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1. Introduction 

 

That innovation and diffusion of technology drives long run productivity growth is by 

now commonly accepted. The crucial question is how. For instance, what is the role 

of own R&D in the firm, industry or country, as opposed to R&D done elsewhere? Is 

the former a precondition for rapid productivity growth, or is it possible to prosper by 

exclusively relying on imported technology? These are questions of high theoretical 

and practical importance. But the answers are not so clear yet. In fact, as we will show 

in the next section, the existing evidence points in very different directions. Can this 

conflicting evidence be reconciled to give a consistent picture? This is the question we 

address in this paper. We do this in two steps. First, we consider the different 

theoretical approaches, the empirical relationships they entail, and the related 

evidence. Then we present a comprehensive data set, consisting of 1974 – 1992 

annual data for 14 countries and 22 manufacturing industries, which we use to 

discriminate between some of the most popular arguments in this area, and to explore 

the reasons behind some of the conflicting evidence presented in the existing 

empirical literature. We discuss the findings and implications in the concluding 

section. 

 

2. Theory and evidence 

 

There are basically three streams of thought in this area worth mentioning (see 

Fagerberg, 1994, for an overview). The first is the old neoclassical theory, which 

focuses solely on the public good aspects of technology. Second, there is a less 

‘orthodox’, and more empirically based, tradition, often called the ‘technology-gap’ 

theory of economic growth (Fagerberg, 1987), characterised by a more 

comprehensive analysis of the different aspects of technology, and the interaction 

between technology and other variables that take part in the growth process. Third, 

and more recent, there is the so-called new growth theory, which, to some extent, 

combines insights from the two other streams.  

 

Of these three approaches, the first is clearly the least relevant. If technology is a 

completely public good, freely available to anyone, it cannot be used as an 

explanatory factor behind differences in productivity growth (although it may have an 
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impact on worldwide growth). Hence, for technology to explain growth differences, 

diffusion of technology must require efforts and/or capabilities that cannot be taken 

for granted. It is such a perspective that forms the basis for the ‘technology gap 

theory’ of economic growth. The starting point was the observation that for countries 

lagging behind the world best-practice technology level, innovations do not arise so 

much from original research, as from imitation of technologically more advanced 

countries. This inspired Gerschenkron (1962) to introduce the term ‘advantage of 

backwardness’, i.e., the possibility that countries lagging behind the technology 

frontier can grow relatively rapidly by using a backlog of knowledge created 

elsewhere. However, he also pointed out that exploiting this backlog is not an easy 

process, but requires a lot of investments, infrastructures and institution building. 

Abramovitz (1979), arguing along the same line, used the concept ‘absorptive 

capacity’ to denote the domestic capability to assimilate foreign spillovers. Thus, 

instead of technology as a free public good, a picture emerges in which imitation of 

more advanced foreign technology is a costly activity, that requires investment in 

indigenous capabilities, capital equipment, infrastructure, etc. Without a sufficient 

level of such investments, a country is unlikely to benefit from backwardness, and risk 

of falling behind relative to the technology leaders, rather than catching up 

(Verspagen 1991). 

  

New growth theory combines a traditional neoclassical framework with a richer 

description of technology that allows for proprietary aspects as well as spillovers. 

However, these theoretical advances have not yet produced many new insights on 

diffusion. Typically, very stylised assumptions are adopted: either spillovers are 

completely global in scope, or completely national, at the level of the country or 

industry (see, e.g., Grossman and Helpman, 1991). If spillovers are global, we are 

more or less back to the traditional neoclassical model, at least as far as diffusion is 

concerned. With national spillovers, market size matters, and hence we should expect 

higher returns to R&D in larger economies. Apart from this, there are relatively few 

testable predictions that have been derived from this framework, and it is seems fair to 
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say that the advent of new growth theory has not - or at least not until very recently - 

led to much new applied work on diffusion.1 

 

Apart from descriptive analyses, empirical work based on these perspectives usually 

consists of cross-country regressions with the growth rate of labour productivity as the 

dependent variable, and the level of initial labour productivity, used as an indicator of 

initial backwardness, and variables reflecting absorptive capacity (and other relevant 

factors) as independent variables. The latter include investment in fixed capital and 

human capital, R&D expenditures, openness to international trade, etc. Studies of this 

type (see Fagerberg 1994 for an overview) have generally arrived at positive signs for 

many of the latter, while the level of initial GDP per capita usually turns up 

negatively. This may be seen as a confirmation of the potential advantages of 

international technology diffusion for countries behind the technology frontier.  

