
 

 
 
 
 

 
Applying Revenue Management  

to the Reverse Supply Chain 
 
 

Mark Ferguson, Moritz Fleischmann and Gilvan C. Souza 

 
 
 
 
 
 
 
 
 
 

ERIM REPORT SERIES RESEARCH IN MANAGEMENT 
ERIM Report Series reference number ERS-2008-052-LIS 
Publication  August 2008 
Number of pages 33 
Persistent paper URL http://hdl.handle.net/1765/13211 
Email address corresponding author mfleischmann@rsm.nl 
Address  Erasmus Research Institute of Management (ERIM) 

 RSM Erasmus University / Erasmus School of Economics  
 Erasmus Universiteit Rotterdam 
 P.O.Box 1738  
 3000 DR Rotterdam, The Netherlands 
Phone:  + 31 10 408 1182   
Fax: + 31 10 408 9640 
Email:  info@erim.eur.nl 
Internet:  www.erim.eur.nl

 
Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:  

www.erim.eur.nl 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6499264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.erim.eur.nl/


ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT 
 

REPORT SERIES 
RESEARCH IN MANAGEMENT 

 
 

ABSTRACT AND KEYWORDS 
Abstract We study the disposition decision for product returns in a closed-loop supply chain. Motivated by 

the asset recovery process at IBM, we consider two disposition alternatives. Returns may be 
either refurbished for reselling or dismantled for spare parts. Reselling a refurbished unit typically 
yields higher unit margins. However, demand is uncertain. A common policy in many firms is to 
rank disposition alternatives by unit margins. We show that a revenue management approach to 
the disposition decision which explicitly incorporates demand uncertainty can increase profits 
significantly. We discuss analogies between the disposition problem and the classical airline 
revenue management problem. We then develop single period and multi-period stochastic 
optimization models for the disposition problem. Analyzing these models, we show that the 
optimal allocation balances expected marginal profits across the disposition alternatives. A 
detailed numerical study reveals that a revenue management approach to the disposition 
problem significantly outperforms the current practice of focusing exclusively on high-margin 
options, and we identify conditions under which this improvement is the highest. We also show 
that the value recovered from the returned products critically depends on the coordination 
between forward and reverse supply chain decisions. 

Free Keywords Remanufacturing, Revenue Management, Spare Parts Inventory 

Availability The ERIM Report Series is distributed through the following platforms:  

Academic Repository at Erasmus University (DEAR), DEAR ERIM Series Portal

Social Science Research Network (SSRN), SSRN ERIM Series Webpage

Research Papers in Economics (REPEC), REPEC ERIM Series Webpage

Classifications The electronic versions of the papers in the ERIM report Series contain bibliographic metadata 
by the following classification systems: 

Library of Congress Classification, (LCC) LCC Webpage

Journal of Economic Literature, (JEL), JEL Webpage

ACM Computing Classification System CCS Webpage

Inspec Classification scheme (ICS), ICS Webpage

 
 

 

https://ep.eur.nl/handle/1765/1
http://www.ssrn.com/link/ERIM.html
http://ideas.repec.org/s/dgr/eureri.html
http://lcweb.loc.gov/catdir/cpso/lcco/lcco_h.pdf
http://www.aeaweb.org/journal/jel_class_system.html
http://www.acm.org/class/
http://www.iee.org/Publish/Support/Inspec/Document/Class/index.cfm


Applying Revenue Management to the Reverse Supply Chain

Mark Ferguson

College of Management, Georgia Tech, Atlanta, GA 30307, mark.ferguson@mgt.gatech.edu

Moritz Fleischmann

Rotterdam School of Management, Erasmus University, 3000DR Rotterdam, The Netherlands, mfleischmann@rsm.nl

Gilvan C Souza

Smith School of Business, University of Maryland, College Park, MD 20742, gsouza@umd.edu

Abstract

We study the disposition decision for product returns in a closed-loop supply chain. Moti-

vated by the asset recovery process at IBM, we consider two disposition alternatives. Returns

may be either refurbished for reselling or dismantled for spare parts. Reselling a refurbished

unit typically yields higher unit margins. However, demand is uncertain. A common policy in

many firms is to rank disposition alternatives by unit margins. We show that a revenue man-

agement approach to the disposition decision which explicitly incorporates demand uncertainty

can increase profits significantly. We discuss analogies between the disposition problem and

the classical airline revenue management problem. We then develop single period and multi-

period stochastic optimization models for the disposition problem. Analyzing these models,

we show that the optimal allocation balances expected marginal profits across the disposition

alternatives. A detailed numerical study reveals that a revenue management approach to the

disposition problem significantly outperforms the current practice of focusing exclusively on

high-margin options, and we identify conditions under which this improvement is the highest.

We also show that the value recovered from the returned products critically depends on the

coordination between forward and reverse supply chain decisions.

Keywords: Remanufacturing, Revenue Management, Spare Parts Inventory

1 Introduction

Revenue management is concerned with selling the right amount of product or capacity to the

right customer at the right time. In this paper, we consider a firm’s optimal disposition decision

for product returns—remanufacture or dismantle for spare parts—from a revenue management

perspective. In our case, the capacity to be allocated is the returned units which can be either

remanufactured or dismantled for spare parts. We model this problem in a multi-period, finite

horizon setting, which addresses the importance of timing in these decisions.
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Our problem is motivated by the asset recovery process at IBM. Information technology prod-

ucts such as personal computers, servers, storage systems, and mainframes coming off of lease are

returned to IBM’s remanufacturing facility where a disposition decision—remanufacture or disman-

tle for spare parts—is made. Because the required amount of processing for electronic equipment

is much less than in other industries such as automotive engines, we use the terms remanufacturing

and refurbishing synonymously in this paper (the term refurbishing is often used for “light” reman-

ufacturing). The remanufacturing operation involves replacing all wearable components, testing,

cleaning, and reloading of software to create a standard configuration. Remanufactured units are

advertised on IBM’s web site (www.ibm.com) for about one month and, if not sold during this time,

are salvaged to third-party brokers through an auction. While remanufactured units sold via the

web site command attractive margins, unsold units salvaged via the auction can, in most cases, only

recover the cost incurred for remanufacturing. Thus, IBM makes a high profit on remanufactured

units sold through its regular web site channel, and close to zero profit on remanufactured units

that do not sell within the one month window and must be salvaged via the auction.

Instead of remanufacturing a returned unit, IBM can dismantle it to harvest non-wearable

parts, such as memory, video cards, and mother boards, which can be used as spare parts for

service repairs, or even for selling to customers. The traditional approach for managing spare parts

consists of purchasing new parts from the regular supplier as needed. Moreover, suppliers of new

parts (e.g., Intel) often have strong incentives to terminate regular production for parts that face

slowing demand, such as after the product has been taken out of the market, and may demand a

“final buy” from the manufacturer (Cattani and Souza 2003). In that case, the manufacturer often

buys a large quantity of parts to last through the period for which it has service contracts. Since

demand for spare parts is uncertain during that long period, the firm may run out of inventory and,

if the original supplier no longer offers the part, has to procure the part at an alternative supplier

(e.g., distributors specializing in hard-to-find parts) at a substantially higher cost. The dismantling

decision offers flexibility to meet demand for spare parts in a less expensive way when there are

shortages.
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When a returned unit arrives at IBM’s asset recovery facility, a disposition decision must be

made to either remanufacture the unit, to dismantle it for spare parts, or to scrap it for material

recycling. In general, remanufacturing and reselling a unit via the web site is more profitable than

dismantling the returned unit for parts, which is more profitable than scrapping it. The current

practice is to base this decision primarily on unit margins and on product quality. For products that

are in a good technical condition, remanufacturing is currently always prioritized over dismantling.

