering of incremental innovations. 
 
 

2.3. The size distribution of innovations 
 
The above-mentioned studies approach radical and incremental innovations as being akin to 
distinct species (which in the model we will present later in this paper they to some extent 
are). However, we can also look at them as being different ends of a continuous spectrum of 
innovation ‘sizes.’ Recent literature such as Scherer (1998), Harhoff, Narin, Scherer and 
Vopel (1999), and Scherer, Harhoff and Kukies (2000), suggests that the distribution of inno-
vation sizes, as captured by some measure or proxy of economic returns to R&D investment, 
is highly skewed, with most innovations having low or negative returns but with a sparse tail 
extending into the region of extremely high rates of return. The same tendency can be ob-
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served using the data compiled by Trajtenberg (1990) for the ‘value’ of patents proxied by the 
number of patent citations. These data suggest that the distribution of innovations may follow 
a power law.  
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Figure 3. Raw (left) and rank-order (right, double-log scale) distributions of innovation 'sizes', counting 
self-citation, based on CT scanner patent citations. Data source: Trajtenberg (1990). 

 
 Figure 3 illustrates this for the data in Trajtenberg (1990), i.e., the distribution of US 
patents in CT scanners according to the number of times they are cited in subsequent patents. 
Plotted on a double-log scale, the data suggest a linear curve (power law). Similar plots are 
presented in the works cited above using data on economic returns.  
 A major issue investigated in this literature is whether the true underlying distribution 
of innovation value is Pareto (which would correspond to a truly linear curve in Figure 3), or 
more like the lognormal. This question may be posed for the complete distribution, or only for 
its tail describing the most valuable innovations (left part of Figure 3). In the latter case, the 
question becomes whether or not the distribution is heavy-tailed, i.e., whether or not the prob-
ability of very large innovations (expressed as the number of standard deviations above the 
mean) goes quickly to zero, or remains ‘real’ for interesting ranges. The issue of lognormality 
vs. Pareto, or heavy-tails vs. normal tails has important consequences for the moments of the 
distribution, and this may in turn have important theoretical consequences.  
 Scherer (1998) uses a wide range of data sources, such as US university patent portfo-
lios, stock market returns on high-tech startups, income from pharmaceutical entities, and the 
value of German patents. Scherer, Harhoff and Kukies (2000) present more detailed estimates 
on the German patent sample in Scherer (1998). They mostly use ols-regression to estimate 
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the slope in the double-log cumulative distribution plots, and rely on the calculation of the 
moments of the distributions (such as the kurtosis). The conclusions do not clearly resolve the 
issue of lognormality vs. the Pareto distribution, at least not as far as the whole distribution is 
concerned. In some case, the observed nonlinearity is so strong that the lognormal distribution 
seems to be preferred, but in other cases, linearity is quite strong. In many cases, however, the 
Pareto distribution seems to be a good description for the tails of the distribution. This indeed 
suggests that the size distributions of innovation are heavy-tailed. 
 The nature of the innovation size statistics can be examined more rigorously by apply-
ing estimators from extreme-value analysis developed for the study of heavy-tailed distribu-
tions (cf. Crovella, Taqqu, and Bestavros 1998). Consider n observations of a random variable 
Xi, and denote by X[i] the order statistics X[1]≥X[2]≥… ≥X[n]. Then the Hill estimator is defined 
as follows: 

[ ] [ ]∑
=

+−=
k

i
kik XXnkH

1
1

1 ).ln(ln),(  

Plotting this estimator against k for small values of k (compared to n) will indicate if it con-
verges to some value, which will then be an estimate for the downward slope of the double-
log rank-order plots of Figure 3, or the inverse of the exponent α of the estimated Pareto-Levy 
distribution: 

