
A Comparison of Inventory Control Policies for a Joint
Manufacturing / Remanufacturing Environment with

Remanufacturing Yield Loss

Z. Pelin Bayındır 1

University of Florida, Department of Industrial and Systems Engineering

Ruud H. Teunter, Rommert Dekker

Econometric Institute, Erasmus University Rotterdam
March, 2005

Econometric Institute Report 2005-10

Abstract

We consider a joint manufacturing / remanufacturing environment with remanufacturing yield loss.

Demand and return follow independent stationary Poisson processes. Returns can be disposed off upon

arrival to the system. Manufacturing and remanufacturing operations performed in the same facility

at exponential rates. Yield information becomes available after remanufacturing. Demands that are

not directly satisfied are lost. We investigate what inventories to consider when making production and

disposal decisions, with the objective of maximizing the long-run average expected profit. Four different

policies are compared that base disposal decisions on either the local (returns) inventory or the global

inventory, and production decisions on either the local (serviceable) inventory or the global inventory.

By modelling the system as a Markov process, expressions for the profit associated with each policy are

derived. An extensive numerical study shows that it is always optimal to base disposal decisions on the

local inventory and production decisions on the global inventory within the parameter sets considered.

A sensitivity analysis reveals further insights.
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1 Introduction

One of the main characteristics of joint manufacturing / remanufacturing environment is the high degree

of uncertainty in the timing, quantity, and quality of returns. Although quality uncertainty has been

mentioned as an important complicating factor for material planning activities in a number of studies

(Thierry et. al. 1995, Ayres et. al. 1997, Ferrer 1997, Guide and Srivastava 1997, Guide et. al.

2000), this type of uncertainty is ill-researched. Most of the production planning and inventory control

literature on reverse logistics only takes uncertainty in timing and quality into account, and assumes

that all returns are of the same quality and are successfully remanufactured. See Dekker et al. (2004)

for an extensive and recent review.

There have been some results on yield uncertainty. Ferrer (2003) examines a number of distinct

situations about the information on the failure of recovery under a deterministic demand, single period

setting where the supply of returns is infinite. He includes a number of serial recovery operations

and identifies the value of having the yield information available in early stages of the recovery. In

addition, the importance of having responsive suppliers in situations with imperfect recovery is shown

by numerical experimentation. Ferrer and Ketzenberg (2004) extend this study to the infinite horizon

setting. Bayındır et. al. (2005) study the desired level of recovery when both the success and unit cost

of recovery increases as the recovery effort increases that is measured by expected time spent for the

operation. The analysis is restricted to the case where all items completing their usage time returns to

the system. Various inventory control policies that differ in inventory position definition and the time

epoch that the regular purchasing decisions are proposed.

In this paper, we investigate the influence of remanufacturing yield uncertainty on the effectiveness

of inventory policies. In situations with perfect remanufacturing, it is intuitive that production decisions

should be based on the serviceables inventory as well as the returns inventory. However, how to include

returns in production decisions is complicated especially when the manufacturing and the remanufactur-

ing operations have non-identical lead times under the practical inventory control policies. A detailed

discussion is provided by van der Laan et al. (2004).

The situation is more complicated when the remanufacturing option is not perfect simply due to the

fact that not all but a portion of the returns can be used to satisfy the customer demand. Therefore,

we will compare policies that base manufacturing decisions on the serviceable inventory (local) to those

that consider the returns inventory as well (global). Furthermore, we compare policies that base disposal

decisions on the returns inventory (local) to those that consider the serviceable inventory as well (global).

So, in total, four different types of policies are compared. All are characterized by a dispose-down-to

level for returns and an order-up-to level for production.

The production system is modelled as follows. Manufacturing and remanufacturing operations are
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performed in the same facility, but by dedicated resources. When the item under consideration is

produced, the manufacturing line is always operating (so there is no shortage of input materials for

manufacturing) and the remanufacturing line is operating as long as returns are available. The manufac-

turing and remanufacturing rates are both exponential. Due to quality variations in the returns, there is

remanufacturing yield loss. Whether or not a remanufactured item is serviceable becomes known after

remanufacturing has ended, as in the case of tire remanufacturing (Ferrer(1997)).

Demand and return follow independent Poisson processes. We note that the independency is a

common assumption in reverse logistics, which is justified if the time lag between a sale and a return

is considerable. See Fleischmann (2000) for a discussion. Disposal of returns is allowed upon arrival.

Demands that can not be immediately satisfied from serviceables on hand are lost. The objective is to

maximize the long-run average profit.

