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Abstract 
In this paper we proposed an efficient algorithm to solve the joint replenishment problem to optimality. 
We perform a computational study to compare the performance of the proposed algorithm with the best 
one reported in Viswanathan [6]. The study reveals that for large minor set-up costs  and moderate 
major set-up cost, our algorithm outperforms the latter. 
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1. Introduction 
 

The joint replenishment problem (JRP) has been extensively studied in the 
literature under cyclic strategies (also called general integer (GI) policies). This 
problem considers M items that can be jointly replenished against a major set up cost 
S. It is assumed that each item j (j = 1,…,M) included in a single order causes a minor 
set-up cost sj and has an associated holding cost hj. Demands for the items occur at 
constant rates Dj and no backorders are allowed. Items are ordered every kjT units of 
time, where T is called the basic cycle time and kj is an integer multiple of T. 

Although a number of heuristics are available to solve the JRP, optimal solutions 
are few. Most of these methods are based on an algorithm first proposed by Goyal [3], 
which is based on enumeration of the total cost function between a lower and an 
upper bound of T. As pointed out by van Eijs [2] and Andres and Emmons [1], the 
algorithm by Goyal [3] can guarantee optimal solutions only for strict-cyclic policies, 
in which at least one family item is included in every replenishment occasion. Van 
Eijs [2] proposed a modified version of Goyal’s algorithm for cyclic strategies, where 
an explicit formula is introduced to obtain the intervals over which the total cost is 
enumerated. The pitfall of the algorithms by Goyal and van Eijs is that for large 
number of items and relatively high minor set-up costs, they require a large number of 
enumerations. Viswanathan [5] and Wildeman et al. [7] proposed the use of tighter 
bounds for the basic cycle time. In this paper, we incorporate the bounds suggested by 
Wildeman in an algorithm similar to van Eijs [2]. Viswanathan [6] presented a 
comparative study of the performance of different methods until 2002. However, he 
did not cite the work by Wildeman et al. [7]. Thus, our objective is to perform a 
similar study to compare our method with the best one reported by Viswanathan [6]. 
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2. JRP formulation 
 
We consider the following formulation for the JRP: 
 

(P) Min ∑
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where k is the vector of the kj’s.  
 
Note that the function TC(T,k) is not jointly convex with respect to T and k. However, 
for a fixed vector k the function TC(T) is convex in T, with optimal T given by: 
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Substituting (2) back in (1) we get the optimal TC for a fixed k: 
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2.1 Solution method for problem (P) 
 

We develop a solution method similar to van Eijs [2] but based on a formulation of 
problem (P) given by Wildeman et al. [7]. This formulation gives a better insight into 
the behaviour of the function TC and has not been used by other authors. Wildeman et 
al. [7] gives the following equivalent formulation of problem (P): 
 

(P) Min ∑
=

+=
M

j
j Tz

T
S

TTC
1

)()( , s.t. T > 0 

 
where the functions zj(T) given by: 
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For given T, an optimal value of k is given in Wildeman et al. [7] by: 
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Although formula (4) can be easily derived from the inequalities given by Goyal [3] 
for the optimal solution, it was not provided before in the literature to show the 
correctness of Goyal’s algorithm. We refer to the Appendix for the details on this 
analysis. Thus, from (4) it follows that the vector k remains unchanged for T inside 
some interval ),[ )1()( −ii TT , where T (i) can be obtained from: 
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We call this vector k(i-1) and *

)1( −iT  the optimal T associated with it, as given by 

equation (2). Note that *
)1( −iT  does not necessarily belongs to the interval ),[ )1()( −ii TT . 

However, as stated in the following theorem, the overall optimal solution for TC has 
an associated optimal T, say Topt, equal to some *

)1( −iT . This result was not provided in 
previous papers to show that Goyal’s algorithm and modified versions of it (including 
the one presented in this paper) provide indeed the optimal solution for the JRP. 
Moreover, this result may not hold for extension of the JRP, e.g. when a correction for 
empty replenishments is made in the total cost function (see Porras and Dekker [4]). 
 
Theorem 1 
Let kopt be the vector of *

jk  values that minimize the function TC(T,k) among all 

possible T values as given by equation (4). Let ],[ u
opt

l
opt TT  be the interval associated 

with kopt. Then Topt = ),...,,( **
2

*
1

*
MkkkT  ∈ ],[ u

opt
l

opt TT . 
 