ακ −= VN , 
where V is the value of an innovation, N is the number of innovations with value V or larger 
and κ and α are positive parameters. 
 The value of α governs the behavior of the Pareto-Levy distribution (cf. Focardi 
2001). The relevant ranges for α are α>2, 1<α<2 and α<1. For α>2 (tail probabilities decline 
relatively quickly), the Pareto-Levy has a finite mean and variance, and the law of large num-
bers applies (a large number of independent and identically distributed variables tends to a 
Gaussian distribution). For the intermediate range 1<α<2, the distribution has infinite vari-
ance: increasing the number of draws from the distribution increases the variance in the set of 
drawn values. Below the threshold of 1, the variance and the mean are infinite. Thus, below 
the value α=2, rare extreme observations (heavy tails) have an important impact on aggregate 
statistics. 
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Figure 4. Hill estimator applied to Harvard University patent portfolio data used in Scherer (1998) (left), 
and to Trajtenberg’s (1990) patent citation data (right). 
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In Figure 4, we plot the value of the Hill estimator of a for the Trajtenberg data and 
Scherer’s Harvard patent portfolio data.1 We plot a fairly large range of k (as compared to the 
number of observations in the data, and inspect if there is a range with stable values of a, 
which can be taken as indication of a power-law distribution for the part of the distribution up 
to k. The saw-tooth behavior to the right in the Trajtenberg data is due to the integer-valued 
nature of the citation data. 

For the Harvard data, there is indeed a convergence to a value 8.0≈α  (which is in the 
infinite variance and mean range) for small values of k, indicating heavy tails. For the Tra-
jtenberg data, this is less obvious, although there seems to be some convergence just after 
k=10, to a value 75.1≈α  (which is in the infinite variance, finite mean range). Thus, both 
datasets seem to point to the existence of heavy tails in the distributions of innovation sizes. 
 Heavy tails in innovation distribution sizes have important theoretical consequences. 
Mainstream economic models have traditionally assumed either that uncertainty is absent 
(e.g., a deterministic relation between productivity increases and R&D), or that the stochastic 
behavior of innovations is limited to simple probability distributions in which uncertainty 
about a single innovation disappears if we aggregate over many draws from the distribution 
(Mandelbrot 1996, ch. 5 calls this mild randomness). Evolutionary scholars (e.g., Nelson and 
Winter 1977) have argued that this is not a very useful description of innovation reality. They 
argue that the Knightian concept of ‘strong uncertainty’ may be much more useful. In this 
case, a probability distribution of innovation sizes is not a useful concept, because the alterna-
tives for which probabilities have to be defined may not even be known. Naturally, the rejec-
tion of the notion of a probability distribution makes it hard to model the innovation process 
quantitatively. 
 We suggest that the use of heavy-tailed distribution for innovation sizes is a useful 
alternative that comes a long way towards the ‘evolutionary’ concept of strong uncertainty. 
Such a distribution posits the occasional occurrence of very radical changes (such as the ones 
implicated in Schumpeter’s theory of long waves), even though incremental innovations 
dominate empirical reality in terms of their overwhelming number of occurrences. The impact 
of radical innovations in the aggregate remains substantial, however, and thus entrepreneurs 
will somehow have to take them into account in their model of technological reality. At the 
same time, they do not have an easy way (such as a stable mean and variance of an observed 
distribution) of extrapolating from past technological experience, i.e., uncertainty remains. In 
Mandelbrot’s terms, a world with heavy tails is characterized by wild randomness, and this 
may be a description of the empirical reality more acceptable to the evolutionary theorist than 
the mainstream world of mild randomness. 
 

3. Technology Space as a Percolated Lattice and R&D as Stochastic 
Interface Growth 

 
Our probabilistic model of innovation will hinge on two essential properties. First, that tech-
nologies can be embedded in a discrete topological space with a neighborhood structure re-
flecting their technological interrelatedness, and second, that over time technologies can only 
come ‘online’ by becoming contiguous to clusters of previously operational technologies, 
even if R&D search may take place in a more disjointed manner. For simplicity, consider a 
lattice, unbounded in the vertical dimension, anchored on a baseline (or space), with periodic 
boundary conditions. The horizontal space represents the universe of technological niches, 
with neighboring sites being closely related. While the technology space is represented here 
and in the following as one-dimensional (with periodic boundary conditions, i.e., a circle), it 