By modelling the system as a Markov process, expressions are derived for the profit associated with

each of the four above mentioned policies types. In an extensive numerical study, we determine the

optimal policy parameters for each type using complete search (with certain bounds on the two policy

parameters) for a large number of examples. The main result is that it is always optimal to base

disposal decisions on the local (returns) inventory and production decisions on the global (returns and

serviceables) inventory. A sensitivity analysis reveals further insights.

The remainder of the paper is organized as follows. In Section 2, the assumed environment is

explained in detail, and the policy types are introduced. In Section 3, a generic average long-run profit

function is derived. In Section 4, results of the computational study are discussed. Finally, in Section 5,

conclusions are presented and further research directions are indicated.

2 Environment and control rules

The notation is summarized in Table 1.

INSERT TABLE 1

In this study we consider a single item, joint manufacturing / remanufacturing environment, which

is illustrated in Figure 1.

INSERT FIGURE 1

The demand for the item is Poisson with rate λ, and customers are indifferent between manufactured

and remanufactured products. Unsatisfied demand is lost. We do not include an explicit lost sales cost,
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since it is difficult to estimate it in practice. Instead we consider a profit maximization objective, thereby

including the effect of losing profit margin whenever a stock out occurs. We restrict ourselves to lost

sale case due to the fact that the assumption makes the system easily analyzed analytically.

The system is subject to stochastic returns following a Poisson process with rate rλ. We restrict

our attention to the case where the demand rate is greater than the return rate on the average, so

0 < r < 1. Returns are either remanufactured or disposed off. The decision whether or not a return

is remanufactured results from the inventory policy, for which we consider several variants that will

be discussed in detail later. Remanufacturing is successful with probability ω, 0 < ω ≤ 1. That is,

the remanufacturing yield is 100ω%. Returns that are successfully remanufactured enter the stock of

serviceable items, and those that do not satisfy the required standards after remanufacturing are disposed

off.

The production facility consists of a remanufacturing line as well as a manufacturing line. The latter

is obviously needed, since there are more demands than returns. Both lines have exponential production

rates that are denoted by µr and µm, respectively. Both manufacturing and remanufacturing lines

process items on one by one basis. Of course, the remanufacturing line can only be utilized as long

as returns are available. Therefore, the total production rate of the facility is µr + µm if returns are

available, and µm otherwise.

The objective is to maximize the expected (long run) steady state profit per time unit. There is

a revenue p for each satisfied demand. Costs included are: (i.) unit costs; cm for manufacturing, cr

for remanufacturing, and cd for disposal, (ii.) per unit time unit holding costs; hr for returns and

hs for serviceables. We remark that the unit disposal cost cd is only incurred for units that are not

successfully remanufactured, but disposed on arrival. For ease of presentation in later sections, without

loss of generality the expected disposal cost per remanufactured unit, which is (1 − ω)c
′
d if the cost for

disposing of a remanufactured unit is c
′
d, is included in cr. We remark that the disposal cost can be

negative if there are recycling revenues or if not (successfully) remanufactured returns can be sold on a

secondary market.

Consistently with ignoring fixed costs, we restrict our attention to base stock inventory policies. A

policy is characterized by a pair of base stock levels: a dispose-down-to level D and an order-up-to level

S. It is defined as follows. If the serviceable inventory position (SIP) drops to or below S, then the

production facility is opened until the SIP again reaches S. If the disposable inventory position (DIP)

is D or more, then returns are disposed off.

Both the SIP and the DIP can be defined in two ways: local and global. Indeed, the main aim

of this study is to investigate what definitions maximize profit under the restriction that each piece of

information is either fully utilized, or completely ignored. The local SIP is defined as the serviceable
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inventory on hand, and is denoted by Is. The local DIP is defined as the returns on hand plus in

process, and is denoted by Ir. The global SI/DI is defined as the sum of Is and Ir, and is denoted by

Ig. Since both SI and DI can be defined in two ways, there are four possible policies, which are listed

and numbered in Table 2.

INSERT TABLE 2

We remark under Policy II and IV (global SI), the policy parameters are restricted to D < S, since

otherwise the system cannot leave a state where there are ”many” returns and no serviceable inventory

and consequently incurs infinitely many lost sales.

The optimal control policy structure for the considered system can be sought by modelling it as a

continuous time Markov decision process. Of course, other inventory definitions and policy structures

are possible. Indeed, we do not claim that the overall optimal policy is of one of the four proposed base-

stock policy types. That overall optimal policy may have a (much) more complex structure and utilize

complicated inventory definitions, and may be state-dependent. However, for reasons of practicality,

we restrict our attention to the base-stock policy structure and to four proposed types where each

information piece on inventory levels is either fully utilized or completely ignored.