In this paper, we argue that the disposition problem described above is essentially a revenue-

management problem. Multiple recovery channels compete for a limited amount of high-quality

returned units or cores. In addition to unit margins, the chances of actually selling a unit through

a given channel drives this decision. Because prices for remanufactured units sold via the web

site are market driven and face restrictions on their range from the new products sales force (to

minimize canibalization), IBM faces demand uncertainty— rather than price uncertainty—for units

remanufactured. Due to this uncertainty, dismantling for parts can be an attractive alternative,

despite its lower unit margins. This option is particularly valuable if the inventory for spare parts

is low relative to demand. Dismantling also faces a lower penalty for overproduction because spare

parts can be carried in inventory until the end of the service period, which can be many months or

even years. The disposition decision has to balance all these factors.

The concept of weighing the opportunity cost of a higher margin, but more uncertain, future

demand versus a more certain, but lower margin, present demand is not new. Airlines, hotels, and

rental car agencies have been weighing this trade-off for over twenty years using techniques originally

referred to as yield management and today, more commonly referred to as revenue management

(see Cross 1997 for an entertaining history of the field). The basic idea behind revenue management

is to determine how many units of capacity to sell to lower margin customers that are requesting

the product today versus how many units to reserve for higher margin customers that may arrive

in the future. In the airline industry, customers are typically segmented into leisure and business

segments. The leisure segment customers have a lower willingness to pay for a flight but are willing

to pay for their seat well in advance of the departure date. The business customers often request
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seats close to the departure date and are willing to pay a higher price for this added convenience.

While this is a major simplification of the actual problem, it captures the airline’s main trade-off of

how many seats to reserve for future business class customers given a demand of leisure customers

that exceeds the seat capacity of the plane. Assuming lower margin customers arrive before higher

margin customers, an optimal allocation is to sell to the lower value customers until the marginal

opportunity cost (of missing future potential higher margin demand) exceeds the benefit from

selling to the lower margin customer. Talluri and van Ryzin (2004) provide an extensive review

of the revenue management techniques and algorithms used in practice and/or appearing in the

literature.

To link the basic revenue management problem back to IBM’s disposition decision regarding

a returned unit, consider the spare parts demand as the lower paying customer and the potential

sell of a remanufactured unit as a higher paying customer. Each arrival of a returned unit to

the asset recovery facility is similar to a low margin customer requesting a seat on an airline.

At each returned unit arrival, IBM must decide whether to dismantle the unit for spare parts,

if current parts inventory is low, and receive a more certain low margin or to remanufacture the

product in hopes of achieving a higher margin in the future by selling it through its web site. If

the remanufactured unit does not sell through the web site during the four-week time window,

the product is salvaged through an auction at a price roughly equal to the cost incurred for the

remanufacturing operation. The additional value added to the product through the remanufacturing

process is typically greater than the value obtained from dismantling the unit for spare parts, thus

it is more profitable to salvage the remanufactured units that did not sell on the web site via the

auction rather than dismantle the remanufactured units for spare parts. In other words, it is only

profitable to dismantle the returned unit for parts before it undergoes the (costly) remanufacturing

process. It is, however, more profitable to dismantle the returned unit, if parts inventory is low,

than to remanufacture it and end up not selling it via the web site. Therefore, a remanufactured

unit that does not sell via the web site represents the same missed opportunity cost as an empty

seat on an airplane (upon departure) that the airline chose not to sell to a low margin customer in
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hopes that a higher paying customer would buy it instead.

1.1 Contribution to the Literature

The key contribution of this paper is to show how a revenue management approach to the disposition

decision can significantly increase profitability. In more specific terms, we make the following

contributions:

• We point out that the disposition decision in a closed-loop supply chain has many of the same

characteristics as a traditional revenue management problem, even though the operational

context of both problems is quite different.

• We develop and solve a stochastic optimization model for the disposition problem and char-

acterize the optimal policy.

• We assess the financial value of the dismantling option. We find that excluding dismantling

from the set of dispositions, by always prioritizing the high-margin remanufacturing option,

decreases the firm’s profit by 20% on average. This shows that an additional disposition

option can significantly improve the profitability of a closed-loop supply chain, even if it has

lower unit margins.

• Given the complexity of the optimal disposition policy, we investigate the performance of

simpler heuristics. We find that allocating returns to remanufacturing and dismantling on

the basis of their mean demands (net of inventory) performs reasonably well, relative to the

optimal policy, with an average profit deterioration of only 4%. However, we also find that the

value of dismantling is critically dependent on the coordination between forward and reverse

supply chain decisions. Specifically, we show that the value of dismantling drops by about

60% if the final-buy decision does not appropriately anticipate future streams of returns and

their disposition. This reinforces the view that firms should make their operating decisions

as an integrated closed-loop supply chain rather than as separate forward and reverse chains.
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The rest of the paper is organized as follows: In §2, we position our research in the context of

the relevant literature. In §3, we list our key assumptions and notation, present our model and

provide some analytic results. In §4, we present numerical results on the value of dismantling from

a study based on realistic parameter values. In §5, we summarize our results and conclude with

managerial implications. All proofs are provided in Appendix A.

2 Literature Review

Our research draws on two separate streams of literature: revenue management and remanufac-

turing. In this section, we provide a review of the prominent research in each stream and position

our research at the point of their intersection. We begin with an overview of the relevant revenue

management literature.

In the past two decades, revenue management has grown into a vast area of research with ap-

plications in numerous fields, notably in the service sector. The literature on the use of revenue

management in a manufacturing setting has mainly focused on customer segments who are hetero-

geneous on their willingness to wait for a product and is split between make-to-order (MTO) and

make-to-stock (MTS) environments. Research on firms who provide a MTO service has typically

focused on capacitated systems where the firm provides discounts based on advance purchase, lead-

time, and delivery time flexibility. Other proposed options include some type of admissions control

policy where low margin orders may be declined, or quoted a longer lead-time, in anticipation of

higher margin orders that may arrive in the future. Most of the work in this area models the

manufacturing environment as a capacitated queueing system. A review of this literature can be

found in Keskinocak and Tayur (2004). For MTS environments, the majority of the research has

focused on inventory management policies that include rationing, where a portion of the inventory

is reserved for higher margin customers who may arrive in the future. Topkis (1968), Ha (1997),

Deshpande et al. (2003), and Zhao et al. (2005) provide a representative sample of the research in

this area. The main difference between these two research streams and our paper is that our focus

is on what type of product to produce (harvest for spare parts versus remanufacture for resell as a
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complete product) while, in the literature streams described above, the physical characteristics of

the product is the same for all customers but the customer waiting times differ.

