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Abstract

In this paper we deal with a common problem found in the operations of security and

preventive/corrective maintenance services: that of routing a number of mobile resources to

serve foreseen and unforeseen tasks during a shift. We de�ne the (Mobile Re-Allocation Problem)

MRAP as the problem of devising a routing strategy to maximize the expected weighted number

of tasks served on time. For obtaining a solution to the MRAP, we propose to solve successively

a multi-objective optimization problem called the stochastic Team Orienteering Problem with

Multiple Time Windows (s-TOP-MTW) so as to consider information about known tasks and

the arrival process of new unforeseen tasks. Solving successively the s-TOP-MTW we �nd that

considering information about the arrival process of new unforeseen tasks may aid in maximizing

the expected proportion of tasks accomplished on time.
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Routing, location, reliability, distributed services.

1



1 Introduction

The domain of geographically distributed security services and preventive/ corrective mainte-

nance services involves the task of routing mobile resources over a number of sites so that various

services can be performed. While the clients, as the recipients of the services, are mainly con-

cerned with receiving timely and reliable services so that their security/maintenance problems

are solved e¤ectively, the operational managers of the service providers are mainly concerned

with o¤ering competitive and pro�table services. In a competitive environment, where the �rms

choose to di¤erentiate themselves from competitors by focusing on service quality, rather than

on costs, responsiveness is one of the most important quality dimensions of service operations

as recognized in the "Gap model" by Zeithaml et al. (1990).

One of the measurable dimensions of quality of service is that of ful�lling contract speci�ca-

tions. Given that the clients�main concern is that their security/maintenance problem is being

dealt with, the main requirement speci�ed in contracts to be ful�lled in the service operations

is that the services must be started on site within certain time windows (Larco, 2007).

The determination of these types of time windows depends on the type of service/task to

be performed. We distinguish between two kinds of tasks: foreseen tasks which are known in

advance at the start of a shift and unforeseen tasks which are only known at the time an alarm

is triggered. While foreseen tasks involve routine activities such as veri�cation of alarm systems

or preventive maintenance, unforeseen tasks are emergency related activities addressing critical

situations such as a robbery or a failure of an important piece of equipment (Larco et al, 2006).

As a result, in the case of foreseen tasks, the latest allowable starting times are speci�ed in

advance at the request of the client, whereas in the case of unforeseen tasks, these are de�ned

by a given standard response-time which is a service-guarantee that can be easily understood
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(for a discussion on service guarantees see Hart, 1988).

Operational managers and/or dispatchers have the task of ensuring that the routing decisions,

which are taken before the start of a shift, and the re-routing decisions are such that they

allow servicing as many foreseen and unforeseen tasks as possible within the speci�ed time-

windows and within the shift�s length. Although we acknowledge that there are several sources

of uncertainty in the distributed services domain, such as non-deterministic travelling times or

task service durations, we restrict our study in this paper to the main source of uncertainty: that

of the release of unforeseen tasks. Hence, in this paper we study the challenge of (re-)routing

when dealing with (un)foreseen tasks so as to meet speci�cations of service contracts and o¤er

reliable and timely services.

To this end, our aim is to solve an incomplete information problem, which we call the

Mobile Re-allocation Problem (MRAP). In contrast to other models of geographically distributed

services where the goal is to minimize response times (see Weintraub et al., 1999) or minimize

costs by minimizing total travel distance (see Johns, 1995), in the MRAP, our goal is to maximize

the expected (weighted1) number of tasks that are serviced by mobile resources within the

speci�ed contractual deadlines.

To solve the MRAP, we propose to solve successively a static multi-criteria problem which

we call the stochastic Team Orienteering Problem with Multiple Time Windows (s-TOP-MTW).

The �rst criterion makes use of complete information of known tasks while the second criterion

makes use of incomplete information about the arrival process of new unforeseen tasks. The

�rst criterion is to serve as many known weighted tasks as possible within given time-windows

and a given shift using a variant of the Team Orienteering Problem (Golden et al. 1996). The

second criterion, recognizes that given that the arrival time of unforeseen tasks is not known

a-priori, it is important to know the risk that a certain set of routes of mobile resources implies.

To evaluate such a risk, we extend Daskin�s Maximum Expected Covering Location Problem

1The weights provide an indication of the relative task�s importance.
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(MEXCLP) (Daskin, 1983) where it is possible to identify which sites are covered so as to service

potential requests of unforeseen tasks on time.

In the original version of the MEXCLP, the problem is applied to static coverage situations

where emergency vehicles (e.g. ambulances) return to their bases immediately after serving every

unforeseen task, hence to identify which sites are covered only the �xed location of the base is

relevant. In contrast, the extended MEXCLP version we propose is applied to dynamic coverage

situations where mobile resources (such as security guards or service engineers) have to modify

their routes to accommodate new unforeseen tasks without having to return to the base implying

that the location of each mobile resource at each point in time is relevant for identifying the sites

been covered and must be updated. The location of mobile resources can now be identi�ed using

the tracking capabilities of GPS that is already been used in the geographical distributed services

domain. By incorporating the proposed extended MECXLP model as the second criterion, we

are interested in investigating the added value of the information that the arrival process can

bring for the design of more reliable routes. To our knowledge, there is no available literature

that deals with the combination of routing and location models where the location refers not to

static bases or sites but to the mobile resources themselves.

This paper is organized as follows. In Section 2, we describe the MRAP and its assumptions.

In Section 3, we outline the multi-criteria problem that we refer to as the stochastic-Team

Orienteering Problem with Multiple Time Windows (s-TOP-MTW). In Section 4, we provide

an algorithm to solve the s-TOP-MTW problem. In Section 5, we present two experiments

where we �rst investigate the relationship between routing and coverage considerations and

then we test through simulation whether or not including risk-coverage considerations yields

better results for solving the MRAP.
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2 The Mobile Re-allocation Problem (MRAP)

The Mobile Re-allocation Problem is a dynamic problem with incomplete information and as

such requires the use of schedules that are re-evaluated each time new information is available.

Thus, in the MRAP, we start the shift with a schedule for foreseen tasks and then this schedule

can be modi�ed at any moment as soon as new (unforeseen) tasks become available. In the

following, we describe the dynamic characteristics of the MRAP and then provide a precise

de�nition of the MRAP. To conclude, we illustrate the dynamics of the MRAP with an example.

2.1 General Assumptions

We assume that the travelling times between sites are deterministic (the mobile resources travel

�xed distances at a constant c speed) and that the durations of both foreseen and unforeseen

tasks are known beforehand. Furthermore, we abstract from road networks and assume that all

sites may be reached from any other location.

On the other hand, we assume the problem during a shift of length TT where all the mobile

resources start at a base and have to return at the end to the base at the end of the shift.

Moreover, we assume that it is a single dispatcher who makes a schedule for every mobile

resource and that every mobile resource is able to serve any task (i.e. there is no zoning). In

this problem setting, the �xed information of the MRAP (i.e. known at any point in time) is

given by the following:

� I is the set of sites.

� K is the set of mobile resources.

� d(i1; i2) is the Euclidian distance between any pair of sites i1; i2 2 I:

� � is the system-wide standard response time indicating the time available to start serving

an unforeseen task since its release.
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� 1=� is the mean of the exponentially distributed interarrival time between unforeseen tasks.

� Pi is the probability that a given unforeseen task is at site i 2 I.

� � is the deterministic and �xed duration of any unforeseen tasks generated.

� �n is the deterministic duration of task n, when the task is of unforeseen type �n = �;

otherwise �n is a �xed value known at the start of the shift.

� TT is the total shift length.

