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ABSTRACT 
 

In this paper we suggest that historical studies of technology can help us to account for some,  
perplexing (at least for traditional economic reasoning) features of open source software 
development. When looked in historical perspective, open source software seems to be a 
particular case of what  Robert Allen has termed “collective invention”. We explore the 
interpretive value of this historical parallel in detail, comparing open source software with two 
remarkable episodes of nineteenth century technical advances.    
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1. Introduction 
 
Open source software development has begun to draw the systematic attention of economists 

and social scientists alike. Two main reasons are at the heart of this upsurge of interest. The first 

one is the growing importance of open source products in the recent development of the 

software industry. A number of open source projects has been crowned with a remarkable 

technical and economic success. Apache (a web server), Linux (an operating system), Sendmail 

(an Internet transfer mail agent) are the most notable examples. The second reason is that some 

features of open source software development appear, at least at first sight, quite paradoxical to 

traditional economic reasoning. Lerner and Tirole (2001) individuate four “key research 

questions” that are in need of explanation: 

1. As a spontaneously provided “pure” public good, open source software should be 

prone to the free-rider problem; how can  open source software projects induce the 

active participation of talented developers who are not directly rewarded for their 

efforts ? 

2. Relatedly, why do profit motivated firms collaborate in open source projects ? What 

type of economic return do they expect ? 

3. The most notable cases of open source are highly complex software products – 

involving an articulated division of labour and the solution of a series of stringent 

coordination problems – how loosely coordinated networks of “hackers”1 have been 

able to manage effectively this complexity ?  

4. Finally, open source projects are based on an institutional arrangement (public 

license) in which the prerogatives descending from the creation of new useful 

knowledge are very different from those which are granted under traditional 

                                                 
1 In the programmers’ community the term “hackers” is used to indicate those “who love to program and enjoy 
being clever about it” (Stallman (1999), p.53). The term “hackers” is very often used in the media to denote those 
who try to sabot computer systems. This use of the word, however, is completely unwarranted.  
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intellectual property rights regimes (patents, copyrights and trade secrets). What is the 

impact of this specific institutional arrangement on the rate of technological 

innovation ? How does it perform  compared with traditional schemes intellectual 

property rights protection ?    

In this paper we suggest that nineteenth centuries experiences of technical change can provide 

some useful insights for the investigation of these issues. When looked in historical perspective, 

open source software seems to be another case of a particular type of innovation process that 

Robert Allen has termed as “collective invention”.2  Within “collective invention” settings, rival 

firms (or independent individual developers)  freely release each other pertinent information 

concerning the solution of non trivial technical problems. Each firm, in turn, makes use of the 

received information to incrementally improve on a basic common technological layout.  It seems 

worthwhile to dig deeper into this apparent historical parallel. We compare open source software 

development with two episodes of nineteenth century technical change. The first one is the case 

of the iron industry of Cleveland (UK) described in Allen’s paper, while the second one is the 

case of the Cornish pumping engine. In this way, we hope to get a deeper understanding of the 

salient features of open source software and to provide a preliminary interpretative framework 

that can fruitfully guide further research.     

The rest of the paper is organised as follows. The next section provides a short account  of the 

historical evolution of open source software development. Section 3  is devoted to a thorough re-

examination of Allen’s paper. This is necessary because some of the conceptual issues raised in 

that article have been not fully appreciated in the subsequent literature. Section 4 describes the 

case of the Cornish pumping engine. This case is particularly interesting for our purposes because 

it originated from a harsh dispute on intellectual property rights that has striking resemblances 

with the ongoing conflict between the open source community and Microsoft.  The final section 

summarizes and draws conclusions.   

                                                 
2 Allen (1983). 
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2. Open source software: a short interpretive history  

Open source programs are computer programs which are distributed together with the source 

code.3 This makes possible for sophisticated users to modify the code and introduce 

improvements and/or modifications in the programs. In turn, additions and modifications to 

open source programs are also redistributed together with their source code. As a consequence, 

open software projects tend to involve a fairly large number of  different developers, whose main 

“connecting agent”  is constituted by the mere sharing of the source code. The actual details of 

the distribution can vary with the specific license under which the programs are distributed: some 

programs are available for free, others are normally sold for a price.  

The practice of sharing the source code of programs is not an entirely novel feature of the 

software industry. The first “intensive” users of mainframe computers were universities and 

corporate research laboratories. In that environment, computer programs were eminently seen as 

research tools, which was normal to share with other developers. Richard Stallman describes 

what was the typical practice at the MIT Artificial Intelligence laboratory in the early 1970s in 

these terms: 

Whenever people from another university or a company wanted to port and use a program, we gladly let them. If 
you saw someone using an unfamiliar and interesting program, you could always ask to see the source code, so that 
you could read it, change it, or cannibalize parts of it to make a new program.4    
 

This practice of sharing programs among users generated a powerful drive towards the creation 

of  so-called “portable” software (that is software that could easily be ported on different 

computer platforms). A major step in this direction was the development of the Unix operating 

system (by Ken Thompson) and of the C programming language (by Dennis Ritchie) at Bell Labs 

                                                 
3 The source code of programs  is written in computer language such as (C, Java, Pascal, etc.) . Proprietary software 
producers typically distribute only the object code (the series of  0s and 1s, which is actually read by the machine).   
4 Stallman (1999), p. 53. Cooperation in software development was also enhanced by the Arpanet network (a 
network connecting mainframe computers at universities, research labs and other defence contractors)  in 1969 
(Raymond,1999, p. 8)      
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in 1969. Unix could be run an wide range of machines.5 Additionally, since 1979, Unix machines 

had also started to be connected in a network. The creation of a community of interconnected 

Unix users stimulated further the habit of sharing programs.6 

This situation changed  dramatically in the early 1980s. AT&T (not anymore legally  constrained 

to its role of  telephone company) began to sell licenses on Unix. Furthermore, concomitant 

advances in computer technology (the widespread diffusion of the PC and of the workstation) 

reinforced the drive towards the increased commercialization  of software products.7  Many 

talented programmers moved away from universities and research labs to private software firms, 

where they were bound by non disclosure agreements. In the case of Unix, the proliferation of 

different commercial versions proved to be disastrous, leading to the balkanisation of the users 

community and progressively frustrating the promise of a generalized cross-platform portability 

of the applications.8    

In reaction to these developments, in 1984 Richard Stallman (a programmer previously employed 

at the MIT Artificial Intelligence laboratory) founded the Free Software Foundation (FSF). The 

aim of the foundation was to contribute to recreate the “open” environment characteristic of the 

early years. The first task chosen by the FSF was the production of a non proprietary operating 

system in order to create an “open” environment in which  non proprietary programs could run. 