Based on intuition, we expect that policies II and IV (global SI) perform better relative to policies

I and III (local SI) if the yield ω is higher and if the remanufacturing rate µr is larger compared to the

manufacturing rate µm, since remanufacturing is more reliable and faster under those conditions. It is

difficult to predict the influence of the other model parameters on the comparative performance of local

versus global DI policies. To get insights into the effect of model parameters on the relative performance

of the four policies, and to determine (rough) guidelines into what policy performs best under what

conditions, we will perform an extensive numerical study in Section 4. In that section, we compare the

optimal policies of types I-IV, which can be determined using the analysis in the next section.

3 Determining the optimal policy parameters

Under all policy types proposed, evolution of both return and serviceable inventories are triggered by

exponential events. Therefore, the system under each policy can be modelled as a Markov Process on

the state space M = {(Is, Ir) | Is ≥ 0, Ir ≥ 0}, which for some policies is further reduced by policy type

specific restrictions. Ignoring these specific conditions for the moment, there are five possible events that

lead the system to enter a state (i, j) ∈ M. These are:

I.1 a return arrival from state (i, j − 1) with rate rλ, (if j > 0)
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I.2 a manufactured item completion from state (i − 1, j) with rate µm, (if i > 0)

I.3a a successful remanufactured item completion from (i − 1, j + 1) with rate ωµr, (if i > 0)

I.3b an unsuccessful remanufactured item completion from state (i, j + 1) with rate (1 − ω)µr (if

j + 1 > 0),

I.4 a demand occurrence from state (i + 1, j) with rate λ.

Similarly, the outflows from such a state can be caused by five possible events;

O.1 a return arrival to state (i, j + 1) with rate rλ,

O.2 a manufactured item completion to state (i + 1, j) with rate µm,

O.3a a successful remanufactured item completion to (i + 1, j − 1) with rate ωµr, (if j > 0)

O.3b an unsuccessful remanufactured item completion to state (i, j − 1) with rate (1 − ω)µr (if

j > 0),

O.4 a demand occurrence to state (i − 1, j) with rate λ, (if i > 0).

As remarked above, there are policy type specific restrictions on the state space. These are discussed

in the Appendix for each policy type separately. So, the state space under policy k ∈ {I, II, III, IV }
is a subset of M, which we will denote by Mk. For each policy type k, the set Mk as well as the

generator matrix of the Markov process based on the above listed inflow and flow events, are given in

the Appendix. Moreover, using that matrix, the steady state probabilities π(i,j), (i, j) ∈ Mk that the

system is in state (i, j) are derived in the Appendix. Note that for ease of presentation, the policy type

index is omitted from π(i,j).

The steady-state probabilities π(i,j), (i, j) ∈ Mk can be used to derive the long-run average expected

revenue and costs per time unit as a function of the policy parameters S and D. We start by deriving

the revenue function. Since demands are satisfied if there are serviceables on hand and lost otherwise,

it easily follows that average revenue in the long-run can be written for Policy k is as follows:

Rk(S,D) = pλ


1 −

∑
j

π(0,j)


 for all k ∈ {I, . . . , IV }.

Similarly, we get average holding cost

Hk(S,D) =
∑

i

∑
j

{
(ihs + jhr)π(i,j)

}
for all k ∈ {I, . . . , IV }.
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What remains is to determine the cost functions for production (manufacturing and remanufacturing)

and for disposal. These are not the same for all policy types, since production and disposal decisions

are based on different inventory definitions.

Under Policies I and III (local SI), the production facility is open when Is < S. Both the manu-

facturing line and the remanufacturing line are open if Ir > 0 and only the manufacturing line is open

otherwise. Hence, the long-run average production cost is

CPk(S,D) = cmµm


1 −

∑
j

π(S,j)


+ crµr


1 −

∑
j

π(S,j) −
∑

i, i �=S

π(i,0)


 for all k ∈ {I, III}.

The only difference under Policies II and IV (global SI) is that the production facility is open when

Ig = Is + Ir < S. Hence, the long-run average production cost function is

CPk(S,D) = cmµm


1 −

∑
i+j=S

π(i,j)


+ crµr


1 −

∑
i+j=S

π(i,j) −
∑

i, i �=S

π(i,0)


 for all k ∈ {II, IV }.

