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Abstract

Likelihoods and posteriors of econometric models with strong endogeneity and weak in-
struments may exhibit rather non-elliptical contours in the parameter space. This feature
also holds for cointegration models when near non-stationarity occurs and determining the
number of cointegrating relations is a nontrivial issue, and in mixture processes where the
modes are relatively far apart. The performance of Monte Carlo integration methods like
importance sampling or Markov Chain Monte Carlo procedures greatly depends in all these
cases on the choice of the importance or candidate density. Such a density has to be ‘close’ to
the target density in order to yield numerically accurate results with efficient sampling. Neu-
ral networks seem to be natural importance or candidate densities, as they have a universal
approximation property and are easy to sample from. That is, conditionally upon the specifi-
cation of the neural network, sampling can be done either directly or using a Gibbs sampling
technique, possibly using auxiliary variables. A key step in the proposed class of methods is
the construction of a neural network that approximates the target density accurately. The
methods are tested on a set of illustrative models which include a mixture of normal dis-
tributions, a Bayesian instrumental variable regression problem with weak instruments and
near non-identification, a cointegration model with near non-stationarity and a two-regime
growth model for US recessions and expansions. These examples involve experiments with
non-standard, non-elliptical posterior distributions. The results indicate the feasibility of the
neural network approach.
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1 Introduction

Markov Chain Monte Carlo (MCMC) methods like Metropolis-Hastings (MH) and Gibbs sam-
pling are extensively used in Bayesian analyses of econometric and statistical models. The theory
of Markov chain samplers starts with Metropolis et al. (1953) and Hastings (1970). An important
technical paper on MCMC methods is due to Tierney (1994). Well-known econometric studies
are provided by Chib and Greenberg (1996) and Geweke (1999). Indirect independence sampling
methods such as importance sampling (IS) have also been successfully applied within Bayesian
inference. Importance sampling, see Hammersley and Handscomb (1964), has been introduced
in Bayesian inference by Kloek and Van Dijk (1978) and is further developed by Van Dijk and
Kloek (1980,1984) and Geweke (1989).

However, in practice, the convergence behavior of Monte Carlo methods is still often un-
certain. The complex structure of a model or some extraordinary properties of the data may
cause this problem. We mention three cases. A first example of a complex model is a set of
equations with a near reduced rank structure for the matrix of coefficients. Then the Hessian
of the likelihood function is almost singular. This may be due to strong endogeneity and weak
instruments and/or due to near non-stationarity. We refer to the studies by Schotman and Van
Dijk (1991) and Kleibergen and Van Dijk (1994, 1998). Convergence problems of importance
sampling with a normal or Student t importance density are described by Van Dijk and Kloek
(1984) and Geweke (1989). A second example is due to Hobert and Casella (1996). These authors
show that the Gibbs sampler does not converge in the case of a hierarchical linear mixed model if
the prior is uniform. The reason is that, although all conditional posteriors are proper, the joint
posterior is not. Similar problems may occur in dynamic panel data models using diffuse priors.
As a third case we mention a multi-modal target density, which one may encounter in mixture
processes with a small number of observations around one of the different modes. This may cause
problems for all methods. If the MH candidate density is uni-modal, with a low probability of
drawing candidate values in one of the modes, then this mode may be completely missed, even
if the sample size gets very large. In this case importance sampling with a uni-modal normal
or Student t importance density may yield a sample in which most drawings have a negligible
weight and only a few drawings almost completely determine the sampling results.

So, an important problem is the choice of the candidate or importance density, especially
when one knows little about the shape of the target density.

In this paper we introduce a class of neural network sampling methods which allow for
sampling from a target (posterior) distribution that may be multi-modal or skew, or exhibit
strong nonlinear correlation among the parameters. That is, a class of methods to sample from
non-elliptical distributions.

The basic idea of the neural network sampling algorithms is simple. First, a neural network
is constructed that approximates the target density. An important advantage of neural network
functions is their ‘universal approximation property’. That is, neural network functions can
provide approximations of any square integrable function to any desired accuracy, see Gallant
and White (1989). As an application of Kolmogorov’s general superposition theorem, the neural
network approximation property is eluded by Hecht-Nielsen (1987). Proofs concerning neural
network approximations for specific configurations can be found in Gallant and White (1989),
Hornik et al. (1989), and Leshno et al. (1993). Stinchcombe (1988,1989) shows that it is the
presence of intermediate layers with sufficiently many parallel processing elements that is essen-
tial for feedforward networks to possess universal approximation capabilities, and that sigmoid
activation functions are not necessary for universal approximation. This approximation property
implies that the algorithm can handle certain ‘strange’ target distributions, like multi-modal, ex-
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tremely skew, strongly correlated or fat-tailed distributions. Second, this neural network is used
as an importance function in IS or as a candidate density in MH. Depending on the specification
of the neural network, an important advantage of neural network densities is that they are easy
to sample from.

The proposed methods are applied on a set of illustrative examples. We start with a mixture
of normal densities. Next we perform some experiments with a Bayesian analysis of an instru-
mental variable regression model and a cointegration model. Finally, we explore a switching
model with recessions and expansions for the US real Gross National Product (GNP) growth.
Our results indicate that the neural network approach is feasible in cases where a ‘standard’ MH,
Gibbs or IS approach would fail or be rather slow.

The outline of the paper is as follows. In section 2 we discuss how to construct a neural
network approximation to a density, how to sample from a neural network density, and how to
use these drawings within the IS or MH algorithm. In section 3 we describe a method yielding
estimates of moments of the target distribution without requiring a sampling algorithm. Section
4 shows the feasibility of our approach in a simple example of a mixture of bivariate normal
distributions. Section 5 illustrates our algorithms in an example with simulated data in an
instrumental variable (IV) regression and a cointegration model. Section 6 contains an empirical
example concerning a switching model for the quarterly growth rate of the real GNP in the USA.
Conclusions are given in section 7 and technical details are given in the appendices.

2 Approximating with and sampling from neural networks

Consider a certain distribution, for example a posterior distribution, with density function p(x)
with x ∈ Rn. The aim is to investigate some of the characteristics of p(x), for example the mean
and/or covariance matrix of a random vector X ∼ p(x). The approach followed in this paper is:

1. Find a neural network approximation nn : Rn → R to the target density p(x).

2. Obtain a sample of random points from the density (kernel) nn(x).

3. Perform importance sampling or the Metropolis-Hastings algorithm using this sample in
order to obtain estimates of the characteristics of p(x).

Consider a 4-layer feed-forward neural network with functional form:

nn(x) = eG2 (CG1(Ax + b) + d) + f, x ∈ Rn, (1)

where A is H1×n, b is H1×1, C is H2×H1, d is H2×1, e is 1×H2 and f ∈ R. The integers H1

and H2 are interpreted as the numbers of cells in the first and second hidden layer of the neural
network, respectively. The vector functions G1 : RH1 → RH1 and G2 : RH2 → RH2 are defined
by

G1(y) = (g1(y1), · · · , g1(yH1))
′ and G2(z) = (g2(z1), · · · , g2(zH2))

′ (2)

where g1 : R→ R and g2 : R→ R are the activation functions.
A neural network is used because of its well-known universal approximation property, see

e.g. Gallant and White (1989) and Hornik et al. (1989). Stinchcombe (1988) poses a sufficient
condition for universal approximation capabilities for hidden layer activation functions other
than sigmoid; for instance, this condition is satisfied by continuous probability densities. In the
following sections, three specifications of (1) will be used:
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Type 1 neural network: A standard three-layer feed-forward neural network (in the notation
of (1): H2 = 1, e = 1, f = 0 and g2 is the identity g2(y) = y). As activation function g1 in (2),
we take the scaled arctangent function:

g1(y) =
1
π

arctan(y) +
1
2
, y ∈ R. (3)

The reason for this choice is that this activation function can be analytically integrated infinitely
many times. We show in subsection 2.2.1, that this property makes the neural network, in the
role of a density kernel, easy to sample from.

Type 2 neural network: A simplified four-layer network of which the second hidden layer
consists of only one cell (H2 = 1, e = 1, f = 0) and with g2 the exponential function:

g2(y) = exp(y), y ∈ R. (4)

In this case, the activation g1 in (2) is taken to be a piecewise-linear function, called plin:

plin(y) =





0 y < −1/2
y + 1/2 −1/2 ≤ y ≤ 1/2

1 y > 1/2
(5)

With these activation functions, the neural network function can be analytically integrated
(once). We show in subsection 2.2.2, that this property makes Gibbs sampling, see e.g. Ge-
man and Geman (1984), possible. To allow for easy sampling it is sufficient to specify a function
g2 which is positive valued and has an analytical expression for its primitive that is analytically
invertible; see subsection 2.2.2. Another example of such a function is the logistic function.

Type 3 neural network: A mixture of Student t distributions:

nn(x) =
H∑

h=1

ph t(x|µh,Σh, ν), (6)

where ph (h = 1, . . . , H) are the probabilities of the components and where t(x|µh, Σh, ν) is a
multivariate t density with mode µh, scaling matrix Σh, and ν degrees of freedom:

t(x|µh, Σh, ν) =
Γ((ν + n)/2)
Γ(ν/2)(πν)n/2

|Σh|−1/2

(
1 +

(x− µh)′Σ−1
h (x− µh)
ν

)−(ν+n)/2

(7)

Note that this mixture of t densities is a four-layer feed-forward neural network (with parameter
restrictions) in which we have, in the notation of (1), H2 = H (the number of t densities),
H1 = Hn, activation functions

g1(y) = y2 and g2(z) = z−(ν+n) Γ((ν + n)/2)
Γ(ν/2)(πν)n/2

,

and weights eh = ph |Σh|−1/2 (h = 1, . . . , H), f = 0 and:

A =




Σ−1/2
1
...

