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Abstract:

The Schumpeterian theory of long waves has given rise to an intense debate on the existence
of clusters of basic innovations. Silverberg and Lehnert have criticized the empirical part of

this literature on several methodological accounts. In this paper, we propose the methodology
of Poisson regression as a logical way to incorporate this criticism. We construct a new time

series for basic innovations (based on previously used time series), and use this to test the
hypothesis that basic innovations cluster in time. We define the concept of clustering in
various precise ways before undertaking the statistical tests. The evidence we find only

supports the ‘weakest’ of our clustering hypotheses, i.e., that the data display overdispersion.
We thus conclude that the authors who have argued that a long wave in economic life is

driven by clusters of basic innovations have stretched the statistical evidence to far.

JEL Codes: O3, O4, N10, C2

* corresponding author. Please use the first of the two addresses below for correspondence:
ECIS - Eindhoven Center for Innovation Studies, PO Box 513, 5600 MB Eindhoven, the
Netherlands, fax +31 40 2474646
MERIT - Maastricht Economic Research Institute on Innovation and Technology, PO Box
616, 6200 MD Maastricht, the Netherlands, fax +31 43 3884905
email gerald.silverberg@merit.unimaas.nl, b.verspagen@tm.tue.nl
Web: meritbbs.unimaas.nl/staff/silverb.html, www.tm.tue.nl/ecis/bart/



     1 “[Innovations] are not evenly distributed in time, but that on the contrary they tend to cluster, to come about
in bunches, simply because first some, and then most firms follow in the wake of successful innovation”
(Schumpeter, 1939, p. 75).

     2In his historical analysis, Schumpeter observed three long waves since the beginning of modern capitalism.
Freeman and Soete (1997), in a similar vein, observed five long waves, i.e., they argue that two new ones occurred
since the end of Schumpeter’s analysis.
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1. Introduction

Schumpeter was the first economist to place the mechanism of basic innovation in the center of
the discussion about the long-run development pattern of global capitalism. His emphasis on the

clustering of basic innovations1, while challenged at the time by, for example, Kuznets (1942),
has remained a key concept in the debate about long waves and their explication. While

Silverberg and Lehnert (1993), in a formal model, demonstrated that such clustering was not
logically necessary to produce long-period cyclical behavior of a Schumpeterian economy, their

empirical work still left some questions open about how clusters do in fact occur over time, and
cast considerable doubt on the conclusions of previous researchers.

The relationship between innovation and long waves is not just a matter of idle historical
curiosity. The publicity surrounding the so-called "new" economy (information and

communication technology, the Internet) as an apparent golden era which seemingly repeals the
constraints of the "old" economy, is a case in point. Does ICT usher in an upswing in economic

activity and productivity growth that suspends the orthodox wisdom about the relationship
between, for example, employment and inflation, or the fair valuation of equities, or is it only a

rerun of previous historical experience with revolutionary and pervasive innovations?  Ten Raa
and Wolff (2000), for example, find strong productivity effects related to ICT, while Gordon

(2000) is much more skeptical after a comparison of the productivity gains of ICT with those of
previous technological revolutions.

The perspective of long waves also raises the question as to whether the (supposed)
productivity increases related to ICT represent a permanent increment in the long-term rate of

technical change, or are simply a passing cyclical phenomenon. The long wave view would hold
that the current period of strong growth is the upswing of the fifth long wave, and, hence, that

a downswing would inevitably follow upon it.2 The two views are not mutually exclusive. One
may imagine the long-run rate of basic innovations as a process with both a positive trend and

a cyclical component. In this case, the relevant question becomes whether a model can be
formulated that identifies both elements simultaneously.

After a long period of quiescence, a new debate on Schumpeter’s hypothesis arose in the
1970s and 1980s. In this debate, which is summarized in some detail below, much of the

empirical argument centered around time series of basic innovations. These were collected by
various authors (who all obtained different results) on the basis of an historical evaluation of the

importance of innovations. The main research question for these authors was whether the number
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of basic innovations was higher in depression periods than in prosperity periods (a more specific
hypothesis than Schumpeter put forward, since he did not relate clustering to specific phases of

the economic cycle). The possibility of a (very) long-run trend in the rate of basic innovation did
not play any explicit role in this debate.

Silverberg and Lehnert (1993) argue that the statistical methods used by the researchers in this
debate were not valid due to the count nature of the underlying data. They point out that

innovations are discrete events and the distribution used to describe the occurrence of innovations
must take this into account. The t- or z-tests applied by Kleinknecht (1990) and Solomou (1986)

cannot be applied when the data are not normally distributed. Silverberg and Lehnert instead
applied nonparametric tests appropriate to the null hypothesis of a Poisson distribution.

As early as 1974, Sahal (1974) had already suggested using a statistical method based on the
Poisson and negative binomial distributions to describe time series of incremental innovation.

In the mean time, Poisson regression has become a standard part of the econometric toolbox (see,
e.g., Green, 1995). Applying this method, the question of whether  Schumpeter was right (i.e.,

basic innovations tend to cluster) can be analyzed simultaneously with the question of whether
the long-run rate of occurrence of basic innovations is rising. This is  what this paper intends to

do, working with the same basic innovation databases used by authors such as Kleinknecht and
Mensch in the 1970s and 1980s.

The rest of this paper is organized as follows. In Section 2, the empirical literature on basic
innovation time series and long waves will be briefly reviewed. This section will also introduce

the critique of this debate by Silverberg and Lehnert and their results in more detail. On the basis
of these results a number of explicit statistical hypotheses are formulated to capture the ideas that

have only been implicit until now in the debate on Schumpeterian basic innovations. Section 3
presents the methodology of the Poisson regression model. Section 4 implements this model in

the context of several time series for basic innovations, estimating a model admitting both
overdispersion (clustering) and trend components. Section 5 summarizes the main findings, and

draws some conclusions.

2. Innovation time series. Review of the literature and shortcomings

The 1970s and 1980s witnessed a rekindling of the debate on the Schumpeterian hypothesis of
clustering of innovations rooted in statistical analysis of real data. The first contribution to this

debate was Mensch (1979), who argued strongly in favour of the Schumpeterian hypothesis that
says that basic innovations tend to be clustered. The specific hypothesis he advanced was that

basic innovations tend to cluster in the depression periods of the long wave. Mensch's theoretical
explanation for such clustering was that only in the despair of the depression phase do firms

resort to the highly risky strategy of introducing basic innovations (drawing on inventions that
may have been made previously). During the upswing and upper turning phase, in contrast, firms

focus on squeezing profits out of the dominant technologies, and search activities aimed at basic
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innovations are at a low level (whether this is perfectly rational or myopic behavior with respect
to the relative costs of the various technological opportunities over the cycle remains open). His

approach was to construct a database of basic innovations, and to use a runs test on the resulting
time series of the number of innovations occurring each year (using year of innovation rather than

year of invention) to test whether the series clustered. A runs test is a test of independence on the
assumption of identical distribution, and thus does not control for a trend. On the other hand, it

does not require the researcher to impose a periodization on the data, a defect which, as we shall
see, marrs the work of later researchers.