2.2 Tasks

The services delivered by mobile resources are a series of tasks. Every task n 2 N has the

following tuple associated to it: }n = (L(n); wn; rn;�n; en; ln) where L(n) = i : i 2 I is the site

at which the task is to be performed, wn is the importance of servicing task n 2 N , rn is the

release time at which the task is known to the dispatcher and en and ln are the earliest and

latest allowable starting times respectively.

Note that the release time allows to distinguish between a foreseen and an unforeseen task.

If rn = 0 the task is of foreseen type (i.e. n 2 F ) and if rn > 0 the task is of unforeseen type

(i.e. n 2 U). The starting time windows are also derived di¤erently for each type of task. While

for foreseen tasks, en and ln are determined a-priori, for unforeseen tasks these are determined

with the following relations: en = rn and ln = rn + �. Additionally, note that �n = � for any

unforeseen task (i.e. if rn > 0) and that �n is known a-priori for any foreseen task.

However, since the MRAP is an incomplete information problem, not all the tasks of a shift

are necessarily known. If at instant j 2 J an unforeseen task arises, we de�ne TKj as the set of

known pending tasks; i.e. all foreseen and released unforeseen tasks that have not been serviced

before instant j.
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2.3 Valid Schedules

In the MRAP, the main task of a central dispatcher is that of de�ning valid schedules for each

of the mobile resources available. However, as these schedules are expected to be modi�ed each

time new unforeseen tasks are released, we need to (re-)evaluate schedules at instants j 2 J . A

valid schedule at instant j is then de�ned as follows.

De�nition 1: A valid schedule for a mobile resource k 2 K at a given evaluation instant

j 2 J , is de�ned as an ordered set of known pending tasks denoted by �(k)j � TKj to be

accomplished by the mobile resource that ful�lls the following dynamic conditions:

1. The mobile resources have a given starting position, which is the home base (common to

all mobile resources) at the start of their shift and their location at any time the route is

re-evaluated. The mobile resources must end their shift at a unique base; servicing only

tasks that allow them to return to the base before the termination of their shift at t=TT.

2. Each task included in the schedule must start to be executed within the service starting

time windows: [en; ln].

3. Once a task is executed, the mobile resource re-allocates immediately to either service

another task or return to the base. If the mobile resource arrives at a site before the

corresponding earliest allowable starting time, it is assumed that it waits just outside the

premises of the site until the earliest allowable starting time, en.

4. If a mobile resource is en-route to service an unforeseen task, such a mobile resource can

not be re-allocated to another task until it �nishes servicing the unforeseen task.

5. If a mobile resource is servicing a foreseen or an unforeseen task, such a mobile resource

can not be re-allocated to serve another task until the mobile resource �nishes servicing its

current task.
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The �rst two conditions enforce that mobile resources start servicing tasks within the spec-

i�ed time windows so that the mobile resources are able to return to the base before the end

of the shift. The third condition is used for simpli�cation purposes where a sequence of tasks

fully determines the actual position of mobile resources at given time instants. The last two

conditions are preemptive rules that guarantee that a mobile resource servicing a task is not

interrupted either while serving a task or while transferring to serve an unforeseen task so that

clients do not perceive that a mobile resource is abandoning the service of its task to serve

another task.

Given that we assume in the MRAP the time to transfer between sites is pre-determined as

the speed and distances between sites are constant, it is possible to know in advance if a released

task can be started to be serviced within given time windows. Thus, we can also assume that

tasks are not serviced if it is impossible to meet their associated time windows. Indeed, it is

often the case in real settings that a dispatcher noti�es the client when it is not possible to serve

a task on time.

2.4 Information Set

At the start of the shift and when an unforeseen task is released, updated information is available

to the dispatcher for it to generate new schedules. The information set, Ij , at evaluation instant

j 2 J , includes the updated information of the tasks available to be served as well as information

about the current situation of every mobile resource k 2 K.

Ij = (TKj ;
[
k

GL
(j)
k ;
[
k

GS
(j)
k ;

[
k

LT
(j)
k ) (1)

where:

� GL(j)k is the actual location of mobile resource k in the Euclidian space at evaluation instant

j 2 J .
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� GS(j)k identi�es the state at which a mobile resource k is at evaluation instant j 2 J such

that:

GS
(j)
k =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1 if mobile resource k is waiting to serve a foreseen task at its site.

2 if mobile resource k is currently servicing a (un)foreseen task.

3 if mobile resource k is travelling to serve a foreseen task.

4 if mobile resource k is travelling to serve an unforeseen task.

5 if mobile resource k is travelling back to the base.

� LT (j)k is the �rst time at which a dispatcher can reschedule a mobile resource k given

the current time at evaluation instant j 2 J in accordance with the conditions de�ned in

De�nition 1 .

2.5 Strategy

We de�ne a strategy as a mechanism that generates valid schedules for each mobile resource

upon the occurrence of each event (i.e. a request to serve a new unforeseen task). More formally,

by de�ning a system schedule as the collection of all valid mobile resources schedules at a given

evaluation instant j 2 J : �j =
S
k2K

�
(k)
j ; we de�ne a strategy as follows:

De�nition 2: A strategy denoted by s is a function that maps the information set at a given

evaluation instant j 2 J to a system schedule: s : Ij ! �j .

2.6 Performance measurement in the MRAP

To evaluate the quality of the schedules generated by a given strategy during the realization of

a certain shift, we introduce the concept of weighted ful�lment yield which is in-line with the

service operational managers�objective of servicing as many tasks as possible while recognizing

that not all the tasks are of equal importance.

De�nition 3: The weighted ful�lment yield, 	, is a random variable de�ned as the weighted

proportion of tasks n 2 N (weighted by wn) that are completely serviced within their time-
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Table 1: Initial data for the example considered.
Task index {Site Location} 1{a} 2{b} 3{c} 4{d} 5{e} 6{f}

X-coordinate (km) -1.0 1.0 -1.0 1.0 -1.0 1.0

Y-coordinate (km) 1.0 1.0 0.0 0.0 -1.0 -1.0

Earliest allowable starting time (hr) 2.0 1.0 1.0 5.0 0.5 2.5

Latest allowable starting time (hr) 5.0 7.0 9.5 8.5 3.5 4.5

Duration shift (hr) 12.0

Duration of foreseen �n {unforeseen �} tasks (hr) 1.0{1.2}

Relative importance of foreseen {unforeseen} tasks 16.7{100}

Mean rate of unforeseen tasks (# tasks in [TT � �]) 1

Speed of mobile resources (km/hr) 1

Response time standard � (hr) 1.5

windows during a shift [0; TT ].

As a problem with incomplete information, the objective of the MRAP is to maximize the

expected weighted ful�lment yield 
 over all possible realizations of unforeseen tasks in a shift.

Therefore, we de�ne the MRAP as follows:

De�nition 4: The objective of the MRAP is to devise a strategy s 2 S for the allocation and

re-allocation of mobile resources to tasks so that the strategy maximizes the expected weighted

ful�lment yield E(	) during a shift given that unforeseen tasks arise following a Poisson process

with intensity � and that the probability that the unforeseen task is located at a given site is given

by Pi for every i 2 I.

The constraints of this incomplete information optimization problem are stated implicitly by

constraining possible solutions to strategies that generate only valid schedules (see the conditions

that a valid schedule has to ful�ll in Section 2.3 for the constraints of the MRAP problem).