                                                           
1 The Harvard patent data were kindly made available to us by F.M. Scherer. 
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can easily be generalized to higher dimensions or different topologies. The vertical axis 
measures an indicator of performance intrinsic to that technology and could also be conceived 
as multidimensional. For simplicity we will restrict ourselves to a two-dimensional lattice in 
the following. 
 A lattice site aij can be in one of four states: 0 or technologically excluded by nature, 1 
or possible but not yet discovered, 2 discovered but not yet viable, and 3, discovered and vi-
able. A site moves from state 2 to 3, from discovered to viable, when there exists a contiguous 
path of discovered or viable sites connecting it to the baseline. The neighborhood relation we 
shall use is the von Neumann one of the four sites top, bottom, right and left {ai±±±±1,j, ai,j±±±±1}, 
with periodic boundary conditions horizontally. The intuition here is that a discovered tech-
nology only becomes viable or operational when it can draw on an unbroken chain of support-
ing technologies already in use. Until such a chain is completed, the technology is still con-
sidered to be under development – it is still an invention, not an innovation. Impossible states 
0 remain so forever. State 1 can progress to state 2 if it is uncovered by the R&D search proc-
ess, and state 2 can possibly but not necessarily progress to state3 if a connecting chain exists 
and all its links are discovered. 

The lattice dynamics result from the interplay of natural law with the history of hu-
man-driven technological search. Two extreme views stake out the range of approaches now 
current in technology studies, while a third represents a kind of philosophical compromise 
between the two: 

 
1. The social construction of technology (SCOT) perspective says that any site we try is 

valid technological knowledge that can potentially be incorporated into a viable technol-
ogy. Thus in this case, a tried site will immediately become occupied and placed in state 2. 
The paths that result from innovative search will be pure accidents of history. 

 
2. The alternative technological determinism (TD) perspective says that a tested site only 

represents true technological knowledge if it accords with the a priori underlying laws of 
nature. Thus when we ‘invent’ a site, we must first test whether it is technologically pos-
sible (in state 1). If it is, we raise it to state 2, if not, we leave it in state 0. This is a bit like 
playing the game minesweeper. The paths that result will be a selection from the techno-
logically possible ones. 

 
3. A compromise view, which we shall call the nothing is impossible at a price (NIP) per-

spective, holds that any site can become viable if we are willing to invest sufficiently to 
develop it. The development costs can be a random variable between 0 and ∞. The best-
practice frontier (defined below) will advance at the points of least resistance and often be 
delayed until sufficient resources can be brought to bear against obstacles. The dynamics 
may resemble the self-organized criticality observed in the Sneppen (1992) model of ‘pin-
ning’ interface growth. 

 
If we are willing to allow for natural law, we must first initialize the lattice at time 0 

by assigning each site the state 0 or 1. To reflect our a priori ignorance of the laws of nature 
we regard this as a random process creating a percolation on the lattice with some probability 
q.2 The essential property of percolation is the behavior of connected sets as a function of the 

                                                           
2 In this case we speak of site percolation, as opposed to working with the lines connecting nodes, known as 
bond percolation (see Grimmett 1989, Stauffer and Aharony 1994). For the purposes of this paper there is no 
obvious preference for one or the other (and bond percolation can always be reformulated as a site model). An 
early application of percolation theory to technological change can be found in Cohendet and Zuscovitch (1982). 
David and Foray (1994) applied a hybrid site and bond percolation model to the standardization and diffusion 
problem in electronic data interchange networks. Some recent applications of percolation theory to social science 
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(uniform and independent) probability of occupation of sites. On an infinite lattice (including 
the half plane) there exists a threshold probability pc below which there is no infinite con-
nected set and above which with probability one there is one (and only one) infinite connected 
set. The probability that any site will belong to the infinite connected set is zero below pc and 
increases continuously and monotonically above pc.3 For bounded lattices, the interesting 
question is the probability of finding a connected path spanning the lattice from the bottom 
edge to the top one. This will increase rapidly and nonlinearly in the neighborhood of pc. A 
metaphor that may help to sharpen intuition is to regard rain falling on a yard as a percolation 
problem. After only a bit of rain the yard consists of islands of wetness surrounded by dry 
pavement. After more rain has fallen the yard suddenly flips to being islands of dryness sur-
rounded by wetness. Regarding technology space as a percolation is of course only one way 
to generate a ‘complex’ problem setting. Other possibilities are the use of NK-landscapes (see 
e.g. Frenken 2001) or directed networks (Vega-Redondo 1994, although networks can also be 
used as the substrate for percolated structures). 