 

It may be argued, however, that the gap in productivity relative to the frontier is a 

very wide measure of the potential for diffusion, open to rival interpretations,2 and 

that more precise measures would be desirable. New technology may diffuse in many 

different ways: embodied in goods or services that make use of new technology, 

through foreign direct investments by multinational firms or by imitative activities by 

domestic firms, drawing on a multitude of sources, as well as (necessary) 

complementary assets/capabilities. Ideally, one would have wished to take all of these 

into account, but this has generally not been possible due to lack of relevant data. For 

instance, data on technology flows by multinationals are almost non-existent.3 

 

One option that has been followed with some success is to weight R&D in other 

countries with imports to arrive at a measure of imported R&D. For instance, one 

study based on this methodology (Coe and Helpman 1995) reports that the impact of 

imported R&D on productivity is positive and significant, and comparable to that of 

                                           
1 Arguably, the recent contributions by Coe and Helpman (1995), Coe, Helpman and Hoffmaister 
(1997) and Eaton and Kortum (1997) may be exceptions to this rule. We discuss these below. 
2 For instance, following the traditional neoclassical perspective, the negative impact of a relatively 
high initial productivity level may be explained by decreasing returns to capital-labour substitution. 
3 One possibility is to use patents applied for or granted by foreigners as a measure of foreign 
technology flows. See Eaton and Kortum (1997). 
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domestic R&D.4 They also found that the returns to domestic R&D are higher in large 

countries, consistent with some of the predictions from new growth theories. This 

implies that for most small and medium-sized countries, foreign R&D is a more 

important source of productivity growth than domestic R&D (since domestic R&D is 

likely small compared to total foreign R&D). However, others, using essentially the 

same type of indicator of imported R&D, fail to reproduce these results (Verspagen, 

1994, Gittleman and Wolff, 1995). In fact, the latter do not find any significant 

impacts of imported R&D on productivity. This calls for some caution in interpreting 

the existing evidence. 

 

The reasons for this state of affairs are not clear. One possible explanation could be 

weaknesses in methodology. For instance, in these studies, R&D in other countries is 

weighted by the shares of these countries in the total imports of the country in 

question. Hence, it matters for the estimate of imported R&D whether a country 

imports fruit from, say, high-R&D US or low-R&D Spain. Furthermore, since these 

studies focus on the country as a whole, there is no distinction between direct R&D in 

the industry, and R&D done in other industries in the same country. However, a much 

more elaborate study by Papaconstantinou et al. (1995), using a detailed sector 

breakdown, did not find any significant impact of imported R&D either.  

 

This may indicate that what causes these different results is not so much how 

variables are measured, but rather what kind of statistical/econometric framework is 

adopted. The problem here is the conventional one in empirical studies of technology: 

that time series are short, and that one is left with either doing a cross-section, or 

pooling time-series and cross-sectional data (i.e., a panel). The exercises that do not 

find any significant impact of imported R&D are all cross-sectional in nature, while 

the one that finds such effects uses a panel. Verspagen (1997b), who has presented an 

elaborate test, using sector-level data for a number of OECD countries, and different 

weighting schemes reflecting different assumptions on how technology flows are 

embodied confirms that this is the case. He found that the impact of foreign R&D is 

much more significant when a panel is used than in a traditional cross-sectional test. 

Commenting on this finding, he suggested that one possible reason is that the former, 

                                           
4 Lichtenberg and van Pottelberghe (1996) apply a similar model, but use FDI flows between countries 
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in contrast to the latter, usually contain country dummies, that are likely to pick up 

differences in time- and sector-invariant factors such as, for instance, absorptive 

capacity across countries. Hence, following this interpretation, the positive impact of 

imported R&D found in some studies (panel data) is strongly conditional on 

differences in absorptive capacity and other factors. Thus, achieving high productivity 

growth through imports of, say, high-tech machinery, may not be as easy as some 

existing studies, taken at face value, might lead us to believe. 