Σ−1/2
H


 , b =




−Σ−1/2
1 µ1
...

−Σ−1/2
H µH


 , C =




ι′n/ν 0 · · · 0

0 ι′n/ν
...

...
. . . 0

0 · · · 0 ι′n/ν




, d = ιH ,
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where ιk is a k × 1 vector of ones. Notice that (x − µh)′Σ−1
h (x − µh) is the sum of the squared

elements of Σ−1/2
h (x− µh).

The reason for this choice is that a mixture of t distributions is easy to sample from, and
that the Student t distribution has fatter tails than the normal distribution.

Table 1 gives an overview of the reasons for which we have chosen these particular specifica-
tions. The implications shown in this table will be clarified in the sequel of this paper.

Table 1: Motivation of the particular neural network specifications

specifi- special properties consequences of special
cation of nn(x) properties of nn(x)
of nn(x)

- Direct sampling from
- The activation nn(x) is possible.
function g is analy-

Type 1 tically integrable ⇒ - Analytical expressions
infinitely many exist for the moments
times. of the distribution

with density nn(x).
- The activation
function g is
piecewise-linear.

- Gibbs sampling
- The function g2 is ⇒ from nn(x) is
positive valued and possible.

Type 2 analytically integrable,
and its primitive is
analytically invertible.
- The function g2 - Auxiliary variable
is the exponential ⇒ Gibbs sampling from
function. nn(x) is possible.

- The neural network
Type 3 function nn(x) is a ⇒ - Direct sampling from

mixture of multivariate nn(x) is possible.
t densities.

In the next subsections we discuss the three steps of our approach: construction of a neural
network, sampling from it, and using the sample in IS or MH.

2.1 Constructing a neural network approximation to a density

First, we discuss a procedure to obtain a Type 1 or Type 2 neural network approximation.
Second, we describe a method to construct a Type 3 neural network.
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2.1.1 Constructing a Type 1 or Type 2 neural network approximation

We suggest the following procedure to obtain a Type 1 or Type 2 neural network approximation
to a certain target density p(x). First we draw a set of random uniform points xi (i = 1, . . . , N)
in the bounded region to which we restrict the random variable X ∈ Rn to take its values. Then
we approximate the target density p(x) with a neural network by minimizing the sum of squared
residuals:

SSR(A, b, c, d) =
N∑

i=1

(
p(xi)− nn

(
xi

∣∣A, b, c, d
))2

. (8)

We choose the smallest neural network, i.e. the one with the least hidden cells, that still gives
a ‘good’ approximation to the target distribution. One could define a ‘good’ approximation as
one with a high enough squared correlation R2.

After that, we check the squared correlation R2 between the neural network and the target
density for a (much) larger set of points than the ‘estimation set’. If this R2 is also high enough,
then we say that the approximation is accurate and the estimation set is large enough. In that
case the network does not only provide a good approximation to the target density in the points
xi (i = 1, . . . , N) but also in between. Otherwise, we increase the number of points N and start
all over again. For example, we make the set twice as large. This process continues until the
set is large enough to allow the neural network to ‘feel’ the shape of the target density accurately.

In the case of our Type 1 (three-layer) neural network, we also have to deal with the problem
that the neural network function is not automatically non-negative for each x. In order to
prevent this we add a penalty term to (8), and check for non-negativity between the points xi

(i = 1, . . . , N) afterwards. If nn(x) is negative for some x, we look for its most negative value,
and subtract this negative value from the network’s constant d. In that way nn(x) becomes
non-negative for each x, so that it is a proper density kernel (on the bounded domain to which
we restrict it). In our Type 2 (simplified four-layer) neural network the exponential function, or
any positive valued function g2, implies that non-negativity is automatically taken care of.

2.1.2 Constructing a Type 3 neural network approximation

We suggest the following procedure to obtain a Type 3 neural network approximation to a certain
target density.

First we compute the mode µ1 and scaling matrix Σ1 of the first Student t distribution in our
mixture as the maximum likelihood estimator µ1 = x̂ML and its estimated covariance matrix:

Σ1 = ĉov(x̂ML) =

(
−δ2 log p(x)

δxδx′

∣∣∣∣
x=x̂ML

)−1

Then we draw a set of points xi (i = 1, . . . , N) from the ‘first stage neural network’ nn(x) =
t(x|µ1, Σ1, ν), with small ν to allow for fat tails. After that we iteratively add components to
the mixture by performing the following steps:

Step 1: Compute the importance sampling weights w(xi) and scaled weights w̃(xi):

w(xi) =
p(xi)

nn(xi)
and w̃(xi) =

w(xi)∑N
i=1 w(xi)

(i = 1, . . . , N)

We make use of simple diagnostics like the weight of the 5% most influential points to
determine the number of components of the mixture. If the importance sampling weights
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pass the diagnostics, then we stop: the current nn(x) is our Type 3 neural network ap-
proximation. Otherwise, go to step 2.

Step 2: Add another t distribution with density t(x|µh, Σh, ν) to the mixture, where µh and Σh

are estimates of the mean and covariance matrix of the ‘residual distribution’ with density
kernel:

res(x) = max{p(x)− c nn(x), 0},
where c is a constant; we take max{., 0} to make it a (non-negative) density kernel. These
estimates of the mean and covariance matrix are easily obtained by importance sampling
with the current nn(x) as the candidate density, using the sample xi (i = 1, . . . , N)
from nn(x) that we already have. The weights wres(xi) and scaled weights w̃res(xi)
(i = 1, . . . , N) are:

wres(xi) =
res(xi)
nn(xi)

= max{w(xi)− c, 0} and w̃res(xi) =
wres(xi)∑N
i=1 wres(xi)

,

and µh and Σh are obtained as:

µh =
N∑

i=1

w̃res(xi)xi Σh =
N∑

i=1

w̃res(xi)(xi − µh)(xi − µh)′.

There are two issues relevant for the choice of c. First, the new t density should appear at
places where nn(x) is too small (relative to p(x)). Second, there should be enough points
with w(xi) > c in order to make Σh nonsingular. A procedure is to calculate Σh for c equal
to 10 times the average value of w(xi); if Σh is nonsingular, accept c, otherwise lower c.

Step 3: We now choose the probabilities ph (h = 1, . . . , H) in the mixture

nn(x) =
H∑

h=1

ph t(x|µh, Σh, ν),

by minimizing the (squared) coefficient of variation of the importance sampling weights.
First we draw N points xi

h from each component t(x|µh,Σh, ν) (h = 1, . . . , H). Then we
minimize E[w(x)2]/E[w(x)]2, where:

E[w(x)k] =
1
N

N∑

i=1

H∑

h=1

ph w
(
xi

h

)k (k = 1, 2)

with

w
(
xi

h

)
=

p(xi
h)∑H

h=1 ph t
(
xi

h|µh, Σh, ν
) .

Step 4: Draw a sample of N points xi (i = 1, . . . , N) from our new mixture of t distributions:

nn(x) =
H∑

h=1

ph t(x|µh, Σh, ν) (9)

and go to step 1; in order to draw a point from (9) we first use a drawing from the U(0, 1)
distribution to determine which component t(x|µh, Σh, ν) is chosen, and then draw from
this multivariate t distribution.

7



In step 3 it may occur that the latest t density t(x|µH , ΣH , ν) only gets a negligible probability
(i.e. pH ≈ 0). In that case we start all over again with a larger number of points N . The idea
behind this is that the larger N is, the easier it is for the method to ‘feel’ the shape of the target
density, and to specify the t distributions of the mixture adequately.

2.2 Sampling from a neural network density

In the following subsections we discuss sampling from Type 1 and Type 2 networks. In the
previous subsection we already remarked that sampling from a Type 3 network, a mixture of t
densities, only requires a draw from the U(0, 1) distribution to determine which component is
chosen, and a draw from the chosen multivariate t distribution.

2.2.1 Sampling from a Type 1 (three-layer) neural network density

Suppose the joint density kernel of a certain X ∈ Rn is given by a standard three-layer feed-
forward neural network function with an activation function that is analytically integrable in-
finitely many times. Since the neural network function is a linear combination of these activation
functions, the neural network function itself is integrable infinitely many times. Hence one can
directly sample from the neural network by iteratively drawing the elements Xi (i = 1, . . . , n) in
the following way:

Draw x1 from nn(x1)
Draw x2 from nn(x2|x1)
Draw x3 from nn(x3|x1, x2)

...
Draw xn from nn(xn|x1, x2, x3, · · · , xn−1)

(10)

where nn(x1), nn(x2|x1), nn(x3|x1, x2), etc. are the marginal and conditional neural network
densities corresponding to the joint density kernel nn(x). The marginal distribution function
CDFnn(x1):

CDFnn(x1) =

∫ x1

−∞
∫∞
−∞ · · ·

∫∞
−∞ nn(x̃1, x2, . . . , xn)dxn · · · dx2dx̃1∫∞

−∞
∫∞
−∞ · · ·

∫∞
−∞ nn(x̃1, x2, . . . , xn)dxn · · · dx2dx̃1

, (11)

and the conditional distribution function CDFnn(x2|x1)

CDFnn(x2|x1) =

∫ x2

−∞
∫∞
−∞ · · ·

∫∞
−∞ nn(x1, x̃2, . . . , xn)dxn · · · dx3dx̃2∫∞

−∞
∫∞
−∞ · · ·

∫∞
−∞ nn(x1, x̃2, . . . , xn)dxn · · · dx3dx̃2

(12)

etc. can be evaluated analytically.
An example of an activation function that can be analytically integrated infinitely many

times, is the scaled arctangent function in (3). Some useful integration formulas for this activation
function are given in appendices A.1 and A.2.