2.7 Risks inherent to routes

To illustrate the MRAP, consider the next example where the information initially available is

given in Table 1. There are six sites which are fully connected. Further, assume that two mobile

resources are available and that the number of unforeseen tasks that occur in a shift are Poisson

distributed with an equal likelihood of being located at any site.
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Table 2: Timing information of solution sets.
Solution Set -Mobile resource 1{a} 2{b} 3{c} 4{d} 5{e} 6{f} Base

Solution Set A: Mobile resource 1 4.41 1.41 6.41 - - - 8.41

Solution Set B: Mobile resource 2 - - - 6.41 1.41 4.41 8.41

Solution Set A: Mobile resource 1 3.00 6.00 1.00 - - - 8.41

Solution Set B: Mobile resource 2 - - - 6.41 1.41 4.41 8.41

For illustration purposes, consider two alternative solution sets as an initial schedule for the

MRAP. In Solution Set A, mobile resource 1 follows an anticlockwise pattern visiting the sites

in the sequence b-a-c, while mobile resource 2 also follows an anticlockwise pattern visiting the

sites in the sequence e-f-d. Solution Set B di¤ers from Solution Set A only in the route of mobile

resource 1 that visits the sites in a clockwise manner in the sequence c-a-b. Both sets of plans

are feasible solutions, ful�lling the corresponding time windows and returning to the base before

the end of the shift (see Table 2).

If no alarms occur during the duration of the shift then it is clear that both solution sets

serve all the foreseen tasks achieving a 100% weighted ful�lment yield. However, unforeseen

tasks do occur and hence it is worth verifying if both sets of plans yield also the same risk.

To assess such a risk, it is useful to track the positioning and state of the mobile resources

at di¤erent instants. While in Solution Set A (see Figure 1(a)) both mobile resources tend to be

positioned in opposite sides at the same instants, in Solution Set B (see Figure 1(b)), the mobile

resources are located in the same side (i.e. left or right) of the graph. If we then draw a circle

with radius � = 1:5 hrs (the response time standard) with the position of each mobile resource

as a centre, we can identify the sites that are able to be reached on time if an unforeseen task

is released and thus have certain insight about the inherent risks to routes.

For example, at time instant t = 7:50 hrs Figure 1 shows that while the setting in Solution

Set A covers all the sites (Figure 1(c)), the setting in solution set B (Figure 1(d)) does not cover

sites a, c and e. If, for example, an alarm occurs at site a at t = 7:50 hrs; mobile resource 1

in Solution Set A will be able to serve it returning to the base on time. However, none of the
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Solution Set A

a b

c d

e f

ab

c d

e f

Solution Set B

Area of coverage provided by 
mobile resource 1
Area of coverage provided by 
mobile resource 2

base base

Alarm occurring at Site A

b-a-c c-a-b

e-f-de-f-d

Mobile resource 1

Mobile resource 2

Solution Set A

a b

c d

e f

ab

c d

e f

Solution Set B

base base

b-a-c c-a-b

e-f-de-f-d

Able to 
serve 
alarm.

Unable to 
serve 
alarm.

Unable to 
serve 
alarm.

Unable to 
serve 
alarm.

1. Coverage at t=7.50 hrs given initial plan defined at t=0 hrs.

2. An alarm occurs at t=7.50 hrs at site a.

Figure 1: Coverage of mobile resources for unforeseen tasks.

mobile resources in Solution Set B will be able to serve the alarm because these are located too

far from the site as shown in Figure 1(d). In the case only one unforeseen task is released at site

a at t = 7:50 hrs during the shift, then Solution Set A provides a 
 = 100% of ful�lment yield.

In contrast, Solution Set B, provides only 
 = 50% of ful�lment yield. Thus, given the increased

separation of mobile resources and the higher number of sites covered in time of Solution Set A

compared to Solution Set B, it is reasonable to choose Solution Set A over Solution Set B on

the grounds of being a less risky choice as the mobile resources cover more sites on average.

The example illustrates that for obtaining higher ful�lment yields it is important to design
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routes that serve as many known tasks as possible, while maintaining at the same time the

capacity of mobile resources to handle unforeseen tasks on time (i.e. identifying which sites

are covered). However, it is also important to quantify such capacity over time so as to have

an objective criterion that identi�es which sets of routes are more risky in terms of handling

unknown unforeseen tasks on time. The next section deals with how to address the complete

and incomplete information aspects of the MRAP.

3 A valid strategy for the MRAP: the s-TOP-MTW

In this section we present a multi-objective optimization problem to be solved successively each

time a new unforeseen task is generated at instants j. We call such multi-objective problem the

stochastic Team Orienteering Problem with Time Windows (s-TOP-MTW). The problem is in

itself composed of two sub-problems, each with its own objective function.

� The Team Orienteering Problem with Time Windows (TOP-MTW)

� The Time-averaged Maximum Expected Location Problem (TAMEXCLP)

The TOP-MTW addresses the known tasks by maximizing the weighted number of tasks

served on time. On the other hand, the TAMEXCLP, addresses the stochastic process of the

arrival of new unforeseen tasks by maximizing the capacity of mobile resources routes to attend

new unforeseen tasks on time.

Nonetheless, both sub-problems share the same solution structure: an ordered sequence of

tasks to be served per mobile resource. In the case of the TOP-MTW, the ordered sequence

of tasks directly provides the weighted number of tasks accomplished on time. In the case of

the TAMEXCLP, the sequence of tasks in�uences the objective function in a more indirect way.

Namely, given that we assume that the sites are represented in a complete graph in the Euclidean

plane, the sequence of tasks determines the locations of mobile resources at certain points in
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time, de�ning which sites are covered and subsequently what is the inherent capacity of mobile

resources to serve unforeseen tasks on time.

To aggregate the individual objectives of both sub-problems in one objective function Z we

propose to integrate the normalized TOP-MTW and TAMEXCLP (i.e. ZS1 and ZS2) in an a¢ ne

combination in line with a common method of multi-criteria optimization: the point-estimate

weighted sums approach (Steuer, 1986). The suitability of choosing a certain weighing value (i.e.

�) will be studied later in the experimental section. The general structure of the s-TOP-MTW

is then as follows:

maxZ = (1� �)ZS1+�ZS2 (3)

s.t.

TOP-MTW constraints (4)

TAMEXCLP and interaction constraints (5)

Our overall approach is to solve the MRAP by solving successively the s-TOP-MTW as

follows.

1. Choose a given �:

2. Solve the s-TOP-MTW given the information set Ij.

3. Upon release of unforeseen task, update the information set Ij adding the newly released

unforeseen task to the set of known tasks n 2 TKj.

4. Re-solve the s-TOP-MTW given the updated information set Ij.

We note that since any unforeseen task generated after TT -� will not be able to be served in

a way that allows the base to be reached before the end of the shift we assume that the release

time of the last unforeseen task to be generated is before TT � �.

In the next sub-sections we present the formulations and advantages of including each sub-

problem in the s-TOP-MTW. The formulations are given for the case where the resources start
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at the home base. It is easy to change the formulation for more general starting conditions,

which is needed for rescheduling during the shift.

3.1 Subproblem 1: The Team Orienteering Problem with Time Windows

(TOP-MTW)

To select a suitable routing model that can serve as a basis for dealing with known tasks in the

MRAP, we notice the similarity between the objective of the MRAP which is to serve as many

tasks on time as possible and that of a problem found in the literature called the Orienteering

Problem (OP) that has been classi�ed as part of the TSP with Pro�ts set of problems (Feillet,

2005). The OP (Golden, 1987) is inspired by an outdoor sport where the participants are

equipped with a compass and a map and have to visit a number of checkpoints displayed on the

map. Each check point has an associated score which is collected when a participant visits the

check point. The goal is to maximize the total score collected by visiting a number of check-

points within a limited time-span. Hence, the OP and the MRAP have certain similarities, where

the relative importance of servicing a task is equivalent to a reward and the limited time-span

is equivalent to a shift length.