Haustein and Neuwirth (1982) compiled a different time series on basic innovations, and used
spectral analysis to test for periodicity in this and other time series related to the long wave. They

concluded that there are “some doubts when looking at the regular patterns of inventions and
innovations by Mensch and Marchetti” (p. 67). In other words, their results suggest a less strictly

periodic pattern than was suggested by Mensch.
In the mean time, the interpretation of the innovation time series data by Mensch gained

support from van Duijn (1983), Kleinknecht (1981) and Kleinknecht (1987), who provided more
extensive data sets. However, the original results obtained by Mensch were severely criticized

by Freeman, Clark and Soete (1982), who argued that the data used by Mensch were not
representative and were wrongly dated. A further contribution that was critical of the clustering

hypothesis was Solomou (1986). He applied a z-test to the null hypothesis that the mean number
of basic innovations in adjacent periods were drawn from a normal distribution with the same

mean, which could not be rejected.
Kleinknecht (1990) responded to this criticism by constructing a new time series of basic

innovations that was a compilation of three different time series used earlier (Mensch, Haustein
and Neuwirth, Van Duijn). He used a similar null-hypothesis as Solomou, but relied on a t-test

rather than a z-test. His conclusions were strongly in favour of clustering of basic innovations in
the depression periods of the long wave. An important element of the differences in the results

between Kleinknecht and Solomou lies in the different periodizations they use (as admitted by
Kleinknecht, 1990, p. 86). Both Solomou and Kleinknecht use a division of a full cycle into two

periods (up and down), and they rely on periodizations proposed in the earlier literature. These
periodizations were based on examining (partly) the same time series for basic innovations as

were employed by these authors in testing the clustering hypothesis. Solomou (1986) uses the
periodization proposed by Mensch (1979), Kleinknecht (1990) relies on two different

periodizations (for different lead times of innovation to economic time series), which were both
based on his own work (Kleinknecht, 1987).

The methodology of these studies was strongly criticized by Silverberg and Lehnert (1993).
They argue that 

“z and t tests ... are only applicable to a normally distributed random variable. On a priori

grounds we have argued that the null hypothesis on innovations must be that they are
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homogeneous Poisson distributed, however, and a histogram of, for example, the Haustein and
Neuwirth data (as well as any of the other series we have examined) confirms that they are

anything but normally distributed ... both authors apply their tests to sub samples they claim have
been selected on a priori criteria ... In general, the periodisations employed derive from previous

authors such as Mensch, whose use of a runs test did not depend on it, or on the examination of
growth rates and the addition of a time lag ... growth rates and a moving average of the

innovation data may be highly (cross) correlated, so that the selection of a proper lag against
variations in the growth rate series may simply be a method to select sub periods of above- and

below-average innovation activity even from a completely random series. This fact would further
invalidate any means test (even one appropriate to a Poisson process, such as a binomial

statistic)”. (p. 31)

Thus, Silverberg and Lehnert argue that the statistical methodology used by Solomou and
Kleinknecht is flawed, both with regard to the assumed distribution underlying the test statistics,

and the particular choice for a periodization scheme, and go on to apply a number of
nonparametric tests of a homogeneous Poisson process without imposing a periodization on the

time series. This is convincingly rejected for all series. They then test for the existence of an
exponential trend, again using a nonparametric method appropriate for count (Poisson) data, and

show such a trend to be highly significant for all series. The growth rate of the trend is estimated
(on the assumption of  a nonhomogeneous Poisson process with exponentially growing arrival

rate) and found to be in the range ½ to 1% per annum, depending on the series examined. After
eliminating the trend from the data by a process of exponential slowing down of the original time

series, the resulting trendless series are still shown to deviate significantly (although less so than
non-detrended data) from a time-homogeneous (i.e., nonclustering) Poisson distribution. They

concluded that, while to a first approximation these count data appeared to be generated by a
Poisson process with exponentially growing trend, it could not be determined with these methods

whether the statistically significant remaining deviations where indeed periodic or were random
clustering resulting from some point process other than Poisson (e.g., negative binomial). They

then suggested further research using a more elaborate modeling strategy based on the Poisson
distribution (pp. 33) to carry this line of inquiry further.

This advance in the methodological discussion forces us to confront the question of what
explicit statistical hypothesis actually corresponds to the Schumpeterian theory of basic

innovation, since  different variants are conceivable that necessitate different statistical tests. One
particularly strong hypothesis, which we will term the Schumpeter Mark I.0, seems to be implicit

in most of the empirical work, although it is not necessarily attributable to Schumpeter himself.
This hypothesis might be formulated as follows. Basic innovations are generated by a stochastic

process, but one whose arrival rate fluctuates deterministically and strictly periodically with a
period of 50-60 years. 

A more involved version of this hypothesis, which we will refer to as Schumpeter Mark I.1,
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also claims that the arrival rate varies deterministically, but as a function of macroeconomic
variables such as the profit rate. The arrival rate will thus have time series properties similar to

those of such variables and correlate with them, but not necessarily be strictly periodically.
Which way causality runs will be difficult to determine (with Mensch arguing from

macroeconomic variables to innovation back to macroeconomic variables, while Schumpeter,
as near as we can make out, would only argue from innovation clusters to macroeconomic

growth). If the macroeconomy is in fact more or less periodic, then the Schumpeter Mark I.0 and
I.1 hypotheses will be almost impossible to distinguish.

Schumpeter (1939) himself appears to argue only that innovations cluster, without any
reference to a specific deterministic structure determining when exactly clusters of innovations

will occur in time (i.e., in which phase of the economic wave, or even in regularly spaced spells
of high and low innovation activity). Such a ‘weak’ variant of clustering may be consistent with

a random clustering patterning, i.e., periods of high and low innovation activity do occur in the
data, but there is no regular and predictable mechanism governing their occurrence. Hypotheses

of this kind we will classify as Schumpeter Mark II: the stochastic process generating innovations
is more complicated than Poisson (in particular: it is overdispersed) and clusters arrive

stochastically. Two variants can be differentiated. Mark II.0 invokes purely random clustering
from some additional distribution (such as a negative binomial process where the arrival rate

fluctuates according to a Gamma distribution; see below). Mark II.1 calls for the clustering to be
initiated by random events, but then obey some sort of causal mechanism that makes this random

event ‘persist’ for some time. An example of such a process would be an autoregressive process,
in which (with positive autocorrelation) a single random event tends to be followed by higher

activity in the periods immediately following. To see how such a hypothesis might consistent
with at least part of Schumpeter's arguments, recall the quotation from Schumpeter (1939) in

footnote 1.
In the remainder of this paper we shall attempt to adapt our statistical methodology to allow

us to address these fours types of hypotheses explicitly by drawing on  recent advances in the
analysis of count data.