 

Another weakness of the studies discussed above is that these only contain one 

measure of technology diffusion, R&D embodied in goods and services, or FDI, and 

disregard other types of technology flows, that may be equally or more relevant. This 

may easily lead to biased estimates. At the other extreme, initial GDP per capita (or 

productivity) used in earlier studies as an indicator for potential spillovers, certainly 

has a much broader and less specific interpretation. Hence, in order to test the degree 

to which the models using specific measures of embodied R&D spillovers 

underestimate total knowledge spillovers, it seems natural to include both initial 

productivity levels and the ‘imported R&D’ variables into a single regression 

framework. This is what will be done in the remainder of this paper. In order to 

distinguish the two approaches we are trying to combine, we will refer to the initial 

productivity variable as incorporating 'disembodied' spillovers, and the imported R&D 

variable as an 'embodied' spillover variable. 

  

3. Exploring the impact of innovation and diffusion on productivity growth 

 

In order to perform the joint test of the impact of embodied and disembodied 

knowledge flows on productivity, we will use data from the OECD STAN, ANBERD 

and BITRA databases (with two exceptions noted below). Our dependent variable is 

growth of labour productivity. The  explanatory variables are growth of  capital 

intensity, growth in the own R&D stock, growth of embodied R&D spillovers 

(domestic and foreign)  and disembodied spillovers (proxied with the level of labour 

productivity lagged one year). The data set consists of  annual data for 14 countries 

and 22 manufacturing industries between 1974 and 1992. 

                                                                                                                         
to weight R&D. 
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A general problem with empirical analyses on pooled data time-series cross-sectional 

is to distinguish between information relating to the time-series and cross-sectional 

dimensions of data. Failure to do so may lead to biased interpretations of, for 

example, how changes over time take place (see the previous section). Depending on 

the purpose of the analysis, various methods may be used to reduce this problem. If, 

as in this case, the time series dimension is what we want to focus at, what such 

methods do is to sort out – fully or in part – the share of the total variance that refers 

to the cross-sectional dimension.  

 

One commonly used method in panels is to introduce dummies for the cross-sectional 

units, e.g., one dummy per country and sector. This is equivalent to estimating the 

equation on a data set for which country and sector means of the variables have been 

subtracted. However, if the data are given in levels, some of the cross-sectional 

information may still influence the results. This is so because large sectors and 

countries will still have larger values (deviations from means), and hence be more 

influential in the regression than small sectors and countries. To eliminate this 

possibility, we decided to estimate the model in first differences (of logs), which is 

equivalent to estimate the model in growth rates (only the initial level of labour 

productivity is not specified as a first difference, by nature of the variable). This 

obviously wipes out a lot of the cross-sectional variance that might otherwise have 

distorted the result, but it does not imply that country and sector dummies may not be 

relevant. For instance, time-and sector- invariant factors such as differences in 

absorptive capacity may still be reflected in the country dummies, as may differences 

in sectoral trends in sector dummies.  

 

With respect to the definition of variables, labour productivity is defined as value 

added in constant prices in US dollars (taken from STAN, which applies sectoral 

producer price indices), divided by labour input  (the number of persons employed as 

data on hours worked were not available). The latter also applies to the other 

explanatory variables (i.e., divided by labour input). The capital stock is constructed 

by applying a perpetual inventory method to the time series for investment (converted 

into constant prices, in investment PPP to the US dollar, the latter taken from the Penn 
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World Tables), using an exogenous deprecation rate of 15% per year.5 The same 

approach is used to construct so-called knowledge stocks, using investments in R&D 

instead of investment in physical capital. In this case, a specific deflator is not 

available, and the PPP for GDP (again from the Penn World Tables) is used to convert 

to a common currency.  

 

We use several R&D stocks, the first of which is so-called own R&D, defined as 

sectoral R&D expenditures. For the domestic indirect knowledge stock, IRD, this is 

done as follows: 

,)1(∑ −=
j

ijijjkik mRDIRD ω  

where m denotes the share of imports on the domestic market, ωjk is the share of 

inventions made in sector j spilling over to sector k (see below), RDij denotes R&D 

expenditures in country i and sector j. For the indirect international knowledge stock, 

IRF,  the definition is: 

,∑∑=
j

ijihjhjjk
h

ik msRDIRF ω  

where sihj is the share of country h in imports of goods j into country i. Thus, indirect 

R&D is both weighted by both imports and sectoral technology flows.  