Under Policies I and II, returns are disposed if Ir = D. Hence, the long-run average disposal cost

function is (recall from Section 2 that disposal costs for unsuccessfully remanufactured units are included

in the remanufacturing cost)

CDk(S,D) = cdrλ
∑

i

π(i,D) for all k ∈ {I, II}.

Under Policies III and IV, returns are disposed if Ig = Is + Ir ≥= D. Hence, the disposal cost function

is

CDk(S,D) = cdrλ
∑

i+j≥D

π(i,j) for all k ∈ {III, IV }.

To find the optimal (S,D) pair maximizing the expected average profit in the steady state under

each policy k ∈ {I, . . . , IV }, the following problem should be solved.

Max Pk(S,D) = Rk(S,D) − Hk(S,D) − CPk(S,D) − CDk(S,D)

s.t S ∈ {0, 1, . . .}
D ∈ {0, 1, . . .}
D < S (only for Policies II and IV)

Note that we do not have closed for expressions for the steady state probabilities and consequently the

objective function under all policy types considered. Therefore, we cannot proof any structural property

of the objective function with respect to decision variables analytically. Nevertheless our numerical

experience reveals that the function is unimodalar under the parameter ranges considered.
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4 Computational study

The main aim of the computational study is to assess the relative performance of the proposed policies

under different system conditions. For this reason, an extensive experimental setting is considered. Note

that for ease of presentation, we will refer to a ‘policy’ rather than the ‘policy with optimal policy

parameters’.

In the experimental setting, the average demand rate λ, the price of the item p, the unit manufacturing

cost cm, and the unit serviceables holding cost hs are kept constant at λ = 1, p = 2, cm = 1, and

hs = 0.25. A full factor experiment is designed on the remaining factors. The levels of the factors are

given in Table 3.

INSERT TABLE 3

In these settings, we cover the cases where (1) total system capacity in terms of average production

rate is significantly less than, almost equal to, and significantly larger than the average demand rate, (2)

the fraction of total production capacity allocated to remanufacturing channel is very low, about half,

and very high, (3) the average return ratio, i.e., the ratio of average return rate to average demand rate,

is very low, moderately high, and very high, (4) the unit remanufacturing cost is lower than, equal to,

and higher than the unit manufacturing cost, (5) the unit disposal cost is zero, significantly lower than

unit remanufacturing cost, or slightly lower than that cost. Moreover, for the key yield loss parameter,

we consider the wide range [0.1,1] with step-size of 0.1.

We use MATLAB to determine the optimal policy levels S and D for each problem instance under

all four policies. It appears from the numerical results that the profit function is unimodular. However,

since we do not have no formal proof, a full search procedure is applied (within reasonable bounds). In

the remainder of this section, we report the main observations. For interested readers, all raw results

are available upon request.

Our main observations can be summarized as follows:

Observation 1: There is a certain minimum yield level required to differentiate the performance

of the policies for a given set of all other problem parameters.

Observation 2: Policy II under which production decisions are based on system-wide inven-

tory and disposal decisions are based on returns inventory outperforms the others whenever the

performance of the policies can be differentiated.

In the following subsections we discuss these two main observations in detail.
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4.1 Threshold Yield Level

The most important observation is that policy II performs at least as good as the others for all problem

settings considered. Recall that Policy II basis disposal decisions on the returns inventory and production

decisions on the global inventory. The dominance of policy II is rather surprising. We expected (see

Section 1) that for small yield levels, it would be better to place production decisions on the serviceable

inventory only.

As it turns out, however, there is no significant difference in performance between the four policies

for small yield levels. This is illustrated in Figure 2 for specific model parameter settings.

INSERT FIGURE 2

A look at the policy parameters reveals, for this example but also in general, that there is a certain,

model parameter dependent, threshold yield level below which remanufacturing is simply not profitable,

and all policies set the dispose-down-to level to either zero or one, thereby disposing off (almost) all

returns upon arrival. With such small dispose-down-to levels and hence small stocks of returns, the

different policies make (almost) identical inventory control decisions. Apparently, as soon as yield be-

comes sufficiently large for remanufacturing to be profitable, it is better to include the returns in the

serviceable inventory positions, even for still relatively low yield levels such as 0.4 in Figure 2.

In Table 4 average threshold yield levels are reported for combinations of values for the return rate

and another parameter. Averages are calculated over all cases with those values.