The literature on remanufacturing is part of a broader stream of research on reusable resources,

which has been gaining significant momentum over the past decade. The recovery of value from

used products and materials has triggered the emergence of ‘reverse’ supply chains, performing

the acquisition and collection of returned goods, their inspection, grading, and disposition, repro-

cessing operations, such as remanufacturing and recycling, and the remarketing of the processed

goods (Guide and Van Wassenhove, 2003). Collectively, these processes link markets that return

certain products to new markets for these products. Reverse logistics is concerned with the physical

flows through this link (Dekker at al., 2003). Key commercial decisions concern price, quantity,

and quality both on the acquisition and on the reselling side (Guide and Van Wassenhove, 2001).

Literature on quantitative approaches to these decisions is still relatively scarce. Guide et al. (2003)

jointly optimize acquisition and sales prices, taking into account product quality variations. Gal-

breth and Blackburn (2006) address the interaction between acquisition quantity and quality. Ray

et al. (2005) analyze optimal trade-in rebates. On the sales side, several authors have addressed the

interaction between new production and remanufacturing, using game-theoretic analyses (e.g. Debo

et al. 2005; Ferrer and Swaminathan, 2006; Ferguson and Toktay, 2006).

The disposition decision in the reverse supply chain allocates returned products to an appro-

priate processing option. In the simplest case, disposition options include a form of recovery, e.g.

remanufacturing, and disposal. A richer setting may include several alternative recovery options,

such as remanufacturing, harvesting of parts, and material recycling. Most research contributions,

as well as business examples, address the disposition decision by means of a relatively long-term

priority ranking, typically based on contribution margins. This approach assigns a returned prod-

uct to the highest ranked option that is technically feasible, given the physical product status

(Fleischmann et al., 2004). An exception is Guide et al. (2007), who link the disposition decision

to the occupancy rate of the remanufacturing facility; thereby avoiding excessive processing delays.

In this study, we propose that disposition decisions may benefit from a dynamic approach that
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takes into account short-term variations in commercial opportunities. Two main factors drive our

argument, namely demand uncertainty and depreciation. Guide et al. (2006) highlight depreciation

as a key issue in closed-loop supply chains and analyze its impact on supply chain design. We address

its influence on the short-term disposition decisions. This situation is analogous to classical airline

revenue management, where discount decisions depend dynamically on the number of remaining

empty seats and on the time until departure. To date, very few articles in the literature apply

a revenue management approach to disposition decisions in closed-loop supply chains. The paper

that is closes to our analysis is Inderfurth et al. (2001), which investigates the allocation of returned

products to multiple alternative reuse options, given stochastic demand and return volumes. The

authors analyze the optimal policy structure and calculate optimal control parameters under the

assumption of a linear allocation of shortages. We do not make this assumption and instead

investigate how to allocate scarce returns—and thereby also shortages—to the different channels

so as to maximize profit. Kleber et al. (2002) analyze a related deterministic model and derive

optimal disposition rules under time-varying return and demand volumes. In contrast to their

analysis, our disposition strategy is driven by expected opportunity costs, rather than by seasonal

fluctuations. Finally, we mention two papers that propose price-based revenue management in

a closed-loop supply chain. Mitra (2007) determines optimal prices in a stochastic single-period

model with multiple reuse options and Gayon and Dallery (2007) compare static and dynamic

pricing strategies in a stochastic infinite-horizon model. In contrast to both of these models, our

analysis focuses on quantity-based revenue management where the firm’s decisions involve the

allocation of returned products to alternative reuse options with exogenous prices.

3 Model Formulation and Analysis

3.1 Key Assumptions

Motivated by the context introduced in Section 1, we consider the situation of a firm that receives

recoverable products returned from the market. The firm has two options for recovering value from

these returns, namely remanufacturing or dismantling for parts. The firm seeks to allocate the
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returned products to these options so as to maximize expected profits. To model this disposition

problem we make a number of assumptions, some of which are specific to our remanufacturing

environment, that we discuss below.

Assumption 1 The arrival of returned units is exogenous to the decision maker.

There are cases where the decision maker in charge of making the disposition decision can

influence the timing and quantity of returned units by offering a higher acquisition price (Guide

et al. 2003). In the case of IBM, however, the majority of the returned units arriving at the

remanufacturing facility are end-of-lease returns. The average age is three years from the original

manufacture of the product. Because the leases are originally written by the sales force for the new

products division, the manager in charge of handling product returns has little influence on the

volume and timing of the returned units. This scenario is common for companies that lease their

products.

Assumption 2 The prices charged for the remanufactured units are exogenous to the decision

maker’s problem and constant over the planning horizon.

Consider again the case at IBM. Because new products are also sold in the remanufactured

products’s channel (i.e., IBM’s web site), the remanufactured units are restricted from being priced

below a set percentage of the price for the new products in the same product category. This is

done to minimize the cannibalization effect of the remanufactured units on the sales of the new

units. There are also brand image concerns that limit IBM from pricing the remanufactured units

at a market clearing price. The third party vendors that purchase the unsold (after four weeks on

the web site) remanufactured units via the auction agree to sell the units in secondary markets to

minimize the cannibalization and negative brand image effects. For these reasons, the prices for

remanufactured units made available on the web site are typically set well in advance and are not

changed based on the volume or current sales rate of the remanufactured units. Thus, exogenously

determined remanufactured prices are a reasonable assumption in our context.
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Assumption 3 Remanufactured units can only be sold during a limited time period. Leftover units

at the end of this period are salvaged.

This assumption is related to the previous one. Given pricing inflexibility, a finite selling

period counterbalances product depreciation, which is substantial for electronic products, and clears

inventory.

Assumption 4 Unsatisfied demand for spare parts entails a per-unit penalty cost which is constant

over time.

This assumption is true for the majority of the spare parts. Once a product’s demand slows,

suppliers typically require a final buy for their components, so as to free valuable capacity for more

current (and higher demand) components. The firm thus makes a final buy purchase for each part

to meet warranty and contractual repair needs for the remaining life of the product. We consider

the firm’s situation after this final buy. If the firm runs out of inventory for a part during that

period, the firm must procure the part at an alternative, considerably more expensive supplier

(e.g., distributors specialized in “hard to find” components). The price of the component from

these third-party suppliers are typically constant over time.

Assumption 5 The per unit cost to remanufacture a returned unit is constant across all units.

This assumption may seem counter to the claims of other recent work, which states that reman-

ufacturing cost per unit depends on a returned unit’s quality (and it is thus not constant across

all units). Indeed, at IBM, returned units arrive with various quality levels and thus, the costs

associated with bringing the units up to the quality level of the standard configuration needed for

resale also vary. What makes this assumption reasonable in our model is the fact that IBM (and

other firms in the IT industry) only consider the highest quality returns for remanufacturing. A

laptop with a cracked external case, for example, is too costly to remanufacture and is thus screened

out after an initial inspection. Therefore, all units considered for remanufacturing have roughly the

same quality level and, thus, the same per unit cost. In other industries where remanufacturing
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is more labor intensive, and there are more wearable mechanical components, this assumption is

not likely to hold. Instead, total remanufacturing cost should be convex increasing in the quantity

(Ferguson et al. 2008). Our analysis concerns the returns that qualify for remanufacturing in terms

of their quality. There may be additional lower quality returns that are too expensive to profitably

remanufacture but can still be used for parts harvesting. We consider the demand for parts net of

this inflow.

