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Technological capability building through networking 
strategies within high-tech industries 

 

 

 

Abstract 

 
Learning through networks has been a research topic for several years now.  
Technological learning is more and more based on a combination of internal and 
external learning and firms need to develop both technological and social capital for 
that purpose. This paper analyses the relationship between both types of capital and 
their impact on the technological performance of companies in high-tech industries. 
We claim and find strong empirical evidence that technological capital and social 
capital mutually reinforce each other�s effect on the rate of innovation for companies 
with small patent and alliance portfolios. However, when companies have a strong 
patent portfolio and an extensive network of alliances then both types of capital 
become substitutes. We also found that there are two possible equilibriums: the first 
one emphasizes the development of strong internal technological capabilities 
supported by a small alliance portfolio. The second is the mirror image of the first 
one: these firms focus mainly on technology acquisition through alliance partners 
supported by a minimum of internal technological capabilities.  Both strategies can 
co-exist in an industry. Finally, we find empirical evidence that companies who 
explore novel and pioneering technologies have a higher rate of innovation in 
subsequent years.  



 2 

INTRODUCTION 

 

This study aims to relate technological performance of companies in high-tech 

industries to their degree of technological and social capital. More specifically, we 

focus on three main research topics. First, we consider whether  a firm�s technological 

and social capital are mutually enforcing factors that together determine the rate of 

innovation, or whether they can be considered as substitutes. We also address the 

question of whether there is an optimal mix of resources, which produces above 

average results. Second, following Stuart (2000) we argue that not so much the size of 

the alliance portfolio, but the technological performance of the partnering firms to 

whom a focal firm is connected determines the rate of innovation of the latter. Finally, 

we aim to find out whether companies that explore new technologies have higher rates 

of innovation than companies that are primarily engaged in exploiting and 

strengthening their existing technology base.  

 

The apparent importance of knowledge, especially in high tech industries, has given 

rise to a stream of research focusing on knowledge as the single most important 

resource within an organisation (Kogut and Zander, 1992; Conner and Prahalad, 

1996) and has led to the emergence of the knowledge based theory of the firm (Grant 

1997).  In a similar vein, a number of recent studies have investigated the relationship 

between a portfolio of technology alliances and (technological) firm performance 

(Hagedoorn and Schakenraad, 1994; Shan, Walker and Kogut, 1994; Powell, Koput 

and Smith-Doerr, 1996; Mitchell and Singh 1996; Stuart, 2000). Firms are 

increasingly forced to combine internal technological strengths with those of other 

firms as R&D costs soar rapidly and technological dynamics speed up. Products 

require more and more sophisticated technologies and emerging technologies have the 

potential to undermine the competitive positions of incumbents. Many of these 

alliances are �learning alliances� through which companies can speed up their 

capability development and exploit knowledge developed by others (Grant and 

Baden-Fuller, 1995). Because in today�s turbulent technological environment no 

single firm is able to come up with all the required technological capabilities 

themselves, firms are increasingly induced to form these �learning alliances�. In order 

to overcome the lack of specific technological capabilities they try to tap into other 

companies� technological assets. Market transactions are generally considered to be 
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only a weak alternative to alliances because most valuable knowledge is cumulative 

and tacit in nature. This specific nature makes it hard to transfer between 

organizations through market transactions (Mowery, 1988; Mowery et al., 1995; 

Osborn and Baughn, 1990).  

 

Technological learning is more and more based on a combination of internal and 

external learning: internal learning by the internal development of new products and 

processes as a result of internal R&D, external learning from the technology acquired 

through technology alliances. Both types of learning are considered complements 

reinforcing each other�s productivity (Cohen and Levinthal, 1990; Duysters and 

Hagedoorn, 2000). Moreover, companies can only tap into other companies� 

technology base successfully if they have sufficient absorptive capacity (Lane and 

Lubatkin, 1998). In its turn, absorptive capacity results from investments in internal 

technological know-how. Hence, internal technological knowledge and external 

technology acquisition via alliances are considered complements. But surprisingly, 

there are to our knowledge no large-sample empirical studies that focus on the 

combined effect of internal and (quasi) external knowledge acquisition on the 

technological innovative performance1.  

  

 

THEORETICAL BACKGROUND AND HYPOTHESES 

 

Technological and social capital 

 

This paper builds on the knowledge-based view of the firm. Over time accumulated 

knowledge assets constitute the source of a firm�s sustainable competitive advantage 

in the marketplace (Kogut and Zander, 1996; Spender, 1996). Firm specific 

knowledge assets are of strategic interest � they are distinctive competences  - because 

they are rare, imperfectly tradable and hard to imitate and must be build within the 

organization internally as long as part of the technological know-how is not 

                                                      
1  Ahuja (2000) focuses on the impact of technical, commercial and social capital of companies on 

the formation of new alliances. Commercial resources are those required to convert technical 
innovations to products and services. They consist of manufacturing and marketing capabilities 
and entail manufacturing facilities and service and distribution networks (Mitchell, 1989; Teece, 
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articulated or tacit in nature. The development of knowledge assets (or technological 

capital) is difficult, time consuming and expensive. Moreover, developing 

technological capabilities is a risky venture because R&D up-front costs may be huge 

and the technological and commercial outcomes may be highly uncertain (Mitchell 

and Singh, 1992).  

 

Because of the cumulative character of technology, the current technological position 

of a company is shaped by the path it has traveled (Teece, Pisano and Shuen, 1997). 

Hence, path dependency is crucial: previous investments in and strategic choices 

about technology development not only explain the current position of a company, but 

they also constrain the future options of companies. Therefore, companies that failed 

to build up a technological capability in the past may find it difficult to catch up later 

by internal development (Shan, 1990). Furthermore, existing technological 

capabilities may reduce a firm�s capacity to adapt to new commercial challenges or to 

rejuvenate its capabilities in the face of new, �competence destroying� technologies 

(Abernathy and Clark, 1985). 

 

Accumulated technological competence can therefore be seen as the result of past 

innovative activities of a firm (Podolny and Stuart, 1995; Stuart et al., 1999).  As a 

result, we can expect that firms with well developed technological assets will be more 

innovative than other firms under conditions of relative technological stability � i.e. 

when companies can build on their previously developed knowledge. This argument 

suggests the following hypothesis. 

 

Hypothesis 1: The greater the technological capabilities of a firm at t-1 the higher 
its rate of innovation at t   

 

Being centrally positioned in a network of technology alliances has been recognized 

as a distinctive and important form of capital � social capital - of innovative 

companies (Gulati, 1995, 1999). Especially in fast changing technological fields 

internal R&D efforts need to be complemented by external means of technology 

acquisition. The creation of a strategic alliance network can facilitate the access to 

                                                                                                                                                        
1986). In what follows we focus on the relationship between technical and social capital and 
neglect the linkages with commercial capital. 
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technological resources across industries or technological field. Alliances are often 

used by companies as instruments to acquire technological knowledge and to develop 

new skills that reside within the partnering companies (Hamel, 1991; Hagedoorn and 

Schakenraad, 1994; Powell et al., 1996). Previous research established that alliances 

often have a positive impact on the performance of companies (Baum and Oliver, 

1991; Mitchell and Singh, 1996; Uzzi, 1996; Powell et al., 1996; Hagedoorn and 

Schakenraad, 1994). These authors found in different research settings a positive 

relationship between technological alliances and rates of innovation. A notable 

exception is the work of Stuart (2000) who found no significant relationship between 

the number of alliances and the growth rate or rate of innovation of semiconductor 

firms.   