INSERT TABLE 4

It appears from Table 4 the threshold yield level increases as,

• unit disposal cost, cd, decreases,

• unit remanufacturing cost, cr, increases,

• unit holding cost of returns, hr, decreases

• return ratio, r, increases,

• proportion of total system capacity allocated to remanufacturing, µr

µr+µm
, increases,

• total system capacity, µr + µm, decreases.

These results are intuitive. If the remanufacturing cost is relatively large, a higher yield level is

required for remanufacturing to be profitable. The threshold level is also high when more returns are
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available for remanufacturing, the remanufacturing capacity is relatively large, and total capacity is

small. Under these conditions, the system performance becomes more dependent on remanufacturing

and a larger yield level is required to remain reliable.

4.2 Performance Comparison of the Policies

As mentioned above, Policy II outperforms the other policies for all cases (with yield above the threshold

level). The effect of yield level on the relative performance of the policies is typical in Figure 2; the profit

improvement by Policy II increases as the yield level increases. Table 5 shows the average increase (over

the cases with a difference in profit) in profit compared to Policies I, III, and IV. Note that in Table 5

we report the absolute profit improvements rather than percentages since in some cases Policy II makes

an improvement over no profit situation; and consequently percentage improvements are infinity.

INSERT TABLE 5

It appears from Table 5 that the performance of Policy I and III are almost the same on the average.

On the other hand, Policy IV is the worst behaving policy.

The explanation for the bad performance of Policy I and III is trivial; they ignore the work-in-process,

i.e., returns, while making production decisions. Due to the fact that at higher values of ω most of the

items in returns inventory are successfully remanufactured, it is beneficial to count them while making

production decisions.

The very poor performance of Policy IV is more difficult to explain. Recall that the only difference

with the best behaving Policy II is that Policy IV includes serviceables in the disposable inventory

position. It turns out this leads to less than desirable utilization of the remanufacturing option. Policy

III suffers from the same disadvantage, but to a lesser extent due to the additional restriction that D < S

for Policy IV. (The same restriction does not lower the performance of Policy II since under Policy II,

D is defined in terms of the local, i.e. returns, inventory position.) As a result, the relative performance

of Policy IV is especially poor when (i.) taking back the returns is most profitable i.e, when both unit

remanufacturing and disposal costs and holding cost of returns are low, and the return ratio is high,

and (ii.) the serviceable inventory accumulates quickly even without using the remanufacturing line, i.e.,

when the total system capacity is high and most of the capacity is allocated to manufacturing option.

The effect is amplified by the discrete character of D and S.
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5 Conclusion

We investigate the performance of a number of inventory control policies for a joint manufacturing-

remanufacturing system with remanufacturing yield loss. The policies differ in the type of inventory

information, local or global, used for disposal (of returns upon arrival) and production decisions.

The main results are as follows. There is a case-dependent threshold yield level below which reman-

ufacturing is not so profitable and all policies achieve the same performance. In general, the threshold

yield level increases in the unit remanufacturing cost and in the proportion of capacity allocated to

remanufacturing, and decreases in unit disposal cost. When yield is above the threshold level, the policy

that basis disposal decisions on the local (returns) inventory and production decisions on the global

(returns + serviceables) inventory outperforms all others. A counter intuitive result is that the policy

which basis all decisions on the global inventory performs worst. The numerical results show that this

”full information” policy is unable to utilize the remanufacturing option as much as desired.

Our work can be extended into several other environments.

• Manufacturing and remanufacturing in distinct facilities: Two facilities are operated inde-

pendently, (possibly) using different production order-up-to levels and basing decisions on different

pieces of inventory information. The increased flexibility complicates the analysis, and optimization

by simulation may be required.

• Partial utilization of information pieces. Especially for production decisions, it seems natural

to only add the expected yield of the available returns to the inventory position. This again

complicates the analysis and may also reduce the practical applicability, but those disadvantages

may be outweighed by the profit increase.

• Modeling the remanufacturing operation: In real life, remanufacturing often consists of a

series of testing and repair operations with a portion of the yield information becomes available

after each step. Ferrer (2003) shows the importance of having yield information in early stages of

the remanufacturing under single period setting. An extension of our model could show whether

or not these finds extend to a multi-period setting.
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The inflows (I.1, etc.) and outflows referred to in this section are those given in Section 2.
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Policy I

Under Policy I, the system can be modelled as a two-dimensional Markov process on the state space

MI = {(Is, Ir) | Is ∈ {0, 1, . . . , S}, Ir ∈ {0, 1, . . . ,D}} for given (S,D). The following constraints on

inflow and outflows to each state (i, j) are imposed by Policy I.