Next, we can further extend the OP to incorporate multiple time windows per site for several

tasks per site and multiple resources which we call the Team Orienteering Problem with Multiple

Time Windows (TOP-MTW). It is important to observe that if we set the mean number of

unforeseen tasks per shift to zero (i.e. � = 0) then no unforeseen tasks can be generated in a

shift, converting the MRAP into a complete information problem and thus, solving the MRAP

is reduced to solving the TOP-MTW.

To extend the OP to the TOP-MTW we review the existing variants of the OP. The multi-

resource version of the OP already exists in the literature and is known as the Team Orienteering

Problem (TOP) (Chao, 1996). Kantor and Rosenwein (1992) developed a time-windows version

(one time-window per site/vertex) for the OP but the time windows refer to the end of the service
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time rather than the start service time. Later, Nguyen and Gao (2003) extend the possibility for

several time-windows per site. However, both formulations of time windows consider deadlines

instead of starting servicing times. Hence we have to adapt existing formulations and develop a

new one. The formulation de�ned for every occurrence j of the TOP-MTW is as follows using

the notation introduced in Section 2.

Data

d(m;n) : the Euclidean distance between the locations L(m); L(n) of two tasks m;n 2 TKj ;

D(m;n) : the transfer time between the locations L(m); L(n); D(m;n) = d(m;n)=c;

i = 0 : the index value of the base as a site,

n = 0 : the initial arti�cial task located at the base such that

L(0) = �0 = e0 = l0 = w0 = 0

n = N : the last arti�cial task located at the base such that

L(N) = �N = eN = wN = 0; lN = TT

M : a large number,

�n : real numbers associated with task n 2 TKj used to eliminate sub-tours,

Decision variables

x
(k)
mn : 1, if task n 2 TKj is scheduled immediately after task m 2 TKj ;

by mobile resource k 2 K such that n 6= m; 0 otherwise,

Derived values from x
(k)
mn

zn : 1; if task n 2 TKj is scheduled to be served; 0 otherwise,

y
(k)
n : 1, if task n 2 TKj is scheduled to be served by mobile resource k 2 K;

0 otherwise,

s
(k)
n : the starting servicing time of task n 2 TKj by mobile resource k 2 K.

The TOP-MTW problem to be solved at evaluation instant j is now de�ned by the following.
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maxZS1 =

P
n2TKj

wnznP
n2TKj

wn
(6)

s.t.P
k2K

y
(k)
n = zn 8n 2 TKj (7)

P
n2TKe;
n 6=m

x
(k)
mn = y

(k)
m 8m 2 TKj ;8k 2 K; (8)

en � s(k)n � ln 8n 2 TKj ;8k 2 K; (9-10)

M(1� x(k)mn) � s(k)m +�m +D(m;n)� s(k)n 8m;n 2 TKj : n 6= m;8k 2 K; (11)

M(x
(k)
mn � 1) � s(k)m +�m +D(m;n)� s(k)n 8m;n 2 TKj : n 6= m;8k 2 K; (12)

�m � �n + jTKêjx(k)mn � jTKêj � 1 8m;n 2 TKj ; : m 6= 0; n 6= m; (13)X
n2TKe;

n 6=0

x
(k)
0n =

X
m2TKe;
m6=N

x
(k)
mN = 1; 8k 2 K; (14-15)

X
n2TKê;
n 6=N

x
(k)
Nn = 0; 8k 2 K; (16)

s
(k)
0 = 0; y

(k)
0 = 1 8k 2 K; (17-18)

zn 2 f0; 1g ; �n 2 R 8n 2 TKj ; (19-20)

y
(k)
n 2 f0; 1g ; s(k)n 2 [0; TT ) 8n 2 T;8k 2 K; (21-22)

x
(k)
mn 2 f0; 1g 8m;n 2 TKj ; : n 6= m; (23)

The normalized objective (6) maximizes the weighted proportion of tasks accomplished on

time (note that the denominator is only used to integrate it with the with the second goal of

the s-TOPMTW).

Constraints (7) assure that a task will at most be served by one mobile resource as the

maximum value of zn is 1. Similarly, constraints (8) assure that a task m to be served may have

at most one task preceding it (i.e. n), because the maximum value of ŷ(k)n is 1.

Constraints (9) and (10) assure that any task n that is serviced by a mobile resource starts

to be executed within the respective time windows.

The set of constraints (11) and (12) force that if task m immediately precedes task n (i.e.

y
(k)
mn), then the starting time of a task n must be exactly equal to the starting time of the

preceding task m plus the time taken to service task n and to transfer to task m. Hence,
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the relation sn = sm + �m +D(m;n) is forced by making the upper and lower bounds equal.

Constraints (11) and (12) allow s(k)m and s
(k)
m take any positive value if task n does not precede

task m in mobile resource k route using the "big M" method, reducing the expressions to

�M � sm +�m +D(m;n)� s(k)n �M . The formulations of these constraints di¤er from those

in Nguyen and Gao (2003) as in the MRAP we have time windows that refer to the starting times

and not the ending times of the respective services. Moreover, we also assume that as soon as one

mobile resource �nishes serving a task it immediately reallocates to the next task (i.e. De�nition

1, condition 3) and thus its starting time of the next served task is fully predetermined by the

visiting sequence of tasks. In the case of Nguyen and Gao (2003) and Kantor and Rosenwein

(1992), the starting times of a service are not fully predetermined by the visiting sequence of

tasks.

Next, constraints (13) eliminate the possibility of sub-tours of tasks located at sites that do

not involve the base, while constraints (14), (15) and (16) introduce two �ctitious task located

at the base so as to ensure that the mobile resources�routes start and �nish at the base within

the shift interval [0; TT ].

Finally, constraints (17) to (23) de�ne the types of the decision variables of the model.

3.1.1 Subproblem 2: The Time-averaged Maximum Expected Location Problem

(TAMEXCLP)

In Section 3.1 it was shown that it is possible to identify which sites are covered for servicing

potential unforeseen tasks on time. If it is known which sites are covered, it is possible to obtain

a measure of the capacity of mobile resources to serve unforeseen tasks on time.

A useful measure of the capacity for servicing potential unforeseen tasks is the probability

that if an unforeseen task is released, at least one mobile resource will be able to be service it

on time. Multiplying this probability with the associated relative importance of servicing an

unforeseen task and the probability that an unforeseen task will occur at such site, it is possible
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to obtain a measure of the expected demand covered by the mobile resources at given time

instants.

In fact, for a given time instant, the expected demand covered by the mobile resources is

equivalent to the objective function of the Maximum Expected Location Problem or MEXCLP

(Daskin, 1983), which is used for locating emergency vehicles at certain bases to cover possible

sites that request emergency services. The di¤erence with the MRAP lies in the fact that

emergency vehicles serve emergency requests and then return to the base while mobile resources

in the MRAP follow a route servicing several tasks returning to the base only when there are

no more tasks to perform. However, by taking a representative number of "snapshots" of the

system at regular intervals of length � it is possible to measure the instantaneous capacity of

mobile resources to serve unforeseen tasks. Nonetheless, it is important to note that this is

only an approximation of the expected demand covered at each snapshot as we assume that the

current routes followed are left unchanged until the "snapshot" where the coverage is evaluated.

Furthermore, this method for calculating the expected demand covered is limited for situations

in which queuing phenomena are unlikely to occur, such as in the case of practical applications

of the MRAP where the emergency events are rare and the standard response times are short

enough so that it is unlikely that pending released unforeseen tasks accumulate at the same time

(for a discussion on the accuracy of the MEXCLP model see Saydam and Atu¼g (2003)).