 

The weights for the sectoral technology flows are based on information contained in 

patents from the European patent Office (EPO), and are taken from Verspagen 

(1997a).6 We follow earlier contributions such as Verspagen (1997a) and Van Meijl 

(1995) in setting the diagonal of the spillover matrix to zero (ωjj = 0) when calculating 

domestic spillovers. The reason for doing so is that if the diagonals are relatively 

important, ‘own’ (direct) R&D and (domestic) spillovers will be correlated due to 

double counting, leading to multicollinearity. Setting ωjj = 0 avoids double counting 

by internalising intra-sectoral spillovers into the elasticity of ‘direct’ (own) R&D. For 

foreign spillovers, there is no double counting, so there is no direct danger for 

                                           
5 The initial capital stock (at time t) is calculated as investment at t+1 times 5, consistent with an initial 
growth rate of the stock of 5%. In the estimations, the two first observations for the knowledge and 
capital stocks were omitted, in order to avoid problems related to the initialization of these stocks. 
6 Verspagen (1997) discusses several possible weighting schemes. We employ only one of these 
schemes here (Verspagen’s EPO1 measure), although we carried out all regressions with three different 
schemes. For the estimates here, the differences between the schemes turn out to be relatively minor. 
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multicollinearity (nor is it possible to ‘internalise' spillovers similarly to the domestic 

case). Thus, the diagonal is not set to zero for foreign R&D spillovers. 

 

Our basic regressions are documented in Table 1. The first two columns report 

estimates using OLS on the complete panel, i.e., cross-country, cross-sector and time 

series dimensions are taken into account. In these regressions, no attempt has been 

made to take into account country- or sector specific factors by including dummy 

variables. In this set-up, all variables have the expected sign, and are highly 

significant. The first column documents a specification without disembodied 

spillovers (initial productivity), whereas the second column includes this variable. 

Including initial productivity increases the explanatory power of the regression, 

without changing the estimates of the other variables much (apart form the constant 

term). Initial productivity itself is also highly significant. These results confirm that 

both imported R&D and disembodied spillovers are important, and that these are 

complementary rather than alternative sources of growth.  

 

Column 3 introduces country- and sector-dummies into the model, to take into 

account differences between sectors in terms of underlying technological 

opportunities, sectoral productivity levels, and differences between national systems 

of innovation with respect to absorptive capacity and other factors.. The dummies are 

specified as intercepts, and are set up in such a way that the benchmark case is the 

sector ‘other manufacturing’ in the United States. F-tests for the inclusion of dummies 

point out that both types are highly significant. In terms of explanatory power, they 

add 2%-points to the R2.  

 

In terms of the coefficients obtained for our explanatory variables, the main effect of 

the inclusion of dummies is to increase the (absolute) value of the disembodied 

knowledge spillovers variable (initial productivity). Our interpretation of this result is 

as follows. Part of the effect picked up by the dummy variables will be related to the 

capability to assimilate spillovers. Thus, the model with dummies, to a certain extent, 

takes this factor into account, which means that any distortion due to mis-specification 

will be less than in the model without dummies. We see this as a confirmation of the 

                                                                                                                         
Estimations with alternative schemes are therefore not documented explicitly, but are available from 
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hypothesis, central to the technology gap theory, that the potential for technology 

diffusion across countries is only partly realised due to differences in absorptive 

capacities across countries. Interestingly, the estimated effects of embodied R&D 

spillovers (whether ‘imported’ from abroad or stemming from domestic industry) are 

less influenced by the inclusion of dummies than the disembodied knowledge flows 

(as captured by the initial productivity level). This might indicate that it is more 

challenging in terms of capabilities to exploit the latter than the former. 

 

With regard to the sector dummies, a number of sectors which are usually considered 

as ‘low-tech’ have relatively large estimates for the dummy variables. This includes 

textiles, wood, paper & printing, and non-metallic minerals (glass etc.). These are 

sectors which spend relatively little on R&D. We interpret this result as showing that 

for these sectors, significant productivity gains may be realised without formal R&D. 

  

In the country dimension, all dummy variables, except the one for Japan, turn out to 

be negative, which indicates a general tendency for the United States (the benchmark 

country) and Japan to grow relatively rapidly compared to the others. The G7 member 

countries (Canada, Japan, Italy, France, and UK, with the exception of Germany) 

show values close to, and not significantly different from, zero. Many of the countries 

in the European periphery (Denmark, Spain, Norway and Sweden) perform relatively 

bad, with strongly negative dummies (Finland is the main exception to this trend). 

This may indicate that these small, peripheral countries have less developed 

absorptive capacities than other countries. Also, there seems to be a ‘large country 

effect’ at work here, since most G7 countries grow fast compared to the others.  