So, one can easily sample from the density nn(x1) or nn(x2|x1) in formulas (10) by drawing
random variables Ui (i = 1, . . . , n) from the uniform distribution on [0, 1] and then finding the
scalars xi (i = 1, . . . , n) for which U = CDFnn(x1), U = CDFnn(x2|x1), etc. The calculation of
xi (i = 1, . . . , n) is done numerically with an algorithm such as the bisection method.
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2.2.2 Sampling from a Type 2 (simplified four-layer) neural network density

Suppose the joint density kernel of a certain X ∈ Rn is given by the Type 2 neural network
with g2 the exponential function and g1 the piecewise-linear function in (5). It is fairly easy to
perform Gibbs sampling from this distribution, as one can divide the (bounded) domain of each
Xi (i = 1, . . . , n) into a finite number of intervals on which the conditional neural network density
is just the exponent of a linear function. Therefore we can analytically integrate the conditional
neural network density, and draw from it using the inverse transformation method. Note that
the three properties of g2 mentioned below formula (5) are used here explicitly. Details are given
in appendix B.1.

The Gibbs sampling procedure consists of iteratively sampling from one-dimensional condi-
tional distributions:

Specify feasible starting values x0 = (x0
1, · · · , x0

n).

Do for j = 1, 2, . . . ,m

xj+1
1 from nn(x1|xj

2, x
j
2, · · · , xj

n)

xj+1
2 from nn(x2|xj+1

1 , xj
3, · · · , xj

n)

xj+1
3 from nn(x3|xj+1

1 , xj+1
2 , xj

4, · · · , xj
n)

...

xj+1
n from nn(xn|xj+1

1 , xj+1
2 , xj+1

3 , · · · , xj+1
n−1)

(13)

Under certain regularity conditions, the sequence {x0, x1, · · · , xj , · · · } converges to a sample from
the distribution with joint density nn(x1, . . . , xn).

It is also possible to use a different method to draw from a four-layer neural network density:
auxiliary variable Gibbs sampling. Using this method, we do not have to restrict ourselves to the
piecewise-linear activation function plin. It allows for well-known activation functions such as the
logistic and scaled arctangent functions. Auxiliary variable Gibbs sampling is a Gibbs sampling
technique, developed by Damien et al. (1999). The method is based on work of Edwards and
Sokal (1988). In this method, latent variables are introduced in an artificial way in order to
facilitate drawing from the full set of conditional distributions.

Auxiliary variable Gibbs sampling is possible if the density kernel p can be decomposed as
follows:

p(x) ∝ π(x)
K∏

k=1

lk(x), (14)

where π is a density kernel from which sampling is easy, and lk (k = 1, . . . , K) are non-negative
functions of x ∈ Rn.

Suppose a density kernel of X ∈ Rn is given by

pnn(x) =
{

nn(x) if xi ∈ [xi, x̄i] ∀i = 1, . . . , n
0 else

(15)

where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is restricted. This restriction ensures that
(15) is a proper density kernel. The function nn(x) is given by:

nn(x) = exp

(
H∑

h=1

ch plin

(
n∑

i=1

ahixi + bh

)
+ d

)
. (16)
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In Appendix B.2 it is shown that (15) and (16) can be written as (14) with

π(x) =
n∏

i=1

I {xi < xi < x̄i} , (17)

lh(x) = exp

(
ch plin

(
n∑

i=1

ahixi + bh

))
for h = 1, . . . , H, (18)

where π(x) is the ‘easy’ density kernel of n independent variables Xi (i = 1, . . . , n) with distribu-
tion U(xi, x̄i). This means that we can draw from (15) and (16) using auxiliary variable Gibbs
sampling. In the appendix it is shown that in this case auxiliary variable Gibbs sampling only
requires sampling from uniform distributions, which is done easily and fast.

2.3 Importance sampling and Metropolis-Hastings

Once we have obtained a sample of random drawings from the neural network density nn(x), we
use this sample in order to estimate those characteristics of the target density p(x) that we are
interested in. Two methods that we can use for this purpose are importance sampling and the
Metropolis-Hastings algorithm.

A discussion of importance sampling can be found in Bauwens et al. (1999). Let X be a
random variable with density p. Suppose we are interested in the expectation E(h(X)) for a
certain function h : Rn → R. Then the importance sampling (IS) approach to obtain an estimate
of E(h(X)) is:

Step 1: Draw a sample of yi’s (i = 1, . . . , m) from a ‘candidate distribution’ with density q, the
so-called importance function.

Step 2: The estimate of E(h(X)) is now given by:

hIS =
∑n

i=1 w(yi)h(yi)∑n
i=1 w(yi)

, (19)

where w(x) ≡ p(x)/q(x) is the so-called weight function.

The Metropolis-Hastings (MH) algorithm was introduced by Metropolis et al. (1953) and general-
ized by Hastings (1970). The algorithm samples from a time-reversible Markov chain, converging
to the target distribution of the random variable X ∈ Rn that we are interested in.

The MH algorithm constructs a Markov chain of m random vectors in the following way:

Initialization: choose feasible vector x0 ∈ Rn.

Do for j = 1, 2, . . . ,m

Obtain y from a ‘candidate’ density q(y|xj−1), where q(y|xj−1) is the ‘transition den-
sity’ that may depend on xj−1.

Compute the ‘acceptance probability’ α(xj−1, y):

α(xj−1, y) ≡ min
{

p(y)q(xj−1|y)
p(xj−1)q(y|xj−1)

, 1
}

Obtain u from the uniform distribution on (0,1).
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If u ≤ α(xj−1, y) then xj = y else xj = xj−1.

A realized Markov chain can be used in a number of ways. One way is considering all realizations
after a certain burn-in period, and using the sample statistics of these realizations as estimates
of the characteristics of the distribution of X that we are interested in.

Note that in the case of a four-layer neural network we need Gibbs sampling in order to obtain
the sample, so that the consecutive drawings are not independent. In this case it is not efficient to
use the Metropolis-Hastings algorithm. Therefore we have six ‘neural network based’ algorithms
at hand:

• Neural Network Importance Sampling (NNIS) and Neural Network Metropolis-Hastings
(NNMH) in which IS or MH is performed using random vectors that are (directly) drawn
from a 3-layer neural network;

• Gibbs Neural Network Importance Sampling (GiNNIS) and Gibbs with Auxiliary Variables
Neural Network Importance Sampling (GiAuVaNNIS) in which IS is performed using ran-
dom vectors that are drawn from a 4-layer neural network by Gibbs sampling (possibly
with auxiliary variables);

• IS or MH using random vectors that are (directly) drawn from an Adaptive Mixture of t
distributions (AdMit-IS or AdMit-MH).

Table 2 gives an overview.

Table 2: Overview of neural network based sampling algorithms

Importance Metropolis-
sampling Hastings

Type 1 (3-layer)
neural network: NNIS NNMH
direct sampling
Type 2 (4-layer)
neural network: Gi(AuVa)NNIS -

(auxiliary variable)
Gibbs sampling

Type 3
neural network

(adaptive mixture AdMit-IS AdMit-MH
of t densities):
direct sampling

3 Analytical expressions for moments of the three-layer neural
network distribution

There exist analytical expressions for the moments of the 3-layer neural network distribution
with the scaled arctangent activation function, just like the expressions for the marginal and
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conditional distribution functions that make direct sampling possible. The formulas are derived
in appendix A.3. This feature of the 3-layer neural network makes the following algorithm
possible if one only wants estimates of certain moments of the target distribution:

Step 1: Construct a 3-layer neural network function nn(x) that gives a good approximation to the
target density p(x).

Step 2: Compute the moments of the neural network distribution using the formulas in appendix
A.3. These moments provide estimates of those moments of the target density p(x) that
one is interested in.

In this case no sampling algorithm like MH or IS is needed. As in this case the neural network
output is not ‘corrected’ by MH or IS, the neural network has to be a very accurate approximation
to the target density. Otherwise its moments are inaccurate approximations. In Hoogerheide,
Kaashoek and van Dijk (2003) this method is discussed more elaborately.

4 Example I: Generalizations of the bivariate normal distribu-
tion

In order to illustrate the neural network based algorithms in simple examples, we consider two
generalizations of the bivariate normal distribution: (1) a mixture of two normal distributions
and (2) the conditionally normal distribution of Gelman and Meng (1991).

4.1 A mixture of two normal distributions

Consider the following mixture of normal distributions:
(

X1

X2

)
∼ 0.5N

(( −5
−5

)
,

(
1 0
0 1

))
+ 0.5N

((
5
5

)
,

(
1 0
0 1

))
, (20)

We use our algorithms in order to obtain estimates of the mean and standard deviation of X1

and X2, and the correlation coefficient ρ(X1, X2). For the Type 1 and 2 networks, we restrict
the variables X1 and X2 to the interval [-10,10], i.e. we only consider the region

{(X1, X2)| − 10 ≤ X1 ≤ 10,−10 ≤ X2 ≤ 10} . (21)

This restriction does not affect our estimates, as the probability mass outside this region is
negligible.

First we use the approach described in subsection 2.1 in order to construct a Type 1 (3-layer)
neural network approximation to the target density. We find a 3-layer neural network with
H = 48 hidden cells which has a squared correlation R2 = 0.985 with the target density on a set
of 2500 points on the region (21), and also R2 = 0.985 on a set of 5000 points.