If we apply the concept of sampling MEXCLP objective values over time to the presented

example we obtain a graph (see Figure 2) that clearly indicates that on average Solution Set

A is more reliable than Solution Set B by covering more sites during the shift. The MEXCLP

measured over time can then be seen as a measurement of the quality of coordination between

mobile resources. When mobile resources are located further apart and do not execute tasks

simultaneously there is less overlapping of coverage and thus the mobile resources can more

e¢ ciently cover sites for unforeseen tasks.
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Figure 2: MEXCLP sampling over time.

For the purpose of devising a strategy for the MRAP, we propose to measure the MEXCLP

over time and average it to construct a new time-dependent dynamic coverage problem: the

Time-Averaged Maximum Expected Location Problem (TAMEXCLP). In the next lines we

present the general structure for the formulation of the TAMEXCLP. It must be noted, however,

that due to the application of interpolation and Euclidian distances in the formulation it is not

possible to model it as a mixed integer program implying that certain solution techniques can

not be applied.

We �rst de�ne the following variables.
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Data

TS the total number of discrete points in time,

� the time between discrete points in time, i.e. � =TT��
TS ;

p : index identifying discrete point in time; tp= �p; tp= t1 ; ::; tTS

wi : the relative importance associated to each site i, assuming that if an unforeseen task

is generated at this site it will have such a weight,

Derived values from x
(k)
mn

g
(k)
ip : 1, if mobile resource k is covering site i at time tp; 0; otherwise,

�
(k)
p : radius covered (in time units) by mobile resource k at time tp;

X
(k)
p ,Y

(k)
p : X and Y coordinates of mobile resource k at point at time tp,

q
(k)
p : busy fraction; the probability that mobile resource k at point at time tp can not serve

an unforeseen task if it is covered and is generated within the interval (tp; tp+1)

q
�(k)
ip : the probability that mobile resource k at point at time tp can serve an

unforeseen task if it is generated speci�cally at site i within interval (tp; tp+1):

We can then de�ne the TAMEXCLP as follows.

maxZS2=
1

FP
P

i2I wiPi

p=FPX
p=1

X
i2I
Piwi

241� jKjY
k=1

q
�(k)
ip

35 (24)

s.t.

Determination of X
(k)
p ; Y

(k)
p constraints 8k 2 K;8p = 1; :::TS (25)

Determination of �
(k)
p constraints 8k 2 K;8p = 1; :::TS (26)

Determination of g
(k)
ip constraints 8i 2 I; 8k 2 K;8p = 1; :::TS (27)

Determination of q
(k)
p constraints 8k 2 K;8p = 1; :::TS (28)

Determination of q
�(k)
ip constraints 8i 2 I; 8k 2 K;8p = 1; :::TS (29)

q
�(k)
ip 2 [0; 1]; g(k)ip 2 f0; 1g 8i 2 I; 8k 2 K;8p = 0; 1; :::TS (30-31)

�
(k)
p 2 R; L(k)Xp 2 R; L

(k)
Y p 2 R; q

(k)
p 2 [0; 1] 8k 2 K;8p = 0; 1; :::TS (32-35)

All the variables of the TAMEXCLP formulation are derived from the sequence of tasks
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scheduled per mobile resource constrained by the TOP-MTW sub-problem. Thus, the TAMEX-

CLP is structured in the logical sequence in which these variables should be derived. An overview

of this sequence is given as follows.

For calculating the average expected demand covered across time, it is �rst necessary to

track the guards�locations at discrete points in time given by constraints (25). Next, given that

the MRAP conditions for a valid strategy de�ned in De�nition 1 imply that the actual area

covered per mobile resource is time dependent, the coverage radius must be determined with

constraints (26). Having establishing the coverage radius, it is then possible to identify whether

a certain mobile resource covers a certain site as de�ned in constraints (27). When the sites

covered are identi�ed, it is then possible to calculate the potential workload due to unforeseen

tasks. The workload in turn is a basic input to calculate in constraints (28) the probability can

be estimated that a guard will be busy to service an unforeseen task because he is servicing

another unforeseen task. Finally, combining the information of constraints (29) and (30), it is

then possible to determine q�(k)ip which is the basic input of the objective function.

Note the di¤erence between q(k)p and q�(k)ip in that the former refers to the availability of the

mobile resource to serve unforeseen tasks, while the latter refers to the incapability of a mobile

resource to service an unforeseen task in a speci�c site. In other words, a guard may be available

to service unforeseen tasks but may not be able to service an unforeseen task at a given site

because it can not be reached on time.

3.1.2 Objective function (24)

The normalized objective function of the TAMEXCLP (24) is based on that of the Maximum

Expected Coverage Location Problem (MEXCLP) (Daskin, 1983). In e¤ect, the TAMEXCLP

objective function samples repeatedly at each snapshot a modi�ed MEXCLP measure to then

be averaged over time. In each snapshot, the objective function calculates the probability that

at least one mobile resource is able to serve an unforeseen task generated at a given site and
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then weighs such probability by !i and Pi to calculate the expected demand covered.

To calculate the probability that at least one mobile resource would be able to serve an

unforeseen task generated at site i on time, we consider the complimentary event, namely,

the probability that all of the mobile resources would be unable to serve such unforeseen task.

Assuming that the probability of a mobile resource k to be unable to serve an unforeseen task (i.e.

q
�(k)
ip ) is independent from that of other mobile resources, the probability that the complimentary

event occurs is simply 1�
jKjQ
k=1

q
�(k)
ip .

3.1.3 Determination of X(k)
p ; Y

(k)
p , constraints (25)

For tracking the mobile resources positions over time given by the tuples (X(k)
p ; Y

(k)
p ), we

distinguish between two situations in which a mobile resource can be in (see Figure 3).

1. The mobile resource is at a site, hence the coordinates of the mobile resource correspond

to that of the site�s.

2. The mobile resource is transferring to serve a task at a site, hence the coordinates are

linearly interpolated between origin and destination.

Hence, for calculating X(k)
p we obtain the following relationship for 8p = 0; 1; :::TS;8k 2 K

as follows.

X
(k)
p =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

Xm if
9m;n 2 TKj : n 6= m;

x
(k)
mn= 1; a

(k)
n � tp � s(k)n +�n

Xm +
(tp � s(k)m ��m)(Xn�Xm)

D(m;n)

if
9m;n 2 TKj : n 6= m;

x
(k)
mn= 1;s

(k)
m +�m< tp � an;

(36)

where :
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Xm; Xn : X coordinates of locations L(m) and L(n), and

a
(k)
n : is the arrival time of mobile resource k for servicing task n such that

: a
(k)
n = s

(k)
m +�m+D(m;n)

The calculation of the Y -coordinate Y (k)p is analogous to that of the X-coordinate X(k)
p .

∆m+sm(k)

∆m

sm(k)

D(m,n)

an(k) sn(k)=en

At baseTransferring

∆n

BusyAvailable

max(0, -(sn(k)+∆n-tp))

Location

Availability

Coverage radius

∆m+sm(k)

∆m

sm(k)

D(m,n)

sn(k)=an(k)=en

At baseTransferring

∆n

Busy

max(0, -(sn(k)+∆n-tp))

Location

Availability

Coverage radius

Foreseen tasks: n F

Unforeseen tasks: n U

Figure 3: The status and coverage radius of mobile resources according to a time line.

3.2 Determination of �(k)p , constraints (26)

Next, to determine the coverage radius �(k)p ; we identify three possible situations that a mobile

resource k at an instant �p may encounter, in accordance with the preemptive rules of the MRAP

(see Figure 4):

1. Transferring or waiting to serve a foreseen task n 2 F : In this case, the mobile resource
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can be immediately re-scheduled to serve another task and the coverage radius corresponds

to that of the standard response time.