3. Poisson regression

As we have argued above, innovations are intrinsically count data, and thus will be generated by

a point process. While the statistical properties of point processes have been researched since the
beginnings of mathematical statistics, many economists are still relatively unacquainted with this

branch of the subject. Moreover, many relevant modeling tools have only been developed
recently.

The starting point for all subsequent analysis is the (time-homogeneous) Poisson process,
which makes the simplifying assumption that the probability of occurrence of an innovation

within a given interval of time is independent of previous innovations and independent of time.
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Prob(y)' e &ëT(ëT) y

y!
,

The probability of y innovations during an interval of time T  is given by

where y å ù, and ë is a parameter, often referred to as the arrival rate of the Poisson process. Note

that ë is not necessarily an integer number. It is easily shown that the expected number of events
per unit time  is ë, which also happens to be the variance of the distribution. Note that time series

generated from a time-homogeneous Poisson process will not display a completely uniform
pattern of occurrences of the random event. In other words, to the naive eye some clustering will

characterize  even this  simplest point process. The model presented by Silverberg and Lehnert
demonstrates that such an exogenous and unstructured innovation process is sufficient to

generate long waves of economic growth.

The parameter ë may also be specified endogenously, for example as lnë = â’x, where x is a

vector of independent variables, and â is a parameter vector. Other specifications for ë are
possible, but the example above is often used because it is convenient for estimation purposes

(using lnë as the independent variable ensures non-negative arrival rates). In this case, the

parameter vector â can be interpreted as a vector of elasticities of the arrival rate with respect to

the independent variables. Such an approach allows to test the assumption that the Poisson

process is time-homogeneous by setting up the null hypothesis that all elements of â, including

one corresponding to time itself, are equal to zero.
Sahal (1974) proposed using the Poisson model to examine the characteristics of various time

series of innovations in different industries. His conclusion was that “invention is properly
characterized as a Poisson random process, but [...] its rate is a function of economic forces” (p.

403). Although Sahal did provide some estimates of â-type parameters, these were based on
ordinary least square methods. However, when the data contain many zero and small integer

values, a maximum likelihood approach based explicitly on the Poisson distribution is more
appropriate. Such a procedure was introduced into the literature on innovation by Hausman, Hall

and Griliches (1984). They estimated a model in which the number of patents of a firm is related
to the firm’s R&D expenditures. Elaborations on this approach were presented by Crepon and

Duguet (1997), Crepon and Duguet (1997) and Cincera (1997).
One problem with the Poisson model is its characteristic that the mean and variance of the

distribution are equal. The empirical data often show a larger variance than mean for the
dependent variable, a phenomenon termed ‘overdispersion’. Hausman, Hall and Griliches (1984)

observed overdispersion in their firm level patent database. A model that can account for
overdispersion may be obtained by adding an unobserved random effect to the mean of the

Poisson distribution (Hausman, Hall and Griliches, 1984). This leads to a modified probability
distribution of the type:
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where u is a random variable for which some distribution must be assumed (see Greene, 1995,
p. 939). The variable u may, for example, reflect random noise, or cross-sectional heterogeneity

(when the model is estimated in the cross-sectional dimension). Assuming that u is gamma
distributed, one obtains the following unconditional distribution (Cameron and Trivedi, 1998,

p. 71):

This distribution is known as the negative binomial distribution, and has mean ë and variance

ë(1+áë), for á>0. When á approaches 0, the model reduces to a standard Poisson model, and the
variance becomes equal to ë again. The negative binomial model can also be estimated using a

maximum likelihood method. A test of the Poisson against the negative binomial distribution can
be implemented by means of a Likelihood Ratio test, Wald test or t-test (Green, 1995) of the null

hypothesis á=0.
In the context of time series and the hypothesis of clustering of events (innovations) in specific

time periods, the correlation structure of the residuals becomes of interest. Cameron and Trivedi
(1998) suggest investigating the standardized residual zt = (yt - mt)/oót,  where yt is the observed

(integer) value, mt is the sample mean value and ót is the sample variance. When a Poisson model
is fitted, mt = ót is equal to the estimated arrival rate. Cameron and Trivedi (1998) then suggest

applying either the Box-Pierce portmanteau, the Box-Ljung statistic (which has better small
sample properties) or a slightly modified statistic that guards against incorrect standardization

to test for the null-hypothesis that all autocorrelations of the residuals up to lag k are zero.
In case such a null-hypothesis is rejected, various ways are suggested (Cameron and Trivedi,

1998, Section 7.5) of specifying a model to deal with the autocorrelated residuals. The method
closest to our original Poisson regression approach is to estimate an autoregressive model, i.e.,

to include lagged values of the dependent variable in the regression as independent variables. The

simplest model is called exponential feedback, and assumes lnët = â’xt + ñyt-1. This, however,

implies explosive behaviour for ñ > 0. In order to rule out this undesirable property, Cameron and

Trivedi suggest using ët = exp(â’xt)3k(y
*

t-k)
ñ

k, where y* is a transformation of y to ensure positive

values, i.e., y* = max(½, y), or y* = y + ½.
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4. Empirical results

Like Kleinknecht (1990), we will use a time series for basic innovations that is created from
several other time series introduced by other researchers. This new innovation time series was

created by merging the two longest time series available in the literature, i.e., Haustein and
Neuwirth's data with Van Duijn's. Kleinknecht's's time series is too short compared to the two

other basic innovation time series. The Baker data were not included in this series because they
are based on patent data rather than innovation data, and hence are less compatible with the other

two time series. Instead, the Baker time series will be used separately in the statistical analysis.
The construction of the merged innovation time series used here differs substantially from the

Kleinknecht approach. The main difference refers to the overlap, i.e., those innovations which
are covered in both sources. Kleinknecht constructs a time series in which the innovations that

occur more than once in the three time series he considers are double counted. In other words,
he simply adds up the numbers of innovations per year in the three innovation time series.

Kleinknecht justifies this procedure by arguing that it provides some implicit weighting scheme,
in which the important innovations (i.e., those on which all sources agree) are weighted more

heavily.
It is clear that such an implicit weighting procedure is not adequate in the context of a Poisson

regression approach. This is why a different approach was chosen here. This approach consists
of identifying the innovations that are covered by both samples, and counting these only once.