If q<pc, then there will only be finite connected sets (clusters) and technological 
change will eventually come to an end. If, however, nature is so bountiful that q>pc, then 
there will a unique infinite cluster and thus potentially unbounded paths of innovation (see 
Fig. 5). And the larger q, the denser the network of potentially viable technologies will be. 
The social construction of technology case results from technological determinism in the limit 
q → 1. The ‘nothing is impossible for a price’ (NIP) case results from generating a random 
variable qi,j ∈ [0, ∞] at each site from some distribution. The site is declared discovered when 
the cumulative R&D devoted to developing it (possibly discounted) exceeds qi,j. We hope to 
explore the NIP case in a future paper. 

q 

P 

pc 
 

Figure 5. The probability that any site will be on the infinite cluster P as a function of the percolation 
probability q. 

 
 We now come to the R&D search half of the dynamics. At any point in time t a best-
practice frontier can be defined consisting of the highest sites in state 3 for each baseline col-
umn (of which there are Nc): 
 

3).|(max)( where},,1)),(,{()( ==== i,jc ajijNiijitBPF  
 
(If there is no viable site in column i* we set j(i*)=-1.) The BPF(t) is needed as the anchor for 
the R&D search process, which is characterized by a search radius m. Around each point (i, 
                                                                                                                                                                                     
problems include Solomon et al. (1999), Goldenberg et al. (2000), Gupta and Stauffer (2000) and Huang 
(2000a). 
3 For bond percolation on the unbounded plane it can be proven that pc is exactly ½. For site percolation it has 
been numerically established to be around 0.593. 
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j)∈ BPF(t) with j>-1, i.e., around each occupied point on the frontier, we draw a (diamond-
shaped) neighborhood of radius m containing all points at a distance of m or less (according to 
the ‘Manhattan’ metric induced by the neighborhood relation). We suppose R&D search to 
proceed within these local neighborhoods anchored around current best practice, and thus 
includes technology sites not only directly above the current best practice sites, but sites later-
ally related to it and even sites lying behind it. Search itself is viewed as uncertain and charac-
terized by a uniform probability ps of testing any one of the 2m(m+1) neighboring points (not 
counting the anchor point). If the total R&D ‘effort’ at the disposal of any point on the BPF is 
E, then 
 

).1(2/ += mmEps  
 
If a site is tested and in state 0, i.e., it is intrinsically impossible under the TD assumptions, 
then it remains in this state. If it is in state 1 it is marked as ‘discovered’ and advanced to state 
2. Sites already in state 2 or 3 remain unchanged. A site may be tested several times in a pe-
riod if it is in the m-neighborhood of several sites on the BPF. At the end of each R&D cycle 
we test each site in state 3 (both newly discovered ones and those inherited from previous 
periods) to see if they can be connected to the baseline by a contiguous path of sites in state 2 
or 3. If so, its state is advanced to 3 and the technology become a viable innovation. The fact 
that search continues to take place below the BPF means that the path connecting sites on the 
frontier to the baseline may shorten over time as ‘shortcuts’ and missing links are discovered. 
We regard this as true incremental innovation but will not deal with this aspect here. 