2. Servicing a task (i.e. either foreseen or unforeseen): In this case, the mobile resource can

not serve any unforeseen task immediately but after it �nishes servicing the task and hence

has a reduced coverage area.

3. Transferring to serve an unforeseen task n 2 U . If we assume for simplicity that �n � �,

then the mobile resource has an e¤ective coverage of zero as it will never �nish servicing

the unforeseen task early enough to be able to serve the new unforeseen task on time.

Consolidating the three cases described above, we have that �(k)p is de�ned as follows for

8p = 0; 1; :::TS;8k 2 K.

�
(k)
p =

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

� if
9m;n 2 TKj : n 6= m;x

(k)
mn= 1;

n2 F; s(k)m +�m� tp � s(k)n

max(0; � � (s(k)n +�n�tp)) if
9n 2 TKj : y

(k)
n = 1,

s
(k)
n � tp � s(k)n +�n

0 if
9m;n 2 TKj : n 6= m;x

(k)
mn= 1;

n 2 U; s(k)m +�m� tp � s(k)n

(37)

3.2.1 Determination of g(k)ip , constraints (27)

For determining if a mobile resource is actually covering a site at a given time step (i.e. g(k)ip = 1),

it is only required to compare the transfer time from the current mobile resource�s location to

the site�s location, with the mobile resource�s coverage radius �(k)p of the circle that covers sites

for servicing unforeseen tasks on time as seen in Figure 5. If we denote (Xi; Yi) as the pair
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of coordinates of site i then D((X(k)
p ; Y

(k)
p ); (Xi; Yi)) is the transfer time between the current

location of the mobile resource and the site of interest i. The calculation of g(k)ip is then as follows

for 8i 2 I;8p = 0; 1; :::TS; k 2 K.

g
(k)
ip =

8>><>>:
1 if �(k)p � D((X(k)

p ; Y
(k)
p ); (Xi; Yi))

0 if �(k)p < D((X
(k)
p ; Y

(k)
p ); (Xi; Yi))

(38)

3.2.2 Determination of q(k)p , constraints (28)

For calculating the busy fraction, q(k)p , we observe the de�nition of Revelle (1989) who states that

the busy fraction is the ratio between the time the mobile resource is busy and the shift length

available to serve tasks. For the purpose of the MRAP, the busy fraction is the probability that

a mobile resource would be unavailable to serve an unforeseen task because that mobile resource

is servicing another new unforeseen task. This means that we do not consider the possibility of

being busy by servicing a task that is already known to the dispatcher, as in such a case, the

decreased availability of the mobile resource is already factored by a reduced coverage radius �(k)p :

It is important to note that e¤ectively, the busy fraction is adjusting the availability of mobile

resources to be able to serve unforeseen tasks due to time-overlapping unforeseen requests in the

interval (tp; tp+1).

For calculating the busy fraction�we �rst calculate the expected workload that an unforeseen

task at a site i would generate for a mobile resource k. The total expected workload generated by

an unforeseen task at a given site i for a shift is simply the workload generated if the unforeseen

task occurs multiplied by �Pi; the expected number of unforeseen tasks generated in such a site

during the interval TT � �. In the case the unforeseen task is generated, then the implied

workload is the required time to transfer from the current position of the mobile resource (i.e.

(X(k)
p ; Y

(k)
p )) to the site where the task is requested plus the time taken to service such a task.

However, with respect to the speci�c mobile resource, such workload is only really e¤ective

if the mobile resource is actually covering such a site, otherwise the workload due to unforeseen
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tasks at such site is zero (hence we multiply the expression by the g(k)ip indicator). Moreover,

since more than one mobile resource may be covering such a site, then it is reasonable to assume

that on average the workload would be distributed evenly among all the mobile resources that

cover such a site. Thus, the expected workload generated by a site for mobile resource k at time

tp for a shift is given by:

W
(k)
ip =

�Pi

�
�+D((X

(k)
p ; Y

(k)
p ); (Xi; Yi))

�
g
(k)
ipP

k02K
g
(k0)
ip

(39)

The total expected workload for a given mobile resource k is simply obtained by summing

W
(k)
ip over all the sites. The busy fraction for a given shift would then only be such total workload

divided by the [TT � �] time span. Notice that the time span is irrelevant for optimization

purposes as it a¤ects the numerator and the denominator of the expression alike. The �nal

expression for q(k)p is then as follows2:

q
(k)
p = 1

TT��E

X
i2I
W
(k)
ip

= �
TT��E

X
i2I

2664 Pi

�
�+D((X

(k)
p ; Y

(k)
p ); (Xi; Yi))

�
g
(k)
ipP

k02K
g
(k0)
ip

3775 (40)

3.2.3 Determination of q�(k)ip , constraints (29)

The probability that at time point p a guard k would not be able to serve an unforeseen task

generated in the interval (tp; tp+1) at site i is given by q
�(k)
ip . Such probability is the same as the

busy fraction, with the di¤erence that if site i is not covered then the probability should be set

to 1 as it is certain that an unforeseen task in site i would not be able to be serviced by guard

k . Hence, the expression of q�(k)ip is as follows for 8i 2 I; 8p = 0; 1; :::FP;8k 2 K.

q
�(k)
ip = 1� (1� q(k)p )g

(k)
ip (41)

2Note that we assume that unforeseen tasks are rare events and that the sum of the expected workloadP
i2I
!
(k)
ip should not exceed TT � � so that q

(k)
p � 1.
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Table 3: Example for calculating coverage for Solution Set B at t=7.50 hrs.
�P i = 0.167 (for all i) � = 1.500
Wi = 16.777 (for all i) TT = 12.000
�E = 1.200 TT � � = 10.500

Site i D1(:) D2(:) g
(1)
ip g

(2)
ip

P
k02K

g
(k0)
ip !

(1)
ip !

(2)
ip q

�(1)
ip q

�(2)
ip Covi

a 1.684 2.160 0 0 0 0.000 0.000 1.000 1.000 0.000
b 0.500 1.004 1 1 2 0.142 0.184 0.029 0.063 16.637
c 1.769 1.914 0 0 0 0.000 0.000 1.000 1.000 0.000
d 0.737 0.086 1 1 2 0.161 0.107 0.029 0.063 16.637
e 2.328 2.160 0 0 0 0.000 0.000 1.000 1.000 0.000
f 1.684 1.004 0 1 1 0.000 0.367 1.000 0.063 15.622P

0.303 0.658 Cov = 48.895

q
(1)
p = 0.029

q
(2)
p = 0.063

Using the presented example in Section 2.5, and the procedure hereby described in Table

3 we illustrate for Example 1 the calculation for coverage of Solution Set B at tp = 7:50 hrs,

p = 15 the as shown. Note that Dk(:) is an abbreviation for D((X
(k)
p ; Y

(k)
p ); (Xi; Yi)) and that

Covi is the coverage for a site and an abbreviation for Pi � ŵi

"
1�

jKjQ
k=1

q
�(k)
ip

#
.

4 Solving the s-TOP-MTW

To solve moderately sized s-TOP-MTW problems3 each time a new problem instance is generated

we �rst generate a number of feasible solutions for the s-TOP-MTW (a sequence of tasks to be

performed by each mobile resource) calculating the associated TOP-MTW scores for each of

them. Next, we track the mobile resources�paths of each solution at regularly spaced discrete

points in time to then calculate the TAMEXCLP associated objective function of each proposed

solution (see Appendix Algorithm 1 for details). Finally, we select the best path according to

the s-TOP-MTW objective function for a given value of �.