A complication in this procedure is that, as noted by Kleinknecht, the innovation dates of the
same innovation often differ between the two sources. The majority of overlap cases are dated

in a range of 10 years, but differences of up to 50 years exist. In all cases, the earliest date was
used to assign the innovation to the merged sample. The merged sample contains 88 innovations

that occur in both samples, 90 innovations that only occur in the Haustein and Neuwirth sample,
and 70 cases that are only listed in the Van Duijn sample. The merged series thus has 248

innovations, dating from 1764 to 1976. The complete listing of all innovations in the merged
sample, as well as the original Haustein and Neuwirth and Van Duijn sources, together with their

assignment to the merged sample, are given in the appendix. Following Kleinknecht's
terminology, we will refer to this merged time series as the ‘supersample time series'.

Figure 1 shows histograms for the Baker patent time series, the two time series we used to
create the ‘supersample time series' (Haustein & Neuwirth and Van Duijn), and the ‘supersample

time series'. The Baker time series runs from 1769 until 1970, and thus comprises 202 years. The
Haustein and Neuwirth (1982) data run from 1764 until 1975 (212 years), while Van Duijn

(1983) covers the period 1811 - 1971 (161 years). The ‘supersample' comprises the period 1764
- 1976 (213 years).

All three histograms show that the highest frequency is found for zero innovations. Also, all
histograms show declining frequencies for larger numbers of innovations per year. No time series

shows more than seven innovations per year (this occurs twice in the Haustein and Neuwirth
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series). Silverberg and Lehnert (1993) constructed similar histograms and concluded that these
show that the assumption of normally distributed data must be rejected at face value. As noted

by Silverberg and Lehnert, this invalidates the statistical methods used by Kleinknecht (1990),
and suggests that fitting a Poisson or negative binomial model to the time series might be a more

useful approach.
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Figure 1. Histograms of basic innovation time series data, on horizontal axis: number of
innovations per year; on vertical axis: percentage share of total sample

We start by fitting a simple Poisson model with a constant arrival rate (i.e., a time-
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homogenous process), and then proceed to implement two departures from this simple model.
The first is to allow for overdispersion by fitting a negative binomial model. The second is to

estimate the arrival rates (in both the Poisson and the negative binomial model) as following a
time trend. The latter is specified by equating the log of the arrival rate to a polynomial function

of time, where we experiment with polynomial degrees up to 3 (a log formulation is used to
ensure that the arrival rate is always nonnegative). Thus we estimate lnë = c + â1 t + â2 t

2 + â3 t
3

(where t is time and we set some of the higher order âs to zero in some estimations). The results
of these estimations are displayed in Table 1.

The hypothesis of a constant arrival rate (time-homogenous Poisson process, or all âs equal
to zero) is obviously rejected (the numbers in brackets are p-values associated with the t-tests on

the estimated coefficients). Both for the supersample innovations time series and the Baker
patents time series, the exponential quadratic trend emerges as the ‘best’ model: entering the

third-order term only leaves the linear trend significant, while a second-order polynomial
emerges with both âs significant. We thus proceed on the assumption that a quadratic trend

captures the long-run growth rate of the number of basic innovations in a reasonable way. 
Figure 2 displays the raw data and the fitted linear and quadratic exponential trends for the two

models (Poisson and negative binomial). The monotonically increasing lines are the fitted linear
trends, the lines leveling off towards the end of the period are the estimated quadratic trends. The

estimated trends do not differ greatly between the pure Poisson  and the negative binomial
models. There is, however, a major difference between the linear and quadratic trends. The latter

shows a higher level during the period (roughly) 1850 until 1900, and levels off around 1930
(supersample) or 1920 (Baker patents). This would seem to indicate that the rate of basic

innovation is slowing down in the 20th century after a period of relatively rapid increase in the
last part of the 19th century. This phenomenon may, however, be caused by an end of sample bias

in the time series caused by the fact that at the time when the time series were constructed (during
the 1970s), it was not yet clear which recent innovations would prove to be basic.

With regard to overdispersion, the results differ somewhat between the two time series. In the
case of the supersample of innovations, the negative binomial model is always preferred to the

simple Poisson model, as is clear from the fact that the á parameter is always significant (at the
10% level). In the case of the Baker patent time series, the quadratic and cubic models both yield

ás that are significant at a level just above 10%, while the linear exponential trend (10% level)
model and the time-homogenous process (1% level) yield significant ás.

These results have implications for the hypotheses that were introduced above. Specifically,
the fact that the negative binomial model is generally preferred over the simple Poisson model

points to the fact that the data are in fact overdispersed. In other words, compared to a (time-
homogenous) Poisson process, the data display clustering in the sense of random spells of high

and low innovation activity. We interpret this as evidence in favour of the Schumpeter Mark II.0
hypothesis.
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Table 1. Regression results, Poisson and Negative Binomial models, arrival rate function
of time

Innovation
Data Source

N Start
year

c â1 â2 â3 á logl SQ Q

Innovations 213 1764 0.1521
(0.000)

-331.654 *** ***

Innovations 213 1764 0.1521
(0.069)

0.6087
(0.000)

-316.186 *** ***

Innovations 213 1764 -1.0568
(0.000)

0.9692a

(0.000)
-291.823 ** **

Innovations 213 1764 -1.1420
(0.000)

0.0104
(0.000)

0.2662
(0.023)

-286.994 ** **

Innovations 213 1764 -2.5467
(0.000)

0.0389
(0.000)

-0.1168b

(0.000)
-279.317

Innovations 213 1764 -2.5702
(0.000)

0.0393
(0.000)

-0.1186b

(0.000)
0.1744
(0.077)

-276.876

Innovations 213 1764 -2.6012
(0.000)

0.0408
(0.028)

-0.1347b 

(0.410)
0.4946e

(0.912)
-279.311

Innovations 213 1764 -2.6159
(0.000)

0.0410
(0.044)

-0.1351b 

(0.465)
0.4669e

(0.928)
0.1742
(0.077)

-276.872

Baker patents 202 1769 0.1123
(0.041)

-299.213 *** ***

Baker patents 202 1769 0.1123
(0.166)

0.4254
(0.005)

-291.537 *** ***

Baker patents 202 1769 -0.7487
(0.000)

0.7256a

(0.000)
-279.997 *** ***

Baker patents 202 1769 -0.7867
(0.000)

0.7577a

(0.000)
0.2422
(0.059)

-276.740 *** **

Baker patents 202 1769 -1.6670
(0.000)

0.0269
(0.000)

-0.8347c

(0.000)
-274.230 ** *

Baker patents 202 1769 -1.6616
(0.000)

0.0268
(0.000)

-0.8268c

(0.001)
0.1876
(0.110)

-272.086 ** *

Baker patents 202 1769 -1.7662
(0.000)

0.0308
(0.029)

-0.1225b

(0.366)
0.1133d

(0.769)
-274.204 ** *

Baker patents 202 1769 -1.7267
(0.000)

0.0294
(0.068)

-0.1093b

(0.491)
0.7774d

(0.866)
0.1870
(0.112)