This operating system, which was supposed to be endowed with the features of Unix, was named 

GNU (which stands for “GNU is Not Unix”).   

In the late 1980s, Stallman and the FSF recreated a non proprietary “GNU version” of many 

components of the Unix software. The programs were developed in such a way that they could 

run on almost every version of Unix. The development of GNU software was organized by 

                                                 
5 On the early history of Unix see Salus (1994).   
6 This was permitted  by the development of a new feature of Unix, the UUCP (Unix-to-Unix-Copy), which made 
possible to exchange files and data using telephone lines.  
7 On the evolution of the US software industry in the 1980s, see Steinmueller (1996), pp. 30-41. The growth of the 
software industry in the United States was also accompanied by a progressive  strengthening of legal protection for 
software in the US (until the upholding of patents for “pure” software products). See Merges (1996).   
8 Raymond (1999), p. 22.  
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means of a sort of “future tasks” list, which was used to stimulate FSF collaborators to work at 

the development of the missing parts of the GNU system.9      

The FSF project also included the creation of a Unix compatible kernel,  10 called Hurd. The 

development of the kernel proved to be the most difficult stage of the GNU project. Stallman 

and his group seemed to be overwhelmed by the technical difficulties of the undertaking, so that 

the release of Hurd was repeatedly procrastinated.11     

In order to protect the GNU software from being turned into proprietary software, Stallman 

introduced  a particular licensing procedure called General Public License (GPL, also known as 

“copyleft”). The GPL  permits the free distribution, modification  and redistribution of the 

modified version of the programs it covers. The main characteristic feature is that modified 

versions of programs licensed under the GPL, must be also licensed under the same terms. This 

is also called  the “viral” clause, because it “infects” all the code that is bundled together with 

GPL pieces of code.  

The creation of a non proprietary Unix-like kernel was the result of a rather unexpected 

development. In 1991 Linus Torvalds, a computer science student at the University of Helsinki, 

announced on an Internet newsgroup, that he was working on a free version of Unix and he 

asked for help in bug fixing. Torvalds also declared that he was willing to include in future 

versions, new features developed by others as long as they would have also been freely 

redistributable (Torvalds adopted the GPL-copyleft license scheme). 

The initiative met an extraordinary success . In 1994, when Torvalds released Linux 1.0, the 

operating system could compete successfully  in stability and reliability with  commercial versions 

of Unix. An interesting feature of the distribution scheme adopted by Torvalds is that users can 

chose between even-numbered releases which are relatively more stable and bug-fixed,   and odd-

numbered releases which incorporate the latest developments and for this reason have a more 

                                                 
9 Stallman (1999), p. 62.  
10 The kernel is the core part of the operating system that controls access to hardware components.   
11 In 1999  Stallman  declared that Hurd is not yet ready for practical use (Stallman (1999), p.63).   
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experimental nature. When the current odd-numbered version is sufficiently tested and bug-fixed, 

it is then distributed as the next even-numbered. 

In the second half of the 1990s, Linux was further refined, incorporating  a number of new 

features. The community of the developers grew exponentially. The decisive “official 

recognition” of  its potential came, perhaps, in 1999, when an internal memorandum which 

leaked out from Microsoft, individuated in Linux (and, in more in general terms, in the diffusion 

of the open source process of software production) as a major competitive threat for the 

company.12 

Eric S. Raymond (who is himself an hacker involved in several “open source” projects), has 

attempted to outline a first comprehensive appraisal of the “open source” phenomenon 

(Raymond, 1999). In a famous paper titled “The Cathedral and the Bazaar”, Raymond deals  with 

the problems arising from the management of large and complex software projects. He draws a 

contrast between two archetypical modes of software development, which he labels the 

“cathedral” and the “bazaar”. In the cathedral mode, software is developed from a unified a-

priori project that prescribes all the functions and the features to be incorporated in the final 

product. Programmers’ work is centrally coordinated and supervised, in order to assure the 

integration of the various components. Needless to say, this mode of development is 

characteristic of commercial software.  In opposition to the “cathedral”, there is the “bazaar” 

mode of development, where software emerges from an unstructured evolutionary process. 

Starting from a minimal piece of code, groups of uncoordinated programmers proceed by adding 

features and introducing modifications and patches to the code. There is no central allocation of 

the different tasks, but  developers are left completely free to make the program evolve in the 

direction they favour. This is, what seems to be, the Linux style of software development. 

Amazingly,  the bazaar mode of software development seems, to work and  to be able to produce 

effectively highly complex software products.  
                                                 
12 The report is known as the “Halloween document”. See Vallopillil (1998). On the evolution of Linux in second 
half of the 1990s see Moody (2001).   
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Open source projects are typically characterized by a  very loose degree of coordination. 