 

A portfolio with too many alliances may lead to saturation and overembeddedness 

(Kogut et al., 1992; Uzzi, 1997). Therefore, at high levels of embeddedness marginal 

benefits of forming new linkages will be low and marginal costs of additional links 

will be relatively high (Ahuja 2000). Nahapiet and Ghoshal (1998, p. 245) argue that 

the collective social capital resulting from dense networks can limit a firm�s 

�openness to information and to alternative ways of doing things, producing forms of 

collective blindness that sometimes have disastrous effects�. At the same time 

managerial costs increase significantly because not only individual alliances need 

management attention, but management also has to coordinate across linkages 

(Harrigan, 1985). Gomes-Casseres (1996) has shown that there is a natural limit to the 

number of alliances that a company can manage successfully. Therefore, we argue 

that there is a non-linear relationship between the social capital of a company and its 

rate of innovation. Highly embedded companies or firms with poorly developed social 

capital will have the lowest rates of innovation. In particular firms at intermediate 

levels of embeddedness will show the highest rates of innovation. This argument 

suggest the following hypothesis:   

 
Hypothesis 2: The involvement of a company in technology-based alliances at t-1 

is related in a curvilinear way (inverted-U shaped) to its rate of 
innovation at t 

 

As discussed above, technological learning is increasingly based on a combination of 

internal and external learning. Both types of learning have been described in the 
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literature as complements reinforcing each other�s productivity (Cohen and Levinthal, 

1990; Duysters and Hagedoorn, 2000).  

 

Whether social and technological capital would have mutually reinforcing effects 

under all circumstances is however open for debate. Firms with low degrees of 

technological competences and social capital, in terms of the number of alliances they 

have, will benefit considerably from entering new alliances since they provide access 

to new and valuable technological knowledge. Firms with poorly developed 

technological capital have strong incentives to get access to the technological capital 

of other firms through interorganizational alliances (Mitchell and Singh, 1996). These 

companies will also profit from strengthening the internal knowledge base as this 

increases their absorptive capacity so that its partners� knowledge can better be valued 

and assimilated (Lane and Lubatkin, 1998).  

 

Firms with unique internal knowledge resources are likely to be attractive to other 

firms that expect to benefit  from getting access to these resources through means of 

alliances (Baum et al. 2000). As a result, firms with unique technological resources 

have more opportunities to collaborate than firms with poorly developed resources. 

However, firms that are already well endowed with technological capital have fewer 

incentives to cooperate in order to improve their own rate of innovation (Ahuja, 

2000). Because these companies have already developed leading edge technological 

competences they are likely to learn to a lesser extent from their partners than vice 

versa (Hamel, Doz and Prahalad, 1989; Kale, Singh and Perlmutter, 1999; Khanna, 

Gulati and Nohria, 1998).  

 

As a result, a company that is well endowed with technological competences is likely 

to benefit only marginally from extending its alliance network beyond a critical 

threshold because it increases the chance that internally developed and externally 

acquired technology may overlap or that the marginal value of getting access to 

another company�s knowledge base is smaller than the cost to set up and manage the 

alliance (Harrigan, 1985). Hence, although it is very unlikely that companies can 

develop their technological resources completely in-house those that have unique 

technological resources need only a relatively small alliance network to ensure high 

rates of innovation. Beyond a critical threshold both types of capital substitute each 
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other and extending social capital may become a liability. This argument suggests the 

following hypothesis: 

 

Hypothesis 3: At low levels, internal technological capabilities (technological 
capital) and external acquisition of technology through 
technological alliances (social capital) reinforce each other’s effect 
on the rate of innovation. At high levels, they weaken each other’s 
effect. 

 

Combining hypotheses 2 and 3, we expect that companies can realize the highest rates 

of innovation by two different types of strategies that can coexist in the same industry. 

The first strategy is based on a considerable alliance network and a small (potentially 

specialized) technological capital. This provides the company with ample 

opportunities to tap into its partners� technology resources or to co-develop 

innovations  by combining (complementary) skills. The second strategy emphasizes 

the internal development of innovations in the company. The company has an 

extensive patent portfolio and needs only a few alliances to ensure that it has the 

required technology to strengthen or to continue its strong technological performance. 

Companies with moderate values for both types of capital, failing to stick to one of 

these two strategies, are �stuck in the middle�. Thus:   

 

Hypothesis 4: Companies with extensive (small) internal technological capabilities 
and a small (extensive) alliance network have the highest rates of 
innovation. Both profiles may successfully coexist in an industry.  

 

Stuart (2000) argues that the technological (and economic) performance of companies 

is not so much determined by the size of the alliance network but rather by the 

characteristics of the focal company�s alliance partners2. If companies enter alliances 

to get access to other firms� technology, then those with a large stock of technological 

resources are highly attractive as potential alliance partners. Stuart finds evidence that 

alliances with partners that are technologically well endowed have a larger positive 

impact on post-alliance performance of the focal firm. In high-tech industries the 

technological competencies of alliance partners determine in part the focal company�s 

potential to learn. Teaming up with skilled innovative companies with unique 

                                                      
2  Similarly, Baum, Calabrese and Silverman (2000) argue that the performance of biotechnology 

start-ups is positively influenced by the technological capabilities of the partnering companies.  
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technological assets offers a company the best opportunities to learn and thus to 

invigorate its competitive position.   

 

Hypothesis 5: The stronger the technological capabilities of a company’s alliance 
partners at t-1, the higher its rate of innovation at t. 

 

Exploring new technologies 

 

We have already argued that a mutual positive feedback between experience and 

competence exists. This virtuous cycle enables companies to build up unique 

technological skills, which potentially lead to competitive advantages in the 

marketplace. The increased ease of learning within particular technologies facilitates 

the exploitation of these technologies compared to the exploration of new 

technologies (Levinthal and March 1993; March, 1991). 

 

The downside of this path dependency is that it increases the likelihood of a company 

falling in the so-called familiarity trap (Ahuja and Lampert, 2001). It is argued that 

experience and competence in a specific set of technologies lead to the emergence of 

a dominant and increasingly rigid technological paradigm. This, in turn, reduces the 

probability of a company�s willingness to experiment with other problem solving 

approaches. This absence of experimentation reduces the chance that a company will 

discover new technological opportunities that are assumed to be large in high tech 

industries (Jaffe, 1986; Lunn and Martin, 1986; Levin et al., 1985).    

 

To avoid familiarity traps companies can explore novel technologies - i.e. 

technologies that are new to the organization even though they may have been in 

existence earlier (Ahuja and Lampert, 2001). Experimenting with novel technologies 

allows a company to value the potential of these technologies in a more accurate way 

(Cohen and Levinthal, 1990). Explorative companies are better positioned to discover 

the technological and commercial potentials of novel technologies. They may also be 

better prepared to value the potential competitive threat of disruptive technologies 

(Bower and Christensen, 1995; Christensen and Overdorf, 2001) or competence 

destroying technologies early on (Abernathy and Clark, 1985; Tushman and 

Anderson, 1986). Exploring novel technologies challenges the dominant problem-
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solving paradigm in companies (Lei et al., 1996). Unfamiliar technologies may force 

a firm to search for new cognitive maps that open up new avenues for research. 