-272.076 ** *

Notes: estimated coefficients are equal to documented coefficients divided by the following factors (absence of a
note indicates estimated coefficient is equal to documented coefficient): a 100, b 1000, c 10000, d 1000000, e

10000000, N is number of observations, numbers between brackets are p-values associated with the t-statistics. One,
two and three starts point to rejection at the 10, 5 or 1% level, respectively, for a ÷2 -test of the null-hypothesis “all
autocorrelations of the residuals up to this order are zero” ,Column SQ gives the statistic suggested by Cameron
& Travedi, p. 229, Column Q gives the Box-Ljung statistic, all residuals used in these tests are standardized.
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(a) Innovation supersample
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Figure 2. Raw data and fitted linear and quadratic trends (details of estimation are in
Table 1)
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In order to get a first impression of the deviations from the long-run trend growth rate which
bears on the three other hypotheses, an analysis of the autocorrelation of the residuals of the

regressions was performed. To this end, the residuals were standardized by dividing them by the
estimated standard deviation (square root of the variance). As explained above, in the case of a

Poisson process, this implies dividing by the square root of the arrival rate itself (which varies
over time when a trend is included). In the case of a negative binomial model, the variance is

calculated as ë(1+áë), where ë again varies over time in the event of a time trend. We test for the
null-hypothesis that all autocorrelations up to (and including) order k (= 1..20) are zero using two

tests. The first is suggested by Cameron and Trivedi (p. 229), and “guards against incorrect
standardization” of the residuals. The second is the standard Box-Ljung statistic. Both tests apply

a statistic that is ÷2 distributed with k degrees of freedom (the maximum order of the
autocorrelation process).

The last column in Table 1 gives the significance level at which (if at all) we reject the null-
hypothesis of no autocorrelation in the residuals. We used orders up to 20 to test for this. In the

case of a time-homogenous process, there is clearly very significant autocorrelation, for both time
series (patents and innovations) and for the pure Poison model as well as for the negative

binomial model. When time trends are included, this diminishes, although the extent to which
this happens differs greatly between the two time series. With the innovation data, a linear time

trend still leaves significant autocorrelation at the 5% level, for the Baker patent time series at
the 1% level for 3 of 4 cases. For higher order polynomial trends, however, autocorrelation

vanishes completely in the case of the innovation data. For the patent data, the second and third
order polynomial trends leave significant autocorrelation in the residuals at the 10% or 5% level.

These results suggest that for the Baker patent time series, the models in Table 1 leave at least
some aspects of the long-run dynamics of the time series unexplained, and hence that there is

scope for investigating the three other Schumpeterian hypotheses. We now proceed in two ways.
First, we estimate a set of autoregressive models specified in the way explained above. One

problem in estimating these models is to determine the exact order of the autoregressive process.
This is in fact common to all autoregressive models, and the approach most commonly found in

the literature is an empirical procedure employing information criteria. These are simple statistics
based on the log likelihood value of the models for different autoregressive orders. The simplest

is the Aikake Information Criterion (AIC), which we will use here. The procedure is to find the
minimum value of the AIC for a range of autoregressive orders, which in the present case we

select as 0 - 20. 
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Table 2. Regression results, Poisson and Negative Binomial models, arrival rate function
of time and lagged dependent variable

Innovations Baker patents

coefficient (1) (2) (3) (4)
c -2.7656 (0.000) -2.6037 (0.000) -1.6902 (0.000) -3.3500 (0.001)
â1 0.0424 (0.000) 0.0395 (0.000) 0.0271 (0.000) 0.0526 (0.001)
â2 -0.1290b (0.000) -0.1207b  (0.000) -0.8646c (0.001) -0.1711b (0.003)
á 0.1762 (0.078)
ñ1 -0.0184 (0.871) 0.0431 (0.675) 0.2651 (0.010) 0.2342 (0.056)
ñ2 0.6907a (0.947) 0.0933 (0.302) 0.0748 (0.527)
ñ3 -0.0809 (0.422) -0.1776 (0.056) -0.1914 (0.122)
ñ4 0.1680 (0.065) 0.0622 (0.617)
ñ5 0.0516 (0.578) -0.1807 (0.145)
ñ6 -0.1155 (0.234) -0.0612 (0.647)
ñ7 -0.0417 (0.692) -0.0209 (0.866)
ñ8 0.0447 (0.646) 0.0767 (0.497)
ñ9 -0.2083 (0.040) -0.1685 (0.143)
ñ10 0.2489 (0.010) -0.1302 (0.323)

ñ11 -0.2508a (0.983) -0.1335 (0.337)

ñ12 -0.0263 (0.801) -0.1832 (0.123)

ñ13 0.1076 (0.350)

ñ14 -0.1912 (0.125)

ñ15 -0.2145a (0.987)

ñ16 0.0867 (0.480)

ñ17 -0.1436 (0.233)

ñ18 -0.0891 (0.479)

ñ19 -0.0843 (0.474)

logl -274.108 -264.790 -263.916 -240.489
Notes: estimated coefficients are equal to documented coefficients divided by the following factors (absence of a
note indicates estimated coefficient is equal to documented coefficient): a 100, b 1000, c 10000, d 1000000, e

10000000, numbers between brackets are p-values  associated with the t-statistics.

We estimated (and calculated the AIC) for a model with a quadratic exponential time trend
plus autoregressive terms. Both a Poisson model and a negative binomial model were estimated

for both time series and all autoregressive orders in the range 0 - 20. For the innovation
supersample, the Poisson model has minimum AIC at order 1, while the negative binomial model

has minimum AIC at order 12. When the AIC is plotted against the autoregressive order, the
Poisson model also has a local minimum that does not differ much in value from the global

minimum at order 1, at order 12, while the negative binomial model has a local minimum (again
not so much different from the global minimum) at order 1. We therefore document the full set

of results for the model at both orders 1 and 12. When the negative binomial term á is significant,
we only document this model, while if it is not significant, we only document the Poisson model.

For the Baker patent time series, the minimum value of the AIC was found at orders 19
(Poisson) and 12 (negative binomial). The Poisson model has a local minimum of the AIC at
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order 3, which is also documented. In this case, the negative binomial term á is not significant
for either the autoregressive order 19 or 3, which is why we document only pure Poisson models.

The results for the autoregressive model are documented in Table 2.
We note from the table that the significance of the time-parameters â is largely unaffected, i.e.,

that the time trends estimated in Table 1 are robust against the inclusion of autoregressive terms.
This does not hold for the negative binomial term á. When autoregressive terms are included in

the model, this term becomes insignificant in three of the four cases in Table 2 (and, in fact, in
most of the undocumented autoregressive models that were run; these results are available on

request). The general loss of significance of the negative binomial model points to the fact that
the clustering effects that we have attributed above (in our Schumpeter Mark II.0 hypothesis and

the discussion of Table 1) to overdispersion may in fact also (and statistically more satisfactorily)
be captured by an autoregressive model.