Consistent with our ‘blunderbuss’ vision of the search process, we allow innovation to 
take place in a neighborhood of radius m centered around each point on the frontier. The un-
ion of these regions creates a band of innovative percolation extending ahead and behind of 
the frontier. Within this region new sites will be tested at random with some probability p. A 
discovered site of course need not connect immediately with the operational network. It is this 
fact that permits innovations of variable length (as measured by the jump in y they entail) to 
occur spontaneously. Thus we obtain a natural explanation of innovation clustering (but of the 
random kind), as shown in Figure 6. This happens when a disjoint extended network of dis-
covered but not yet operational sites is finally connected to the technological frontier, and/or 
when an ‘overhanging cliff’ advances laterally, pulling up the BPF at neighboring sites by 
increments that can be much larger than m, the search radius, and are in fact unbounded from 
above. 
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Figure 6. Clusters of innovations occur when disconnected islands of inventions are joined to the BPF by 
cornerstone innovations. 

 
The computer implementation of the model is illustrated in Figure 7, which is a screen 

shot of the user interface in interactive mode. The rectangle on the upper right shows the state 
of the lattice at this point of time. Blue dots represent lattice sites with ‘impossible’ technolo-
gies (state 0), unmarked sites are possible technologies which have not yet been discovered 
(state 1), green ones discovered but not yet viable sites (state 2), and yellow sites are viable 
technologies, i.e., discovered and connected to the baseline (state 3). The red line represents 
the best-practice frontier (BPF) around which search is taking place in a band of radius 8. A 
typical pattern is shown of a mushroom cloud of yellow sites with overhanging cliffs, at the 
edges of which the BPF jumps in a discontinuous manner. The average rate of innovation per 
site in each period is shown by the red line in the lower-right rectangle, while the standard 
deviation of the BPF, a measure of the unevenness of technological advance, is given by the 
green line. 
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Figure 7. Screen shot of computer simulation at time 24. Snapshot of lattice on upper right, time series of 
average rate of innovation and standard deviation of  BPF on lower right. A histogram of the number of 
innovations of various sizes can be discerned on the upper left. 

 

4. Analysis of Numerical Simulations 
 
We define an innovation as being any change in the height of a BPF site above the baseline, 
and its size as the number of vertical sites covered by the change in one time period. In 
Silverberg and Verspagen (2002) we explore the dynamics of R&D search as a function of the 
search radius m and the lattice percolation probability q. Not surprisingly, myopic search (m 
small) turns out to be a dangerous thing, with the system having a high probability of dead-
locking even when an infinite cluster exists (q>pc). The overall rate of technological change is 
shown to be an increasing function of both m and q.4 
 We will now examine in turn the temporal, spatio-temporal and size-clustering proper-
ties of numerically generated data. 
 

4.1. Temporal clustering of radical innovations 
 
In analogy to the empirical literature on the incidence of radical innovations discussed in Sec-
tion 2.1, we will set a cut-off threshold ϑ to differentiate radical from minor innovations: in-
novation jumps ≥ ϑ will be called radical, otherwise they are minor. We apply the same statis-
tical technique used in Silverberg and Verspagen (2003) on historical data, namely Poisson 
regression, to decide whether a negative binomial model with positive overdispersion parame-
ter α is significantly superior to a pure Poisson model of time series of simple aggregate 
counts per period (over all technology categories) of radical innovations. Recall that for the 
two historical time series we examined (our supersample and the Baker significant patent 
data) α is always significantly greater than zero and of order 0.24 – 0.27 for a model with 
                                                           