Decentralized developers are completely free to introduce the modifications or corrections they 

wish to the program. The “owner” of the project (that is the person who is in “charge” of  the 

project and who releases the successive “official” versions of the program) - will check them and 

integrate the most valuable ones in future releases. However, Raymond, in his analysis, clarifies 

that this type of “bazaar” development  is based on a necessary precondition:  

It is fairly clear that one cannot code from ground up in bazaar style. One can test, debug and improve in bazaar 
style, but it would be very hard to originate a project in bazaar mode......Your nascent developer community needs to 
have something runnable and testable to play with. When you start community building, what you need to be able to 
present is a plausible promise. Your program doesn’t have to work particularly well. It can be crude, buggy, incomplete 
and poorly docu mented. What it must not fail to do is (a) run, and (b) convince potential co-developers that it can be 
evolved in something really neat in the foreseeable future. 13         
 

Raymond’s “plausible promise” defines an essential feature of a successful open source projects. 

Raymond points out that, although  an open source project is always in a somewhat a fluid design 

state, nevertheless it should define, possibly  from the very outset,  the broad lines of a solid 

architectural structure capable of sustaining the streams of future decentralized developments.14   

In his subsequent works, Raymond has also addressed the issue of the incentive structure 

underpinning open source projects. It is useful to approach the problem by considering the 

nature of programming activity. Programming is a creative problem-solving activity. The creative 

element introduces into it  a sort of aesthetic dimension, so that one can speak of “elegant” or 

“beautiful” solutions, as well of innovative solutions. For example, speaking about Linux, Linus 

Torvalds observes: 

Originally Linux was just something I had done and making it available was mostly a “look at what I’ve done – isn’t 
this neat ?” kind of thing. Hoping it would be useful to somebody, but certainly there is some element of “showing 
off” in there too. 15 
 

                                                 
13 Raymond (1999), pp. 57-58 (italics in the text).  
14 The Unix-type architecture is particularly suitable of “modularized” developments. Modularized developments are 
probably also enhanced by the fact that the “common ethos” of open source communities tend explicitly to favor 
the submission of “neat” modifications or additions. See Moody (2001, p.14)      
15 Torvalds (1999). 
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The value of a programming contribution, then, can be “properly” appreciated only by other 

experts. In open source projects, individual contributions are acknowledged in a credit file. Thus, 

participants in open source projects are provided with the appreciation of a large competent 

audience. The desire for independent peer-recognition, according to Raymond, represents one of 

the most important individual incentives for getting involved in open source projects.16  

In this respect, it is important  to notice that participants’ belief that their contribution will be 

fairly appraised and, if deserving, taken into account in future releases is of outmost importance 

for  the success of the project. This points to another necessary precondition for the success of 

an open source project: the legitimisation of the “owners” of the project. Participants must trust 

the capacity of the owner, not only of judging the merits and the limits of every contribution, but 

also his ability of merging them (avoiding conflicts that might ultimately lead to “forking”) in 

such a way to assure that the overall project will evolve in a coherent way.  

 

The reward system based on peer review system used in open source software projects seems to 

mimic quite closely  procedures that are typical of scientific research.  Dasgupta and David (1994) 

have argued that the fundamental difference between science and technology consists in the 

different institutional set-ups that “regulates” the production of knowledge in the two domains. 

Scientific research  is governed by a reward system based on public disclosure of the findings and 

peer-review, whereas the production of “technological” knowledge tends to have a distinctively  

proprietary character, being protected by patents or trade secrets (the rewards for the production 

of this type of knowledge typically derive from the “commercialisation” of the fruits of the 

research). 

            

                                                 
16 Lerner and Tirole (2002) argue that open source projects act as a stage where programmers can signal their skills 
and enhance their future career perspectives.  Raymond also notices that “Occasionally the reputation one gains in 
the hacker culture can spill over into the real world in economically significant ways”, however, in his view, this is 
rather sporadic so it would be wrong to regard it as the main motivational drive (Raymond (1999), p.97)     
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Expanding on the work by Dasgupta and David, Foray (2000) has noticed that, in specific historical 

instances, also the production of technological knowledge appears to have been governed by  sets 

of “open knowledge institutions”, clearly akin to the ones of “open science”. According to Foray, 

open source software development is one of these cases. Another example put forward by Foray 

in his paper is the case of the Cleveland (UK) iron industry described by Robert Allen (1983). In 

the remaining, we will explore the historical parallel proposed by Foray in detail, trying to derive 

further insights for the interpretation of the procedures of  “open source” software development.  

Before doing that, it is important to remark that, although software creation is the result of a 

purely intellectual production process, it does share important similarities with other more 

“mundane” industrial engineering activities, in particular with those dealing with the production 

of  “complex products” . Complex capital goods like complex software systems are composed of 

a large number of interacting components. In these cases,  the outcome of all the potential 

interactions cannot be fully predicted ex-ante. Thus, a number of defects and limitations can  be 

identified and “debugged” only after a, more or less long, phase of actual use of the product in 

question. 17   

 

3. Collective invention: the Cleveland blast furnaces.  

According to Allen, in capitalist economies four main sources of invention can be discerned: (1) 

non-profit institutions such as universities a government financed research centres, (2) private 

firms R&D laboratories, (3) individual inventors, (4) collective inventions settings. In collective 

invention settings, competing firms freely release each other information on the design and the 

performance of the technologies they have just introduced. Allen has noticed this pattern of 

behaviour in the iron industry of Cleveland (UK) during the mid-nineteenth century: 

…[I]f a firm constructed a new plant of novel design and that plant proved to have lower costs than other plants, 
these facts were made available to other firms in the industry and to potential entrants. The next firm constructing a 

                                                 
17 The similarity between software  and the construction and implementation of complex engineering products is also 
suggested in Rosenberg (1982, pp 120-149). Also, Torrisi (1998, p. 42) emphasizes that some procedures of software 
production are pretty close to those of mechanical engineering.  
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new plant build on the experience of the first by introducing and extending the design change that had proved 
profitable. The operating characteristics of the second plant would then also be made available to potential investors. 
In this way fruitful lines of technical advance were identified and pursued.18 
 

 Information was normally released through both formal (presentations at meetings of 

engineering societies and publications of design details in technical journals) and informal 

channels. Additionally, the released information was not protected by patents. As a consequence 

of this information sharing, Allen shows that, in the period in question, the height of the furnaces 

and the blast temperature increased steadily by means of a series of small, but continuous rises. 