 

To compare these results with previous work we also report (column 4 and 5, table 1) 

two purely cross-sectional regressions (i.e., excluding the part of the total variance 

that relate to the time-series dimension). This is done by taking the means of all 

individual time series, yielding only 268 observations, and estimating the model on 

these. Column 4 does not include any dummies, whereas column 5 includes both 

country- and sector dummies as before. In both cases own R&D totally loses its 

significance, while disembodied catch up becomes much less important (compared to 

                                                                                                                         
the authors on request. 
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the corresponding models on time-series data , column 2 and 3, table 1).  In contrast, 

the estimated impact of  embodied R&D spillovers is actually higher than when 

estimated on the full data set, but less significant, i.e., estimated with less precision. In 

fact, when dummies are included, foreign indirect R&D loses its significance 

altogether. 

 

This shows that the method of estimation matters for the results, as argued previously. 

The most likely reason for this is that when the  time series information is left out the 

analysis, it becomes more difficult to distinguish between the various sources of  

productivity growth  such as, for instance, the potential for diffusion compared to 

what is actually realised due differences in absorptive capacity and other factors. 

Moreover, multicollinearity problems multiply. Hence, we put more reliance in the 

estimates on the full data set, including the time-series dimension, and allowing for 

differences in sectoral and country specific trends (column 3). 

 

As is evident from Table 1, the explanatory power of the regression is relatively 

limited. To some extent, this has to do with estimating in first differences (rather than 

levels), which is known to be associated with lower R2s. In an attempt to increase the 

explanatory power of the model, and test various hypotheses that may be found in the 

literature, we experimented with a number of additional variables that might be 

deemed relevant, including so-called interaction effects. These results are documented 

in Table 2. We used the functional form specified in column 3 in Table 1 (i.e., OLS on 

complete panel with country and sector dummies), but we no longer document the 

dummies. 

 

The first column of Table 2 introduces an interaction term between own R&D and 

initial labour productivity (relative to the sector mean).7 This interaction term turns up 

as positive and highly significant. Other variables in the regression, including own 

R&D and initial labour productivity are not affected to any significant extent 

(compare column 3 in Table 1). Our interpretation of this result is that (direct) R&D is 

more productive in countries or sectors with high levels of productivity. In other 

                                           
7 I.e., we specified the interaction term as the product of the own R&D variable as used before and a 
new variable, which is defined as the natural log of initial labour productivity minus the mean for the 
sector of that variable. 
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words, in addition to the ‘advantage’ of backwardness implied by disembodied 

spillovers, there is also a disadvantage of backwardness in terms of a lower efficiency 

of R&D.8 

 

The second column of Table 2 introduces a similar interaction term, but now between 

own R&D and the capital labour ratio (relative to the sector mean). This interaction 

term is also positive and significant, while the other variables are again relatively 

unaffected. Our interpretation of this result is that R&D and capital are strongly 

complementary: high capital intensity enhances the efficiency of R&D, and R&D 

enhances the efficiency of capital. The third column of Table 2 shows that when both 

interaction effects are introduced simultaneously, both of them loose in terms of 

significance (particularly the one with labour productivity). 

 

In column 4, an interaction term between openness to imports and own R&D is 

introduced. Openness is defined as the share of imports in total sectoral consumption 

(i.e., production plus imports minus exports), again calculated by subtracting the 

sector mean. We include this variable in order to test the commonly found hypothesis 

that exposing a sector to foreign competition has a beneficial effect on productivity. 

Our results do not yield any support for this hypothesis, however, because neither the 

openness variable nor the related interaction term turns up significantly. 

 

Column 5 tests for the effects of scale economies. We define scale as the number of 

employees (again, relative to the sector mean), but we obtained similar results to the 

ones documented here using output as an indicator of scale. Somewhat surprisingly, 

perhaps, the result point out that there are significant diseconomies of scale, i.e., R&D 

is more efficient in small sectors/countries. However, as pointed out previously, large 

countries tend to have higher trend growth rates, so we cannot rule out scale effects 

altogether. But they do not seem to reside in R&D.   