We also construct a Type 2 (simplified 4-layer) neural network approximation to the target
density. We find a 4-layer network with H = 10 hidden cells with R2 = 0.988 on the estimation
set and R2 = 0.984 on the larger set. Note the large difference between the sizes of the 3-layer
network and the 4-layer network. The 3-layer network requires 5 times as many hidden cells.
This suggests that the exponential transformation in the 4-layer network makes it much easier
to construct an approximation to the target density.

Then we construct a Type 3 (mixture of t distributions) neural network. We choose ν = 1
degree of freedom. We find a mixture of two t distributions with a sample of IS weights in which
the 5% most influential points have 11.4% weight.

12



The contourplots of the neural network approximations are given by Figure 1, together with
the contourplot of the target density. These contourplots confirm that the neural networks are
good approximations to the target density.

After we have constructed neural network approximations, we sample from these networks
and use the samples in IS or MH. For the Type 1 and 2 networks we construct two samples, and
we say that convergence has been achieved if the differences between the two estimated means of
X1 and X2 are both less than 0.05. The results are in Table 3. Note that the six neural network
sampling algorithms – NNIS, NNMH, GiNNIS, GiAuVaNNIS, AdMit-IS and AdMit-MH – all
yield estimates differing less than 0.05 from the real values. The analytical expressions for the
moments of the 3-layer neural network also yield quite good estimates, although not as good as
the six neural network sampling algorithms.

NNIS and NNMH require only 50000 drawings, whereas GiNNIS and GiAuVaNNIS require
200000 and 1000000 drawings, respectively. The reason for this is that NNIS and NNMH use a
sample of uncorrelated points obtained by direct sampling, whereas GiNNIS and GiAuVaNNIS
use Gibbs sequences in which the points are correlated. The first order serial correlations of the
Gibbs sequences of X1’s are 0.90 and 0.97 in GiNNIS and GiAuVaNNIS, respectively. Apparently
the addition of auxiliary variables increases the serial correlation in the Gibbs sequence, which
explains why 1000000 points are needed instead of 200000. In this case AdMit-IS and AdMit-MH
only use 25000 independent drawings obtained by direct sampling.

If we look at the computing times (on an AMD AthlonTM 1.4 GHz processor) required
for generating the samples, we conclude that AdMit-IS and AdMit-MH are the winners in this
example. In AdMit-IS or AdMit-MH the construction of the network, the sampling, and the IS or
MH require altogether 4.5 seconds, whereas the other methods take much more time to generate
an adequate sample, and also require time to estimate a network. Among the methods using a
Type 1 or 2 network, the GiNNIS algorithm is the fastest. The NNIS and NNMH algorithms are
relatively slow, as these methods require a numerical method, such as the bisection method, in
order to perform the inverse transformation method.

The total weight of the 5% most influential points is below 15% for the three IS algorithms,
confirming the quality of the importance density. The rather high NNMH and AdMit-MH
acceptance rates of 67% and 56% indicate the quality of the neural network as a candidate
density.

We now compare the performance of the neural network algorithms with the performance
of IS and MH with a Student t candidate distribution with 1 degree of freedom, and with the
Griddy-Gibbs sampler (see Ritter and Tanner (1992)) using a grid of 10 equidistant points on
(21). For the purpose of this example, we ignore the fact that the target distribution is a mixture
of normal distributions from which direct sampling and Gibbs sampling are possible. All sampling
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Figure 1: Contourplots: the density of the mixture of two normal distributions in (20) (left), and
its Type 1 (second), Type 2 (third), and Type 3 (right) neural network approximation
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methods in this example only require that one can evaluate a kernel of the target density.
Again we construct two samples, and we say that convergence has been achieved if the

differences between the two estimated means of X1 and X2 are both less than 0.05. As the
Griddy-Gibbs sequences hardly ever move from one mode to the other, a naive Griddy-Gibbs
approach would take extremely much time to converge. Therefore we decide to use a number of
Griddy-Gibbs sequences of 100 points (plus 10 burn-in points) with different initial values that
are drawn from a uniform distribution on (21): 5000 sequences are needed to reach convergence.

The results are in Table 4. Note the large numbers of drawings required by IS and MH.
Although the results of the three methods converge to the real values, more time is needed than
in our AdMit-IS and AdMit-MH procedures. We conclude that the neural network approach is
feasible, and that AdMit-IS and AdMit-MH are faster than three competing algorithms.

Table 3: Neural network based sampling results for the mixture of two bivariate normal distri-
butions in (20)

real NNIS NNMH analytical GiNNIS GiAuVa AdMit AdMit
values moments NNIS IS MH

E(X1) 0 0.024 0.011 0.063 0.035 -0.048 -0.024 -0.029
E(X2) 0 0.022 0.012 0.063 0.040 -0.047 -0.015 -0.006
σ(X1) 5.099 5.106 5.102 5.088 5.097 5.099 5.084 5.090
σ(X2) 5.099 5.103 5.099 5.101 5.104 5.097 5.098 5.104

ρ(X1, X2) 0.962 0.962 0.962 0.968 0.962 0.962 0.962 0.961
drawings 50000 50000 200000 1000000 25000 25000

time 568 s 568 s 56 s 172 s 4.5 s * 4.5 s *
time/draw 11 ms 11 ms 0.28 ms 0.17 ms 0.18 ms 0.18 ms
5% weights 8.0% 7.4% 7.4% 11.4%
acc. rate 67% 56%

* The computing times for the AdMit methods concern the whole procedure including the
construction of the neural networks.

Table 4: Alternative sampling results for the mixture of bivariate normal distributions in (20)

real t1 IS t1 MH Griddy
values Gibbs

E(X1) 0 0.033 -0.048 0.017
E(X2) 0 0.032 -0.019 0.021
σ(X1) 5.099 5.099 5.097 5.117
σ(X2) 5.099 5.101 5.072 5.118

ρ(X1, X2) 0.962 0.961 0.962 0.954
drawings 1500000 2500000 5000 × 100

time 27.5 s 47.5 s 81.4 s
time/draw 0.02 ms 0.02 ms 0.16 ms
5% weights 54.1%
acc. rate 34 %

4.2 A conditionally normal distribution

It may seem a little unfair to use a mixture of normal distributions in order to test a method in
which the target density is approximated with a mixture of t densities. Therefore we also apply
our AdMit-IS and AdMit-MH methods to another distribution, a bivariate conditionally normal
distribution.
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Let X1 and X2 be two jointly distributed random variables, for which X1 is normally dis-
tributed given X2 and vice versa. Then the joint distribution, after location and scale transfor-
mations in each variable, can be written as (see Gelman and Meng (1991)):

p(x1, x2) ∝ exp
(
−1

2
[
Ax2

1x
2
2 + x2

1 + x2
2 − 2Bx1x2 − 2C1x1 − 2C2x2

])
(22)

We consider the symmetric case in which A = 1, B = 0, C1 = C2 = 10, with conditional
distributions

X1|X2 = x2 ∼ N

(
10

1 + x2
2

,
1

1 + x2
2

)
X2|X1 = x1 ∼ N

(
10

1 + x2
1

,
1

1 + x2
1

)
.

We find a mixture of four t distributions with a sample of IS weights in which the 5% most
influential points have 11.5% weight. The contourplots of the neural network approximations
are given by Figure 2. The results are in Table 5. We compare the performance of the AdMit
algorithms with the performance of IS and MH with a t1 candidate distribution, and with the
Griddy-Gibbs sampler using a grid of 100 equidistant points on [−5, 15]× [−5, 15]. We construct
two samples, and we say that convergence has been achieved if the differences between the
two estimated means of X1 and X2 are both less than 0.10. For the purpose of this example,
we ignore the fact that Gibbs sampling from this target distribution is possible; it should be
remarked that one would need more than one sequence to avoid extremely slow convergence,
as the Gibbs sequences that we generated remained in one mode for 100000000 drawings. So,
again all sampling methods only require that one can evaluate a kernel of the target density. The
results are in Table 5. Notice the huge numbers of drawings required by IS and MH. Again all
results have converged to the real values, but the AdMit-IS and AdMit-MH methods are faster
than the three alternative sampling methods.
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Figure 2: Contourplots: the density of the conditionally normal distribution in (22) with A = 1,
B = 0, C1 = C2 = 10 (left), and its Type 3 neural network approximation (right)

5 Example II: Bayesian analysis of models with reduced rank

In this section we consider posterior densities for simulated data in two models with reduced
rank: an instrumental variable (IV) regression and a vector error correction model (VECM)
with cointegration.

5.1 Bayesian analysis of an IV regression

First, we give two examples of well-known IV regressions. Consider the stylized wage regression
popular in empirical labor studies:

y1 = βy2 + x1γ + u1, (23)
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Table 5: Sampling results for the conditionally normal distribution

real AdMit AdMit t1 IS t1 MH Griddy
values IS MH Gibbs

E(X1) 4.946 4.907 4.889 4.963 4.865 4.961
E(X2) 4.946 4.986 5.001 4.913 5.022 4.912
σ(X1) 4.894 4.893 4.891 4.881 4.896 4.883
σ(X2) 4.894 4.894 4.893 4.900 4.902 4.883

ρ(X1, X2) -0.979 -0.979 -0.979 -0.979 -0.979 -0.978
drawings 100000 100000 80000000 80000000 10000 × 100

time 237 s * 237 s * 1652 s 1652 s 1415 s
time/draw 2.4 ms 2.4 ms 0.02 ms 0.02 ms 1.4 ms
5% weights 11.5% 59.4 %
acc. rate 59 % 28 %

* The computing times for the AdMit methods concern the whole procedure
including the construction of the neural network.

where y1 is the log of hourly wage, y2 denotes education and x1 captures work experience – all in
deviations from their mean values. The structural parameter of interest is β, the rate of return
to schooling. However, in order to make inference on β, one should take into account that y2

is possibly endogenous: y2 and u1 may be highly correlated owing to the omission of a variable
measuring (unobservable) ability, which is expected to be highly correlated with education. The
problem is that potential instruments for y2 are hard to find as these variables must be correlated
with education but uncorrelated with unobserved ability. Angrist and Krueger (1991) suggest
using quarter of birth as a dummy variable, as this seems uncorrelated with ability and affects
years of schooling weakly, through a combination of the age at which a person begins school
and the compulsory education laws in a person’s state. Staiger and Stock (1997) show that
inference on the rate of return to schooling can be greatly affected by the weak quarter of birth
instruments.