Hence, we may expect that companies that experiment with novel technologies are 

better positioned to have a higher rate of innovation than firms that invest all their 

efforts in exploiting existing, familiar technologies.   

 

Exploring novel technologies, however, is only advantageous up to a point. Investing 

excessively in exploration of novel technologies may lead to confusion: exploration of 

unfamiliar technologies and exploitation of familiar ones have to be balanced to be 

productive. As argued by March (1991) and Levinthal and March (1993) firms 

engaging in exploration exclusively, only suffer from the costs associated with 

experimentation without exploiting its benefits. Moreover, there will always be a 

trade-off between investing in deepening and upgrading the existing technologies to 

safeguard profits today and exploring new technologies to secure future profits 

(Rowley et al., 2000; Levinthal and March, 1981). Finally, scattering R&D resources 

on many novel technologies may eventually lead to diseconomies of scale within the 

individual technologies (Ahuja and Lampert, 2001).  Therefore, we argue that: 

 
Hypothesis 6: A firm’s rate of innovation at t is related in a curvilinear way 

(inverted-U shaped) to its exploration of novel technologies at t-1.  
 

Innovative firms generally search for technological solutions within the scope of what 

has been invented before. They tend to build on their own technological successes and 

on those of others3. Previous solutions offer technologists or scientists an anchor to 

move forward. As a result, building on technological antecedents is less risky than 

working on a de novo innovation (Hoskisson, Hitt and Hill, 1993; Hoskisson, Hitt and 

Ireland, 1994). 

 

Ahuja and Lampert (2001) refer to the tendency of firms to search near to old 

solutions as the propinquity or nearness trap. Often interesting technological fields 

remain unexplored when companies rely too much on old solutions. The literature 

however suggests that important inventions emerge, in particular, from these 

unexplored areas (Utterback, 1994). Experimenting with pioneering technologies � 

                                                      
3  An average of 18 patent citations for the 1850 patents in the sample of ASIC related patents. 
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i.e. technologies that do not build on existing technologies (Ahuja and Lampert, 2001) 

- is one possible way to circumvent the dangers of the propinquity trap. 

Experimenting with pioneering technologies is an attempt to jump to different 

technological trajectories (Dosi, 1988, Foster, 1986; Sahal, 1985). Since pioneering 

technologies offer fundamentally new solutions they may generate large future profit 

streams for the innovative company. At the same time, they entail large risks typical 

for radical innovations: However, when a company increases the number of 

experiments it also inflates the probability that a major, successful innovation will pop 

up sooner or later. We expect that a company having successfully patented a 

�pioneering technology�-innovation will increase its rate of innovation in the 

subsequent years.    

 

Hypothesis 7:  A firm’s rate of innovation at t is positively related to its success in 
pioneering new technologies at t-1. 

 
 

EMPIRICAL SETTING 

 

Definition and characteristics 

 

The hypotheses were tested on the population of ASIC-producers that were active in the 

period 1988-1996. ASICs - i.e. application-specific integrated circuits - are a special type 

of ICs (integrated circuits) accounting for about 12 % of worldwide IC sales in 1995. 

The term 'ASIC', as now in use in the industry, is a misnomer. In reality these ICs are 

customer-specific rather than application-specific since an ASIC is a device made for a 

specific customer4.  

 

The ASIC market is a typical high-tech industry where technology is the driving force 

shaping competition among firms. R&D-to-sales ratios are exceptionally high. The 

ASIC market can be divided into different submarkets.  According to the "Integrated 

Circuit Engineering Corporation" (ICE) the ASIC market includes the following 

                                                      
4  A device which is made for one particular type of system function (e.g. disk-drives, CD-players, 

video compressing) but is sold to more than one customer, is called an ASSP (application-specific 
standard product, sometimes also called ASIPs - application-specific integrated processors). Although 
ASSPs are manufactured using ASIC technology, they are ultimately sold as standard devices to large 
numbers of users. 
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categories of ICs: arrays, custom ICs, and programmable logic devices (PLDs). Formal 

definitions are given in Table 1 and diagrammed in Figure 1. 

 

 Insert Table 1 about here 

 Insert Figure 1 about here 

 

The development and production of ASICs requires the interplay between different 

economic agents. The most important participants are the ASIC design houses, IC 

manufacturing facilities, electronic system houses and CAD-tool vendors. This list can 

be enlarged by a number of auxiliary and/or intermediate players, such as companies 

offering services in the microelectronics field, firms that translate customers' needs into 

the specifications for the design of ASICs, and university labs. The interplay between 

different agents is shown in Figure 3. 

 

 Insert Figure 3 here 

 

Given these characteristics of the industry, most strategic alliances in the ASIC-industry 

are likely to be strategic tools for external technology sourcing or joint development. In a 

turbulent high-tech environment like the ASIC-industry, firms are likely to link up with 

each other in order to keep up with the newest technologies (Duysters and Hagedoorn, 

1996).  

 

DATA, VARIABLES AND MODELING 

 

Data 

 

Three types of data are combined in this paper. The cumulated technology alliances 

between the different players in the ASIC technology field capture social capital. 

Technological capital is measured by means of the cumulated US patents of each 

company. Finally, a set of financial data is gathered for each ASIC producer. 
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The data on strategic alliances were selected from the MERIT-CATI databank on 

strategic technology alliances (Duysters and Hagedoorn 1993)5. The selection included 

strategic alliances (SAs) which major focus was on (technological developments in) the 

ASIC-industry. The MERIT-CATI databank covers the period between 1975 and 1996: 

For that period 288 ASIC related strategic technology alliances were detected. There 

were 130 different firms involved in these SAs.  

 

 Insert Figure 4 about here 

 

A sharp increase in SAs occurred in the early and mid-eighties. Their popularity 

diminished in the late eighties and the early nineties. SAs in the ASIC industry are 

mainly non-equity agreements (79.2%) of which the majority is joint development 

agreements (56.9% of all SAs). Joint ventures, which account for 12.8% in the ASIC 

industry are the most important form of equity SAs. The distribution of different types of 

SAs is presented in Figure 5. 

 

  Insert figure 5 about here 

 

To measure technological capital, we used patent data from the U.S. Patents Database 

for all companies involved in the design and production of ASICs, also those based 

outside the US6. Working with U.S. patents � the large patent market - is preferable to 

the use of several national patent systems. Nations differ in their application of 

standards, systems to grant patents and value of the protection granted (Basberg, 

1987; Griliches, 1990). Especially in industries where companies operate on a global 

scale, such as the ASIC-industry, U.S. patents may be a good proxy for companies� 

worldwide innovative performance7.   

 

                                                      
5. Strategic technology alliances include joint research projects, joint development agreements, cross 

licensing, (mutual) second source agreements, technology sharing, R&D consortia, minority holdings 
and joint ventures, but no licensing agreements or production and marketing agreements. 

6  The patents were selected by means of a query on �ASIC� and related concepts/definitions such as 
�gate array�, �linear array�, �FPGA�, �PLD�, �full custom�, �SPGA� and �EPAC�.  