 

The results using the interaction terms indicate that the efficiency of R&D is greatly 

influenced by a number of variables. Table 3 documents the extent of this impact in 

                                           
8 Obviously, there is also another possible interpretation: that countries with above average own R&D 
are less efficient in assimilating disembodied spillovers. This interpretation seems to make less sense 
than the one offered in the text. 
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terms of rates of return to R&D and fixed capital. The first part of the table documents 

the rates of return on fixed capital investment and R&D, which are calculated by 

dividing the elasticities of column 3 in Table 1 by the sample means for the capital / 

output and R&D / output ratio. It is shown that the rate of return on R&D is higher 

than the one for capital (0.23 vs. 0.15).  This may be due to a risk premium on R&D, 

but may also reflect differences in private and social returns at the sector level, since 

the estimate reported here is likely to capture some of the effects of intra-sectoral 

R&D spillovers.  

 

The second part of Table 3 compares the ‘total’ rate of return on R&D at various 

levels of productivity, capital intensity and scale, on the basis of the estimations with 

interaction terms in Table 2. This is done by multiplying a value for initial 

productivity, the capital labour ratio, and scale with the coefficient obtained on the 

interaction term, and then adding this to the coefficient obtained on own R&D. We 

used the sample means (zero by definition for the interaction terms), and the sample 

means plus/minus one standard deviation as values for the variables. 

 

In the case of  interaction  between R&D and labour productivity, the estimated rates 

of return of R&D vary between 14% (low productivity) and 39% (high productivity). 

A similar finding results for interaction between R&D and capital intensity, with 

estimated returns on R&D between 10% (low capital intensity) and 37% (high capital 

intensity). These differences are rather large, and show that the returns to R&D are 

higher in technologically and economically more advanced sectors and countries. This 

points out that, in general, the disadvantages of backwardness related to the efficiency 

of R&D may be quite large. In the case of  scale, for which our results were somewhat 

counter-intuitive, the estimated returns to R&D range between 7% (high scale) and 

29% (low scale).  

 

Finally, we carry out a decomposition of the growth rate of labour productivity, as 

predicted by our basic model, into the various components corresponding to the 

variables. These results are documented in Table 4. The first column of this table 

gives results based on Equation 2 in Table 1, i.e., the estimations without dummy 

variables. In this case, we are unable to distinguish between potential catch-up due to 

disembodied spillovers and the effect of absorptive capacity.  The net effect of the 
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two, called “net catch-up”, is defined as the sum of the effect related to initial labour 

productivity and the constant term. Catch-up defined in this way accounts for about 

half of total growth of labour productivity of the average country/sector.9 Investments 

in physical capital is responsible for about one fifth, as is investments in own R&D. 

Embodied R&D spillovers account for only 13%, with foreign spillovers taking the 

largest part (about two thirds). Thus, overall, embodied R&D spillovers seem to be of 

relatively modest importance compared to other sources of growth. 

 

Using the estimations for the dummy variables in Equation 3 in Table 1, we are able 

to make a (rough) distinction between potential catch-up and the effect of differences 

across countries in terms of absorptive capacity. Much in the same way as before, “net 

catch up” is defined as the sum of the contribution of initial labour productivity, the 

constant term and the means of the sector- and country dummies. The contribution for 

disembodied spillovers (“net catch up”) is somewhat larger than in the previous case, 

consistent with the finding of a higher absolute value of the coefficient for initial 

labour productivity when  dummies are included. As argued previously, differences in 

absorptive capacity across countries are likely to be reflected in the estimated country 

dummies. Note that the choice of the US as the ‘reference’ country implies that we set 

this country as the ‘standard’ of absorptive capacity. The mean of the estimated 

country dummies is negative, indicating that on average absorptive capacity  on 

average is below the US level. If we subtract this mean from “net catch up”, we get a 

larger number, which reflect what the contribution might have been had absorptive 

capacity on average matched the level in the US (“potential catch up”). The results 

indicate that the potential for profiting from disembodied technology flows is 

substantial, about twice the level of what is actually realised. Hence, differences in 

absorptive capacity appear as a very important factor in productivity growth.10 

 

 

 

                                           
9  The average growth rate of labour productivity is 2.6% per year. 
10 Finally, it must be noted that to the extent that other variables are influenced by absorptive capacity, 
our method may assign too much weight to absorptive capacity in relation to disembodied spillovers. 
The estimation results seem to warrant this, however, given the fact that the initial labour productivity 
coefficient is much more affected by the inclusion of country and sector dummies than the other 
variables. 
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4. Concluding remarks 

 

This paper has examined the impact of various indicators of international technology 

diffusion on productivity growth. After a review of the available literature, we 

conclude that there are two main approaches in the field. One approach specifies 

international technology spillovers as a rather broad process, of which the potential is 