As another example, consider the problem of determining the fraction of temporary income
consumers spend in a permanent-income-consumption model. Campbell and Mankiw (1989) use
the simple regression equation

∆c = β∆y + u1, (24)

where c is log consumption and y is log income; β measures the fraction of temporary income
consumed. As consumption and income are simultaneously determined, ∆y is possibly highly
correlated with u1. In the permanent-income model c and y are cointegrated with cointegrating
vector (1,-1) and the error correction model for ∆y suggests using lagged values of ∆y and ∆c
and the lagged error correction term, c−y, as instruments. However, ∆y is poorly predicted from
this error correction model, so that the suggested instruments are probably fairly weak. Note
that in this example the quality of the instruments is determined by the short-run dynamics in
the growth rate of income.

In our example, we consider the following equation

y1t = y2tβ + u1t (t = 1, . . . , T ) (25)

where y2t is a possibly endogenous regressor for which we have

y2t = xtπ + v2t (t = 1, . . . , T ) (26)

with (u1t, v2t) ∼ N(0, Σ) and where xt is exogenous. We assume a diffuse prior for the parameters
β, π and Σ:

p(β, π, Σ) ∝ |Σ|−h/2, h > 0 (27)
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The likelihood function for a sample of size T is

L(β, π, Σ|y1, y2, x) ∝ |Σ|−T/2 exp
[
−1

2
tr(Σ−1U ′U)

]
, (28)

where U = (ũ1(β), ṽ2(π)) with ũ1(β) = y1 − y2β and ṽ2(π) = y2 − xπ. So, the joint posterior
based on the diffuse prior is

p(β, π, Σ|y1, y2, x) ∝ |Σ|−(T+h)/2 exp
[
−1

2
tr(Σ−1U ′U)

]
. (29)

Using properties of the inverted Wishart distribution (see Zellner (1971) and Bauwens and Van
Dijk (1989)), Σ−1 can be analytically integrated out of the joint posterior yielding the following
joint posterior for (β, π):

p(β, π|y1, y2, x) ∝ |U ′U |−(T+h−3)/2. (30)

Choosing h = 3 results in the following posterior density

p(β, π|y1, y2, x) ∝ |U ′U |−T/2, (31)

which equals the concentrated likelihood function of β and π. In this example we are interested
in the (posterior) distribution of the vector (β, π). So, the parameter vector (β, π) plays the role
of the random vector X in the previous sections, and p(β, π|y1, y2, x) plays the role of p(x).

Now we simulate T = 20 data from the model in (25) and (26) with β = 0, π = 0.1,
xt ∼ N(0, 1) i.i.d. and

(
u1t

v2t

)
∼ N

((
0
0

)
,

(
1 0.99

0.99 1

))
(t = 1, . . . , T )

Note the extremely high correlation ρ(u1t, v2t) = 0.99, causing a very strong endogeneity of
the regressor y2 in equation (25). Also note the low value of π = 0.1, so that x is a weak
instrument for y2. That is, there is ‘weak identification’. Notice that in this IV regression, β is
not identified if π = 0 (unless cov(u1t, v2t) is known). We restrict β to the interval [−5, 5] and
π to the interval [−0.25, 0.25]; we have to make such a restriction, as otherwise the posterior
density would be improper, i.e. its integral would not be finite. Figure 3 shows the contourplot
of the posterior density in (31) for our simulated data set. In this case of weak identification
and strong endogeneity the contours of the posterior are non-elliptical: we see a bimodal density
with two curved ridges. If π is close to zero, large (positive and negative) values of β may occur,
which reflects that β is not identified if π = 0. Van Dijk (2003) shows several cases of simulated
IV regressions in which such non-elliptical contours occur.

We use our neural network algorithms to obtain estimates of the posterior means and standard
deviations. We find a Type 1 (3-layer) network with H = 43 hidden cells with R2 = 0.931 on an
estimation set of 2500 points (and R2 = 0.930 on a set of 5000 points), and a Type 2 (simplified
4-layer) network with H = 10 hidden cells with R2 = 0.933 on the estimation set (and R2 = 0.927
on the larger set). Note that the 4-layer network is much smaller than the 3-layer network, just
like in the first example. We also find a Type 3 (mixture of t distributions) network with H = 9
components in which the weight of the 5% most influential points is 23%. The contourplots are
given by Figure 3.

After we have constructed neural network approximations, we sample from these networks
and use the samples in IS or MH. For the Type 1 and 2 networks we construct two samples, and
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Figure 3: Contourplots: the posterior density in an IV regression in (31) for a simulated data set
(left), and its Type 1 (second), Type 2 (third) and Type 3 (right) neural network approximation

Table 6: Neural network based sampling results for the Bayesian IV regression

NNIS NNMH analytical GiNNIS AdMit AdMit
moments IS MH

π mean -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
s.d. 0.10 0.10 0.12 0.11 0.11 0.10

β mean 0.65 0.65 0.49 0.67 0.64 0.69
s.d. 2.37 2.38 2.49 2.34 2.35 2.39

drawings 25000 25000 100000 10000 10000
time 261 s 261 s 28 s 132.6 s * 132.6 s *

time/draw 10 ms 10 ms 0.28 ms 13 ms 13 ms
5% weights 9% 10 % 23%
acc. rate 59% 39 %

* The computing times for the AdMit methods concern the whole procedure
including the construction of the neural network.

Table 7: Maximum likelihood estimates in an IV regression

Parameter: π β

MLE: -0.05 3.36
(std. error) (0.23) (11.09)

Table 8: Alternative sampling results for the Bayesian IV regression

normal candidate t1 candidate Griddy
IS MH IS MH Gibbs

π mean -0.07 -0.07 -0.01 -0.01 -0.01
s.d. 0.03 0.03 0.10 0.10 0.10

β mean 2.96 2.97 0.65 0.65 0.62
s.d. 0.95 0.94 2.36 2.38 2.37

drawings 100000000 100000000 25000000 60000000 200000
time 2312 s 2312 s 517 s 1288 s 283 s

time/draw 0.02 ms 0.02 ms 0.02 ms 0.02 ms 1.4 ms
5% weights 69% 92%
acc. rate 6.8% 1.9%
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Figure 4: Scatter plots: samples of points (π, β) from the posterior density (31) in the IV
regression, obtained by NNMH (left) and MH with a normal candidate distribution (right)

we say that convergence has been achieved if the differences between the two estimated posterior
means of β and π are less than 0.05 and 0.005, respectively. The sampling results are in Table 6.

We now compare the performance of the neural network algorithms with the performance of
IS and MH with the maximum likelihood estimator’s asymptotic distribution as the candidate
density. Recall that the asymptotic distribution of θ̂ML can be approximated with:

N

(
θ̂ML, Î

(
θ̂ML

)−1
)

, Î
(
θ̂ML

)
= −δ2 log L(θ)

δθδθ′

∣∣∣∣
θ=θ̂ML

(32)

The maximum likelihood estimates are given by Table 7. The estimated correlation is very high:
ρ̂(π̂ML, β̂ML) = 0.9985. The sampling results are in Table 8. Note the large differences between
the neural network algorithms and IS or MH with the normal candidate – not even after 100
million drawings the results of the normal candidate have converged to the same values. The
scatter plots in Figure 4 of the NNMH and MH samples reveal the reason for these differences:
NNMH yields a fine sample showing the contours of the joint posterior density, whereas MH
with the normal candidate density completely misses one of the two modes. Table 8 also shows
the results of IS and MH with a Student t distribution with 1 degree of freedom around the
maximum likelihood estimator, and with Griddy-Gibbs (with 100 grid points). These methods
yield approximately the same estimates as the neural network based methods; however, they
take more time than the AdMit approach. Note that IS and MH with a Student t candidate
density require huge amounts of drawings to reach convergence.

We conclude that the neural network sampling algorithms seem to work well in this example
(yielding approximately the same estimates). The analytical expressions for the moments of
the 3-layer neural network also yield quite good estimates, although not as good as the other
neural network methods. In this example IS or MH with the maximum likelihood estimator’s
asymptotic distribution as the candidate distribution does not yield reliable estimates. AdMit-IS
and AdMit-MH are the fastest among these algorithms.

5.2 Bayesian analysis of a VECM with cointegration

Many economic time series seem to follow random walk processes. A random walk implies that
one cannot forecast any future changes of the series. When random walks are independent
then the different series will tend to move in different directions. However, in practice it is
observed that there exist stationary relationships between series that individually behave as
random walks. Some examples are: short and long term interest rates, prices and dividends of
stocks, consumption and income. This stylized fact is referred to as cointegration.
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First, we mention some well-known cointegration studies that are based on economic theory.
Campbell and Shiller (1987) study bubbles in asset prices. Campbell (1987) tests the hypothesis
that consumption is determined by permanent income. King, Plosser, Stock and Watson (1991)
consider the role of productivity shocks in the postwar US economy. Hall, Anderson and Granger
(1992) analyze the term structure of interest rates.