Proof 
From (2) it follows that T *(k1,…,kM) is monotone decreasing in k. Now let k(-1) be the 
adjacent locally optimal vector to kopt for u

optTT >  and suppose that 
u

optM TkkkT >),...,,( **
2

*
1

* . By the convexity of TC(T) it follows that TC is decreasing in 

],[ u
opt

l
opt TT , which implies that TC is increasing for u

optTT > . Again by the convexity of 

TC(T), this would imply that )( )1(* −kT < ),...,,( **
2

*
1

*
MkkkT , which is a contradiction by 
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The previous analysis allows us to make a partition on the set I = (0,∞) of T values, 

with optimal solutions given by (4). Note that we do not need a full enumeration on k, 
since we only consider the vectors k that minimize the total cost for a given T. 
Therefore we only need to evaluate a finite number of intervals between a lower and 
an upper bound on T, say Tlow and Tupp, respectively. We can obtain the local minima 
of TC with formula (3) inside each interval of such a partition, and compute the best 
solution among all intervals. 
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According to the previous discussion, the difference in performance for the various 
methods to solve the JRP, depends on their ability to get tighter bounds for the basic 
cycle time. In the next section we discuss the bounds used in Viswanathan’s algorithm 
(referred to as Visw), and the bounds suggested by Wildeman et al. [7], which were 
implemented in the algorithm proposed in this paper (referred to as Porras-Wild). 
 
 
2.2 Bounds on the basic cycle time 
 
As shown by van Eijs [2], an upper bound on T can be obtained from: 
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This upper bound was first proposed by Goyal [3]. Note that for a large number of 
items and relatively high minor set-up costs, the previous upper bound can be very 
large. This increases considerably the computational effort to find the optimal TC. In 
Visw, a tighter upper bound, say )(V

uppT , is obtained in the following way: starting in 
)1(

uppT , find the first *
)1( −iT  that lies inside the interval ),[ )1()( −ii TT . The function TC will 

be monotone increasing between the overall optimal T and *
)1( −iT  (Viswanathan [5]). 

Van Eijs [2] proposed a lower bound on T for cyclic policies as follows: 
 

U
VElow TCST /2, =  

 
where TCU is an upper bound on the total cost TC(T,k). 
 
This lower bound can be improved further by inserting in the last equation the best 
value of TC found so far in each step of the optimization algorithm.  However, even 
with this improvement technique, except for large values of the major set up cost and 
moderate minor set-up costs, the resulting lower bound can be very small. Therefore 
the computation effort to find the optimal solution increases considerably. Starting 
with Tlow,VE, Visw finds a tighter lower bound on T, say )(V

lowT , by using a similar 

procedure as the one described for )(V
uppT  (Viswanathan [5]). 

To avoid a large number of enumerations to get the improved lower and upper 
bounds, Visw stops the search if before reaching the best possible lower (upper) 
bound, the ratio (Tupp/Tlow) is below a predetermined value. Viswanathan [6] did not 
apply Wildeman bounds. 

As we show in the computational results of section 3, Visw performs very well for 
a number of problem configurations. However, for moderate major set-up costs and 
relatively high minor set-up cost (magnitude order of 1 to 1 until 1 to 5), Visw can be 
outperformed by a faster algorithm that incorporates the bounds on T proposed by 
Wildeman et al. [7]. These lower and upper bounds on T are suitable for GI policies 
and a general cost structure. Wildeman et al. [7] proceeded in the following way: 
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Now a lower bound Tlow is obtained from: 
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where T(R) is the optimal basic cycle time for the relaxation (R) of problem (P): 
 
(R) min TC(R)(T,k) 
 
s.t. T > 0 

1≥jk    j = 1, 2,…, M  
 
where TC(R)(T,k) is defined in a similar way as TC(T,k). 
 
Note: A procedure to determine T(R) can be found in Wildeman et al. [7]. 
 
The above procedure basically finds a locally optimal solution for the original 
function TC in T=T(R), and then by bisection on the interval (0,T(R)] a lower bound is 
obtained by using equation (6). It can be shown that the function TC(R) is convex in T 
(Wildeman et al. [7]) and therefore an upper bound on T, say Tupp, can be obtained by 
the same bisection procedure on the interval [T(R), )1(

uppT ], whenever )1(
uppT >Tupp. 