3"Moderately" in this context means a problem with less than 4 guards and 15 tasks to be solved in less than
3 minutes on a 1.6 Ghz computer.
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The main underlying idea of the presented algorithmic structure is to take advantage of the

fact that the TOP-MTW is more constrained than the TAMEXCLP, where a solution for the

TOP-MTW satis�es the TAMEXCLP, but a solution for the TOP-MTW does not necessarily

satis�es the TAMEXCLP. The procedure for generating feasible solutions is then described as

follows.

For solving the TOP-MTW we �rst have to recognize that the computational complexity

of the TOP-MTW is at least as di¢ cult as the OP which is already NP-hard (Laporte, 1990).

Hence, most of the approaches available in the literature to solve the OP and its derivatives

are based on metaheuristics (see Chao et al., 1996; Tasgetiren, 2002; Liang and Smith, 2006).

Furthermore, since the relationship between the TOP-MTW and the TAMEXCLP is poorly

understood, it is reasonable to choose for an algorithm that it is fast and simple; that can

provide "good" solutions for the TOP-MTW and at the same time a diversity of alternative

solutions with a variety of TAMEXCLP reliability measures to choose from.

In this context, we construct "good" feasible plans by extending a stochastic-based algorithm

proposed by Tsiligirides for the Orienteering Problem (OP) (Tsiligirides, 1984). Tsiligirides�S-

algorithm is based on devising a reasonable measure of the desirability to append a task to an

existing route. The desirability measure is the ratio between the reward collected and the extra

distance needed to serve such a task. The S-algorithm constructs a sequence of tasks by adding

one task at a time and making the probability of adding a certain task in a route dependent on

such desirability ratio. Therefore, the algorithm provides a certain directionality in the search

for good "solutions" using a greedy approach, but also allows for exploring neighborhood areas

in the solution space by introducing stochasticity.

In this paper, we adapt Tsiligirides�S-algorithm for solving the TOP-MTW. Instead of the

extra distance required to service a candidate task, we use in the denominator of the �tness

function the extra time needed to serve the candidate task. In this way, the time required for
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servicing a task and also the time required to wait at a site for an earliest starting time en to

occur are considered in the desirability measure. Hence, the further in the future the earliest

allowable starting time is, the lower the desirability for appending such a task to the current

schedule is.

The �tness function is then de�ned as follows.

f(n) =

264 wn

max(Lastk +D((L(k); L(n)) + �n; en)� Lastk

375
3

(42)

where:

Lastk : is the �nishing time of last scheduled task by mobile resource k 2 K,

D(a; b) : is the travel time between two pairs of coordinates a and b,

L(k) : is the Euclidian coordinates where mobile resource k is located,

L(n) : is the Euclidian coordinates where task n is located,

A power of 3 is used in the �tness function in order to amplify the di¤erences between ratios,

and bias further the probability of selecting tasks with higher desirability ratios.

Another extension made to Tsilirigides�S-algorithm is that of dealing with more than one

mobile resource. In Chao et al. (1996), Tsiligirides� S-algorithm is extended by scheduling

the mobile resources either sequentially or concurrently. The sequential construction of routes

involves constructing �rst a route for the �rst mobile resource, then for the second and so on.

In the concurrent approach, each mobile resource takes turns to add tasks to their routes. We

propose to randomize the selection of a mobile resource turn4 so as to further increase solution

variety.

The logic of the extended algorithm is simple. First it is checked whether a task n can be

feasibly added to the route of a mobile resource k. Such feasibility depends on the possibility

of meeting the task deadline on time (i.e. start servicing the task before the latest allowable

starting time) and to have su¢ cient time to return back to the base before the shift ends. Next,

4Each mobile resource has an equal chance of being selected.
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the �tness functions f(n) are computed and then ranked. To limit the running time and similarly

to Tsiligirides (1984) only four tasks are considered for inclusion in the mobile resources�route.

These tasks are referred to as members of the elite set, ES. Finally, task n� is selected based

on the following probability.

P (n�) = f(n�)P
n2ES f(n)

(43)

5 Experimental study

In the previous section, we suggested the possibility of embedding coverage considerations in

devising a strategy for solving the MRAP by integrating in an a¢ ne manner two di¤erent

objectives: the TOP-MTW and the TAMEXCLP. However, it is not obvious which � weight to

use to integrate both objectives. Furthermore, even a more basic question is whether the two

objectives are in con�ict. If the two objectives are not in con�ict then it is possible to solve in a

hierarchical way the TOP-MTW and the TAMEXCLP sub-problems. Otherwise, the suitability

for selecting the value of � should be investigated.

In this section, we report the results from two experiments. In Experiment 1, we identify

non-dominated solutions of the multi-objective s-TOP-MTW and observe if there is e¤ectively a

trade-o¤ between the objectives of both sub-problems. In Experiment 2, we study the suitability

of selecting several variables of � in maximizing the ful�lment yield by conducting a simulation

study with on-line (re-)planning. This experiment is designed to study whether embedding

coverage considerations and measuring the capacity of routes to respond on time to the arrival

of new unforeseen tasks is e¤ective in increasing the ful�lment yield beyond solving only the

TOP-MTW routing model.

Both experiments have a common setting based on the same basic layout of sites and time-

windows for foreseen tasks. Some important design considerations common to the two experi-

ments include the following:

31



� The purpose of the experiments is to explore the possibility of embedding coverage con-

siderations in the strategies devised for the MRAP. Hence, they are kept computationally

simple. Only 10 sites with 1 foreseen task each are considered, and two mobile resources

available.

� The time windows of the tasks (en; ln) have been generated randomly such that en =

U(0; 0:7TT ), and ln = min(en + U(0; 0:4TT ); TT ); where U stands for the uniform distri-

bution. These parameters are selected in order to have wide enough time windows that

allow several feasible solutions s.

� The expected total weight of unforeseen tasks was made equal to the total weight of

foreseen tasks so that intuitively the routing of foreseen tasks should be as important as

servicing unforeseen tasks, i.e. �wU =
P
n2F wn .

� The probability of occurrence of unforeseen tasks is not homogeneous, highlighting the

need for coverage in areas of "high risk".

� The mean number of unforeseen tasks per shift, � is �xed low as is normally the case

for emergency situations: only 2 unforeseen tasks per shift compared to 10 foreseen tasks.

Moreover, low values of � are consistent with applying the TAMEXCLP that assumes that

the routes remain unchanged for the calculation of the routes�reliability measure

5.1 Experiment 1: Trade-o¤s between TOP-MTW and TAMEXCLP

In this experiment we were concerned with identifying a trade-o¤ curve of solutions between the

TOP-MTW objective function and the TAMEXCLP objective function to assess the need for

solving both sub-models hierarchically or in an integrated way. The experiment is considered

o¤-line as no unforeseen tasks are released and the optimization procedure is applied only once.

In the experiment, we generated 8000 solutions (some repeated) and measured the TOP-MTW
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and the TAMEXCLP scores. Note that of the 8,000 solutions only some will lie in the e¢ cient

frontier. Figure 4, shows a plot of the solutions found.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

40% 50% 60% 70% 80% 90% 100%

Z1=TOP-MTW Score

Z
2

=
T

A
M

E
X

C
L

P
 S

c
o

re

Figure 4: O¤-line solutions found for the s-TOP-MTW.