7  Patents can be categorized by means of the International Patent Classification, an internationally 
recognized hierarchical classification system comprising 118 broad sections and 624 subclasses 
nested within the classes. It is furthermore possible to subdivide the subclasses into 67.000 
groups. ASIC-related patents are classified in a relatively small set of subclasses (75 in total). 
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Financial data of ASIC producers have been gathered from different sources among 

which the annual ICE reports (McClean, 1985-1998). The data contain the ASIC-sales 

of these companies, their total IC-sales, the distribution of the ASIC-sales across the 

three segments, R&D-intensity on the corporate level and total sales. We furthermore 

included the nationality of each company.  

 

Variable definitions and operationalization 

 

To test the hypotheses we constructed a number of variables. Table 2 summarizes 

them. 

 

Insert here table 2 
 
 
Dependent variable 

 

Explaining the technological learning capacity of different ASIC producers requires 

an operationalization of the change in size of a company�s technological capital. 

Changes in technological capital are operationalized by patents granted to an 

innovating company. However, the patent is recorded in the database at the time the 

company applied for the patent (rather than the year when it was granted to the firm) 

because a patent application is a signal that a company has successfully developed a 

technological innovation. The dependent variable is a count variable measured by the 

number of patents that a company applied for in a particular year8. 

 

Independent variables 

 

The first 5 hypotheses suggest a relationship between a firm�s prior technological 

capital past, its social capital and the technological characteristics of its alliance 

partners on the one hand and its ex post technological performance on the other hand. 

 

                                                      
8  Of course, we only keep track of patents that have been granted by the U.S. Patent Office before 

the end of 2000. The observation period is 1988-1996. We do not expect to have a significant bias 
at the end of that period, because most patents are granted within a period of 2 to 3 years (average 
time for all patents in the sample is 26 months). Of the 1381 patents that were filed between 
1/1/1988 and 31/12/1996 only 50 (or 3.6%) were granted after 4 years. 
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Cumulative technological capital is calculated as the number of ASIC-related patents 

that an ASIC-producer obtained in the previous 4  years. Patents granted to a company 

are used to measure, in an indirect way, the technological competence of a company 

(Narin, Noma and Perry, 1987). A moving window of 4 to 5 years is the appropriate 

time frame for assessing the technological impact in high-tech industries (Podolny and 

Stuart, 1995; Stuart and Podolny, 1996; Henderson and Cockburn, 1996; Ahuja, 

2000). Studies about R&D depreciation (Griliches, 1979, 1984) suggests that 

knowledge capital depreciates sharply, losing most of its economic value within 5 

years. As a result, a 4 or 5-year period is appropriate to assess technological 

relevance. In this paper we use the cumulated patents obtained by a firm during the 

last 4 years as a measure for the technological competence of an ASIC producer. 

Variables using a 3 and 5-year time window were also calculated to check for the 

sensitivity of this variable to the length of the time period. These variables are highly 

correlated with the 4-year time window (r = 0.94 for the 3 year window and 0.96 for 

the 5 year window), suggesting that the measurement of technological capital is not 

sensitive to the choice of a particular time window. 

 

Following Gulati (1995), we computed social capital from matrices including all alliance 

activities of the ASIC-producers prior to a given year. In constructing measures of social 

capital based on past alliances, a number of choices have been made. First, we do not 

consider different types of alliances separately9. Second, some authors weigh each type 

of SA according to the �strength� of their relationship (see Contractor and Lorange, 

1988; Gulati 1995; Nohria and Garcia-Pont 1991). As some technology alliances are 

more important than others in creating and transferring technological know-how we 

followed this weighting procedure to construct the social capital variable10. The third 

choice relates to the length of the period during which the existing alliance portfolio is 

likely to have an influence on the current technological performance of a company. All 

                                                      
9  Figure 5 gives an overview of the different alliance types: alliances vary from equity joint-ventures 

and minority holdings with a strong organizational commitment and interdependence between allies 
to non-equity alliances which imply only moderate levels of organizational commitment (although 
stronger than arms' length licensing agreements). 

10  Type    Weight Type    Weight 
 Cross licensing   1 R&D contract    4 
 Technology sharing   2 Joint development agreement 4 

(Mutual) second source agreement 3 Minority holding   5 
State intervention R&D   3 Joint venture   6 
Research corporation   3   
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past alliances can be included into the calculation of social capital assuming that all prior 

ties, no matter how long ago they were established, have an impact on current firm 

behavior. However, we chose for a moving window approach, assuming that only 

�ongoing� alliances have an impact on the technological performance of the focal firm. 

For the alliance activities of the ASIC producers we have an indication about the 

termination of 62 (21.5%) alliances in the observation period 1988-1996. We assumed 

they have an impact on the rate of innovation as long as they were not terminated. For 

the other alliances we assume that the lifespan of alliances is usually no more than five 

years (Kogut 1988, 1989).   

 

The innovative performance of a company�s partners can be modeled in different 

ways. Basically, we follow the method developed by Stuart (2000). The innovative 

performance of a firm i at time t is denoted as dit. For each year in the observation 

period 1988-1996, an Nx1 vector dt represents the innovation scores of the N firms in 

the sample. Combining these innovation scores with alliance activity in the ASIC-

industry allows the construction of compact, time-varying innovation measures of the 

alliance partners of each company. These measures are computed by creating first a 

NxN (firm-by-firm) time changing symmetrical alliance matrices, labeled Wt=[wijt].  

 

The innovative performance of the alliance partners of each ASIC-producer at time t 

(pt) is the product of the alliance matrix with the corresponding vector of innovative 

performance scores. As a result pt is a time-changing vector containing the summed 

innovative performance scores for the allies of each ASIC producer. 

 

The innovative performance of the partners can be measured in different ways. One 

possible way is to count the patents received by each of the companies during the 

previous 4 or 5 years (Stuart and Podolny, 1996; Ahuja, 2000; Baum, Calabrese and 

Silverman, 2000). An alternative is to weight these patents by the number of times 

they have been cited by more recent patents. Patent citation counts are important 

indicators of the technological importance of an innovation (Albert et al., 1991; Narin, 

Noma and Perry, 1987). A small inconvenience of patent citations is that the patents 

applied for in the last years of the observation period 1988-1996 have a shorter 

�citation-period� than those that have been filed for in the beginning of that period. 

The majority of citations appear in the first five years after the patent was granted: as 
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a result, although we cannot exclude a potential bias we expect that this will not have 

a major impact on the results.  

  

Novel technologies measure the degree to which a company experiments with 

technologies that were not used previously (Ahuja and Lampert, 2001). To construct 

this variable we used the International Patent Classification (IPC), which is an 

internationally recognized hierarchical classification system. We computed this 

variable using the subclass level of the IPC. Novel technologies were calculated as the 

number of new technology �subclasses� that were entered in the previous 3 years and 

a company was assumed ��to have entered a new subclass when it first applies for a 

patent in a subclass in which it had not patented in the previous 4 years� (Ahuja and 

Lampert, 2001, p. 533). This four-year time window results from the fact that 

technological knowledge depreciates rapidly: not being active in a technology 

subclass for a considerable period of time will significantly shrink a company�s viable 

knowledge in that technological field. A time window of 4 to 5 years is considered an 

appropriate time span over which the technology is valuable for a company in high-

tech industries (Stuart and Podolny 1996, Ahuja 2000).   