Increases in furnace height and blast temperature resulted in lower fuel consumption and in 

reduced production costs.19    

 

As we have seen, the historical account outlined in the previous section suggests that open source 

software development can also be seen a case of  “collective invention”. In his paper, Allen 

describes the very restrictive set of conditions that allowed such a pattern of technical change to 

emerge. 20 In his story, Allen points to the combined effect of three essential factors.   

 

The first element has to do with the nature of technological advance. In the period in question, 

there was no consolidated theoretical understanding of the working of the blast furnace. Thus, 

the performance of a new blast furnace was to an important degree uncertain. The best engineers 

could do was to derive design principles on the basis of the previous experiences. In an 

analogous vein with the odd and even Linux versions, iron industrialists could  commission either 

a new “leading edge” blast furnace (i.e. a taller furnace operating at higher temperatures)  bearing 

                                                 
18 Allen (1983), p.2. 
19 It is important to notice that Allen’s notion of “collective invention” does not refer to the exchange of information 
between users  and producers studied by Lundvall (1988). “Collective invention” also differs from the “know-how 
trading” described by Von Hippel (1987). In “know-how trading”, engineers “trade” proprietary know-how in the 
sense the information is exchanged on a bilateral basis (non-participants to the transaction in question are excluded).  
Within collective invention , all the competing firms of the industry have free access to the potentially proprietary 
know-how. See Von Hippel (1987), pp. 296-297.   
20 Harhoff, Henkel and Von Hippel (2002) individuate, using a game-theoretic approach, a number of contexts in 
which “free revealing of innovations” is economically rational.  
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the related risks of a more uncertain future performance, or an imitation of what was deemed to 

be best existing “safe” design, which was, by far, a lower risky choice. Examples of both types of 

behaviour are documented. 21 

 

Secondly, Allen shows that a mechanism based on reputation, assuring the existence of a mutual 

individual incentive to disclose technical information to outsiders, was also at work in Cleveland. 

Blast furnaces were designed by independent  consulting engineers who moved from firm to 

firm. The diffusion of technical information concerning the design and the performance of the 

different blast furnaces, allowed the engineers to consolidate their reputation and improve their 

future career prospects.     

 

Thirdly, the disclosure of information did not prevent to the owners of the blast furnaces from 

reaping economic benefits from their innovations (so that one does not need to invoke any 

relinquishment of profit oriented behaviours in order to account for knowledge disclosure). Iron 

industry entrepreneurs, in most cases, were also owners (or they had mining rights) of  the iron 

ore mines of the Cleveland district. The improvements in the efficiency of the blast furnaces of 

the district determined a substantial increase in the value of the iron ore deposit located in the 

same area.22 It is interesting to note, that  the fact the iron firms were also owners of the iron ore 

deposit made them more interested in improvements of the average aggregate performance of the blast 

furnaces of the industry  rather than in that of individual ones (only improvements in the average 

aggregate could actually determine increases of the value of the iron deposit). In economics 

terms, the receiver of the externality (information disclosure) by erecting a new well-performing 

blast furnace, in turn generated a new externality beneficial to the sender. This self-reinforcing 

process further stimulated the propagation of information among iron producers.  
                                                 
21 Allen (1983), p.5. 
22 Because of the chemical composition of the iron ore and of particular factor prices circumstances, technical 
progress in Cleveland blast furnaces was location specific and other iron producing areas could not benefit from the 
innovations introduced there (Allen (1983), pp.17-19).    
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This pattern of behaviour has a also a clear counterpart in the case of open source software, with 

the entrance of commercial companies in market segments that are complementary  with open 

source software projects.23 In this way, we see the emergence of an industry structure similar to 

Cleveland, where the returns from collective innovative activities are reaped via the development 

of complementary market segments that are positively affected by the rapid rate of innovation in 

the “knowledge sharing” sector.  Companies like Red Hat, Caldera and Suse , for example, have  

a concrete interest in fostering the continuous improvement of Linux.24 Hence, we see that these 

companies are effectively sponsoring new developments of Linux and other open source 

initiatives. The historical parallel, in this case, can explain why private companies operating in 

“complementary segments” are willing to release the results of their open source efforts (this can 

also explain why to these companies the alternative strategy of “polluting” the open source 

process developing proprietary software components does not appear as particularly promising).    

 

4. The Cornish pumping engine25 

A particularly striking episode of nineteenth century technical change is the case of the Cornish 

pumping engine. The Cornish pumping engine fits nicely in Allen’s notion of collective 

invention. Furthermore, in the case of the Cornish pumping engine, a debate on alternative 

intellectual property rights regimes featured prominently. Thus, being intellectual property rights 

issues often raised in the ongoing discussion of the merits and limitations of open source 

software development, it is probably useful to examine this historical episode in detail. 

In the seventeenth and eighteenth centuries mining activities were severely hampered by flooding 

problems. Not surprisingly, some of the first attempts at employing steam power were aimed at 
                                                 
23 On the possible commercial software reactions to open source projects see Lerner and Tirole (2002) and Raymond 
(1999), pp 137-195.   
24 These companies sold “tested” versions of Linux together with a number of support services. The main source of 
revenues is represented by the sales of services. On the business strategy of Red Hat see Young (1999) and Raymond 
(1999, pp. 165-166 and 183-188)      
25 This section draws on Nuvolari (2002). 
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finding a workable solution to mine draining problems. In 1712, after a prolonged period of 

experimentation, Thomas Newcomen developed a steam pumping engine that could be used 

effectively for mine drainage. Using steam at only atmospheric pressure, the Newcomen engine 

was well within the limits of the engineering capabilities of the time. Moreover, the Newcomen 

engine was robust, reliable and based on a quite simple working principle. As a consequence, 

once it was installed, it could work for a long period with almost negligible maintenance costs. 