Consider the following two-dimensional VAR(1) model

yt = Ayt−1 + εt (t = 1, . . . , T ), (33)

where yt = (y1t, y2t)′ and εt = (ε1t, ε2t)′ ∼ N(0, Σ). Define Π = A− I, then one can rewrite (33)
in error correction form as:

∆yt = Πyt−1 + εt (t = 1, . . . , T ). (34)

Suppose the matrix Π is singular, i.e. |Π| = 0, and that it has rank one. This implies that the
characteristic equation |I−zA| = 0 has one unit root and one root z outside the unit circle. The
consequence of one unit root and one root outside the unit circle can be shown as follows. Given
that the rank of Π is one, one can write Π = αβ′ where α and β are 2× 1 vectors. Thus we have

∆yt = αβ′yt−1 + εt (t = 1, . . . , T ). (35)

It follows directly that the linear combination β′yt is an AR(1) process with

β′yt = (1 + β′α)β′yt−1 + β′εt (t = 1, . . . , T ), (36)

which is stationary if |1 + β′α| < 1. It can be shown that this inequality is satisfied if the
characteristic equation |I − zA| = 0 has one unit root and one root z outside the unit circle.
Thus the vector yt is cointegrated in the sense that a linear combination is stationary. The vector
β is defined as the cointegration vector. It is seen from (35) and (36) that the cointegrating vector
is defined up to a scale constant, that is, if β′yt is stationary then λβ′yt is stationary for any
λ ∈ R. A usual normalization is β′ = (1,−β2). The coefficients α1 and α2 are defined as
adjustment parameters. Then we can rewrite (35) as:

(
∆y1t

∆y2t

)
=

(
α1

α2

)
(y1,t−1 − β2y2,t−1) +

(
ε1t

ε2t

)
(t = 1, . . . , T ). (37)

In our example we analyze the posterior of the parameters in (37) for a simulated data set.
We assume a diffuse prior for the parameters α1, α2, β2 and Σ:

p(α1, α2, β2, Σ) ∝ |Σ|−h/2, h > 0. (38)

The likelihood function for a sample of size T is

L(α1, α2, β2, Σ|y1, y2) ∝ |Σ|−T/2 exp
[
−1

2
tr(Σ−1E′E)

]
, (39)

where E = [ε̃1(α1, β2), ε̃2(α2, β2)] with ε̃1(α1, β2) = ∆y1 − α1(y1 − β2y2) and ε̃2(α2, β2) = ∆y2 −
α2(y1 − β2y2). So, the joint posterior based on the diffuse prior is

p(α1, α2, β2, Σ|y1, y2) ∝ |Σ|−(T+h)/2 exp
[
−1

2
tr(Σ−1E′E)

]
. (40)
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Again, Σ−1 can be analytically integrated out of the joint posterior yielding the following joint
posterior for (α1, α2, β2):

p(α1, α2, β2|y1, y2) ∝ |E′E|−(T+h−3)/2. (41)

Choosing h = 3 results in the following posterior density

p(α1, α2, β2|y1, y2) ∝ |E′E|−T/2, (42)

which equals the concentrated likelihood function of α1, α2 and β2. In order to make (42) a
proper density kernel, we restrict α1,α2 to [-0.2,0.2] and β2 to [-10,10].

Now we simulate T = 100 data from the model in (37) with α1 = −0.05, α2 = 0.05, β2 = 1
and ε1t, ε2t ∼ N(0, 1) i.i.d. (and mutually independent). Notice that in this cointegration model
β2 is not identified if α1 = α2 = 0.

We use AdMit-IS and AdMit-MH to obtain estimates of the posterior means and standard
deviations. We find a Type 3 (mixture of t distributions) network with H = 4 components in
which the weight of the 5% most influential points is 14.8%. The contourplots of the marginal
candidate densities of (α1, α2), (α1, β2) and (α2, β2) are given by Figure 5. Figure 6 shows scatter
plots of points obtained by AdMit-MH.

We compare the performance of AdMit-IS and AdMit-MH with IS and MH with a Student
t distribution with 1 degree of freedom around the maximum likelihood estimator, and with
Griddy-Gibbs (with 100 grid points). We construct two samples, and we say that convergence
has been achieved if the differences between the three estimated posterior means of α1, α2 and
β2 are less than 0.005, 0.005 and 0.05, respectively. Table 9 shows the results. Note that IS
and MH with Student t candidate density again require very large amounts of drawings to reach
convergence. We conclude that AdMit-IS and AdMit-MH are much faster than the alternative
algorithms, while all methods yield approximately the same estimates.

It can be seen from the scatter plots in Figure 6 that if both α1 and α2 are close to zero,
then a whole spectrum of values of β2 may occur. This reflects the fact that β2 is not identified
if α1 = α2 = 0. Also notice the similarity in the mathematical structure of the IV regression
and the VAR model with cointegration; in both models the same kind of identification issue may
lead to the same sort of non-elliptical contours of the likelihood and posterior density. See also
Hoogerheide and Van Dijk (2001) on the similarity of the Anderson-Rubin overidentification test
and the Johansen test for cointegration.
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Figure 5: Contourplots: the Type 3 neural network approximation to the posterior density (42)
in the VECM in the α1 × α2 plane (left), the α1 × β2 plane (middle), and the α2 × β2 plane
(right).
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Figure 6: Scatter plots: sample of points (α1, α2, β2) from the posterior density (42) in the
VECM, obtained by AdMit-MH and displayed in the α1 × α2 plane (left), the α1 × β2 plane
(middle), and the α2 × β2 plane (right)

Table 9: Sampling results for the Bayesian analysis of a VECM

AdMit AdMit t1 IS t1 MH Griddy
IS MH Gibbs

α1 mean -0.07 -0.07 -0.07 -0.07 -0.07
s.d. 0.04 0.04 0.04 0.04 0.04

α2 mean 0.03 0.03 0.03 0.03 0.03
s.d. 0.03 0.03 0.03 0.03 0.03

β2 mean 1.20 1.20 1.21 1.19 1.19
s.d. 0.64 0.67 0.67 0.64 0.69

drawings 50000 50000 15000000 25000000 50000
time 93 s 93 s 660 s 1116 s 364 s

time/draw 1.9 ms 1.9 ms 0.04 ms 0.04 ms 7.2 ms
5% weights 14.8 % 26.1%
acc. rate 64% 41%

* The computing times for the AdMit methods concern the whole
procedure including the construction of the neural network.

6 Example III: Bayesian analysis of a switching model for the
quarterly growth rate of the real US GNP

In models for the growth rate of the gross national product one often allows for separate regimes
for periods of recession and expansion. One problem that Bayesian analyses of such models may
suffer from is the non-convergence of conventional sampling methods. The reason for this is
the possible multi-modality of the posterior distribution. We consider the most simple model, a
static 2-regime mixture model. In this model the growth rate yt has two different mean levels:

yt =
{

β1 + εt with probability p
β2 + εt with probability 1− p

, (43)

where εt ∼ N(0, σ2). For identification we assume that β1 < β2, so that β1 and β2 can be
interpreted as the mean growth rates during recessions and expansions, respectively. The prior
densities of the parameters β1 and β2 are taken uniform on the set of values for which β1 < β2,
and zero elsewhere. The prior on p is taken uniform on the interval [0, 1], while for σ the
uninformative prior π(σ) ∝ 1/σ is used.

The underlying data we consider are the quarterly growth rates of the real US GNP in the
period 1959-2001. The data are shown in Figure 7. The maximum likelihood estimates of the
parameters are given by Table 10.
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We use the neural network algorithms in order to obtain estimates of the posterior mean and
standard deviation of β1, β2, σ and p. Looking at the graph of the quarterly growth rate and the
maximum likelihood estimates, we choose to restrict the parameters to the following intervals:
β1 ∈ [−3, 1], β2 ∈ [0.5, 2], σ ∈ [0.5, 1] and p ∈ [0, 1].

We construct a Type 2 (simplified 4-layer) neural network approximation to the target den-
sity; we find a network with H = 15 hidden cells with an R2 = 0.87 on an estimation set of
250000 points and R2 = 0.86 on a set of 500000 points. We also find a Type 3 (mixture of t
distributions) network with H = 5 components in which the weight of the 5% most influential
points is 35%.

After we have constructed neural network approximations, we sample from these networks
and use the samples in IS or MH. First we compare the results with IS and MH with a normal or
t1 distribution around the maximum likelihood estimator, and with Griddy-Gibbs (with 50 grid
points). These sampling methods only require that one can evaluate a kernel of the target density.
We construct two samples, and we say that convergence has been achieved if the differences
between the four estimated posterior means are less than 0.05. Table 11 and 12 show the
results. Even after 25 million drawings IS and MH with the normal candidate distribution yield
completely different results than the other algorithms. The other methods yield approximately
the same results, where AdMit-IS and AdMit-MH are the fastest.

Estimates of the marginal posterior densities obtained by GiNNIS, GiAuVaNNIS, AdMit-MH
and IS with a normal candidate distribution are given by Figures 8, 9, 10 and 11, respectively.
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real US GNP (level) 
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−2

0

2

real US GNP (growth) 

Figure 7: Real GNP of the USA in billions of dollars (above), and its quarterly growth rate in
% (below).

Table 10: Maximum likelihood estimates in the 2-regime mixture model (43)

Parameter: β1 β2 σ p

MLE: -1.01 0.93 0.79 0.05
(std. error) (0.51) (0.08) (0.06) (0.04)
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Note the large differences between IS with a normal candidate distribution and the other methods,
especially in the marginal densities of β1 and p. The IS estimates indicate a much smaller
posterior probability that β1 ≈ 0.8, and almost zero probability that p exceeds 0.25. This
explains why the estimated posterior means of β1 and p are much smaller according to IS with
a normal candidate distribution.