3.2 Single Period Analysis

Table 1: Model Notation

Decision Variables

Qr number of products to be remanufactured

Qd number of products to be dismantled

Random Variables

R number of products returned ∼ FR
Dr demand for remanufactured products ∼ Fr
Di
d demand for part i from dismantling ∼ F id, with mean µi

Parameters

ai number of parts of type i per returned unit

cr unit remanufacturing cost

cd unit dismantling cost

pr unit sales price for remanufactured product

πi penalty of not meeting demand for part i

v unit salvage value for remanufactured unit not sold

We begin our analysis with a single period model. Table 1 lists our notation. Using the

assumptions outlined above, the disposition problem can then be formalized as follows. At the

beginning of the period, the firm receives R returns. Of these, the firm decides upon the number

of units to be remanufactured Qr, and the number of units to be dismantled Qd. The remainder

units, R − Qr − Qd, are scrapped at a cost normalized to zero. Remanufactured returns that are

not sold are salvaged at a unit value of v. Demand for part i that is not met is assessed a unit

penalty cost πi, which is the (higher) cost of obtaining the part through an alternative supplier.
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Figure 1: Basic Single Period Model

This setting is illustrated in Figure 1. The firm maximizes its one-period expected profit Π:

max
Qr+Qd≤R

Π = E

[
(pr − v) min{Dr, Qr}+ (v − cr)Qr −

∑
i

πi(Di
d −min{Di

d, aiQd})

]
− cdQd. (1)

Considering that E[min{D,Q}] = Q−
∫ Q

0 F (u)du, where F (·) is the cdf of D, (1) becomes:

max
Qr+Qd≤R

Π = (pr − v)
(
Qr −

∫ Qr

0
Fr(u)du

)
+ (v − cr)Qr

−
∑
i

[
πiµi − πi

(
aiQd −

∫ aiQd

0
F id(u)du

)]
− cdQd. (2)

The optimal solution of this problem is described in Lemma 1 below:

Lemma 1 Let

Πd(Q) =
∑
i

πiai
(
1− F id(aiQ)

)
− cd

Πr(Q) = (pr − v) (1− Fr(Q)) + v − cr.

Denote by Q̃d, and Q̃r the solutions to Πd(Q) = 0 and Πr(Q) = 0, respectively. Further, denote by

Q̂d, the solution to Πd(Q) = Πr(R−Q). Then, the optimal solution to the disposition problem (2)

is

(Q∗d, Q
∗
r) =


(min{R, Q̃d}, 0) if Πd(R) > Πr(0),

(0,min{R, Q̃r}) if Πd(0) < Πr(R),

(min{Q̃d, Q̂d},min{Q̃r, R− Q̂d}) else .
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Figure 2: Structure of the Optimal Disposition Policy

In essence, Lemma 1 indicates that if there are enough returns, the firm can satisfy demand

for dismantling and remanufacturing at the levels Q̃d and Q̃r, respectively, that set the marginal

profit of dismantling and remanufacturing equal to zero. Otherwise, the firm sets the optimal

level of dismantling such that the marginal profit of dismantling is equal to the marginal profit of

remanufacturing.

Figure 2 illustrates this optimal disposition policy. As in traditional revenue management

problems, the optimal decision is determined by the expected marginal contributions, which is

intuitive. Unlike in the traditional case however, the optimal decision is not a critical-level policy,

in which the quantity available for the low-value channel equals the amount exceeding a certain

threshold. This is due to the fact that in the disposition problem, demand in both channels is

uncertain.

To illustrate this effect, we consider the special case that demand for parts is deterministic, and

equal across parts. Corollary 1 shows that the optimal disposition policy is a critical-level policy

in this case.

Corollary 1 Assume that Di
d = dd w.p. 1, for all i. Let π =

∑
i aiπ

i and assume that π− cd > 0.

Then the optimal remanufacturing and dismantling quantities satisfy:
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(Q∗d, Q
∗
r) =

 (R−min{R, Q̌r},min{R, Q̌r}) if R ≤ dd + Q̌r,

(dd,min{Q̃r, R− dd}) else ,

where Q̌r = F−1
r

(
1− cr−v−π+cd

pr−v

)
and Q̃r is as defined in Lemma 1.

As in the general case, the firm determines the optimal amounts of remanufacturing and dismantling

by comparing the expected marginal profits of both options. In this deterministic case, however,

the marginal profit of dismantling is constant and equal to π − cd, for a quantity up to dd. Q̌r

denotes the remanufacturing quantity for which the expected marginal profit equals the marginal

dismantling profit. Note that Q̌r is independent of R and is obtained as a newsvendor solution.

This is the amount which is protected for the “high-margin customers”, i.e. for remanufacturing.

Any returns in excess of this quantity are available for dismantling, up to a maximum quantity of

dd. Any remaining returns will again be remanufactured, as long as the expected marginal profit

remains positive.

We conclude this section be considering another special case that approximates IBM’s situation.

At IBM, the salvage value of unsold remanufactured units v is approximately equal to the remanu-

facturing cost cr. If v = cr, there exists an optimal solution where returns are either dismantled or

remanufactured (i.e., none are scrapped). The reason is because scrapping a returned unit incurs

a profit of zero; all units that are remanufactured but not sold via the website also incur a profit

of zero if v = cr. Thus, if v = cr, there is no risk in remanufacturing “extra” returns, even for very

small probabilities that they will be sold through the website. We formalize this result in Corollary

2 below.

Corollary 2 If v = cr, then there exists an optimal solution to (2) for which Q∗d +Q∗r = R.

3.3 Multi-Period Analysis

In many examples, such as at IBM, the period during which a firm offers a repair service, and

thus requires spare parts, is much longer than the period during which a returned unit can be

sold—typically many months or years versus a few weeks. Firms also typically receive multiple
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batches of returns during this service period. To capture the dynamics of this situation, we extend

our disposition model to a multi-period setting.

The periods are interconnected through the inventory level of spare parts. Any units that are

dismantled feed the parts inventory, which is used to meet demand for the parts. If demand for

parts exceeds the available inventory, the firm has to procure parts from an expensive backup

supplier, as discussed in the single-period analysis. Intuitively, the disposition decision depends on

the initial parts inventory level and thereby on the final-buy decision. We therefore include the

final-buy decision in our analysis.

We formalize the multi-period disposition problem as follows. For ease of notation we assume

that there is only one recoverable part per return, i.e. a1=1. Our results extend to the more

general case but the notation becomes cumbersome. We consider a planning horizon of T periods.

Periods are numbered backwards, such that period t indicates there are t periods until the end of

the planning horizon. At the beginning of period t, the firm observes It, the starting inventory for

spare parts, and Rt, the incoming returns in that period. The firm then decides upon the number

of returns to remanufacture Qr,t and to dismantle Qd,t. Demand for remanufactured units Dr,t

and for spare parts Dd,t is realized. Demand for remanufactured products not met is lost; unsold

remanufactured products are salvaged at a unit value v. Demand for spare parts not met from

inventory is met through an alternative supplier at a cost π per unit; left over inventory for spare

parts is carried over to period t − 1 at a holding cost of h per unit. Any left over spare parts at

time t = 0 have zero salvage value.

At the start of the planning horizon T , the firm makes a final-buy decision, at a cost of c per

part, that brings its inventory of spare parts to IT . The firm aims to maximize expected discounted

profits through the planning horizon, given a one-period discount factor α.