Given these merits, it is not surprising that Newcomen types of engines soon became of 

widespread use in mining activities.  

 

The Newcomen engine had the major shortcoming of a high fuel consumption, which was 

determined by the necessity of alternatively heating and cooling the cylinder at every stroke. In 

coal mining, where large supplies of cheap coal were available, high fuel consumption did not 

represent a major limitation, but in other mining areas fuel inefficiency did not permit a 

widespread diffusion of the engine (von Tunzelmann, 1978, chap. 4).   

 

Since the early diffusion of the Newcomen engine, fuel consumption was considered as the main 

“metric” to be used in the evaluation of the overall performance of a steam engine. The most 

common measure of fuel efficiency was termed the “duty” and was calculated as the quantity of 

water (measured in lbs.) raised 1 feet high per 1 bushel (84 lbs.) of coal consumed. From an 

engineering viewpoint, the duty is a measure of the thermodynamic efficiency of the steam 

engine. However, ‘duty’ has also an important economic meaning because it is a measure of the 

productivity of a steam engine with respect to the largest variable input used in the production 

process (von Tunzelmann, 1970, pp.78-79).  

 

In 1769 James Watt conceived an alteration to the basic design of the steam engine (the 

introduction of the separate condenser) that allowed for a drastic reduction in coal consumption. 
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The Newcomen engine, as improved by John Smeaton in the early 1770s, was capable of a duty 

between 7 and 10 millions (lbs.). Watt initially raised the duty to 18 millions and later, when his 

new engine design was fully refined, to 26 millions. Such an economy of fuel made profitable the 

use of the steam engine in mines situated in locations where coal was expensive. In fact, the first 

important market for the engine developed by Watt was the Cornish copper and tin mining 

district. In Cornwall, coal had to be imported from Wales by sea and was extremely expensive. 

Between 1777 and 1801, Boulton and Watt erected 49 pumping engines in the mines of 

Cornwall. Jennifer Tann has described the crucial role of the “Cornish business” for the fortunes 

of the two partners in these terms:  

Whether the criterion is the number of engines, their size or the contribution to new capital, Cornish engines 
comprised a large proportion of Boulton & Watt’s business during the late 1770s to mid 1780s. From 1777 to 1782, 
Cornish engines accounted for more than 40% of Boulton & Watt’s total business and in some years the figure was 
significantly higher. In the early 1780s Cornish business was more fluctuating but with the exception of 1784, 
Cornish engines accounted for between 28% and 80% of Boulton & Watt’s business (Tann, 1996, pp. 29-30).  
 

The typical a greement that Boulton & Watt stipulated with the Cornish mine entrepreneurs 

(commonly termed “adventurers”) was that the two partners would provide the drawings and 

supervise the works of erection of the engine. They would also supply some particularly 

important components of the engine (such as some of the valves). These expenditures would 

have been charged to the mine adventurer at their cost (i.e. not including any profit for Boulton 

& Watt). In addition, the mine adventurer had to buy the other components of the engine not 

directly supplied by the two partners and to build the engine house. These were all elements of 

the total fixed cost associated with the erection of a Boulton & Watt engine.  

 

The profits for Boulton & Watt resulted from the royalties they charged for the use of their 

engine. Watt’s invention was protected by the patent for the separate condenser he took out in 

1769, which an Act of Parliament prolonged until 1800. The pricing policy of the two partners 

was to charge an annual premium equal to one-third of the savings of the fuel costs attained by 

the Watt engine in comparison to the Newcomen engine. This required a number of quite 
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complicated calculations, aimed at identifying the hypothetical coal consumption of a Newcomen 

engine supplying the same power of that of the Watt engine installed in the mine.   

 

At the beginning, this type of agreement was accepted on very favourable terms by the mine 

adventurers. However, after some time, the pricing policy of Boulton and Watt was perceived as 

extremely oppressive. Firstly, the winter months during which most water had to be pumped out 

(and, consequently, the highest premiums had to be paid) were the ones in which mines were 

least productive. Secondly, mine adventurers knew the amount of payments they owed to 

Boulton and Watt only after these had matured. Finally, in the late eighteenth century, several 

engineers in Cornwall had begun to work on further improvements to the steam engine, but their 

attempts were frustrated by Boulton and Watt’s absolute refusal to license their invention. The 

most famous case in this respect was that of Jonathan Hornblower who had erected the first 

compound engine in 1781 and who found the further development of his invention obstructed 

by the actions of Boulton and Watt (Jenkins, 1931; Torrens, 1994).26 

Watt’s patent was very broad in scope (covering all engines making use of the separate condenser 

and all engines using steam as a “working substance”). In other words, the patent had a very large 

blocking power. The enforcement of almost absolute control on the evolution of steam 

technology, using the wide scope of the patent, became a crucial component of Boulton and 

Watt’s business strategy. This strategy was motivated by the peculiar position of the company (as 

consulting engineers decentralizing the major part of engine production). All in all, it seems quite 

clear that Watt’s patent had a highly detrimental impact on the rate of innovation in steam 

technology (Kanefsky, 1978). 