 

Ahuja and Lampert (2001) define pioneering technologies as technologies that do not 

build on prior technologies. Patent regulations require companies to indicate how 

much they are indebted to the technological heritage by citing the patents they build 

on. Companies that apply for a patent that cite no other patents are exploring 

technological fields that have been left untouched so far. Therefore this variable is 

computed as the number of a company�s patents that cite no other patents. 

 

Control variables 

 

We included four types of dummy variables. A first variable indicates in which 

economic block the company is headquartered. Following the Triad-concept of the world 

economy, a company can be headquartered in North America, Asia or Europe - the 

default is North America. Firms from a different home country may differ in their 

propensity to patent. Next to that, Asian and European firms may be less inclined to 

patent in the USA even when the semiconductor industry is widely recognized as a 

global industry. 



 17 

 

Annual dummy variables were included to capture changes over time in the propensity 

of companies to patent their innovations. The number of ASIC-technology related 

patents increased from 50 patents in 1988 up to 342 in 1995. In 1996 the number 

dropped again to 289 patents. Part of this growth is the result of the growing importance 

of ASIC-products and the accelerating changes in this technological field. Moreover, 

firms are increasingly aware of the earnings they can reap from by improving intellectual 

property management (Grindley and Teece, 1997; Teece, 1998; Rivette and Kline, 

2000).    

 

Next, dummy variables were used to indicate which type of ASIC-producer a company 

is. Firms can be involved exclusively in the production of gate arrays, standard cells or 

PLDs, or they can be involved in more segments at the same time. Segments are 

important in the sense that firms in each segment face different technologies, different 

competitors and different competitive or technological dynamics. Therefore, firms can 

vary in their propensity to patent simply because they are active in other segments. 

 

A last dummy variable is included to control for possible biases due to the fact that some 

large companies produce ASICs only for their internal needs (captive market), i.e. for 

internal supply as parts in their electronic systems. These captive producers are a small 

minority of ASIC-producing companies but are nonetheless important in terms of 

technological capabilities (e.g. IBM and DEC). They establish technological alliances for 

the same reasons as ASIC-vendors.  

 

We furthermore included two organizational variables. First, the natural logarithm of 

�corporate sales� was included as a control variable. Large companies have the 

possibility to invest large amounts of money in R&D. Assuming that there exists a 

positive correlation between technological input and output (Pakes and Griliches, 1984) 

large firms will have a higher rate of innovation than small firms11. The second control 

variable is the natural logarithm of the ASIC-sales of a company. Firms with a 

considerable stake in the ASIC-market can defend or improve their market position by 

                                                      
11  No R&D figures were available for the few privately owned companies in the sample. However, 

corporate sales are a good proxy for R&D expenditures: for the companies of whom figures where 
available the correlation between sales en R&D expenditure was 0.91. 
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rejuvenating or reinforcing their technological capital. This, in turn, requires a high 

rate of innovation. 

 

Finally, we introduced the annual growth rate of the ASIC market. High growth rates 

offer companies new economic opportunities stimulating them to invest more in 

R&D, which in turn should lead to more patents granted to the firm. As a result, we 

expect a positive coefficient for this variable. 

 

Model specification and econometric issues  

 

The dependent variable is a count variable and takes only nonnegative integer values - 

i.e. the number of patents a firm filed for in a particular year. A Poisson regression 

approach provides a natural baseline model for such data (Hausman, Hall and 

Griliches, 1984; Henderson and Cockburn, 1996). Since we use pooled cross-section 

data with several observations on the same firms at different points in time, we 

modeled the data using a random effects Poisson estimator with a robust variance 

estimator. 

 

The basic Poisson model for event count data can be written as follows:  
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where the parameter λit represents the mean and the variance of the event count and yit 

the observed count variable. It is furthermore assumed that: 

 

λit =  β�xit         (2) 

 

with xit being a vector of independent variables. 

 

The above specification assumes that the mean and variance of the event count are 

equal. However, for pooled cross-section count data the variance often exceeds the 

mean. This overdispersion is particularly relevant in the case of unobserved 
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heterogeneity12.  Therefore, a random effects Poisson estimator with robust variance 

estimator is used: it does not assume within-firm observational independence for the 

purpose of computing standard errors.  For the random effects Poisson estimator 

equation (2) is changed into: 

 

λit =  β�xit + ui        (3) 

 

where ui is a random effect for the ith firm. 

 

Unobserved heterogeneity may be the result of differences between companies in their 

innovation generating capabilities, and as a consequence, also in their propensity or 

ability to patent. Such unobserved heterogeneity, if present and not controlled for, can 

lead to overdispersion in the data or serial correlation. Including the sum of alliances 

that a firm entered in the last four years (moving window approach) as an additional 

variable is a common method of controlling for unobserved heterogeneity (Heckman 

and Borjas, 1980).  

 

Part of the differences between companies or between different years can be captured 

by including dummy variables in the model. First, the propensity to patent may be 

partly determined by the nationality of ASIC-producing companies. It is for instance 

reasonable to assume that Asian or European companies are less inclined to file for 

patent in the USA. Similarly, we introduced annual dummy variables to account for 

changes over time: they may capture the ever growing importance of intellectual 

capital forcing companies to file more patents over the years, or macroeconomic 

conditions, that may affect the ASIC industry as a whole.  

 

RESULTS 

 

Table 3 presents a correlation matrix and descriptive statistics for the different 

variables. Table 4 shows the results from the random effects Poisson regressions 

testing the different hypotheses. 

                                                      
12  The presence of overdispersion does not bias the regression coefficients but the computed 

standard errors in the Poisson regression are understated, so that the statistical significance is 
overestimated. 
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Model 1 in table 4 functions as a baseline model and includes the three types of 

dummy variables (annual dummy variables are not reported), control variables such as 

corporate sales, ASIC-sales, annual market growth rate, and the technological capital 

(cumulative patent count) as an unobserved heterogeneity control variable.  In this 

model, the existing technological capital of a company has a positive and highly 

significant effect on its innovative performance. This supports the first hypothesis: 

companies that have an extensive technological capital get relatively more patents 

than other companies13. 

 

Firm size (corporate sales) also has a positive and significant impact on the rate of 

innovation: this suggests that large companies are technologically and financially 

better equipped to innovate in the ASIC technology field. As ASICs are an intrinsic 

part of semiconductor technology, this positive coefficient may also point to potential 

economies of scope in R&D in large, diversified companies. Next, ASIC-sales have a 

positive and significant effect on the patent rate indicating that companies with a 

considerable stake in ASIC-market also stronger invest in technology, which, in its 

turn, invigorates its competitive advantage. Annual dummy variables have no 

significant impact. The same holds for captive producers and the ASIC market 

growth. The significant coefficients of some industry segment indicate that the 

patenting rate is not homogenous for the whole ASIC market: however, the impact is 

no longer significant when additional independent variables are included in other 

models. Asian firms have a similar patent rate as their American counterparts, but 

European firms patent significantly less. Finally, overdispersion is a feature of our 

data: the dispersion parameter ! is significantly different from zero indicating that 

the assumptions of a simple Poisson model do not hold and that we have to allow for 

overdispersion. A random effects Poisson estimator is an appropriate way to do so. 