4 For a search radius of 2, however, there is actually a decline in this rate for certain ranges of q due to an unfa-
vorable tradeoff between foresight and effort duplication.  
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simple exponential trend. We interpret this to mean that radical innovations do indeed cluster 
in the statistical sense, if not in the sense of a Schumpeterian theory of long waves (when they 
cluster is purely random and anything but quasi-periodic). 
 Figures 8 plots the Poisson arrival rate (mean number of innovations per unit period) 
and the estimated α for the negative binomial model (the arrival rate is invariant to the model 
estimated) for a range of values of the threshold ϑ  and search radius m and a percolation prob-
ability of 0.6, i.e., just above the critical value.  In all cases, the estimated α’s are highly sig-
nificant (1% level). In general, the lower the level of aggregation of innovation (i.e., the 
higher the threshold ϑ), the higher the estimated α. Thus, radical innovations are more clus-
tered than an aggregate of major and minor innovations together in our simulated data, and of 
course occur less frequently. Increasing the search radius also increases both of these values 
to some extent, particularly at low values of m (see Silverberg and Verspagen 2002 for a more 
extensive discussion of the effect of the search radius on innovation performance). 
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Figure 8. Poisson arrival rates (left) and overdispersion index αααα (right) for different values of threshold ϑϑϑϑ  
and search radius m. 

Time series of innovation counts at different levels of ϑ display this clustering behavior 
clearly (Figure 9). 
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Figure 9. Innovation count time series for a threshold of 2 (left) and 10 (right) for a run with search radius 
5. The temporal clustering is apparent. 

 
4.2. Clustering of simulated data in technology space 

 
To examine clustering of innovations in technology space, we generate a space-time diagram 
of innovation activity by defining a variable xi,j which records the size of the innovation step 
at time j occurring in the column above technology baseline site i, selecting a lattice size of Nc 
for the number of technology columns and Nt for the number of time periods (for a total of N 
= NcNt sites). We then see to what extent innovations cluster in particular areas of technology 
space at particular times by regarding this as a spatial clustering problem and applying 
Moran’s I statistic (cf. Moran 1950, Terraseer 2003). Letting zi,j = xi,j – E(x), this is defined as 
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and wi,i’,j,j’ is the connecting weight between sites (i,j) and (i’,j’). Since we have been using 
nearest neighbor relationships in defining technological proximity until now, we select the 
weights as follows: 
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Under the assumption that the values xi,j are drawn independently and at random from an un-
known distribution, the expectation of I is 
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The variance of I is a complicated expression we will not reproduce here. Applied to our arti-
ficial data, we always find results that are highly significant (at better than the 1% level). This 
is not surprising when we look at the patterns generated in a typical space-time plot (see Fig-
ure 10). The dots represent space-time sites at which positive innovation jumps have occurred, 
with the darkness of the dot reflecting the size of the innovation step (value of xi,j). It is appar-
ent that innovation takes place not only along broad fronts but also along well-defined corri-
dors. There are clearly ‘hot’ areas of technological activity over extended periods of time and 
the picture is anything but white noise or ‘snow’ such as would be seen when a television 
screen is tuned between stations. In particular, there are islands of white resulting from islands 
of impossible technologies (in the TD perspective) in which no technological change occurs 
until an ‘end run’ has been performed to outflank them. 
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Figure 10. Space-time plot of innovation activity. The vertical axis represents the technological columns, 
the horizontal axis is time. Darker sites represents larger innovations. 

 
4.3. Innovation size distributions 

 
In Fig. 11 we present a raw innovation size distribution and the corresponding rank-order dis-
tribution of the same data. While it is clear that the distribution is highly skewed, the rank-
order distribution does not quite conform to a power law. The plots in Fig. 12 show the rank-
order distribution stepping through values of the search radius from one to ten. While linearity 
seems to hold over one or two decades on the right sides, the curves in general display clear 
convexity on the left (the fact that jumps greater than or equal to 100 are lumped together dis-
torts the picture on occasion, however). 
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Figure 11. Raw size distribution (left) and rank-order distribution (right, double-log scale) of simulated 
data (q=0.603, m=10). 
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Figure 12. Rank-order distributions of innovation size for increasing search radius (q=0.603). 
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We calculate estimates for the slope of the cumulative Pareto distribution α using the 
Hill estimator in Figures 13, 14, and 15 for different values of q and m=5. It is apparent that 
for lower values of q there is an intermediate range of k where the estimate converges to a 
value between 1 and 2. For q=0.695 convergence is to a value of around 2, indicating a log-
normal distribution rather than a Pareto. 
 We also calculated LD plots, which are obtained by grouping the original observations 
into blocks of size b: 