This raises the question as to what is the specific pattern of clustering implied by the estimated
autoregressive structure, and whether this pattern is consistent with, for example, our Schumpeter

Mark II.1 hypothesis). The answer to this question obviously depends on the value of the
estimated ñ-parameters. As in a conventional autoregressive model, the values of these

parameters have implications for the speed at which ‘errors’ leave their trace in the fitted time
series. This speed can be visualized by plotting the impulse response function, which, because

of the model we have specified in Section 3, must be a multiplicative function rather than the
commonly used additive function (see, e.g., Hamilton, 1994, ch. 1).
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Figure 3. Impulse-response functions for the autoregressive processes in Table 2
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Figure 3 shows the impulse response function for columns (2) - (4) in Table 2. The function

for column (1) is almost completely flat and is therefore not documented. These graphs display
the net multiplicative effect of a random innovation in period 0 on the arrival rate in the

subsequent periods. For example, the figure for the Baker patent time series at autoregressive
order 19 shows that the effect of one ‘random extra’ innovation in period 0 is to raise the arrival

rate in period 19 by slightly more than 10% compared to a situation without such a random extra
innovation (value of 1.1 at the peak is indicated by the arrow). Note that the fact that all three

graphs converge to one implies that the effect of a random extra innovation ultimately dies out,
i.e., that the process is (trend) stationary.

All three graphs show oscillatory behaviour following a ‘random extra’ innovation. This is
caused by the negative autoregressive parameters (ñs), and leads us to reject the Schumpeter

Mark II.1 hypothesis introduced above. This hypothesis argues that a random extra innovation
leaves a slowly dying trace of (relatively) high innovation activity. Such a pattern would result

if (most of) the estimated ñs had high positive values. With the large number of negative values
for the autoregressive parameters we obtain in Table 2, the result is the highly irregular and

random-looking pattern observed in Figure 3. This is consistent to some extent with the
Schumpeter Mark II.0 hypothesis of random clustering, but not with the Schumpeter Mark II.1

hypothesis.
This still leaves both Schumpeter Mark I hypotheses to be investigated. As a preliminary

remark, note that if a strictly periodic pattern (possibly surrounding a trend of some form) existed
in the data, one would expect the autoregressive specification to pick this up in some form. In

other words, the irregular patterns observed in Figure 3 also have implications for the
Schumpeter Mark I hypotheses, in particular, they cast doubt on these hypotheses. To clarify this

further, we employ an additional test to reach a final verdict on Schumpeter Mark I.
This test does not involve data on economic variables, as called for in the Mark I.1 hypothesis.

Instead, we investigate the residuals from the regressions in Table 1 in a different way. Our main
aim is to investigate whether any strictly periodic movements can be discerned in the residuals.

To this end, we perform spectral analysis on the standardized residuals (defined above). If the
Schumpeter Mark I hypotheses are valid, one would expect clear peaks in the spectral density

plot for these residuals, as a result of strictly periodic movements around the estimated trend
arrival rate. 

Figure 4 displays the spectral density plots for residuals from the Poisson and negative
binomial regressions in Table 1. Although there clearly are some peaks in the plots, these are

consistent with white-noise data. The overall impression is one of a relatively flat spectrum,
which indicates the absence of clear periodic components in the residuals. This holds especially

for the supersample innovation time series, and to a somewhat lesser extent for the Baker patent
time series.

We thus conclude that the evidence in favour of strictly periodic movements around the
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(exponential) quadratic trend in the arrival rate is weak. The finding that is closest to our
Schumpeter Mark I hypotheses is the ‘weak’ peak at cycle length of 20 years in the Baker patent

time series.
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Figure 4. Spectral density plots for the residuals of the quadratic trend regressions in Table
1.
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5. Summary and conclusions

This paper pursues a suggestion made by Silverberg and Lehnert (1993), in their discussion of
the empirical evidence on the ‘Schumpeterian hypothesis’ that basic innovations tend to cluster.

They proposed, in order to overcome the methodological shortcoming of previous work,
modeling and estimating a stochastic Poisson process describing the occurrence of basic

innovations. We formulate four alternative hypotheses bearing on the Schumpeterian clustering
hypothesis that are amenable to statistical testing. We then estimated a model of the trend in the

arrival rate of basic innovations, and found that a quadratic trend fits the data best (compared to
a linear or third-degree trend). Investigating the residuals of this regression for periodic cycles

around the trend, we found essentially no evidence in favour of such a strong clustering effect.
A weaker version of the clustering theory interprets clusters as themselves randomly

distributed. Evidence for this interpretation is presented in the form of estimates of the negative
binomial parameter, which is found to be significantly different from zero.

A different version of random clustering occurs when random events tend to ‘persist’ in time,
for example due to an autoregressive process. We have estimated autoregressive Poisson and

negative binomial models (again based on a quadratic trend), and found that these models may
indeed improve the fit. However, by plotting the impulse response functions, we showed that

innovation impulses do not lead to long periods of above-normal innovative activity. Rather, such
impulses die out in an oscillatory way, and leave a rather irregular and random-looking trace. We

interpret this as evidence against a knock-on effect being the source of clustering.
We are thus left with the conclusion that the only form of clustering of basic innovations that

is consistent with the data is ‘random clustering’ superimposed on a second-degree trend. Basic
innovations, while they arrive in clusters, do not engender higher rates of basic innovative

activity (although they may initiate periods of higher incremental innovation not picked up in our
data), nor are these clusters in any way periodic. To what extent they are influenced by the

macroeconomic context is a subject we hope to study further.
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Annex. Data on basic innovations