 
 
2.3 Algorithm to solve (P)  (Porras-Wild) 
  
Step 0. Initialization 
Evaluate Wildeman bounds lowT  and Tupp. 
Set k(0) = k(Tupp) using equation (4). 
Set ∞=)0(

minTC , T (0) = 8  and  n = 1. 
 
Step 1. For k(n−1) determine T (n)  from: 
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Obtain the elements of the new vector k(n), according to: 
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Step 2. If T (n) ≤ Tlow STOP with )(

minmin ),( nTCTTC =k  and Topt = *
1−nT . 

Otherwise set n = n + 1 and GOTO step 1. 
 
In the previous algorithm, the number of T intervals evaluated between Tlow and Tupp 
depends on the number of )(nT evaluations. Since the maximum in )(nT  is taken over 
M items in each round of the algorithm, it follows that the number n of steps increases 
only linearly in the number of items. Based on this, the following formula gives the 
maximum number of steps needed in the algorithm: 
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The previous formula was not provided previously in the literature of the JRP. 

The previous algorithm to solve (P) is essentially the same as the one proposed by 
van Eijs [2], although implemented in a slightly different way. Our main contribution, 
apart from using better bounds on T, is that in every round of the algorithm we check 
for local optimality of the solution for each new T * value, something that Goyal [3], 
van Eijs [2] and Viswanathan [5] omit in their methods. This may not have a great 
impact in the performance of the algorithm for TC, since the optimal solution is 
always associated with an optimal T. However, some CPU time can be saved by not 
evaluating the total cost in every round of the algorithm. On the other hand, checking 
for optimality is a necessary condition to get the optimal solution for a corrected 
version of problem P, say P(c), where the total cost function, say TC(c), includes a 
correction factor for empty replenishments (see Porras and Dekker [4] for a method to 
solve P(c) with minimum order quantities). When P(c) is solved to optimality, the 
solution need not be an element of the set of solutions given by equation (3), but one 
with associated T=T (i) from some interval ),[ )1()( −ii TT . Accordingly, after defining 
proper bounds on T, we can still use Porras-Wild to minimize TC(c). 
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3. Computational results 
 
We implemented the algorithms Visw and Porras-Wild as described in the last 
section. To be fair in the performance comparison of the two algorithms, we also 
include the feasibility check in Visw. We use the same experiment setting as 
Viswanathan [6], but with the inclusion of two extra values for the major set-up cost, 
so the values S = 0.5, 1, 5, 10, 20, 50, 100 were considered. The number of items 
considered were M = 10, 20, 50. For each value of S and M we generated 100 
problems, with the minor set-up costs sj and the unit holding costs hj randomly 
generated from U[0.5,5] and U[0.2,2]. For each problem instance, demands for the 
individual items were randomly generated from U[100, 100000]. Therefore, a total of 
(7×3×100) = 2,100 problems were solved. 
 
Remark 
We consider an order of magnitude of the major set-up cost as compared to the minor 
set-up costs varying from 1:10 to 1:0.005. From numerical results, we found that for 
values of the minor set-up costs up to ten times the major set-up cost, the JRP is still 
relevant (savings up to 3.5% were achieved as compared to independent EOQ 
ordering). Therefore, the cost values considered in the experiment setting are relevant 
for the purpose of this study. 
 
In Table 1 we present a comparison on the performance of Visw versus Porras-Wild 
for the experiment setting described above. The average number of intervals evaluated 
to get the optimal solution (including the ones needed to improve the bounds), the 
average lower bound, the average upper bound and the average CPU time is reported. 

As we can see from Table 1, Porras-Wild dominated Visw for all problem in 
which the ratio of S to sj is 1:10 to 1:5. For 10 and 20 items Porras-Wild 
outperformed Visw up to a ratio of 1:0.5 in all problems solved. For ratios of 1:0.25 
up to 1:0.05 Visw outperformed Porras-Wild, except for M=10 items, in which both 
algorithms performed equally.  We can conclude that as the number of items increases, 
the ratio of S to sj is less relevant for the performance of Visw. However, even for a 
large number of items (M=50) when this ratio is in the range 1:10-1:5, Porras-Wild 
outperformed Visw. 
 