.
1)1(

, ∑
+−=

=
tb

bti
ibt XX  

The right cumulative histograms are then plotted on double-log scales for different block 
sizes. If these curves are straight and parallel in the tails, then the data are in the domain of 
attraction of a Pareto-Levy stable distribution with α<2 (cf. Crovella, Taqqu, and Bestavros 
1998). If the curves seems to converge in the tails, this is an indication of a finite-variance 
distribution such as lognormal. Figures 16, 17 and 18 show the LD plots for the same runs as 
in Figures 13, 14, and 15. While they do not incontrovertibly demonstrate that the data are 
Pareto distributed, for q=0.695 the convergence of the curves is apparent, again indicating a 
finite-variance distribution. We have not calculated LD plots for the empirical observations 
because of the paucity of data points. 
 

 
Figure 13. Hill estimator of Pareto αααα for innovation distribution generated with q=0.6 and m=5 plotted on 
a double-log scale for values of k up to 90% of number of observations. 
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Figure 14. Hill estimator of Pareto αααα for innovation distribution generated with q=0.645 and m=5 plotted 
on a double-log scale for values of k up to 90% of number of observations. 

 
Figure 15. Hill estimator of Pareto αααα for innovation distribution generated with q=0.695 and m=5 plotted 
on a double-log scale for values of k up to 90% of number of observations. 
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Figure 16. LD plot for innovation distribution generated with q=0.60 and m=5 (original data and aggre-
gated data in blocks of 10, 100 and 200 observations). 

 

 
Figure 17. LD plot for innovation distribution generated with q=0.645 and m=5 (original data and aggre-
gated data in blocks of 10, 100 and 200 observations). 
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Figure 18. LD plot for innovation distribution generated with q=0.695 and m=5 (original data and aggre-
gated data in blocks of 10, 100 and 200 observations). 

 

5. Comparison of Simulated and Empirical Data and Conclusions 
 
 
We have examined empirical and simulated data on innovations with respect to a number of 
characteristics of complex systems: temporal and spatial clustering, and highly skewed size 
distributions. In the temporal domain in particular the similarity of the results is striking. Time 
series of significant innovations are more highly clustered than Poisson, and the extent of 
clustering depends on the level of aggregation. While it has proven difficult until now to de-
fine the spatial clustering of technologies empirically because a natural topology first has to 
be defined, in our model spatial clustering and technological trajectories emerge naturally 
from the percolation structure and the assumed technological topology. Landscape models (cf. 
Frenken 2001) of technological evolution based on genetic algorithms provide one possible 
way of imposing a topology, although one very different from the lattice structure examined 
here. In any event, the generation of a technological space randomly is sufficient to create the 
minimal characteristics of order evident in the empirical data due to the necessity of building 
one technology on a preexisting neighboring technology. 
 Skewness of innovation size distributions is a natural feature of both empirical data 
and the model, whereby in both cases there seems to be a spectrum of results ranging from 
lognormal (and thus finite variance) to Pareto in the tails (and thus infinite variance, and pos-
sibly infinite mean as well). Whether this is an indication of the richness of the model or a 
lack of specification is unclear. Analysis of more extensive datasets derived from patent cita-
tion data might provide an avenue for more incontrovertible statistical hypothesis testing (cf. 
van Raan 1990). 
 The model still makes a number of simplifying assumptions that could be relaxed in 
future versions. First, the percolation probability q is now exogenous and must be set above 
the critical value to generate interesting results. The NIP perspective allows this crucial vari-
able to be endogenized by allowing the aggregate level of R&D effort adjust to be just suffi-
cient to produce further technological advances. We also assume that R&D effort is equally 
spread out along the BPF, whereas real agents would obviously tend to focus their effort at 
places where a higher reward is to be expected (and thus certainly not in front of demonstra-
ble obstacles). An agent-based version of the model with agents which autonomously decide 
where to devote their resource might address this problem. 
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