Table A1. The supersample of basic innovations
Item
number

Innovation Year

89 Spinning machine 1764
90 Steam engine 1775
91 Automatic band loom 1780
92 Sliding carriage 1794
81 Blast furnace 1796
48 Steam ship 1809
95 Whitney's method 1810
80 Crucible steel 1811
183 Street lighting (gas) 1814
184 Mechanical printing press 1814
78 Lead chamber process 1819
77 Quinine 1820
98 Isolated conduction 1820
99 Rolled wire 1820
100 Cartwright's loom 1820
3 Steam locomotive 1824
61 Cement 1824
66 Puddling furnace 1824
101 Pharma fabrication 1827
102 Calciumchlorate 1831
79 Telegraphy 1833
103 Urban gas 1833
104 Rolled rails 1835
87 Electric motor 1837
67 Photography 1838
9 Bicycle 1839
88 Vulcanized rubber 1840
7 Arc lamp 1841
105 Jacquard loom 1844
106 Lathe 1845
107 Inductor 1846
108 Electrodynamic measuring 1846
185 Rotary press 1846
186 Anaestetics 1846
187 Steel (puddling process) 1849
188 Sewing machine 1851
109 Plaster of paris 1852
14 Aluminium 1854
40 Safety match 1855
189 Bunsen burner 1855
36 Refined steel/Bessemer steel 1856
84 Steel pen / Fountain pen 1856
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110 Tare colours industry 1856
111 Baking powder 1856
190 Elevator 1857
76 Lead battery 1859
191 Drilling for oil 1859
54 Internal combustion engine 1860
39 Soda works 1861
19 Anilin dyes 1863
192 Siemens-Martin steel 1864
112 Paper from wood 1865
4 Deep sea cable 1866
50 Dynamite 1867
75 Dynamo 1867
113 Commutator 1869
60 Typewriter 1870
193 Celluloid 1870
194 Combine harvester 1870
85 Margarine 1871
6 Thomas steel 1872
46 Reinforced concrete 1872
114 Drum rotor 1872
115 Preservatives 1873
51 Sulphuric acid 1875
195 Four-stroke engine 1876
5 Telephone 1877
116 Nickel 1878
53 Electric Railway 1879
12 Incandescent lamp 1880
47 Water turbine 1880
117 Jodoforme 1880
196 Half-tone process 1880
197 Electric power station 1881
118 Veronal 1882
119 Cable 1882
120 Antipyrin 1883
121 Coals whisks 1883
10 Steam turbine 1884
122 Chloroforme 1884
198 Punched card 1884
199 Cash register 1884
38 Syntethic fertilizers 1885
52 Transformer 1885
123 Synthetic alcaloids 1885
124 Magnesium 1886
125 Electric welding 1886
200 Linotype 1886
72 Phonographe 1887
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126 Electrolyse 1887
28 Motor car 1888
59 Pneumatic tyre 1888
127 Electric counter 1888
201 Portable camera 1888
202 Alternating-current generator 1888
86 Man-made fibres 1890
128 Chemical fibres 1890
129 Melting by induction 1891
83 Acetylene welding 1892
130 Accounting machine 1892
41 Cinematography 1894
131 Antitoxines 1894
203 Motor cycle 1894
204 Monotype 1894
8 Diesel engine 1895
132 Drilling machine for mining 1895
205 Electric automobile 1895
206 X-rays 1896
37 Aspirin 1898
133 Arc welding 1898
134 Air ship 1900
135 Synthesis of indigo 1900
207 Submarine 1900
136 Holing machine 1901
137 Electric steel making 1902
208 Safety razor 1903
209 Viscose rayon 1905
210 Vacuum cleaner 1905
138 Acetylen 1906
211 Chemical accelerator for rubber

vulcanization
1906

212 Electric washing machine 1907
15 Gyro compass 1909
2 Airplane 1910
69 Bakelite (Phenol plastics) 1910
139 High voltage isolation 1910
65 Vacuum tube 1913
71 Assembly line 1913
213 Thermal cracking 1913
214 Domestic refrigerator 1913
140 Ammonia synthesis 1914
141 Tractor 1914
215 Stainless steel 1914
142 Tank 1915
32 Synthetic rubber 1916
42 Cellophane 1917
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1 Zip fastener 1918
29 AM Radio 1920
216 Acetate rayon 1920
217 Continuous thermal cracking 1920
26 Synthetic detergents 1922
57 Insuline 1922
143 Synthesis of methanol 1922
35 Continuous rolling 1923
218 Dynamic loudspeaker 1924
219 Leica camera 1924
144 Deep frozen food 1925
220 Electric record player 1925
145 Coal hydrogenation 1927
17 Power steering 1930
221 Polystyrene 1930
222 Rapid freezing 1930
223 Freon refrigerants 1931
34 Crease-resistent fabrics 1932
224 Gas turbine 1932
225 Polyvinylchloride 1932
226 Antimalaria drugs 1932
227 Sulfa drugs 1932
56 Fluor lamp 1934
146 Diesel locomotive 1934
147 Fischer-Tropsch procedure 1934
11 Radar 1935
13 Ballpoint pen 1935
30 Rockets/guided missiles 1935
31 Plexiglas 1935
62 Magnetophone 1935
70 Catalytic cracking 1935
82 Colour photo 1935
148 Gasoline 1935
16 Television 1936
149 Photoelectric cell 1936
228 FM radio 1936
150 Vitamins 1937
229 Electron microscope 1937
20 Helicopter 1938
230 Nylon 1938
21 Polethylene 1939
55 Automatic gears 1939
151 Hydraulic gear 1939
27 Antibiotics (penicilline) 1940
152 Cotton picker 1941
43 Jet engine/plane 1942
45 DDT 1942
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153 Heavy water 1942
231 Continuous catalytic cracking 1942
24 Silcones 1943
232 Aerosol spray 1943
233 High-energy accelerators 1943
44 Streptomycine 1944
154 Titanreduction 1944
22 Sulzer loom 1945
68 Oxygen steelmaking 1946
234 Phototype 1946
49 Numerically controlled machine tools 1948
58 Continuous steel making 1948
235 Orlon 1948
236 Cortisone 1948
237 Long-playing record 1948
238 Polaroid land camera 1948
155 Thonet furniture 1949
156 Polyester 1949
18 Computer 1950
23 Transistor 1950
25 Xerography 1950
239 Terylene 1950
240 Radial tyre 1950
157 Double-floor railway 1951
158 Cinerama 1953
241 Colour television 1953
33 Nuclear energy 1954
242 Gas chromatograph 1954
243 Remote control 1954
244 Silicon transistor 1954
159 Air compressed building 1956
160 Atomic ice breaker 1957
161 Space travel 1957
162 Stitching bond 1958
163 Holography 1958
164 Transistor radio 1958
165 Diffusion process 1958
245 Fuel cell 1958
166 Quartz clocks 1959
246 Polyacetates 1959
247 Float glas 1959
167 Maser 1960
168 Micro modules 1960
248 Polycarbonates 1960
249 Contraceptive pill 1960
250 Hovercraft 1960
64 Integrated circuit 1961
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169 Planar process 1961
73 Laser 1962
251 Communication satellite 1962
170 Implementation of ions 1963
171 Epitaxy 1963
172 Synthetic leather 1964
173 Transistor laser 1964
174 Optoelectronic diodes 1966
252 Wankel-motor 1967
74 Video 1968
175 Light emitting fluor display 1968
176 Minicomputers 1968
177 Quartz watches 1970
63 Microprocessor 1971
178 Electronic calculator 1971
179 Light-tunnel technology 1972
180 16-bit microprocessor 1975
181 16384 bit RAM 1976
182 Microcomputer 1976
Note: items 1-88 occur in both databases, items 89-182 occur only in Haustein 
and Neuwirth data, items 183-252 occur only in Van Duijn data.