 

                                                 
26 Boulton and Watt tried, through their agent in Cornwall Thomas Wilson,  to discredit the performance of the 
Hornblower engine in advertisements published in local newspapers and in two pamphlets  addressed  to the mine 
owners. Note  that this might be considered as a typical example of  the Fud (fear, uncertainty and doubt) strategy so 
much chastised by Microsoft opponents. Boulton & Watt also applied successfully to the Parliament for the rejection 
of Horblower’s request of extension of his patent. See Jenkins (1931).  
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After having considered the idea of submitting a petition to Parliament asking for the repeal of 

the Act that prolonged the duration of Watt’s patent, in the 1790s, Cornish adventurers decided 

to explicitly challenge its validity  by installing a number of “pirate” engines erected by local 

engineers.4 A lengthy legal dispute followed. The dispute ended in 1799 with the courts 

confirming the legal validity of Watt’s patent and, in this way, attributing a complete victory to 

Boulton & Watt. The dispute also had other far-reaching consequences. Boulton & Watt, with 

their legal victory (pursued with relentless determination), completely alienated any residual 

sympathy towards them in Cornwall. After the expiration of Watt’s patent in 1800, steam engine 

orders to Boulton & Watt from Cornish mines ceased completely and the two partners had to 

call their agent in the county back to Birmingham.  

 

Following the departure of Boulton and Watt, the maintenance and the improvement of Cornish 

pumping engines underwent a period of “slackness”, as the mine adventurers were content with 

the financial relief coming from the cessation of the premia. This situation lasted until 1811, 

when a group of mine “captains” (mine managers) decided to begin the publication of a monthly 

journal reporting the salient technical characteristics, the operating procedures and the 

performance of each engine. The explicit intention was twofold. First the publication would 

permit the rapid individuation and diffusion of best-practice techniques. Secondly, it would create 

a climate of competition among the engineers entrusted with the different pumping engines, with 

favourable effects on the rate of technical progress.  

 

Joel Lean, a highly respected mine captain, was appointed as the first “engine reporter”. The 

publication was called Lean’s Engine Reporter. After his death, the publication of the reports was 

continued by his son and lasted until 1904. 

 

As Cardwell has aptly noticed: 
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The publication  of the monthly Engine Reporter seems to have been quite unprecedented, and in striking contrast to 
the furtive secrecy that had surrounded so many of the notable improvements to the steam engine. It was a co -
operative endeavour to raise the standards of all engines everywhere by publishing the details of the performance of 
each one, so that that everybody could see which models were performing best and how much. 27  

 
Thus, the very publication of  Lean’s Reporter seems indeed to mark the transition from a 

proprietary technical knowledge regime to a new collective invention one.   

 

Concomitant with the beginning of the publication of  Lean’s Engine Reporter, Richard Trevithick 

and Arthur Woolf began erecting high-pressure engines in Cornish mines. The layout of the 

engine designed in 1812 by Richard Trevithick at the Wheal Prosper mine soon became the basic 

one for Cornish pumping engines. Interestingly enough, Trevithick did not patent his high 

pressure engine:  

Trevithick only regarded this engine as a small model designed to demonstrate what high-pressure could do. He 
claimed no patent rights for it; others were free to copy it if they would (Rowe, 1953, p.124).  
 

Following the publication of the engine reports, the thermodynamic efficiency of Cornish 

engines improved steadily. On strictly engineering grounds, this amounted to a very effective 

explorations of the merits of the use of high-pressure steam centred on the designs originally 

introduced by Trevithick and Woolf . Figure 1 displays the evolution over time of the efficiency 

of Cornish steam engines (based on the collation of several sources).  

 

Figure 1 around here 

 

The figure clearly indicates that the practice of information sharing resulted in a marked 

acceleration in the rate of technical advance. As in the case of the Cleveland iron industry 

described by Allen, the rate of innovation in Cornish engines appears to be tightly linked with the 

rate of capital formation. Installation of new productive capacity permitted experimentation with 

design alterations facilitating the discovery of new improvements. Hence, the period of high duty 

                                                 
27 Cardwell (1971), p.156. 
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growth coincided with the rapid expansion of the Cornish mining industry, conversely the phase 

of recession after the 1850s translated itself into a slow decline of the average duty (Barton, 1968 

and 1969). 

 

It is worth noticing that, although centred around the basic layout ideated by Trevithick, the 

design of the Cornish pumping engines remained always in a sort of fluid state. With the term 

“fluid”, we mean that Cornish engineers, after Trevithick,  did not stop exploring design 

modifications. This  facilitated a more thorough exploration of the space of technological 

opportunities, avoiding the risk of remaining trapped in a local optimum configuration. 28   

Interestingly enough, in the contemporary engineering literature, engines built on the basis of this 

design layout were not ascribed to this or that particular engineer, but simply known as 

“Cornish” engines, correctly acknowledging the cooperative and cumulative character of this 

particular form of technological development.        

According to Raymond, this continuous process of localized exploration of the design space is 

also one of the main advantages of open source software development: 

It is not only debugging that is parallelizable; development and (to a perhaps surprising extent) exploration of the 
design space, too. When your development mode is rapidly iterative, development and enhancement may become 
special cases of debugging – fixing “bugs of omission” in the original capabilities or concept of the software. Even at 
a higher level of design, it can be very valuable to have the thinking of many co -developers random walking through 
the design space near your product. 29  
  
 

The available evidence also suggests that the three conditions that Allen considers as crucial 

prerequisites for the emergence of a sustainable collective invention were amply satisfied  in the 

Cornish mining district.   

Firstly, analogously with  the blast furnace case, the design of steam engine was a rather risky 

undertaking from an engineering point of view.  Technology was much ahead than scientific 

                                                 
28 On the technological history of the Cornish pumping engine see Barton (1965). One might also note that this 
process of continuous design modification makes difficult, for technology historians, to devise a clear-cut 
technological definition of the Cornish steam engine.   
29 Raymond (1999), p. 51.  
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understanding and the overall performance of a pumping engine could be  affected by  a host of 

factors (boiler, steam pressure, engine, pitwork, etc.). Engineers could not rely on a solid 

theoretical principles  when they had to design a new steam engine. The best they could was to 

extrapolate from the relative performance of  existing designs. In such a case, the release of 

information greatly improved the exploration of  the space of technological opportunities.    