This problem can be formulated as a finite-horizon Markov decision process (MDP) as follows.
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The state variable is It, the actions are Qd,t and Qr,t, and the one period profit for t ≥ 1 is:

Πt(It, Qd,t, Qr,t) = (pr − v)
(
Qr,t −

∫ Qr,t

0
Fr(u)du

)
+ (v − cr)Qr,t

−cdQd,t − πµd + π(It +Qd,t)− (h+ π)
∫ (It+Qd,t)

0
Fd(u)du. (3)

The state transition is defined by It−1 = (It +Qd,t −Dd,t)+. For It ≥ 0, the Bellman recursion of

this MDP therefore reads:

Vt(It) = ERt

[
max

Qd,t+Qr,t≤Rt

(
Πt(It, Qd,t, Qr,t) + α

∫ ∞
0

Vt−1((It +Qd,t − u)+)fd(u)du
)]

, (4)

with boundary condition V0 ≡ 0. Recursion (4) provides the disposition decision in each period,

given a starting value for inventory. The final buy decision is made at the beginning of period T ,

and thus

V ∗T = max
IT
{−cIT + VT (IT )}. (5)

The solution of the above MDP has a similar structure and interpretation as in the single-period

case. The marginal contributions of both disposition alternatives drive the allocation decision.

What is different here is that one also has to take into account the impact on future periods

through the resulting inventory level. In addition, the interplay between disposition and final-buy

adds another layer to the problem. The essential property that drives the structure of the optimal

policy is concavity of the value function in the inventory state variable. We summarize this result

in the following theorem

Theorem 1 For any t ≥ 1 the MDP defined in (3) and (4) satisfies the following properties:

(i) Vt(I) is concave in I.

(ii) Wt(It, Qd,t, Qr,t) := Πt(It, Qd,t, Qr,t) + α
∫∞

0 Vt−1((It + Qd,t − u)+)fd(u)du is jointly concave

in It, Qd,t and Qr,t.

(iii) Let

Πd,t(I,Q) = −(h+ π)Fd(I +Q) + α

∫ I+Q

0
V ′t−1(I +Q− u)fd(u)du− cd + π (6)

Πr(Q) = (pr − v) (1− Fr(Q))) + v − cr, (7)
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where V ′t is the first-order derivative of Vt. Denote by Q̃d,t, and Q̃r,t, respectively, the solutions

to Πd,t(It, Q̃d,t) = 0 and Πr(Q̃r,t) = 0. Further, denote by Q̂d,t, the solution to Πd,t(It, Q̂d,t) =

Πr(R− Q̂d,t). Then, the optimal solution to (4) is

(Q∗d,t, Q
∗
r,t) =


(min{R, Q̃d,t}, 0) if Πd,t(It, R) > Πr(0),

(0,min{R, Q̃r,t}) if Πd,t(It, 0) < Πr(R),

(min{Q̃d,t, Q̂d,t},min{Q̃r,t, R− Q̂d,t}) else .

(8)

The optimal disposition policy has the same structure as in the single-period case. However,

the marginal benefit of dismantling (i.e. Πd,t) now depends on the spare parts inventory level. Note

from (6) that an additional unit of inventory shifts the dismantling marginal profit curve in Figure

2 to the left by one unit. This also shifts the intersection point of both marginal profit curves to

the left, but not necessarily by a full unit. Therefore, the optimal policy is not a critical-level policy

that replenishes the parts inventory up to a certain fixed target level.

Note further that as a consequence of the concavity of VT , the optimal final-buy quantity I∗T

can be found through a simple myopic search for the maximum.

4 Numerical Results

In this section, we conduct a detailed numerical analysis to assess the performance of our revenue

management approach to product disposition and compare it to other approaches found in practice

or in the literature. Our objective is (i) to gain further insight into the characteristics of our revenue

management approach and the factors that drive it; and (ii) to determine under which conditions

our approach significantly outperforms the other policies and when, on the contrary, a simpler

heuristic will suffice.

4.1 Experimental Design

We consider a planning horizon with T = 10 periods, where each period corresponds to one month.

Returns arrive randomly in each period according to a Poisson process with the mean scaled to

µR = 10 (it may be helpful to think of one unit in this analysis as, say, 1000 units in real life). We

consider the simpler case where there is only one recoverable part per return (a1 = 1); this can be
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thought of as an “aggregate” part. We normalize the remanufactured product’s price to pr = 1000.

The unit cost of purchasing a spare part at the beginning of the planning horizon through the final

buy is c = 100, or 10% of the remanufactured product’s price; this is a realistic number based on our

discussions with IBM. The one-period discount factor is α = 0.99, corresponding to an annual cost

of capital of 12%; we have experimented with other reasonable discount factors and concluded that

they do not impact our results. Finally, we assume v = cr, which is in line with IBM’s situation.

We ran a full-factorial experimental design for the remaining parameters of our model. Each

factor in the experimental design, a parameter of the model, is explored at three levels: low,

medium and high. These levels were chosen based on observed industrial practice as justified

below. The total average demand for spare parts and remanufactured products is expressed as

a fraction 1/k of the average number of returns per period: k(µr + µd) = µR. We choose k ∈

{0.8, 1.0, 1.2}, corresponding to cases when the average returns per period are: insufficient to meet

the average total demand (k = 0.8), equal to average total demand (k = 1), and larger than

average total demand (k = 1.2). Regarding the mix of demand between remanufactured products

and spare parts, we assume the demand for spare parts in each period follows a Poisson distribution,

with its mean expressed as a fraction of the mean for remanufactured products µd
µr
∈ {0.5, 1, 2};

corresponding to reasonable low, medium and high values found in practice. We consider that

demand for remanufactured products follows a normal distribution with mean µr and a coefficient of

variation CVr ∈ {0.1, 0.4, 0.7}, corresponding to low, medium and high levels of demand variability.

Remanufacturing cost per unit relative to price cr
pr

is set at low, medium and high levels of 0.1,

0.4, and 0.7, respectively. These choices are justified as follows: Agrawal et al. (2008) report values

for cr
pr

in the range 0.05-0.20 for commercial IT equipment; Hauser and Lund (2003) report average

values of crpr
in the range 0.45-0.65 for industries where remanufacturing is more labor intensive (and

thus remanufacturing is more expensive). Dismantling cost cd should be lower than c, otherwise

dismantling for spare parts is not economically attractive and our problem is not interesting. We

therefore varied cd
c over a wide range between 0.1 and 0.7 to reflect the possible values found in

practice. Similarly, the cost of meeting demand for spare parts with the alternative supplier π
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should be higher than c, otherwise the problem is not interesting. We thus choose values of π
c in

the range 1.5-4.5, to reflect a wide range of scenarios. Finally, considering that a period in our

study is one month, h
c can be thought of as the monthly holding cost on a percentage basis. We

choose values between 0.01 and 0.10 to reflect annual holding costs between 12% and 120%. The

high values reflect the additional cost of obsolescence and price decay common in many industries.

Thus, the low values are common for products with little value depreciation—around 0.25% per

week—such as power tools, whereas the high values correspond to products with very high value

decay—around 2% per week—found in some electronic components (Guide et al. 2007).

Our experimental design is summarized in Table 2. There are 37 = 2, 187 experimental cells.