 
4. Conclusions  
 

In this paper we showed by numerical experiments that the proposed algorithm 
outperforms the best reported in Viswanathan [6] for moderate major set-up cost and 
relatively high values of the minor set-up costs. Our algorithm performs relatively 
well for a number of problem configurations in which the major set-up cost becomes 
more important. Only when the major set-up cost is in the order of 20 times the minor 
set-up costs, Visw clearly outperformed Porras-Wild. An important contribution of 
this paper is the formal proof that the algorithms presented in the literature for the JRP 
based on van Eijs’ method find an overall optimal solution for TC. 
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Table 1. Comparison of JRP algorithms for determining the optimal cyclic policy with si~U[0.5,5] 
                    

    
Average no. of intervals 
evaluated  

           Average Tlow  
                (years) 

             Average Tupp  
                (years) 

    Average CPU time  
            (sec.) 

M S Visw Porras -Wild Visw Porras -Wild Visw Porras -Wild Visw Porras -Wild 

10 0.5 78.3 31.2 0.0022 0.0033 0.0074 0.0077 1.7 0.8 

  1 49.1 21.0 0.0034 0.0043 0.0078 0.0082 1.5 0.5 

  5 14.4 10.2 0.0080 0.0067 0.0093 0.0100 0.5 0.3 

  10 8.2 8.0 0.0101 0.0079 0.0107 0.0113 0.3 0.2 

  20 4.6 6.0 0.0122 0.0093 0.0125 0.0131 0.2 0.2 

  50 2.4 4.5 0.0163 0.0119 0.0167 0.0170 0.2 0.2 

  100 2.0 3.8 0.0214 0.0147 0.0217 0.0219 0.2 0.1 

20 0.5 179.8 102.1 0.0018 0.0023 0.0069 0.0071 13.7 7.8 

  1 113.5 66.6 0.0026 0.0031 0.0070 0.0076 9.1 4.2 

  5 34.3 27.0 0.0059 0.0055 0.0081 0.0090 2.3 1.5 

  10 16.3 18.7 0.0084 0.0066 0.0092 0.0099 1.3 1.0 

  20 9.3 14.1 0.0101 0.0078 0.0106 0.0113 0.7 0.8 

  50 4.4 9.6 0.0130 0.0098 0.0133 0.0139 0.5 0.5 

  100 2.6 7.2 0.0162 0.0118 0.0166 0.0170 0.3 0.5 

50 0.5 532.2 440.3 0.0013 0.0014 0.0061 0.0063 364.4 333.9 

  1 340.3 283.1 0.0019 0.0019 0.0062 0.0068 194.3 90.5 

  5 100.4 105.1 0.0043 0.0038 0.0069 0.0080 27.6 29.2 

  10 53.2 67.7 0.0060 0.0049 0.0076 0.0087 10.9 15.5 

  20 23.0 46.9 0.0081 0.0060 0.0087 0.0095 4.1 9.2 

  50 11.8 30.0 0.0101 0.0076 0.0105 0.0112 2.3 5.2 

  100 6.1 21.7 0.0120 0.0090 0.0123 0.0130 1.5 3.8 
 
 

 
Appendix 
 
Motivation of the proposed algorithm 
  
From equation (4) it follows that as T decreases, the vector k changes when one of its 
elements, say kj, changes from kj to kj + 1. The new vector k will remain constant until 
the next element of k changes in one unit. In other words, TC(T) is piecewise convex 
in T for the intervals in which the associated vectors k’s remain unchanged. 

More formally, define Ii as the interval ),[ )1()( −ii TT  inside which the function 
TC(T) has an associated constant vector k(i-1), with its elements given by (4). Now 

observe that for T∈ ),[ )1()( −ii TT  the arguments 2

8
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2
1

T
b j++−  in (4) increase as 

T→ )( iT . The vector k(i-1) will change when one (or more) of its elements increases by 

one unit just below )( iT . Therefore, )( iT can be calculated from equation (5). The 

elements of the vector k just below )(iT , say k(i), are given by: 
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where )(iJ  is the set of all elements of k for which the maximum in (5) is attained. 
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