 

Secondly, as in the case of Cleveland blast furnaces, Cornish pumping engines were 

commissioned on a one-off basis to independent consulting engineers. In this way, the very 

publication of the Engine Reporter acted indeed as a “credit file” that steam engineers could use to 

signal their talents.  

 

Finally, mine owners, had often shares of different mines and, for this reason, were more 

interested in improvements of the aggregate profitability of the district (the development of a 

local technology such as the Cornish engine was one way of achieving this). Furthermore, as in 

Cleveland, improvement in the average aggregate performance of the Cornish engines installed, had 

the positive side effect of increasing the value of the Cornish ore deposits.  

 

To sum up, the peculiar organisation of the Cornish mining industry made mine entrepreneurs 

interested in improvements of the aggregate average performance of the pumping engines used and, at 

the same time, engineers in publicly signalling the above average performance of the engines they had 

erected. Thus, Lean’s Engine Reporter successfully reconciled the tensions between collaboration 

(among mine adventurers) and competition (among engineers) operating in the Cornish mining 

district.  

 

Besides these factors, it is quite clear that the transition to a collective invention regime in 

Cornwall was also motivated by the disappointing experience of the Boulton & Watt monopoly 
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period. After the beginning of the publication of Lean’s Engine Reporter, Cornish engineers 

followed the example of Trevithick with his Wheal Prosper engine and normally preferred not to 

take out patents for their inventions. Table 1 reports the geographical distribution (measured 

using the stated addresses of the patentees) of patents in steam power technology over the period 

1698-1852 (see  Andrew et al. 2001 for a detailed quantitative analysis of the pattern of steam 

power patenting over the entire nineteenth century). 

 

Table 1 about here 

 

The London and Middlesex area holds the predominant position. In this respect the pattern of 

patenting in steam technology mirrors that for overall patenting outlined by Christine MacLeod 

(1988, pp.119-124), and it is likely that this high number is mainly explained both by the growth 

of the metropolis as a commercial and manufacturing centre and by the proximity to the patent 

office, which gave would-be patentees the possibility of following closely the administrative 

procedures related to the granting of the patent. Surrey also has a quite high concentration of 

steam patents. This case, besides by the proximity to the patent office,  may also be accounted for 

by the presence in the area of a number of engineering firms specialized in the production of 

capital goods (MacLeod, 1988, p. 124). Other notable locations with high numbers of steam 

patents are Warwickshire, Lancashire and Yorkshire, where patents were probably related to the 

increasing use of steam power by the industries there located. Again, one should take into 

account that in this case as well, patents were essentially an urban phenomenon (MacLeod, 1988, 

p. 125) and so they were concentrated in major towns such as Birmingham, Liverpool, 

Manchester and Leeds. The table also reports the number of patents in major urban centres.  

   

Over the entire period 1698-1852, the share of Cornwall in total patenting is 1.85 per cent, which 

does not reflect at all the major contribution of the county to the development of steam power 
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technology. Breaking down the period 1698-1852 into two sub-periods (1698-1812 and 1813-

1852), in order to take into account the publication of Lean’s Engine Reporter is even more 

revealing.  In the first period, Cornwall (including in the count also the patents taken out by 

Arthur Woolf who, at the time, was working for the Meux & Reid brewery in London) is the 

county with highest number of patents after the London and Middlesex area, with a share of 9.38 

per cent. In the second period,  the share of Cornwall drops to a negligible 0.89 per cent and this 

is exactly the period during which the Cornish pumping engine was actually developed. In our 

view, this finding is indicative of the widely perceived awareness in the county of the benefits 

stemming from the adoption of a collective invention regime for the rate of innovation. After the 

unfortunate experience with the Boulton and Watt monopoly, it seems quite clear that in the 

Cornish engineering community, an ethos prescribing the full release of technical innovations into 

the public domain emerged and became progressively established.  

 

The case of Arthur Woolf is particularly illustrative. Woolf was one of the leading figures in the 

Cornish engineering community ( Harris, 1966). Born in Cornwall, he had an initial 

apprenticeship with steam engineering by working with Jonathan Hornblower. In the first decade 

of nineteenth century he moved to London, where he was entrusted with the steam engines of 

the Meux & Reid brewery. In this period Woolf took out four patents for innovations in steam 

engines (in particular his famous compound engine patented in 1804). In 1812 he moved back to 

Cornwall, where he tried to commercialise his compound engine by means of an agreement 

similar to the one proposed by Boulton & Watt (royalties paid as a proportion of fuel savings). 

His initiative was unsuccessful. Most mine adventurers awaited the expiration of the patent in 

1818 before installing this type of engine (Farey, 1971, pp.188-189). Later on, in 1823, Woolf 

invented a new valve for steam engines (the double-beat valve). The adoption of this type of 

valve greatly facilitated the operation of the engine (Hills, 1989, pp. 109-110). He did not claim 

any patent right for this invention.  
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Another example that confirms the negative attitude towards patents existing in the Cornish 

mining district is the limited diffusion of the two-cylinder compound engine patented by the 

Cornish engineer, James Sims, in 1841. The first engine of this type erected at the Carn Brea mine 

performed particularly well in terms of duty (it was the second best engine in the Reporter in the 

early 1840s). However, being a patented design made the engine quite unpopular with other 

engineers and mine-owners, who, in the end, preferred not to adopt it (Barton, 1969, pp. 110-

112).  

Passages in the contemporary engineering literature also indicate this consciousness. For example, 

John Taylor (a leading mine entrepreneur) wrote in 1830:  

Under such a system [the Lean’s Engine Reporter] there is every kind of proof that the application of steam has been 
improved, so as to greatly economise fuel in Cornwall, and also the rate of improvement has been fairly expressed in 
the printed reports.....[A]s since the time of Boulton and Watt, no one who has improved our engines has reaped 
pecuniary reward, it is at least fair, that they should have credit of their skill and exertion. We [adventurers] are not 
the partisans of any individual engineer or engine maker; we avail ourselves of the assistance of many; and the great 
scale upon which we have to experiment makes the result most interesting to us. (Taylor quoted in Farey, 1971, pp. 
251-252). 
 