This experimental setting is used to study several different facets of our problem, as detailed in the

next subsections.

Table 2: Experimental Design for Numerical Study (pr = 1000,c = 100, α = 0.99, µR = 10)

Factor description Symbol Factor Levels

Total avg. demand as a fraction of avg. returns k 0.8, 1.0, 1.2

Mean demand for parts relative to remanuf. products µd
µr

0.5, 1.0, 2.0

CV of demand for remanufactured products CVr 0.1, 0.4, 0.7

Relative remanufacturing cost per unit cr
pr

0.1, 0.4, 0.7

Relative dismantling cost cd
c 0.1, 0.4, 0.7

Relative penalty cost for spare parts (alternative vs. regular) π
c 1.5, 3.0, 4.5

Holding cost per month (%) 100hc 1, 5, 10

4.2 Revenue-Management Disposition Policy

We first highlight a few characteristics of the optimal disposition policy. The optimal policy allo-

cates, on average, 28% of the returns to dismantling, with a standard deviation of 16%, a minimum

of 0.1%, and a 95th percentile of 53%. Since v = cr, the remaining returns are remanufactured.

Thus, the share of dismantling is substantial, even though its unit margin π − cd amounts to only

53%, on average, of the remanufacturing margin pr− cr. This underlines the importance of looking

beyond unit margins in the disposition decision. We further elaborate on this point in the next
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subsection.
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Figure 3: Fraction of Returns Dismantled for Different Levels of Parameter Values

Figure 3 highlights the impact of the various experimental factors on the optimal share of

dismantling. For each factor level (e.g., CVr = 0.1), the graph displays the average value of the

share of dismantling in the optimal disposition across all respective experimental cells. We observe

that the ratio between expected demand for parts and demand for remanufacturing, µd
µr

, is the main

driver. This is not surprising, since one would expect the share of returns allocated to a specific

channel to increase with the demand in that channel (ceteris paribus). Among the remaining

experimental factors, the CV of demand for remanufacturing appears to have the strongest impact,

and its effect on the share of dismantling is negative. With a higher CV of demand, the risk of losing

sales in the higher-margin remanufacturing channel increases, which motivates a higher allocation

of returns to that channel.

To formalize and quantify these relationships, we performed six single linear regressions. In each

regression, the dependent variable is the fraction of returns dismantled, the independent variable

is the experimental factor of interest, and there are 729 observations. The value of R2 in each

regression provides a simple quantifiable metric for the impact of each factor (Wagner 1995). We

obtained R2 values of 65% and 14% for µd
µr

and CV, respectively. All other R2 values are smaller

than 8%

In addition to the ratio between remanufacturing and dismantling volumes, the fractions of

parts demand served through dismantling and the final buy, respectively, also characterizes the
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optimal policy. The final buy largely determines the demand that is left to fill by dismantling. In

our experiments, we found that the optimal policy meets, on average, 54% of demand for spare parts

through dismantling, with a standard deviation of 43%, a minimum of 0.2%, and a 95th percentile

of 94%. Thus, the fraction of demand covered by dismantling is relatively evenly distributed and

the variation is large.

Figure 4 again highlights the impact of the experimental parameters on these outcomes. In

addition to the factors identified in Figure 3, the overall volume of returns k appears as an obvious

driver—the optimal policy dismantles more when more returns are available. Regression analysis

yielded R2 values of 45%, 22%, and 14% for k, CVr, and µd
µr

, respectively, and values smaller than

6% for all remaining factors.

The results in Figure 4 also give an indication of the optimal final-buy quantities in the different

scenarios. The demand volume not served through dismantling essentially has to be covered by the

final buy. In addition, we also have the emergency supply, but this volume is small, in general.

Fraction of Demand from Dismantling

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

LOW MED HIGHFr
ac
ti
on

 o
f S
pa

re
 P
ar
t 
D
em

an
d 
fr
om

 D
is
m
an

tl
in
g

k

md/mr

CVr

cr

cd

pi

h

Figure 4: Fraction of Parts Demand Met from Dismantling for Different Levels of Parameter Values

4.3 Value of Dismantling

We now proceed to compare our revenue-management based disposition policy with other policies.

As discussed in Sections 1 and 2, a common approach in practice is to rank dispositions by unit

margin and to allocate returns depending on their quality condition to the highest-ranked option

that is technically feasible. In our case, this would mean remanufacturing all returned units. (Recall
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that we only consider high-quality returns.) Demand for parts is then met solely with inventory

from the final buy plus potential emergency supplies.

We refer to this policy as ‘no dismantling’ and denote its expected discounted profit through

the planning horizon by V ND
T ; this value is found by solving the MDP (4)-(5) with Qd,t = 0 and

Qrt = R for all t (in our experiments, v = cr). Thus, the only decision in the no-dismantling

case is the quantity of the final buy INDT at time t = T . We define the value of dismantling as

∆ND(V ∗) = 100%V ∗
T−V

ND
T

V ∗
T

, which is the profit deterioration from not using the dismantling option.

Using the experimental design of Table 2, the mean value of dismantling is 20% (median 10%),

with a standard deviation of 30%, a minimum value of 0% and a 95th percentile of 85%. Thus, the

value of dismantling is significant, and varies widely across our experimental design. This is in line

with the results of Section 4.2: Not only does the optimal policy recommend dismantling a large

fraction of the returns for spare parts, it also achieves significant financial benefits by doing so.

The differences between the policies regarding dismantling volumes are also mirrored in the

corresponding final-buy quantities. Define −∆ND(IT ) as the relative inventory increase at the

beginning of planning horizon when moving from the optimal policy to a no-dismantling policy.

The median inventory increase is 127%, with a mean value of 290%. This drastically highlights one

of the tangible benefits of dismantling, which is a very significant reduction in inventory held for

spare parts. Note that the distribution of ∆ND(IT ) is highly right skewed due to the many cases

where the firm carries little or no inventory of spare parts in the optimal policy, due to a relative

abundance of returns available for dismantling.

To gain insight into the large variations in the value of dismantling, we again compute averages

for each factor level. The results are shown in Figure 5. As in Figure 3, the ratio between

µd/µr turns out to have the strongest impact (R2=30%). Thus, relatively higher expected demand

for parts results in a higher dismantling volume and also in a higher financial contribution of

dismantling. In addition, the remanufacturing cost also strongly influences the value of dismantling

(R2=21%). Higher remanufacturing costs reduces the margin of remanufacturing and therefore

makes dismantling more attractive.
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Figure 5: Value of Dismantling for Different Levels of Parameter Values

The remaining experimental factors appear to have a lower impact in Figure 5 (all R2 < 3%).

Qualitatively, we observe that the value of dismantling increases for higher holding cost h
c , higher

return volume k, higher penalty cost π
c , lower variability of demand for remanufactured products

CVr, and lower dismantling cost cd
c . These outcomes largely match those regarding the dismantling

fraction in Figure 3. It is worth noting the effect of the holding cost rate. A higher value of h
c

renders the final buy of spare parts more expensive and therefore makes dismantling a relatively

more attractive source for spare parts. While Figure 3 shows that this effect results in only a

relatively minor increase of the dismantling volume, Figure 5 shows that the financial value of

dismantling increases substantially.