In this model we can also perform Gibbs sampling from the posterior distribution, if we use
the method of data augmentation of Tanner and Wong (1987). Data augmentation is used in
order to sample from models with latent variables Z, in which sampling the parameters θ seems
very difficult, but sampling θ given Z is straightforward. In this algorithm, the parameters θ are
drawn conditionally on the latent variables Z, and the latent variables Z are drawn conditionally
on θ. Forgetting the values of Z, this procedure yields a valid Markov chain for the parameters
θ. In our model we define the latent variables Zt (t = 1, . . . , T ) as:

Zt =
{

1 if period t is a recession period
0 if period t is an expansion period

. (44)

Conditionally on these latent variables Z (and each other), β1 and β2 are normally distributed,
while σ2 and p have an inverted gamma and a beta distribution, respectively. Conditionally on
the values of the parameters, the latent variables Zt (t = 1, . . . , T ) have a Bernoulli distribution.
The results are in Table 12. Data augmentation estimates of the marginal posterior densities
are given by Figure 12. Note that Gibbs sampling with data augmentation requires much more

Table 11: Neural network based sampling results for the 2-regime mixture model (43)

GiNNIS GiAuVaNNIS Admit Admit
IS MH

mean s.d. mean s.d. mean s.d. mean s.d.
β1 -0.24 0.84 -0.26 0.83 -0.22 0.84 -0.22 0.85
β2 0.99 0.17 0.98 0.15 1.00 0.19 0.99 0.18
σ 0.84 0.07 0.83 0.07 0.84 0.06 0.84 0.07
p 0.24 0.27 0.22 0.25 0.26 0.29 0.26 0.28

drawings 400000 800000 10000 10000
time 269 s 421 s 40 s * 40 s *

time/draw 0.67 ms 0.53 ms 4.0 ms 4.0 ms
5% weights 31% 32% 34%
acc. rate 31 %

* The computing times for the AdMit methods concern the whole
procedure including the construction of the neural network.

Table 12: Alternative sampling results for the 2-regime mixture model (43)

normal candidate t1 candidate Griddy Data
IS MH IS MH Gibbs Augmentation

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
β1 -0.72 0.67 -0.73 0.67 -0.25 0.84 -0.21 0.85 -0.17 0.84 -0.21 0.84
β2 0.93 0.08 0.93 0.08 0.99 0.17 0.98 0.15 1.01 0.20 1.00 0.20
σ 0.82 0.06 0.82 0.06 0.83 0.06 0.84 0.07 0.84 0.06 0.84 0.07
p 0.07 0.05 0.07 0.05 0.25 0.28 0.27 0.30 0.27 0.29 0.26 0.29

drawings 25000000 25000000 10000000 15000000 10000 400000
time 2292 s 2292 s 873 s 1321 s 131 s 42 s

time/draw 0.09 ms 0.09 ms 0.09 ms 0.09 ms 13 ms 0.11 ms
5% weights 40% 61%
acc. rate 45% 18%
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Figure 8: GiNNIS estimates of the marginal posterior densities in the 2-regime mixture model
(43)
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Figure 9: GiAuVaNNIS estimates of the marginal posterior densities in the 2-regime mixture
model (43)
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Figure 10: AdMit-MH estimates of the marginal posterior densities in the 2-regime mixture
model (43)
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Figure 11: IS estimates (with a normal candidate distribution) of the marginal posterior densities
in the 2-regime mixture model (43)
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Figure 12: Data augmentation estimates of the marginal posterior densities in the 2-regime
mixture model (43)
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drawings than the Griddy-Gibbs sampler. The reason for this is that the addition of latent vari-
ables increases the serial correlation in the Gibbs sequence: the serial correlations in the Gibbs
sequences of p’s are 0.992 and 0.854 in data augmentation and Griddy-Gibbs, respectively. We
conclude that data augmentation yields about the same results as our neural network methods,
while the AdMit procedures are even slightly faster than data augmentation, which requires more
knowledge of the model – AdMit only requires that one can evaluate a kernel of the target density.

Finally, consider another 2-regime mixture model for the growth rates yt of the real US GNP:

yt =
{

β11 + β12yt−1 + εt with probability p
β21 + β22yt−1 + εt with probability 1− p

, (45)

where εt ∼ N(0, σ2). For identification we assume that β11 < β21. The prior densities of the
parameters β11, β12, β21 and β22 are taken uniform on the set of values for which β11 < β21, and
zero elsewhere. The prior on p is taken uniform on the interval [0, 1], while for σ the uninformative
prior π(σ) ∝ 1/σ is used.

In this case we find a Type 3 (mixture of t distributions) network with H = 7 components in
which the weight of the 5% most influential points is 68.7%. We compare the results with IS and
MH with a t1 candidate distribution. If we perform IS and MH with a t1 distribution around the
maximum likelihood estimator, where we require the estimated posterior means for two samples
to differ no more than 0.10, then convergence has not been reached after 25000000 drawings.
However, if we draw 2000000 points from the t1 distribution around the maximum likelihood
estimator, and iteratively update the mean and covariance matrix, then we reach convergence
after 10 iterations. Table 13 shows the results. The methods yield approximately the same
results, where the AdMit procedures require less drawings and time.

Estimates of the marginal posterior densities are given by Figures 13 and 14. Figure 15 shows
scatter plots of points obtained by AdMit-MH. Note the bimodality in the marginal distribution
of p and the non-elliptical contours in the scatter plots; this causes the slow convergence of IS
and MH with a t1 candidate distribution.

Table 13: Sampling results for the 2-regime mixture model in (45)

Admit Admit IS MH
IS MH

mean s.d. mean s.d. mean s.d. mean s.d.
β11 0.15 0.56 0.17 0.54 0.06 0.71 0.09 0.62
β12 0.44 0.20 0.45 0.20 0.40 0.27 0.43 0.25
β21 1.35 0.76 1.32 0.75 1.30 0.79 1.29 0.75
β22 -0.05 0.41 -0.05 0.40 -0.03 0.40 -0.04 0.38
σ 0.82 0.06 0.82 0.06 0.82 0.06 0.82 0.06
p 0.59 0.36 0.60 0.35 0.55 0.38 0.56 0.37

drawings 25000 25000 10× 2000000 10× 2000000
time 314 s * 314 s * 1320 s 1320 s

time/draw 13 ms 13 ms 0.07 ms 0.07 ms
5% weights 68.7 % 98.2 %
acc. rate 8.2 % 1.5 %

* The computing times for the AdMit methods concern the whole
procedure including the construction of the neural network.
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Figure 13: AdMit-MH estimates of the marginal posterior densities in the 2-regime mixture
model in (45)
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Figure 14: MH estimates of the marginal posterior densities in the 2-regime mixture model (45)
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Figure 15: Scatter plots: points (β11, β12, β21, β22, σ, p) from the posterior distribution in the
mixture model (45), obtained by AdMit-MH and displayed in the β11 × β12 plane (left), the
β11 × p plane (second), the β12 × β22 plane (third) and the p× β22 plane (right)

7 Conclusion

In this paper we have introduced a class of neural network sampling algorithms. In these algo-
rithms neural network functions are used as an importance or candidate density in importance
sampling or the Metropolis-Hastings algorithm. Neural networks are natural importance or can-
didate densities, as they have a universal approximation property and are easy to sample from.
We have shown how to sample from three types of neural networks. One can sample directly
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from a certain 3-layer network. Using a 4-layer network one can, depending on the specification
of the network, either use a Gibbs sampling approach or sample directly from a mixture of dis-
tributions. A key step in the proposed class of methods is the construction of a neural network
that approximates the target density accurately. The methods have been tested on a set of
illustrative models which include a Bayesian instrumental variable regression problem with weak
instruments and near non-identification, a cointegration model and a two-regime growth model
for US recessions and expansions. In our examples, involving experiments with non-standard,
non-elliptical posterior distributions, the 4-layer network specified as the mixture of t distribu-
tions performs the best among the exposed sampling procedures. It is the fastest and moreover
the most reliable neural network algorithm, whereas some other algorithms such as the Gibbs
sampler, MH and IS fail or are very slow. These results indicate the feasibility and the possible
usefulness of the neural network approach. We emphasize that it is naive to expect one sampling
method to dominate in all practical cases. We suggested a strategy in which a sophisticated
network is specified for complex, non-elliptical densities, while in a relatively simple case of
near-elliptical contours a unimodal density or a bimodal mixture may be sufficiently accurate as
candidate density. Clearly, more work is needed in this area.

We end this paper with some remarks on how to extend the proposed techniques. First, one
may consider other ways of specifying and estimating neural networks. We mention here the
following possible extensions. One may pursue the construction of well-behaved neural networks
with other activation functions which are more smooth than the piecewise-linear one. We noted
in section 2 that it is possible to perform auxiliary variable Gibbs sampling from a 4-layer neural
network density with a scaled arctangent instead of the piecewise-linear function. One may also
investigate the effects of substituting the exponential function in the second hidden layer by a
different function such as the logistic function. One may also, as a first step, transform the
posterior density function to a more regular shape. This line of research is recently pursued
by, e.g., Bauwens, Bos, Van Dijk and Van Oest (2004) in a class of adaptive direction sampling
(ADS) methods. A combination of ADS and neural network sampling may be of interest. In
practice, one encounters cases where only part of the posterior density is ill-behaved. Then
one may combine the neural network approach for the ‘difficult part’ with a Gibbs sampling
approach for the regular part of the model. In recent work Richard (1998) and Liesenfeld and
Richard (2002) constructed an efficient importance sampling technique where the estimation of
the parameters of the importance function is done in a sequence of optimization steps.