Table A2. Innovations in the Haustein and Neuwirth time series that were matched to innovations in the Van
Duijn time series
Innovation Year To which item in merged series?
Blast furnace 1796 to 81
Steamer 1809 to 48
Crucible cast steel 1811 to 80
Lead-chamber process 1819 to 78
Chinin fabrication 1820 to 77
Locomotive 1824 to 3
Puddling furnace 1824 to 66
Telegraphy 1833 to 79
Photography 1838 to 67
Bicycle (pedal) 1839 to 9
Cement 1844 to 61
Arc lamp 1844 to 7
Generator of current 1849 to 87
Hard rubber 1852 to 88
Aluminium 1854 to 14
Refined steel 1856 to 36
Steel pen 1856 to 84
Lead accumulator 1859 to 76
Soda works 1861 to 39
Production of analin 1863 to 19
Deep sea cable 1866 to 4
Safety matches 1866 to 40
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Dynamite 1867 to 50
Dynamo 1867 to 75
Thomas steel 1872 to 6
Typewriter 1873 to 60
Sulphuric acid production 1875 to 51
Telephone 1878 to 5
Electric locomotive 1879 to 53
Incandescent lamp 1880 to 12
Cooking fat 1882 to 85
Electricity 1882 to 87
Electric heating 1882 to 87
Long distance conduction 1882 to 87
Synthetic fertilizers 1885 to 38
Transformers 1885 to 52
Combustion engine 1886 to 54
Phonograph 1887 to 72
Tyres with air compression 1888 to 59
Water turbine 1890 to 47
Welding by acetylene 1892 to 83
Steam turbine 1895 to 10
Automobile 1895 to 28
Cinematography 1895 to 41
Electric railway 1895 to 53
Diesel engine 1897 to 8
Aspirin 1898 to 37
Steel concrete 1902 to 46
Gyro compass 1909 to 15
Pheno plastics 1910 to 69
Airplane 1911 to 2
Conveyor belt production 1913 to 71
Synthetic rubber 1916 to 32
Electronic tubes 1920 to 65
Detergents/synthetic 1922 to 26
Radio 1922 to 29
Insuline 1922 to 57
Zip fastener 1923 to 1
Continuous rolling 1923 to 35
Cellophane 1926 to 42
Power steering 1930 to 17
Crease-resistant fabrics 1932 to 34
Fluorescent lamp 1934 to 56
Ball-point pen 1935 to 13
Rockets 1935 to 30
Plexiglass 1935 to 31
Magnetophone 1935 to 62
Catalytic cracking 1935 to 70
Colour film 1935 to 82
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TV 1936 to 16
Radar 1939 to 11
Helicopter 1939 to 20
Automatic gears 1939 to 55
Synthetic fibres 1939 to 86
Antibiotics 1940 to 27
DDT 1942 to 45
Jet engine 1943 to 43
Streptomycine 1944 to 44
Sulzer loom 1945 to 22
Silicons 1946 to 24
Oxygen-process 1946 to 68
NC machines 1948 to 49
Continuous steelmaking 1948 to 58
Computer 1950 to 18
Transistor 1950 to 23
Xerographie 1950 to 50
Polyethylene 1953 to 21
Nuclear power station 1954 to 33
Integrated circuits 1961 to 64
Laser 1962 to 73
Video-tape recorder 1968 to 74
Microprocessor 1971 to 63

Table A3. Innovations in the Van Duijn time series that were matched to innovations in the Haustein and
Neuwirth time series
Innovation Year To which item in merged series?
Crucible steel 1811 to 80
Sulphuric acid (lead chamber process) 1819 to 78
Quinine 1820 to 77
Portland cement 1824 to 61
Coke blast furnace 1829 to 81
Steam locomotive 1830 to 3
Puddling furnace 1832 to 66
Electric motor 1837 to 87
Steamship (Atlantic crossing) 1838 to 48
Photography 1839 to 67
Electric telegraph 1839 to 79
Vulcanized rubber 1840 to 88
Arc lamp 1841 to 7
Safety match 1855 to 40
Bessemer steel 1856 to 36
Lead battery 1859 to 76
Internal combustion engine 1860 to 54
Sodium carbonate 1861 to 39
Aniline dyes 1865 to 19
Atlantic telegraph cable 1866 to 4
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Dynamite 1867 to 50
Dynamo 1867 to 75
Typewriter 1870 to 60
Margarine 1871 to 85
Reinforced concrete 1872 to 46
Sulphuric acid 1875 to 51
Telephone 1877 to 5
Electric railway 1879 to 53
Thomas oven 1879 to 6
Incandescent lamp 1880 to 12
Water turbine 1880 to 47
Steam turbine 1884 to 10
Fountain pen 1884 to 84
Transformer 1885 to 52
Bicycle 1885 to 9
Aluminium 1887 to 14
Motor car 1888 to 28
Cylindrical record player 1888 to 72
Pneumatic tyre 1889 to 59
Mechanical record player 1889 to 72
Rayon (nitro-cellulose pr.) 1892 to 86
Motion picture film 1894 to 41
Diesel engine 1895 to 8
Rayon (cuprammonium pr.) 1898 to 86
Aspririn 1899 to 37
Oxy-acetylene welding 1903 to 83
Airplane 1910 to 2
Bakelite 1910 to 69
Gyro compass 1911 to 15
Synthetic fertilizer (nitrogen) 1913 to 38
Vacuum tube 1913 to 65
Assembly line 1913 to 71
Cellophane 1917 to 42
Zip fastener 1918 to 1
AM radio 1920 to 29
Continuous hot strip rolling 1923 to 35
Insulin 1923 to 57
Synthetic detergents 1930 to 26
Synthetic rubber 1932 to 32
Crease-resisting fabrics 1932 to 34
Radar 1935 to 11
Plexiglas 1935 to 31
Magnetic tape recorder 1935 to 62
Colour photography 1935 to 82
Television 1936 to 16
Catalytic cracking 1937 to 70
Helicopter 1938 to 20
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Fluorescent lamp 1938 to 56
Polyethylene 1939 to 21
Penicillin 1942 to 27
Guided missiles 1942 to 30
Jet airplane 1942 to 43
DDT 1942 to 45
Silicones 1943 to 24
Ball-point pen 1945 to 13
Streptomycin 1946 to 44
Automatic transmission (passenger cars) 1948 to 55
Sulzer loom 1950 to 22
Xerography 1950 to 25
Power steering (passenger cars) 1951 to 17
Electronic computer 1951 to 18
Transistor 1951 to 23
Continuous casting of steel 1952 to 58
Oxygen steel making 1953 to 68
Numerically controlled machine tools 1955 to 49
Nuclear energy 1956 to 33
Integrated circuit 1961 to 64
Laser 1967 to 73
Video cassette recorder 1970 to 74
Micro-processor 1971 to 63
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