To summarize, ignoring the dismantling option reduces profit by an average of 20% (median

value of 10%), and inflates spare parts inventory by a median value of 127%. Further, the average

value of dismantling can be significantly higher if the demand for spare parts is high (43%), the

remanufacturing cost is high (41%), and the holding cost is high (26%). Note that these outcomes

are based on the assumption of riskless remanufacturing (i.e. v = cr). A lower salvage value of

remanufactured units is likely to strengthen the importance of dismantling even further.
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4.4 Value of Optimal Allocation

We complement the results of the previous section by evaluating another common heuristic. In

the case of shortages, many firms allocate available supply to customer orders proportional to their

order volumes. This practice has been widely discussed in studies on the bullwhip effect (see e.g.

Lee et al., 1997). Inderfurth et al. (2001) apply this linear allocation rule to the disposition decision

in a closed-loop supply chain.

We assess the performance of such a linear allocation through a disposition policy that allocates

returns to remanufacturing and dismantling proportionally to their respective mean demands, net

of inventory. Specifically, given R returns at the beginning of period t, the firm sets Qr,t =

µr
µr+max(µd−It/t,0)R and Qd,t = R−Qr,t. The second term in the denominator of Qr,t is the expected

demand for parts net of inventory. Denote the expected discounted profit through the planning

horizon for using this mean demand allocation (MDA) heuristic by VMDA
T . Further denote the

value of optimal allocation by ∆MDA(V ∗) = 100%V ∗
T−V

MDA
T

V ∗
T

, which is the profit deterioration of

using the MDA heuristic relative to the optimal policy.

Using the experimental design of Table 2, the average value of optimal allocation ∆MDA(V ∗)

is 3.8%, with a median value of 3%, a standard deviation of 3.6%, a minimum value of 0.1% and a

95th percentile of 9.2%. Thus, a simple allocation policy based on mean demands net of inventory

performs reasonably well in many cases. This is good news from a managerial perspective, since

this allocation rule is much simpler than the optimal allocation, which is based on detailed dynamic

optimization, even for the case of a single recoverable part per return.

As for the ND policy, we also consider the effect of the MDA rule on inventories. Define

∆MDA(IT ) to be the increase of the optimal final buy, and thus of the initial inventory of parts,

by using the MDA heuristic vis-a-vis the optimal disposition. The average inventory increase

∆MDA(IT ) is 44%, and the median increase is 22%, which is a significant value but not nearly as

high as in the ND case.

At first sight, it may be surprising that the MDA rule implies higher inventories than the optimal

policy. The reason is that the MDA rule does not consider cost effects in its allocation. In the case
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of low inventories, this may result in expensive out-of-stocks of parts. To prevent this situation,

the MDA uses a larger final buy, but at the expense of higher inventories. Consequently, the MDA

policy dismantles 16% less returns on average than the optimal policy, with a 95th percentile of

60%. We note, however, that in 21% of the scenarios the MDA policy sets lower inventories and

dismantles more than the optimal policy. These are cases where the final buy for the optimal policy

is high: i.e. scarce returns, remanufacturing economically more attractive relative to dismantling,

and low holding costs.
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Figure 6: Value of Optimal Allocation for Different Levels of Parameter Values

Similar to the previous sections, we also performed an analysis to gain insights into which

factors most influence the value of optimal allocation; the results are shown in Figure 6. The same

factors as in the ND case stand out in explaining ∆MDA(V ∗): mean parts demand relative to

remanufacturing µd
µr

(R2=19%), remanufacturing cost cr
c (R2=10%), and to a less extent holding

cost h
c (R2=4%).

To summarize, a simple linear allocation of returns based on mean demands (net of inventory)

performs relatively well, with an optimality gap of 3.8% on average. This supports the practical

use of this rule. We note, however, that the performance of the MDA rule is dependent on an

appropriate adjustment of the final buy. This turns the disposition problem into an inventory

management problem. We address this interplay in more detail in the following subsection.
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4.5 Value of Coordination between Final Buy and Dismantling

Our optimal policy assumes the final buy quantity I∗T takes into account the forecast for future

returns, along with an optimal allocation of returns between dismantling and remanufacturing. This

assumes a perfect coordination between a purchasing manager, who is responsible for the supply

of a particular part, and the reverse supply chain manager, who is responsible for forecasting and

processing returns. It has been our experience that in many firms (e.g., IBM, HP, Pitney Bowes)

these two managers typically do not belong to the same organizational unit. In particular, final

buy decisions for parts are frequently made based on a forecast of demand during the remaining

lifetime and service period, without taking into account the potential supply of parts from used

units (Cattani and Souza 2003). Thus, the “perfect coordination” assumed by the optimal policy

may be unrealistic. We now investigate the value of coordination: What is the profit deterioration

of having the final buy decision made without consideration of a possible supply of parts from

dismantling in the future? The final buy quantity without consideration of future dismantling is

INDT . Once that decision is made, however, the firm makes the optimal allocation decision between

dismantling and remanufacturing as returns arrive. Thus, the value of dismantling is given by

∆NC(V ∗) = 100%V ∗
T (I∗T )−V ∗

T (IND
T )

V ∗
T (I∗T ) .

Using the experimental design of Table 2, the average value of coordination ∆NC(V ∗) is 14.3%,

with a median value of 5.7%, a standard deviation of 23%, a minimum value of 0% and a 95th

percentile of 67%. Thus, accounting for the dismantling option in the final buy has the potential

to significantly improve profits. An analysis similar to the one in Section 4.3 reveals a very similar

picture to that of Figure 5, so we omit it for brevity. Thus, the drivers of the value of coordination

are the same as those of the value of dismantling: mean part demand relative to remanufacturing

demand µd
µR

, the remanufacturing cost per unit cr
pr

, and to a less extent h
c .

To assess these results it is useful to put the value of coordination into another perspective. To

this end, we express the value of coordination as the fraction of the dismantling benefit that can be

attributed to coordination. This fraction can be expressed as ∆̃NC(V ∗) = 100% V ∗
T (I∗T )−V ∗

T (IND
T )

V ∗
T (I∗T )−V ND

T (IND
T )

.

The quantity in the numerator is the dismantling benefit attributable to coordination, whereas
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the denominator represents the total dismantling benefit. The average value of ∆̃NC(V ∗) is 61%,

indicating that 61% of the dismantling benefit can be attributed to coordination between the final

buy decision and the processing of returns at the reverse supply chain. Put differently, only 39%

of the dismantling benefit can be achieved without coordination between the forward and reverse

chains.

An analysis of the factors driving this number is shown in Figure 7; it can be seen that all param-

eters are roughly equally important in explaining this result, so that the fraction of the dismantling

benefit achieved through coordination is high in most scenarios. This result strongly points to the

need for coordinating reverse and forward supply chains to achieve maximal profitability.
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Figure 7: Value of Coordination for Different Levels of Parameter Values

5 Conclusion and Managerial Implications

In this paper, we propose a revenue management perspective to the problem of making optimal

disposition decisions for product returns in a closed-loop supply chain. Motivated by a case study

of IBM, we consider two disposition alternatives, namely remanufacturing and dismantling for

spare parts. We describe how disposition decisions for product returns have typically been made

based solely on unit profit margins. We argue that the disposition problem is actually a revenue-

management problem and that the optimal decision should balance unit margins and demand
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uncertainty. The problem resembles the classical airline revenue management problem of allocating

seats between the uncertain demand of future higher margin customers with the demand from the

lower margin, but more certain, customers. A key difference is that in our scenario, the “seats”—

product returns—are uncertain each period, and there are alternative means of meeting demand for

the low margin alternative (spare parts), which involve buying a large quantity of parts inventory

(final-buy) in advance of the allocation decisions.