D.I When Ir = D, returns are disposed off. Hence, it is not possible to leave a state (i,D) ∈ MI by

outflow O.1.

P.I When Is = S, production stops. Hence, outflows O.2, O.3a, and O.3.b are not possible for

(S, j) ∈ MI . Similarly, state (S, j) ∈ MI cannot be reached by an I.3b. type inflow.

The Generator Matrix of the Markov process under Policy I, obtained by ordering states lexicograph-

ically as (0,0),(0,1), . . ., (0,D), (1,0), . . ., (1,D),. . ., (S, 0), . . ., (S,D), is as follows:

Q =




A0 B 0 0 0 . . . 0 0 0

C A B 0 0 . . . 0 0 0

0 C A B 0 . . . 0 0 0

0 0 C A B . . . 0 0 0
...

...
...

...
... . . .

...
...

...

0 0 0 0 0 . . . C A B

0 0 0 0 0 . . . 0 C AS




,

where, A0, A,AS , B and C are (D + 1) × (D + 1) matrices and given by,

A0 =




−(µm + rλ) rλ 0 . . . 0 0 0 0

(1 − ω)µr −(µm + rλ) rλ . . . 0 0 0 0
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
...

...

0 0 0 . . . 0 (1 − ω)µr −(µm + rλ) rλ

0 0 0 . . . 0 0 (1 − ω)µr −µm




, (1)

A =




−(µm + λ̄) rλ 0 . . . 0 0 0 0

(1 − ω)µr −(µm + λ̄) rλ . . . 0 0 0 0
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
...

...

0 0 0 . . . 0 (1 − ω)µr −(µm + λ̄) rλ

0 0 0 . . . 0 0 (1 − ω)µr −(µ + λ)




, (2)
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AS =




−λ̄ rλ 0 . . . 0 0 0 0

0 −λ̄ rλ . . . 0 0 0 0
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
...

...

0 0 0 . . . 0 0 −λ̄ rλ

0 0 0 . . . 0 0 0 −λ




, (3)

B =




µm 0 0 . . . 0 0 0 0

ωµr µm 0 . . . 0 0 0 0
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
...

...

0 0 0 . . . 0 ωµr µm 0

0 0 0 . . . 0 0 ωµr µm




, (4)

C =




λ 0 . . . 0

0 λ . . . 0
...

...
. . .

...

0 0 . . . λ


 , (5)

where λ̄ = (1 + r)λ, µ = µr + µm.

Using the generator matrix, balance and normalization equations can be expressed as

Π0A0 + Π1C = 0 (6)

Πi−1B + ΠiA + Πi+1C = 0 for all i = 1, . . . , S − 1 (7)

ΠS−1B + ΠSAS = 0 (8)
S∑

i=0

Πi
�1 = 1 (9)

where Πi = (π(i,0), π(i,1), . . . , π(i,D)) for all i ∈ {0, 1, . . . , S}.
Using (6) and (7), it can be shown that

Πi = Π0Xi for all i = 1, . . . , S, (10)

where

X1 = −A0C
−1, (11)

X2 = A0C
−1A − B, (12)

Xi = −(Xi−2B + Xi−1A)C−1 for all i = 3, . . . , S (13)
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Finding XS−1 and XS using (11), (12), and (13) recursively, and substituting them into (8) yields

Π0X̄ = 0,

where

X̄ = XS−1B + XSAS . (14)

Note that rank(X̄) = S.

On the other hand, substituting (10) into (9) yields,

Π0

(
�1 +

S∑
i=1

Xi
�1

)
= 1.

Therefore, Π0 can be found by,

Π0 = eT
D+1X̄

′−1
,

where X̄ ′ is obtained by replacing D + 1st column of X̄ with
(
�1 +

Sr∑
i=1

Xi
�1
)

, and eD+1 is the D + 1st

elementary vector.

Matrix Πi, for all i ∈ {1, . . . , D} can be determined using (10).

Policy II

Under this policy, the system can be modelled as a two-dimensional Markov process on the state space,

MII = {(Is, Ir) | Is ∈ {0, 1, . . . , S}, Ir ∈ {0, 1, . . . ,D}} for given (S,D). The following constraints on

inflow and outflows to each state (i, j) are imposed by Policy II.

D.II. Returns are accepted according to the same criterion as under Policy I. Therefore, it is not possible

to leave a state (i,D) ∈ MI by outflow O.1.