(negatively) related to the level of initial labour productivity. The other approach 

takes a more restrictive point of view, and tries to measure technology spillovers in a 

very specific way, namely by R&D embodied in (imported) goods. In order to 

contrast the two points of view, we refer to them as the 'disembodied spillover' view 

and the 'embodied spillover' view (respectively). The empirical analysis we undertake 

was aimed at investigating whether the 'embodied spillover' view may indeed be too 

restrictive, i.e., what are the results if we include both initial productivity and 

'imported R&D' in a regression. Our conclusions are: 

 

1) The conflicting evidence in the literature relates mainly to differences between 

cross-sectional and time-series tests. The former fail to reveal the full potential of 

technology diffusion for productivity growth, mainly due to the problems of 

taking into account differences in absorptive capacity across countries. 

2) Both R&D-embodied and disembodied technology flows are important for 

productivity, and appear as complementary rather than alternative sources of 

productivity growth. Overall, the impact of embodied and diembodied technology 

flows seems to be much larger than that of direct (own) R&D, consistent with 

previous findings in the literature (Coe and Helpman 1995, Eaton and Kortum 

1997). However, the disembodied flows are found to be of much greater 

quantitative importance than the embodied ones.  

3) Differences across countries in absorptive capacity appear to be very important 

growth, particularly for the ability to exploit disembodied technology flows, as 

emphasized by among others Gittleman and Wolff (1995) and  Eaton and Kortum 

(1997). 

4) Previous analyses on panel data (Coe and Helpman 1995, Table 3, Verspagen 

1997b, Table 2) have found relatively high elasticities of embodied R&D flows 

(whether imported or domestic) compared to those of direct R&D. Our study, 

focusing more on the time-series aspects, finds smaller elasticities of embodied 
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R&D flows than those reported previously, and definitely smaller than for direct 

R&D.  

5) Investment in R&D and physical capital appear as complimentary, the one 

enhances the efficiency of the other. The productivity of R&D was also found to 

increase with labour productivity. 

6) There are no signs of higher returns to R&D in larger economies, in contrast to 

some of the predictions of new growth theories. 

 

In summary, the picture that emerges from this study is that there are several, 

complementary diffusion channels, of which embodied R&D spillovers are only one 

(and not a major one), that differences in absorptive capacity matter a lot, particularly 

for disembodied technology flows, and that own R&D is very important for 

productivity, both in its own right, and in interaction with other variables that take 

part in the growth process. 
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Table 1. Estimation results for models of productivity growth with indirect and direct R&D, 
with and without dummy variables (p-values between brackets) 