We present a single and a multi-period optimization model of the disposition problem. The

single period model provides insights into the nature of the allocation decision for a given number

of returns. We show that the optimal allocation balances the expected marginal profits of remanu-

facturing and dismantling. Our multi-period model links the disposition of returns to the final buy

decision for spare parts at the beginning of the planning horizon, and takes into account uncertainty

in the distribution of returns. We show that the optimal solution has the same structure as the

single period model, although its computation is more complex.

We then study, numerically, the expected profit increase of using our revenue management

approach versus the current practice of ranking disposition alternatives by unit margins. We

show that the value of dismantling is significant with a 20% profit increase on average, despite its

lower unit margins which amounts to 53% of the remanufacturing margin, on average. We further

show that about 60% of the dismantling benefits can be attributed to the coordination between the

forward chain (final-buy decision) and the reverse chain (optimal allocation of returns), quantifying

the importance of integrating the decision making of the forward and reverse supply chains. Because

of the computational complexity of the optimal policy, we show that in an appropriately coordinated

chain, a simple allocation heuristic based on the mean demand rates performs reasonably well,

yielding a moderate profit decrease of 4% on average compared to the optimal allocation solution.

Our results have clear implications for the management of closed-loop supply chains. They

show that a revenue-management approach to the disposition of returns can significantly enhance

profitability. Incorporating additional disposition options can be very valuable, even if they have

lower unit margins than current options. This should encourage managers to explore new product
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recovery alternatives. Harvesting of spare parts can be a particularly attractive option, given the

relatively long life cycles of parts. However, careful coordination between the forward and reverse

supply chain decisions is indispensable for reaping these benefits. In our experience, few companies

to date have reached this level of integration. Our message is that the current reactive approach

to the reverse supply chain misses out on significant opportunities.

Our analysis makes a number of assumptions specific to the recovery system considered here. To

further the insight into the role of the disposition decision in closed-loop supply chains, extensions to

other settings would be valuable. This includes the study of dispositions other than remanufacturing

and dismantling. It also includes the incorporation of flexible pricing in the disposition decision.

Another very relevant question for future research is how to achieve coordination concerning the

disposition of returns when decisions pertaining to the forward and the reverse supply chain are

taken by different organizational units.
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Appendix A: Proofs

Proof of Lemma 1.

The objective function (2) is jointly concave in Qr and Qd because ∂2Π
∂Q2

r
= −(pr − v)fr(Qr) ≤ 0,

∂2Π
∂Q2

d
= −

∑
i p
i
da

2
i f

i
d(aiQd) ≤ 0, and ∂2Π

∂Qd∂Qr
= 0; thus the Hessian is negative definite. Denoting by

L(Qd, Qr, λR, λd, λr) the Lagrangian of this problem, then the KKT conditions ∂L
∂Qi

= 0, i ∈ {r, d};

λR(R − Qr − Qd) = 0, λdQd = 0, λrQr = 0 and λR, λd, λr ≥ 0 are necessary and sufficient for

optimality, because the constraint set is a convex set (both variables Qr and Qd are bounded by R

and 0, and there is only a linear constraint). The Lagrangian for this problem is:

L(Qd, Qr, λR, λd, λr) = (pr − v)
(
Qr −

∫ Qr

0
Fr(u)du

)
+ (v − cr)Qr

−
∑
i

πi
(
µi − aiQd +

∫ aiQd

0
Fd(u)du

)
− cdQd

+λR(R−Qr −Qd) + λdQd + λrQr.
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The first order conditions result in

∂L

∂Qr
= −λR + λr + v − cr + (pr − v) (1− Fr(Qr)) = 0 (9)

∂L

∂Qd
= −λR + λd − cd +

∑
i

πiai
(
1− F id(aiQd)

)
= 0 (10)

Isolating λR from (9) and (10), we obtain:

λr + (pr − v) (1− Fr(Qr)) + v − cr = λd +
∑
i

πiai
(
1− F id(aiQd)

)
− cd. (11)

We have two cases to consider:

1. The constraint Qd +Qr = R is binding. In this case, Qr = R−Qd, and thus (11) becomes:

(pr − v) (1− Fr(R−Qd)) + v − cr −
∑
i

πiai
(
1− F id(ai(Qd))

)
− cd = λr − λd. (12)

If the lefthand side of (12) is strictly positive, then λr > 0 and, by complementary slackness,

Qr = 0 and thus Qd = R. Conversely, a strictly negative lefthand side of (12) implies Qr = R

and Qd = 0. Finally, if both Qd and Qr are strictly positive, then λr = λd = 0 and Q̂d defined

in Lemma 1 solves (12). This solution can be found using a simple line-search algorithm.

2. The constraint Qd+Qr = R is not binding. In this case, by complementary slackness, λR = 0.

For λr = 0, Q̃r defined in Lemma 1 solves (9), otherwise Qr = 0. The same argument applies

for Qd.

Proof of Corollary 1

The result follows as a special case of Lemma 1. For deterministic and equal demand for parts, we

have Πd(Q) = π − cd for Q ≤ dd and 0 otherwise. Therefore Q̃d = dd > 0 and Q̌r = R− Q̂d.

Proof of Corollary 2

For v = cr the expected profit (2) is non-decreasing in Qr. For any solution (Q∗d, Q
∗
r) with Q∗r+Q∗d <

R the disposition decision (Q∗d, R−Q∗d) is therefore also optimal.

Proof of Theorem 1

We show Properties (i)-(iii) by induction. For t = 0 (i) holds since V0 ≡ 0 by definition. Assume now

that (i) holds for t− 1. We first show that this implies Properties (ii) and (iii) for t. Subsequently,

we show that (i) also holds for t.

32



We have ∂2Πt

∂Q2
d,t

= ∂2Πt

∂I2t
= ∂2Πt

∂Qd,t∂It
= −(h + π)fdt(It + Qd,t) ≤ 0, ∂2Πt

∂Q2
r,t

= −(pr − v)frt ≤ 0, and
∂2Πt

∂Qd,tQr,t
= ∂2Πt

∂It∂Qr,t
= 0. Therefore, the current-period expected profit r is jointly concave in It, Qd,t

and Qr,t. The expected discounted future profits are independent of Qr,t and jointly concave in It

and Qd,t due to the concavity of Vt−1. This shows (ii) for t.

The proof of (iii) is identical to the one of Lemma 1, due to the concavity property established

in (ii). Note that Πdt(I,Q) = ∂Wt
∂Qd,t

(I,Q, c) and Πr = ∂Wt
∂Qr,t

(I, c, R−Q) for any arbitrary value of c.

It remains to be shown that (i) holds for t. It suffices to show that concavity holds for any

given value of Rt, which implies that it also holds in expectation. For given Rt the concavity of

maxQd,t+Qr,t≤RWt(I,Qd,t, Qr,t) in I follows from the concavity of Wt shown in (ii) and from the

fact that the set of feasible actions Qd,t and Qr,t is convex and independent of I.
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