 

Model 2 includes the technology alliances formed by each company during the last 

five years. We also included the squared term because the 2nd hypothesis suggests an 

inverted-U shaped relationship between the patent rate and the technological capital of 

a company.  The findings strongly support this hypothesis: firms at intermediate levels 
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of embeddedness have the highest rate of innovation. Firms with poorly developed 

alliance networks as well as overembedded firms have lower rates of innovation. 

 

Model 3 adds the interaction term between �social capital� and �technological capital� 

in order to understand how they jointly affect the rate of innovation of companies. The 

negative and highly significant coefficient corroborates hypothesis 3 and 4. Before we 

explain their joint effect on the rate of innovation we first have a look at their partial 

effects. 

 

To demonstrate the impact of both types of capital we first focus on their partial 

effects on the rate of innovation (i.e. multiplier of the patent rate)14. Technological 

capital moderates the relationship between social capital and the rate of innovation of 

the firm. This basically has two consequences. First, a larger technological capital 

decreases the positive impact of social capital on the rate of innovation. In other 

words, companies with small internal technological capabilities � e.g. start-ups, 

technological laggards or incumbents that want to get access to a new technology 

developed by other companies - profit most from their network of technological 

alliances. Second, higher technological capital requires lower social capital to 

�maximize� the rate of innovation.  

 

Similarly, social capital moderates the impact of prior technological capital on the rate 

of innovation of a company. The relationship is positive for companies that did not 

establish a network of alliances. It gradually drops the stronger the company is 

embedded in its alliances network. The relationship becomes negative for companies 

that are highly embedded � according to model 3 the relationship becomes negative 

when the company has more than 16 �weighted� technology alliances. Companies that 

are moderately embedded in an alliance network can tap from the internal 

technological resources as well as from the knowledge of their partners: their social 

capital weakens the relation between prior technological capital and the current rate of 

innovation. 

                                                                                                                                                        
13  Poisson regressions assume a multiplicative relationship between the dependent variable and the 

regressors, so that the partial effect of a variable can be understood as a multiplier rate. 
14  The partial effect of the prior technical capital (TC) in Table 4, Model 3 is exp[TC(0.0262-

0.0016SC)],  where SC is the social capital. The partial effect of social capital is exp[SC(0.0994-
0.0017SC-0.0016TC)].  
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The total impact of both types of capital on the rate of innovation is visualized in 

figure 6: 

 

 Insert here figure 6 

 

The graph compares the patenting rate of companies with no technological and social 

capital � the benchmark - to patenting rates of companies that have invested 

previously in one or both types of capital. A positive (negative) patenting rate 

indicates that the rate of innovation of a company is higher (lower) than that of the 

benchmark. 

 

The figure shows a number of interesting points. First, there is a �curve of optimal 

solutions� maximizing the rate of innovation for each ratio of technological and social 

capital: left (right) of that curve companies can improve their rate of innovation by 

increasing (decreasing) their technological or/and social capital. Moreover, the 

�optimal� size of the alliance network decreases with an increase of technological 

capital. If a company has no patents the optimal number of �weighted� alliances is 29. 

This number is reduced to 6 alliances when the company has a technological capital 

of 50 patents. Companies can improve their rate of innovation by investing in social 

or/and technological capital when the size of their existing internal technological 

capabilities and social network is small. Hence, technological capital and social 

capital have mutually reinforcing effects on the rate of innovation. On the contrary, 

when a company has strong internal technological resources and an extensive alliance 

portfolio it can only improve its rate of innovation by reducing its alliance network. In 

that case the two types of capital are substitutes as they overlap in the technology they 

provide to the focal company. These findings corroborate hypothesis 3.      

 

Second, the plane in figure 6 has a typical saddle shape. The rate of innovation 

reaches its highest values for two types of strategies: the first strategy is based on 

relatively high levels of social capital combined with low levels of technological 

capital. The other strategy in contrast combines strong internal technological 

capabilities with a minimum of social capital. Hence, these two strategies may 

successfully coexist in an industry and strategies that are based on equal emphasis of 



 23 

both types of capital are clearly less successful in terms of technological performance. 

These results provide strong support to hypothesis 4. 

 

Third, firms may overinvest in social capital as has been argued in the literature 

(Kogut et al., 1992; Harrigan, 1985): there exists an area in figure 6 where the effect 

of social capital is negative. For companies with no patents this area starts at high 

levels of embeddedness (59 �weighted� alliances) but this threshold decreases with the 

increase of technological capital of a company. 

 

Model 4 introduces the innovative performance of the alliance partners. The positive 

but only weakly significant coefficient indicates that we have some support � 

although not very convincing � that a company benefits from the technological 

strengths of its alliance partners. Other variables held constant a one-standard 

deviation increase in the innovative performance of a firm�s alliance partners results 

in an 8.2 percent increase in the rate of innovation (= exp(0.00061*129.48) = 

1.08219).  

 

As a result we could state that companies connected to technologically advanced 

partners seem to innovate at a higher rate than those connected to less prominent 

companies. However, we need to be cautious about these outcomes.  There is a high 

bivariate correlation between the total number of alliances a company established 

during the previous five years and the accumulated innovative performance scores of 

its partners over that same period. Therefore we executed the same two additional 

steps as Stuart (2000) to test whether or not this result is driven by collinearity. First, 

we omitted the variables based on the cumulative technological alliances (social 

capital).  In that case, the coefficient of the �innovative performance of the partners�- 

variable remains positive but is no longer significant (not reported). Second, we 

replaced the variable �innovative performance-of-partners� in Model 4 with the 

�average innovative performance score computed over the set of partners in each 

firm�s alliance portfolio� (Stuart, 2000: p 803). The advantage of this variable is that 

even though it is not correlated with the total count of alliances (r = 0.02), it still gives 

a flavor of the innovative performance of the alliance partners. Again, the coefficient 

is positive but not significant. As a result, it is not safe to claim any support for 

hypothesis 5. 
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Model 5 tests the two final hypotheses. We have argued that firms experimenting with 

novel technologies are more likely to have a higher rate of innovation. These firms are 

able to value the potential of novel technologies in a more accurate way. They 

perceive the potential threats of disruptive technologies more easily, and they are 

more open to new avenues for research. However, too much experimentation with 

unfamiliar technologies is counterproductive: it should be in balance with the 

exploitation of familiar technologies. In line with this argument we expect a positive 

sign for the coefficient of the �novel technologies�-variable and a negative sign for the 

squared term. Model 5 indicates strong support for hypothesis 6. Moreover, the 

magnitude of the effect is substantial: other variables held constant, one-standard 

deviation increase above the mean in the experimentation with novel technologies 

results in a 26.5 percent increase in a company�s rate of innovation15.  

 

Finally, hypothesis 7 suggests that experimenting with pioneering technologies 

increases the rate of innovation of a company. The results in Model 5 support this 

hypothesis. A one-standard deviation increase in the experimentation of pioneering 

technologies leads to a 14.4 percent (=exp[1.3429*0.10]) increase in the rate of 

innovation. Hence, companies that successfully patented a �pioneering technology�-

innovation increase their rate of innovation in the subsequent years.   