 (1) (2) (3) (4) (5)
Capital Labour ratio 0.180 (0.000) 0.182 (0.000) 0.181 (0.000) 0.167 (0.002) 0.239 (0.000)
Own R&D 0.083 (0.000) 0.078 (0.000) 0.082 (0.000) -0.003 (0.899) -0.006 (0.805)
Domestic indirect R&D 0.025 (0.007) 0.023 (0.012) 0.019 (0.032) 0.059 (0.024) 0.073 (0.014)
Foreign indirect R&D 0.030 (0.004) 0.029 (0.006) 0.025 (0.015) 0.095 (0.029) 0.081 (0.132)
Initial labour productivity -0.019 (0.000) -0.045 (0.000) -0.007 (0.045) -0.020 (0.000)
Constant 0.014 (0.000) 0.206 (0.000) 0.467 (0.000) 0.084 (0.018) 0.206 (0.000)
Country Dummies  
Australia -0.021 (0.010)  -0.011 (0.173)
Canada -0.009 (0.227)  -0.002 (0.826)
Germany -0.019 (0.018)  -0.004 (0.624)
Denmark -0.036 (0.000)  -0.019 (0.037)
Spain -0.023 (0.092)  -0.016 (0.155)
Finland -0.011 (0.175)  0.009 (0.289)
France -0.007 (0.372)  -0.002 (0.842)
United Kingdom -0.003 (0.700)  0.014 (0.067)
Italy -0.005 (0.593)  0.011 (0.199)
Japan 0.009 (0.251)  0.023 (0.007)
Netherlands -0.011 (0.275)  0.018 (0.050)
Norway -0.036 (0.000)  -0.019 (0.029)
Sweden -0.023 (0.014)  -0.007 (0.463)
Sector Dummies  
Food etc. -0.006 (0.641)  -0.024 (0.041)
Textiles etc. 0.052 (0.000)  0.034 (0.003)
Wood etc. 0.059 (0.000)  0.042 (0.000)
Paper & printing 0.076 (0.000)  0.032 (0.015)
Chemicals 0.026 (0.033)  0.015 (0.141)
Pharmaceuticals 0.010 (0.425)  0.003 (0.749)
Refined Oil 0.021 (0.095)  0.014 (0.201)
Rubber & plastic 0.003 (0.785)  -0.002 (0.849)
Glass etc. 0.037 (0.003)  0.025 (0.022)
Ferrous metals 0.017 (0.155)  0.005 (0.640)
Nonferrous metals 0.011 (0.381)  0.008 (0.426)
Metal products -0.008 (0.523)  -0.007 (0.472)
Computers & office machines 0.005 (0.678)  0.005 (0.594)
Machinery 0.025 (0.039)  0.018 (0.088)
Electronics 0.031 (0.010)  0.023 (0.031)
Electrical machinery 0.013 (0.272)  0.003 (0.735)
Transport equipment nec 0.005 (0.688)  0.001 (0.902)
Ships and boats 0.013 (0.280)  0.002 (0.878)
Automobiles -0.005 (0.656)  0.002 (0.830)
Aerospace 0.030 (0.013)  0.020 (0.051)
Instruments 0.001 (0.875)  -0.005 (0.655)
Adj. R2 0.05 0.06 0.08 0.09 0.36
N 3722 3722 3722 268 268
F-tests for Null hypothesis:  
All dummies = 0 4.46 (0.000)  4.36 (0.000)
All country dummies = 0 4.37 (0.000)  6.03 (0.000)
All sector dummies = 0 4.98 (0.000)  3.49 (0.000)
(1), (2), (3): OLS on panel, no dummies  
(4), (5): OLS on time series means (BETWEEN)  
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Table 2. Introducing additional variables and interaction effects into the basic regressions explaining productivity growth (OLS on complete 
panel, constant and country and sector dummies included, but not documented, p-values between brackets 

 (1) (2) (3) (4) (5)
Capital Labour ratio 0.172 (0.000) 0.177 (0.000) 0.173 (0.000) 0.181 (0.000) 0.186 (0.000)
Own R&D 0.093 (0.000) 0.083 (0.000) 0.089 (0.000) 0.081 (0.000) 0.064 (0.000)
Domestic indirect R&D 0.019 (0.033) 0.019 (0.036) 0.019 (0.036) 0.019 (0.033) 0.018 (0.042)
Foreign indirect R&D 0.025 (0.016) 0.025 (0.017) 0.025 (0.017) 0.025 (0.016) 0.025 (0.017)
Initial labour productivity -0.049 (0.000) -0.046 (0.000) -0.048 (0.000) -0.045 (0.000) -0.047 (0.000)
Additional Variables 
 Openness -0.005 (0.598)
 Scale -0.008 (0.017)
Interaction of own R&D with 
 Initial labour productivity 0.108 (0.008) 0.063 (0.162)
 Capital Labour ratio 0.098 (0.002) 0.077 (0.024)
 Openness 0.042 (0.513)
 Scale -0.027 (0.006)
N 3722 3722 3722 3722 3722
R2 0.09 0.09 0.09 0.09 0.09
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Table 3. Rates of return (excluding spillover effect) of R&D and fixed, based on 
sample means and coefficients in Tables 1 and 2 
Rate of return on:  
  fixed capital 0.146 
  own R&D 0.232 
Rates of return including interaction effects: 
 Efficiency of R&D at: 
 Mean Mean + 1 std Mean – 1 std
Initial productivity 0.263 0.388 0.137
Capital labour ratio 0.234 0.369 0.100
Scale 0.181 0.072 0.289
 
 

Table 4. The sources of productivity growth, according to different specifications 
of the model, in percentual shares of the ‘average’ sector/country 
Source Equation 2, Table 1 Equation 3, Table 1 
Capital labour ratio 21 18 
Own R&D 19 16 
Dom. R&D spillovers 4 3 
For. R&D spillovers 9 6 
net catch-up 471 572 

of which: 
  potential catch-up3 

 
100 

  (lack of) absorptive capacity4 -43 
1 Sum of contributions of initial labour productivity and constant. 
2 Sum of the two lines below. 
3 Sum of contributions of initial labour productivity, constant and sector dummies. 
4 Sum of contributions of country dummies. 
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