P.II. When Ig = S, production is stopped. Hence, outflows O.2, O.3a and O.3.b are not possible for

state (i, j) ∈ MII such that i + j ≥ S. Moreover, outflows O.1 is only possible if it is valid for

D.II. Similarly, it is not possible to reach such a state by any type of item completion, i.e., I.2,

I.3a, and I.3b are not possible. (When i + j = S only I.3b is not possible.)

The Generator Matrix of the Markov process under Policy I, obtained by ordering states lexicograph-

ically as (0,0),(0,1), . . ., (0,D), (1,0), . . ., (1,D),. . ., (S, 0), . . ., (S,D), is as follows:
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Q =




A0 B0 0 0 0 . . . 0 0 0

C A1 B1 0 0 . . . 0 0 0

C A3 B3 0 . . . 0 0 0

0 0 C A4 B4 . . . 0 0 0
...

...
...

...
... . . .

...
...

...

0 0 0 0 0 . . . C AS−1 BS−1

0 0 0 0 0 . . . 0 C AS




,

where, Ai, Bi for all i ∈ {0, . . . , S} and C are (D + 1)× (D + 1) matrices that can be written similar to

the ones under Policy I:

• Matrix A0, AS and C are exactly as defined in (1), (3), and (5), respectively.

• Matrix Ai is equal to A given in (2) if D + i < S. For i ≥ S − D the following modifications are

made:

– Ai(l, l − 1) = 0 for all l ∈ {2, . . . , D + 1} if l + i − 1 ≥ S,

– Ai(l, l) = −(1 + r)λ for all l ∈ {2, . . . , D} if l + i − 1 ≥ S,

– Ai(D + 1,D + 1) = −λ.

• Matrix Bi is equal to B given in (4) if D + i < S. For i ≥ S − D the following modifications are

made:

– Bi(l, l − 1) = 0 for all l ∈ {2, . . . , D + 1} if l + i − 1 ≥ S,

– Bi(l, l) = 0 for all l ∈ {2, . . . , D + 1} < if l + i − 1 ≥ S.

The procedure utilized for finding the steady-state balance equations under Policy I can easily be

adapted for this case. In this case the equations (11), (12) and (13) will be replaced by the following

expressions, respectively.

X1 = −A0C
−1,

X2 = A0C
−1A1 − B0, (15)

Xi = −(Xi−2Bi−2 + Xi−1Ai−1)C−1 for for all i = 3, . . . , S. (16)

Besides, the matrix X̄ (given in equation (14) under Policy I) becomes

X̄ = XS−1BS−1 + XSAS (17)
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in that case.

Policy III

Under Policy III, the system can be modelled as a two-dimensional Markov process on the state space,

MIII = {(Is, Ir) | Is ∈ {0, 1, . . . , S}, Ir ∈ {0, 1, . . . ,D}} for given (S,D). The following constraints on

inflow and outflows to each state (i, j) are imposed by Policy I:

D.III When Ig = D, returns arriving to the system are disposed of. Hence, O.1 cannot occur if i+j ≥ D.

Similarly it is not possible to reach a state (i, j) such that i + j > S by I.1.

P.III P.I provided for Policy I is valid under Policy III too.

The Generator Matrix of the Markov process under Policy III, obtained by ordering states lexico-

graphically as (0,0),(0,1), . . ., (0,D), (1,0), . . ., (1,D),. . ., (S, 0), . . ., (S,D), is as follows.

Q =




A0 B 0 0 0 . . . 0 0 0

C A1 B 0 0 . . . 0 0 0

0 C A3 B 0 . . . 0 0 0

0 0 C A4 B . . . 0 0 0
...

...
...

...
... . . .

...
...

...

0 0 0 0 0 . . . C AS−1 B

0 0 0 0 0 . . . 0 C AS




,

where, Ai for all i ∈ {0, . . . , S}, B and C are (D + 1) × (D + 1) matrices that can be written similar to

the ones under Policy I:

• Matrix A0, B and C are exactly as defined in (1), (4), and (5), respectively.

• The following modifications are made on A given in (2) to get matrix Ai for all i ∈ {0, . . . , S − 1}:

– Ai(1, 1) = −(λm + µm) if i ≥ D,

– Ai(l, l) = −(λ + µ) for all l ∈ {2, . . . , D + 1} if l + i − 1 ≥ D,

– Ai(l, l + 1) = 0 for all l ∈ {2, . . . , D} if l + i − 1 ≥ D.

• AS = −C.

The procedure utilized for finding the steady-state balance equations under Policy II can easily be

adapted for this case; all Bi terms in equations (15), (16) and (17) are replaced by B.