 

DISCUSSION AND CONCLUSIONS   

 

The increasing requirements of the organizational environment have forced 

companies in high tech industries to establish networks of technology alliances. The 

internal development of technological resources is interwoven with the external 

acquisition of technologies through alliances. Both technological and social capital 

determine the rate of innovation of companies. In the literature, both types of capital 

have been conceived as complements: they are mutually reinforcing each other�s 

                                                      
15   The partial effect of the novel technologies (NT) in Table 4, Model 5 is exp[NT(0.2229 -

0.023.NT)]. For an average company this implies a rate of innovation increase of 19.1 percent 
(exp[0.86(0.2229-0.0230*0.86)]). For a company that is highly involved in experimenting with 
novel technologies (one-standard deviation above the mean) this increase is 45,6 percent  
(exp[2.17(0.2229-0.0230*2.17]).  The highest possible value for the partial effect (71.6 percent) is 
reached for companies having experimented with 4.85 novel technologies. 
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effect on the rate of innovation of a company (Cohen and Levinthal, 1990; Lane and 

Lubatkin, 1998; Duysters and Hagedoorn, 2000). 

 

In this paper we claim that the effect of an increase in the internal technology 

capabilities of a company or an extension of the alliance portfolio on its rate of 

innovation depends on the size of its existing technological and social capital. For low 

degrees of internal technological capabilities and/or small alliance portfolios increases 

in either one of both types of capital will increase a company�s rate of innovation. 

Technological and social capital are found to mutually reinforce each other�s impact 

on the technological performance of a company. However, we also found strong 

empirical support for the change in interaction between both types of capital in the 

case technological capabilities and the alliance network of a company increase. At 

high levels, technological and social capital are substitutes: the company with strong 

technological resources does not need an extensive portfolio of alliances to come up 

with a strong technological performance. Similarly, companies that learned how to 

acquire technology from their allies can curtail their internal research and 

development efforts compared to companies with a small alliance network. 

 

We also found strong support for the possibility of local equilibriums. Two main 

strategies are found to provide an optimal rate of innovation. The first emphasizes the 

development of strong internal technological resources in combination with a small 

alliance portfolio. The other emphasizes the establishment of an extensive alliance 

network supported by a minimal amount of technological capital. 

 

Stuart (2000) argued that the technological performance of a company is not so much 

determined by the size of the alliance network but rather by the characteristics of the 

focal firm�s alliance partners. Contrary to his findings we find no credible support for 

this claim.  It is possible that in the specific context of the ASIC industry the 

technological prominence of the partners are less important because of the continuous 

stream of �competence destroying� innovations by new entrants. Another possibility is 

that slightly different variables will confirm the importance of technological 

characteristics of the partners. One possible alternative is to calculate differences 

between the technological capital of the focal firm and that of its partners.  

 



 26 

Finally, companies that experiment with novel and pioneering technologies are found 

to have a higher rate of innovation in subsequent years. This is an interesting finding 

because it indicates that companies, which almost exclusively focus on the 

exploitation of their existing technologies, are likely to get trapped in their own 

technological competences. This supports the idea of Leonard-Barton (1992) that core 

competencies can turn into core rigidities if companies are not rejuvenating their 

existing capabilities by exploring new technological fields. 

 

This paper clearly contains a number of limitations. One important limitation is that 

we did not model the �interorganizational absorptive capacity� of companies 

explicitly. We assumed (and found empirical evidence) that the technological capital 

in a company has a moderating effect on the relationship between its social capital an 

its rate of innovation. Modeling explicitly the industry and organizational factors that 

have an impact on the absorptive capacity of a company could improve our 

understanding of the interaction between technological capital and alliance portfolios. 

 

Future research on the dyadic level (dyad-year as unit of observation) could also 

complement the firm level analysis about the relationship between technological 

resources and alliance networks. An analysis on the dyadic level allows us to focus on 

the question how the probability of the formation of new alliances is affected by (the 

difference between) the existing technological capital of the allying companies.    
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Table 1: ASIC definitions 
 
 
I. Semicustom IC: A monolithic circuit that has one or more customized mask 

layers, but does not have all mask layers customized, and is sold to only one 
customer. 

Gate arrays: A monolithic IC usually composed of columns and rows 
of transistors. One or more layers of metal interconnect and are used to 
customize the chip. 
Linear array: An array of transistors and resistors that performs the 
functions of several linear ICs and discrete devices. 

 
II. Custom IC: A monolithic circuit that is customized on all mask layers and is 

sold to only one customer. 
Standard cell IC: A monolithic circuit that is customized on all mask 
layers using a cell library that embodies pre-characterized circuit 
structures. 
Full custom IC: A monolithic circuit that is at least partially 
�handcrafted�. Handcrafting refers to custom layout and connection 
work that is accomplished without the aid of standard cells. 

 
III. Programmable Logic Device (PLD): A monolithic circuit with fuse, antifuse, 

or memory cell-based logic that may be programmed (customized), and in 
some cases, reprogrammed by the user. 

Field Programmable Gate Array (FPGA): A PLD that offers fully 
flexible interconnects, fully flexible logic arrays, and requires 
functional placement and routing. 

Electrically Programmable Analog Circuit (EPAC): A PLD that allows the 
user to program and reprogram basic analog devices. 



Tabel 2: Definitions of dependent and independent variables 
 
 
Variable name Variable description Expected effect 
 
Number of patents Count  of the number of patents a firm filed for in the current year (t). Only patents that were granted -------- 
  to the company are taken into consideration  
Cumulative patentst-1 Count of the number of ASIC-related patents that a firm filed for during the previous four years Positive 
  (t-4 to t-1)  
Cumulative technology alliancest-1  Count of the number of technology alliances a firm established in the five previous years (t-5 to t-1)   Positive 
(Cumulative technology alliancest-1)2  Squared term of the previous variable  Negative  

(Cum. technology alliances t-1) Interaction between the number of ASIC-related patents a firm file for during the last 4 years and Negative 
 * (cum. patents t-1) the number of alliances it formed in the previous 5 years 
Innovative performance of alliance partners Sum of the patent citations received by the firm�s alliance partners Positive 
Novel  technologiest-1 Number of patents filed during the last 3 years in patent classes in which the company had not patented  Positive 
  in the previous 4 years 
(Novel technologiest-1)2 Squared term of the previous variable  Negative 
Pioneering  technologiest-1 Number of a firm�s patents that cite no other patents  Positive 
Log ASIC salest-1 Natural logarithm of the ASIC sales of  the firm  Positive 
Firm size (log sales)t-1 Natural logarithm of the total sales of the firm  Positive 
ASIC market growtht-1 Annual growth rate of the ASIC market  Positive  
Firm is a captive producer Dummy variable denoting that the firm is not selling ASICs on the market Negative   
Firm is Asian Dummy variable denoting that the firm is headquartered in Asia 
Firm is European Dummy variable denoting that the firm is headquartered in Europe 
Firm is GA-producer Dummy variable denoting that the firm is producing only gate arrays 
Firm is SC-producer Dummy variable denoting that the firm is producing only standard cells 
Firm is PLD-producer Dummy variable denoting that the firm is producing only PLDs 
Firm is GA and SC producer Dummy variable denoting that the firm is producing  gate arrays and standard cells 
Firm is GA and PLD producer Dummy variable denoting that the firm is producing  gate arrays and PLDs 
 
 



Tabel 3: Descriptive statistics and correlation matrix 
 
 
Variable Mean S.D. Min. Max. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
 