 

5.   Concluding remarks 

In general terms, current conventional wisdom considers strong and broad intellectual property 

rights as a key-stimulus to technical progress.  Strong intellectual property rights are deemed to 

constitute an indispensable incentive for motivating an adequate level of private investment in the 

search for new technologies. At the same time, broad (and well specified) intellectual property 

rights promote relatively ordered exploration of the space of technological opportunities.30 

The evidence presented in this paper seems however to cast  doubts on the general validity of 

such a proposition. In fact, in industries (such as the cases examined in this paper)  where the 

dynamics of technological change displays a cumulative and incremental character,  the 

protection of “commons” of freely accessible knowledge is likely to yield to much higher rates of 

                                                 
30 See Mazzoleni and Nelson (1998) for a (rather sceptical) overview of the theoretical arguments and the empirical 
evidence supporting such a proposition.    
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innovation, than the enforcement of strong intellectual property rights. 31 In such instances, even 

at the level of the individual actor, free sharing of technological knowledge  may be a much more 

rewarding strategy than secrecy or individual appropriation and commercialization. 

This can account for  the emergence of particular institutional set-ups (which following Allen 

might be termed “collective invention regimes”) ensuring that new technological knowledge 

remains in the public domain. An additional feature of these institutional arrangements is the 

creation of a system for the public acknowledgement of the merits of the various individual 

contributions.   

In this paper,  we have merely assembled some suggestive evidence and put forward some 

interpretative hypotheses. Thus, the cases presented here are just indicating what seems to us a 

very promising research agenda. Hopefully, the recent upsurge of interest in open source  

software can provide the stimulus for further research in this direction, leading us towards the 

achievement of a deeper understanding of the emergence and consolidation of collective 

invention regimes.32   

 

 

      

                                                 
31 Merges and Nelson (1994) have provided a number of examples, showing that in what they call “cumulative 
systems technologies (i.e. technologies are constituted by systems composed by many interacting elements and where 
innovations are, most of the times, refinements and improvements of previous inventive steps) the enforcement of a 
strong regime of intellectual property rights stifled technical progress.  In some cases, the deadlock  was overcome 
only when the Government stepped in, inducing the main players in the industry to stipulate agreements prescribing 
automatic or semi-automatic cross licences of patents.  Heller and Eisenberg (1998) considers the case of biomedical 
research in a similar perspective.  
32 See Von Hippel (2001) for similar considerations.  
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Figure 1: Duty of Cornish Engines 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sources: Lean (1839), Pole (1844), Dickinson and Jenkins (1927), Barton (1969) 
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Table 1: Geographical Distribution of British Steam Engine Patents, 1698-1852 

 N.of Patents % N.of Patents % N.of Patents % 

County/Location 1698-1852 1698-1852 1698-1812 1698-1812 1813-1852 1813-1852 

Cheshire 14 1.23 0 0 14 1.39 
Cornwall 17 1.50 8 6.25 9 0.89 

Cornwall* 21 1.85 12 9.38 9 0.89 
Derby 11 0.97 1 0.78 10 0.99 

Durham 13 1.15 0 0 13 1.29 
Essex 6 0.53 0 0 6 0.60 

France 21 1.85 0 0 21 2.09 
Gloucester 20 1.76 8 6.25 12 1.19 

-Bristol 12 1.06 4 3.13 8 0.79 
Hampshire 9 0.79 0 0 9 0.89 

Ireland 13 1.15 1 0.78 12 1.19 
Kent 31 2.73 1 0.78 30 2.98 

Lancashire 145 12.78 5 3.91 140 13.90 
-Liverpool 35 3.08 1 0.78 34 3.38 
-Manchester 58 5.11 2 1.56 56 5.56 

London & Middlesex 395 34.80 40 31.25 355 35.25 
Northumberland 22 1.94 2 1.56 20 1.99 

-Newcastle-up.-Tyne 11 0.97 1 0.78 10 0.99 
Nottingham 13 1.15 1 0.78 12 1.19 

Scotland 47 4.14 6 4.69 41 4.07 
-Edinburgh 9 0.79 0 0 9 0.89 

-Glasgow 22 1.94 3 2.34 19 1.89 
Shropshire 6 0.53 3 2.34 3 0.30 

Somerset 4 0.35 2 1.56 2 0.20 
-Bath 2 0.18 1 0.78 1 0.10 

Stafford 27 2.38 5 3.91 22 2.18 
Suffolk 5 0.44 0 0 5 0.50 

Surrey 88 7.75 10 7.81 78 7.75 
USA 13 1.15 2 1.56 11 1.09 
Wales 12 1.06 1 0.78 11 1.09 

Warwick 58 5.11 8 6.25 50 4.97 
-Birmingham 55 4.85 6 4.69 49 4.87 

Worcester 11 0.97 1 0.78 10 0.99 
York 63 5.55 11 8.59 52 5.16 

-Bradford 11 0.97 0 0 11 1.09 
-Kingston-up.-Hull 9 0.79 2 1.56 7 0.70 

-Leeds 17 1.50 3 2.34 14 1.39 
-Sheffield 6 0.53 0 0 6 0.60 

Others 71 6.26 12 9.38 59 5.86 
Total 1135 100 128 100 1007 100 

* Cornwall including the patents taken by Arthur Woolf. 

Source: The list of steam engine patents is taken from Abridgments of Specification relative to the Steam Engine, London, 
1871. In order to ret rieve the stated residence of the patentees, these patents have been matched with those 
contained in B. Woodcroft, Titles of Patents of Invention Chronologically Arranged, London, 1854. 
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