From the chart it can be observed that there exists alternative optimum solutions for the

TOP-MTW that provide di¤erent objective values of TAMEXCLP. For this particular case it

means that solving hierarchically the s-TOP-MTW by �rst optimizing the TOP-MTW and

then selecting the best TAMEXCLP solution we can obtain an increase of up to 19% in the

TAMEXCLP reliability measure for ZTOP�MTW = 100%. This result is signi�cant as it implies

that a signi�cant increase in routes reliability is possible by simply selecting the best alternative

optimum of the TOP-MTW.

Next, by sorting the solutions we may eliminate the dominated solutions and obtain an

e¢ cient frontier as Figure 5 shows. Note that the e¢ cient frontier is actually discontinuous due

to the dichotomous de�nition of coverage (i.e. a site is covered if the coverage radius is greater

than the distance between the mobile resource and the site). The results of the numerical

experiment suggest that a trade-o¤ does exist where an increase of 45% in TOP-MTW score

implies a reduction of 35% of TAMEXCLP scores. Several other scenarios were tested yielding

similar results. However, it must be stated that the results were sensitive to changes in the

standard response time �: For example, if � was chosen with a high enough value a trade-o¤
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is no longer found as the response-time is so long that it is always possible to start to service

unforeseen tasks within the standard response time (assuming also that the shift length allows

for accomplishing all these tasks).
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Figure 5: E¢ cient frontier of TOP-MTW and TAMEXCLP subproblems.

5.2 Experiment 2: On-line MRAP simulation

For the on-line MRAP simulation we generated 75 di¤erent series (see Figure 6 for visualization

of one simulation run) of unforeseen tasks for an equal number of working shifts and tested

di¤erent � integration factors (with every re-schedule selecting a solution from 8000 runs as

before). As explained in the previous section, the tasks were generated up-front so as to be able

to compare for each run how di¤erent solution strategies perform with the MRAP (i.e. with

di¤erent � integration factors).

The � factors were chosen in steps of 0.25 from 0 to 1. An � = 0 implies that a sim-

ple TOP-MTW problem is solved disregarding the TAMEXCLP problem altogether, while an

� = 1 implies that the plan with the best TAMEXCLP score is selected. However, as the basic

algorithm is based on solving the TOP-MTW it can not be said that � = 1 solves the TAMEX-

CLP to optimality. In addition to the range of � integration factors tested, we introduce two

more � values to re�ect a hierarchical way of selecting a solution for the MRAP. In this way, an
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Figure 6: Results of a simulation run: Routes (left) and coverage (right).

� = 0:1 � 10�5 has such a low � that in e¤ect forces to select from all the alternative optima for

the TOP-MTW the solution that provides the best TAMEXCLP measure.

In addition, we also solve the complete information sub-problem TOP-MTW for each vector

of unforeseen tasks in hindsight (a-posteriori) where all the generated unforeseen tasks are known

at the start of the shift. Solving each simulation run in hindsight allows us to compare each

solution with the highest achievable ful�lment yield.

The results of Experiment 2 are shown in Table 4. Using the TAMEXCLP sub-problem

can positively in�uence the expected % of weighed tasks accomplished in due time. A total

improvement of 2.94% of ful�lment yield 
 over solving a "plain" TOP-MTW is achieved by

solving the problem hierarchically with � = 10�6. A low value of � =0.25, also yields an

improvement (i.e. 2.64%). To verify the signi�cance of the improvement we conduct a two-sided

t-test suggested by Law and Kelton (2000) to compare two di¤erent simulation alternatives. The

test consists of constructing a con�dence interval with an auxiliary variable that is the di¤erence

between the ful�lment yields of two alternatives in a same simulation run: Zj = 
1j � 
2j .

Comparing the alternative of solving hierarchically the s-TOP-MTW (i.e. solving with � = 10�6

) with solving solely the TOP-MTW (i.e. solving with � = 0 ), we �nd that with a signi�cance

of p<0.050 both alternatives are di¤erent and thus, conclude with a 95% con�dence that solving
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Table 4: Experiment 2 Results of ful�llment yields 
 for di¤erent values of �
� 0 10�6 0.25 0.50 0.75 1-(10�6) 1 Hindsight

Mean Ful�lment yield 
% 79.83 82.78 82.48 78.84 54.47 36.06 36.22 93.24

Standard Deviation % 18.77 18.11 18.91 18.79 16.73 15.20 15.23 10.12

the s-TOP-MTW hierarchically outperforms solving the TOP-MTW.

The signi�cance of the improvement obtained with � = 10�6 and � =0.25 should not be

overlooked, as a maximum improvement of 13.41% is attainable (i.e. considering the hindsight

result as threshold and solving the TOP-MTW as reference). Nonetheless, it is worth noticing

that these positive results occur only for low values of �, indicating that reliability is of second

importance after that of greedily maximizing the weighed amount of known tasks accomplished

in time.

Moreover, for high values of � (i.e. >0.5) the obtained objective values are low with a decre-

ment in the ful�lment yield of up to 43% compared to solving a "pure" TOP-MTW. Such results

can be explained by the fact that although high values of � yield a high percentage of coverage,

servicing known tasks including released unforeseen tasks is not considered as important as good

coverage and thus despite the good positioning of mobile resources to serve unforeseen tasks it

is possible that it doesn�t take advantage of such positioning to serve known tasks.

For Experiment 2 it was expected that the best value for factor � be � = 0:5 as the expected

total weight of unforeseen tasks was made equal to the total weight of foreseen tasks so that

intuitively the routing of foreseen tasks should be as important as servicing unforeseen tasks.

However, the best value was obtained at � = 10�6. The underlying reason for this result may be

that the reliability measures taken at time steps are calculated assuming that the routes would

remain una¤ected (so that the mobile resources�routes remain known) which is not strictly true

as unforeseen tasks may arrive that change the routes followed by the mobile resources.
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6 Conclusions

The MRAP applied to service engineering is a new approach in a focus also on service quality

rather than on costs only. Therefore, instrumental, in recognizing the speci�c needs of clients

through the consideration of speci�c service deadlines and response times. In addition to only

information about known tasks, we have also used in this paper incomplete information about

possible unforeseen tasks. Moreover, it was shown that by tracking the position and state of

each mobile resource it is possible to devise a measure reliability of constructed routes.

We have observed that the improvements in reliability can be made by choosing among

alternative equivalent optima of the TOP-MTW problem or at the expense of the performance

of the known tasks. Through simulation experiments we observed that moderate considerations

of the routes�reliability measure (i.e. the TAMEXCLP objective value), improvements can be

achieved making it possible to serve more tasks on time. Nonetheless, further investigation is

required to quantify the optimum relative weight that the TAMEXCLP component should have

for optimum results.

The MRAP can be further extended by adding the possibilities of delays at sites without

immediate re-allocation to serve other tasks and even by being able to modify the exact paths

between sites. Increased control on the mobile resources path may add new possibilities to

obtain higher route reliabilities. Other possible extensions for the MRAP include the use of

individual response times, the recognition of di¤erent travelling speeds, stochastic transferring

times and the possibility of mobile resource breakdowns.

7 Appendix
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Algorithm 1 Calculation of TAMEXCLP
for p = 1 to TS do
for every mobile resource k 2 K do
Calculate coverage radius: �(k)p
for every site i 2 I do
Verify if site i 2 I is covered by mobile resource k 2 K
Update numbers coverers of site i

end for
end for
for every mobile resource k 2 K do
for every site i 2 I do
Calculate workload: W (k)

ip

end for
Calculate busy fraction; q(k)p

end for
for every site i 2 I do
Calculate speci�c busy fraction per site q(k)ip
Calculate MEXCLP objective value for site i at step p

end for
Calculate average MEXCLP objective for step p

end for
Calculate TAMEXCLP objective value for feasible solution �(f)j
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