1 Number of patents 1.22 3.40 0 42  
2 Cumulative technology 
 alliancest-1 4.05 6.90 0 38  0.25 
3 Cumulative patentst-1 3.93 8.15 0 72 0.67 0.33 
4 Log ASIC salest-1 2.95 2.03 -0.65 7.43 0.38 0.43 0.49 
5 ASIC market growtht-1 0.14 0.03 0.10 0.21 -0.16 0.09 -0.02 -0.06 
6 Firm size (log sales)t-1 6.20 3.30 -0.65 12.60 0.19 0.40 0.37 0.52 -0.02 
7 Novel technologiest-1 0.86 1.31 0 11 0.48 0.39 0.61 0.41 -0.05 0.36 
8 Pioneering technologiest-1 0.08 0.10 0 2 0.12 0.01 0.11 0.11 0.12 0.12 0.12  
9 Firm is a captive producer 0.12 0.32 0 1 -0.01 -0.01 0.01 -0.31 -0.01 0.21 -0.00 0.01 
10 Innovative performance of 
 alliance partners 46.91 129.48 0 1251 0.26 0.48 0.36 0.28 0.01 0.26 0.37 0.01 -0.01 
11 Firm is Asian 0.22 0.42 0 1 0.02 0.00 0.17 0.14 0.00 0.40 0.10 0.12 -0.04 -0.01 
12 Firm is European 0.17 0.38 0 1 -0.11 0.15 -0.12 -0.01 0.01 0.10 -0.12 -0.04 0.10 0.04 -0.25 
13 Firm is GA-producer 0.12 0.32 0 1 -0.10 -0.16 -0.14 -0.07 0.00 -0.13 -0.13 0.01 -0.03 -0.12 -0.12 -0.14  
14 Firm is SC-producer 0.18 0.39 0 1 -0.13 -0.15 -0.16 -0.12 -0.03 -0.20 -0.19 -0.04 -0.01 -0.12 -0.21 0.14 -0.17 
15 Firm is PLD-producer 0.07 0.25 0 1 0.31 -0.01 0.17 0.16 -0.02 -0.13 0.13 -0.02 -0.10 0.09 -0.14 -0.12 -0.10 -0.13  
16 Firm is GA and SC producer 0.30 0.46 0 1 0.06 0.07 0.17 0.44 -0.00 0.38 0.24 0.10 -0.13 0.09 0.35 -0.04 -0.23 -0.31 -0.17 
17 Firm is GA and PLD  
 producer 0.08 0.09 0 1 0.04 0.09 0.00 0.07 0.04 0.00 0.03 -0.01 -0.03 0.02 -0.05 -0.04 -0.03 -0.04 -0.02 -0.06 
 
 
N = 830 observations 
All correlations with magnitude  > |0.077| are significant at the 0.05 level 



Tabel 4: Determinants of the patent rate of ASIC producers, 1988-1996 
 
 
 Variable Model 1  Model 2 Model 3 Model 4 Model 5  
  
Cumulative patentst-1 0.0162*** 0.0153*** 0.0262*** 0.0292*** 0.0309*** 
  (0.0048) (0.0052) (0.0053) (0.0054) (0.0073) 
Cumulative technology  0.0786*** 0.0994*** 0.0965*** 0.0872*** 
 alliancest-1  (0.0172) (0.0201) (0.0246) (0.0302) 
(Cumulative technology  -0.0018*** -0.0017** -0.0017** -0.0012* 
 alliancest-1)2  (0.0006) (0.0007) (0.0008) (0.0007) 
(Cum. technology alliances t-1)  -0.0016*** -0.0019*** -0.0020*** 
 * (cum. patents t-1)    (0.0003) (0.0003) (0.0003) 
Innovative performance of    0.00061*  
 alliance partners    (0.00033)  
Novel      0.2229** 
 technologiest-1     (0.0888) 
(Novel      -0.0230* 
 technologiest-1)2     (0.0135) 
Pioneering     1.3429** 
 technologiest-1     (0.5546) 
Log ASIC salest-1 0.1269** 0.1087*** 0.1212** 0.1319** 0.1281* 
  (0.0541) (0.0575) (0.5874) (0.0584) (0.0658) 
Firm size  0.2936*** 0.2381*** 0.1935*** 0.1841*** 0.1554*** 
 (log sales)t-1 (0.0569) (0.0535) (0.0553) (0.0552) (0.0568) 
ASIC market growtht-1 8.3684 6.9522 5.294 7.3250 3.6514 
  (60.7947) (66.9714) (76.8344) (63.1954) (93.0791) 
Firm is a captive -0.5178 -0.3482 -0.1770 -0.1305 -0.0460 
 producer (1.0519) (0.9906) (0.3082) (0.9108) (0.8288) 
Firm is Asian 0.9609 -0.6905 -0.4957 -0.4454 -0.3269 
  (0.8214) (0.7896) (0.8021) (0.7879) (0.6925) 
Firm is European -1.7333*** -1.6781*** -1.6275** -1.6088** -1.4219** 
  (0.6326) (0.6643) (0.7011) (0.6874) (0.6314) 
Firm is GA-producer 0.5137* 0.5375* 0.4132 0.3429 0.0813 
  (0.2772) (0.2990) (0.3447) (0.3438) (0.3250) 
Firm is SC-producer -0.5131** -0.4198* -0.4573* -0.4677** -0.3706 
  (0.2343) (0.2248) (0.2425) (0.2341) (0.2976) 
Firm is PLD-producer 0.8335 0.8496* 0.7167 0.6707 0.6608 
  (0.5972) (0.4697) (0.4776) (0.4778) (0.4762) 
Firm is GA and SC -0.1456 -0.0250 -0.1116 -0.1777 -0.2186 
 producer (0.1541) (0.1544) (0.1608) (0.1697) (0.1915) 
Firm is GA and PLD 0.8286 0.3909 0.3623 0.3272 0.4156 
 producer (1.4550) (2.4542) (2.7874) (2.7063) (2.8703) 
Constant -4.3035 -4.1684 -3.8625 -4.1907 -3.5583 
  (11.5597) (12.7302) (14.6083) (12.0047) (17.6953) 
α  1.7460*** 1.4786*** 1.3206*** 1.2837*** 0.9574*** 
  (0.3759) (0.3376) (0.3082) (0.3025) (0.2508) 
 
Number of firms 99 99 99 99 99 
Number of firms-years 830 830 830 830 830 
Log-likelihood 370.87 382.50 392.20 394.51 410.38 
Chi-squared 741.74 765.00 784.40 789.02 820.75 
 
 
Notes:  ***   p  < 0.01;  **   p  < 0.05;  *   p  < 0.10  

�Year dummy variable�-coefficients are not statistically significant. They are not reported in 
the table. 
The models use a random effects Poisson estimator. The sample is an unbalanced panel with 
99 ASIC producers and 830 firm-years (units of observation). 
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Figure 1: The ASIC technology field 
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Figure 4: Number of technology based SAs in the ASIC industry

0

5

10

15

20

25

30

35

1975 1977 1979 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

# 
of

 a
lli

an
ce

s



 
 
 
 

Figure 5: Different types of SAs in the ASIC industry
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 Figure 6: Impact of social and technical capital on the patent rat
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