Policy IV
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Under this policy, the system can be modelled as a two-dimensional Markov process on the state space,

MIV = {(Is, Ir) | Is ∈ {0, 1, . . . , S}, Ir ∈ {0, 1, . . . , S − Is}} for given (S,D). The following constraints

on inflow and outflows to each state (i, j) are imposed by Policy IV:

D.IV. Due to the fact that the return acceptance is made as in the same way as Policy III, the restrictions

given in D.III are also valid under Policy IV.

P.IV. Due to the fact that the production decisions are based on the same information piece as in Policy

II, the restrictions given in P.II. are valid under Policy IV, except there is no state (i, j) such that

i + j > S in this case.

Unfortunately, the underlying Markov process under Policy IV does not show any specific structure.

Therefore, stead-state probabilities are found by directly solving systems of linear equations representing

balance equations and normalization.
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Figure 1: A simple sketch of the system considered
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Figure 2: An example case; µr + µm = 2, µr/(µr + µm) = .9, cd = 0, hr = .125, r = .95
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Table 1: Notation used

λ: mean demand rate per unit time

rλ: mean return rate per unit time

µr: mean remanufacturing rate

µm: mean manufacturing rate

ω: probability that a return is successfully remanufactured

Ir: inventory level of returns

Is: inventory level of serviceables

Ig: system-wide inventory level Ig = Ir + Is

p: unit price

cr: unit remanufacturing cost

cm: unit manufacturing cost

cd: unit disposal cost

hr: unit holding cost of returns per unit time

hs: unit holding cost of serviceables per unit time

20



Table 2: Base information under each policy
Policy Production Disposal

I Is Ir

II Ig Ir

III Is Ig

IV Ig Ig
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Table 3: Values of varied parameters in the experiment

Factor Levels

µr + µm .5, .9, 1.1, 2
µr

µm+µr
.1, .45, .9

hr 0, .1

cr .75, 1, 1.25
cd

cr
0, .25, .5

r .25, .75, 0.95

ω .1, .2, .3, .4, .5, .6, .7, .8, .9, 1
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Table 4: Yield values at which the performances of policies start to differentiate

r

0.25 0.75 0.95

cr 0.75 0.23 0.26 0.26

1 0.26 0.30 0.31

1.25 0.32 0.36 0.36

cd/cr 0 0.31 0.31 0.31

1/4 0.26 0.28 0.30

1/2 0.24 0.31 0.33

hr 0 0.24 0.27 0.27

0.125 0.31 0.36 0.36

µr + µm 0.5 0.32 0.35 0.37

0.9 0.29 0.34 0.35

1.1 0.26 0.29 0.28

2 0.21 0.24 0.25
µr

µr+µm
0.1 0.11 0.12 0.11

0.45 0.21 0.22 0.21

0.9 0.60 0.60 0.60
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Table 5: Average profit improvement by Policy II over the others

Policy I Policy III Policy IV

r r r

0.25 0.75 0.95 0.25 0.75 0.95 0.25 0.75 0.95

cr 0.75 0.166 0.206 0.219 0.166 0.207 0.220 0.178 0.227 0.239

1 0.173 0.220 0.221 0.173 0.219 0.221 0.181 0.234 0.233

1.25 0.180 0.220 0.224 0.180 0.220 0.224 0.186 0.228 0.229

cd/cr 0 0.183 0.225 0.235 0.183 0.225 0.235 0.188 0.233 0.243

1/4 0.171 0.216 0.227 0.171 0.216 0.227 0.179 0.231 0.240

1/2 0.164 0.202 0.195 0.165 0.203 0.196 0.178 0.225 0.214

hr 0 0.211 0.255 0.262 0.211 0.256 0.262 0.225 0.279 0.281

0.125 0.129 0.166 0.170 0.129 0.166 0.169 0.132 0.170 0.174

µr + µm 0.5 0.092 0.125 0.129 0.092 0.126 0.129 0.097 0.128 0.132

0.9 0.154 0.194 0.202 0.154 0.194 0.202 0.163 0.206 0.211

1.1 0.180 0.223 0.225 0.180 0.223 0.225 0.189 0.239 0.238

2 0.247 0.288 0.291 0.247 0.287 0.290 0.258 0.312 0.312
µr

µr+µm
0.1 0.259 0.272 0.270 0.259 0.272 0.270 0.263 0.275 0.272

0.45 0.145 0.200 0.206 0.146 0.200 0.206 0.162 0.216 0.219

0.9 0.064 0.127 0.151 0.064 0.127 0.151 0.070 0.163 0.182
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