Second, more experience is needed with empirical econometric models like business cycle
models as specified by Hamilton (1989) and Paap and Van Dijk (2002), stochastic volatility
models as given by Shephard (1996), and dynamic panel data models; see Pesaran and Smith
(1995).

Third, the neural network approximations proposed in this paper may be useful for modelling
volatility in financial series, see e.g. Donaldson and Kamstra (1997), and for evaluating option
prices, see Hutchinson, Lo and Poggio (1994). We intend to report on this in future research.
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A Sampling from a three-layer neural network distribution and
computing its moments

Appendix A.1 gives analytical expressions for the integrals of the arctangent function. Appendix
A.2 shows how these expressions are used in order to sample from a three-layer neural network
distribution. In appendix A.3 these expressions are used to obtain analytical expressions for the
moments of a three-layer neural network distribution. For a more elaborate appendix with more
detailed derivations we refer to Hoogerheide, Kaashoek and van Dijk (2002).

A.1 A simple analytical expression for the integrals of the arctangent function

Theorem A.1: The n-th integral of the arctangent function Jn(x)

Jn(x) ≡
∫
· · ·

∫
arctan(x)dx · · · dx

is given by
Jn(x) = pn(x) arctan(x) + qn(x) ln(1 + x2) + rn(x), (46)

where pn and qn are polynomials of degree n and n− 1, respectively:

pn(x) = pn,0 + pn,1 x + · · ·+ pn,n−1 xn−1 + pn,n xn

qn(x) = qn,0 + qn,1 x + · · ·+ qn,n−1 xn−1

The coefficients pn,k (k = 0, 1, . . . , n) and qn,k (k = 0, 1, . . . , n− 1) are given by:

pn,k =





(−1)(n−k)/2

(n−k)!k! if n− k is even

0 if n− k is odd
qn,k =





(−1)(n−k+1)/2

2(n−k)!k! if n− k is odd

0 if n− k is even
(47)

The polynomial rn (of degree at most n− 1) plays the role of the integrating constant.

Proof: We will prove this theorem by induction. First, note that for n = 1 the proposition
holds, as we have by partial integration:

∫
arctan(x)dx = x arctan(x)− 1

2
ln(1 + x2), (48)

Now suppose that our proposition holds for a certain positive integer n. Then we have to show
that this implies that the proposition also holds for n + 1.

First, note that for any non-negative integer k partial integration yields:
∫

xk arctan(x)dx =
1

k + 1
xk+1 arctan(x)− 1

k + 1

∫
xk+1

1 + x2
dx,

(49)∫
xk ln(1 + x2)dx =

1
k + 1

xk+1 ln(1 + x2)− 2
k + 1

∫
xk+2

1 + x2
dx.

Second, notice that a partial fraction decomposition yields:

∫
xm

1 + x2
dx =





(−1)m/2 arctan(x) +
∑(m−2)/2

i=0
(−1)i

m−1−2i xm−1−2i if m is even,

(−1)(m−1)/2 ln(1+x2)
2 +

∑(m−3)/2
i=0

(−1)i

m−1−2i xm−1−2i if m is odd.

(50)
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We may omit the polynomials in (50), since these would eventually be absorbed by the irrelevant
polynomial rn in formula (46), anyway. The induction assumption is that for a certain n it holds
that:

Jn(x) = (pn,0 + pn,1 x + . . . + pn,n xn) arctan(x)
+

(
qn,0 + qn,1 x + . . . + qn,n−1 xn−1

)
ln(1 + x2) (51)

where the coefficients pn,k (k = 0, 1, . . . , n) and qn,k (k = 0, 1, . . . , n − 1) are given by (47). It
follows from (49) and (50) that:

Jn+1(x) =
∫

Jn(x)dx

=
(

pn+1,0 + pn,0 x +
pn,1

2
x2 + . . . +

pn,n

n + 1
xn+1

)
arctan(x)

+
(
qn+1,0 + qn,0 x +

qn,1

2
x2 + . . . +

qn,n−1

n
xn

)
ln(1 + x2)

Note that Jn+1(x) has the shape of formula (46) with pn+1,k = pn,k−1/k (k = 1, . . . , n + 1) and
qn+1,k = qn,k−1/k (k = 1, . . . , n). Combining this with the induction assumption, it is easy to
see the validity of the formulas for pn+1,k and qn+1,k for k ≥ 1. Now we only have to prove that
pn+1,0 and qn+1,0 are also given by (47). From (49) and (50) we have:

pn+1,0 =
∑

{k|1≤k≤n;k odd}
−(−1)(k+1)/2

k + 1
pn,k +

∑

{k|0≤k≤n−1;k even}
−2(−1)(k+2)/2

k + 1
qn,k. (52)

If n is even, all pn,k’s and qn,k’s in the two summations of (52) are equal to zero, so that in that
case pn+1,0 = 0. If n is odd, we have:

pn+1,0 =
∑

{k|1≤k≤n;k odd}
− (−1)(n+1)/2

(n− k)!(k + 1)!
+

∑

{k|0≤k≤n−1;k even}
− (−1)(n+3)/2

(n− k)!(k + 1)!
, (53)

which can be rewritten as:

pn+1,0 =
(−1)(n+1)/2

(n + 1)!

n∑

k=0

(−1)k

(
n + 1
k + 1

)
=

(−1)(n+1)/2

(n + 1)!
, (54)

where the last equality of (54) follows from Newton’s binomium. The proof for qn+1,0 is similar.
We conclude that pn+1,0 and qn+1,0 are also given by (47), so that we have proved the theorem
by induction. 2
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A.2 The marginal and conditional distribution functions corresponding to a
three-layer neural network density

Suppose the random vector X = (X1, . . . , Xn)′ has the following density p(x1, . . . , xn):

p(x1, . . . , xn) =





nn(x1, . . . , xn) if xi ≤ xi ≤ x̄i ∀ i = 1, . . . , n

0 else
(55)

where [xi, x̄i] is the interval to which the variable xi (i = 1, 2, . . . , n) is restricted, and where
nn(x1, . . . , xn) is the following three-layer neural network function:

nn(x1, . . . , xn) =
H∑

h=1

ch

π
arctan(a′hx + bh) +

1
2

H∑

h=1

ch + d. (56)

Then the cumulative distribution function of X is given by:

CDFX(x̃1, . . . , x̃n) =
∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

nn(x1, . . . , xn)dx1dx2 · · · dxn

=
H∑

h=1

ch

π

∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

arctan(a′hx + bh)dx1dx2 · · · dxn

+

(
1
2

H∑

h=1

ch + d

)
x1x2 · · ·xn. (57)

Using the fact that dx1 = d(a′hx + bh)/ah1 (for constant values of x2, . . . , xn), we make the
following change of variables:

∫ x̃1

x1

arctan(a′hx + bh)dx1 =
1

ah1

∫ ah1x̃1+a′h,−1x−1+bh

ah1x1+a′h,−1x−1+bh

arctan(a′hx + bh)d(a′hx + bh)

=
1

ah1

[
J1(ah1x̃1 + a′h,−1x−1 + bh)− J1(ah1x1 + a′h,−1x−1 + bh)

]
,

where we define ah,−1 = (ah2, . . . , ahn)′ and x−1 = (x2, . . . , xn)′. If we continue in this way, we
obtain the following formula:

∫ x̃n

xn

· · ·
∫ x̃2

x2

∫ x̃1

x1

arctan(a′hx + bh)dx1dx2 · · · dxn = (58)

=
1

ah1ah2 · · · ahn

1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+D2+···+Dn Jn(ah1x1,D1 + · · ·+ ahnxn,Dn + bh)

where we define xi,0 = x̃i and xi,1 = xi (i = 1, 2, . . . , n), the upper and lower bounds of the
integration intervals. The primitive Jn(x) is given by Theorem A.1 in appendix A.1. Substituting
(58) into (57) yields:

CDFx(x̃1, . . . , x̃n) =

(
1
2

H∑

h=1

ch + d

)
x1x2 · · ·xn+

+
H∑

h=1

ch

πah1ah2 · · · ahn

1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+···+Dn Jn

(
n∑

i=1

ahixi,Di + bh

)
. (59)
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The marginal distribution functions CDFXj (xj) (j = 1, . . . , n) are now obtained by taking
x̃i = x̄i ∀i = 1, . . . , n; i 6= j:

CDFXj (xj) = CDFx(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄n). (60)

The conditional CDF of Xj given Xj+1, . . . , Xn is derived in a similar way, simply by substituting∑n
i=j+1 ahixi + bh for bh and treating the neural network as a function of x1, . . . , xj .
As we have explicit formulas for the marginal and conditional distribution functions, it is easy

to sample a random vector from a three-layer neural network density with (scaled) arctangent
activation function. We can use the numerical inverse transformation method in the following
way:

Step 1: Draw n independent U(0,1) variables U1, U2, . . . , Un.

Step 2: Draw Xn from its marginal distribution by computing the value of Xn such that CDFXn(Xn) =
Un (using, for example, the bisection method).

Step 3: For j = n−1, n−2, . . . , 1 iteratively draw Xj from its conditional distribution on Xj+1, . . . , Xn

by computing the value of Xj such that CDF (Xj |Xj+1, . . . , Xn) = Uj .

A.3 Analytical expressions for the moments of a three-layer neural network
distribution

Suppose the vector X = (X1, . . . , Xn)′ has the three-layer neural network density p(x1, . . . , xn)
given by (55) and (56). Then the expectation of Xk

n (k = 1, 2, . . .) is given by:

E(Xk
n) =

=
∫ x̄n

xn

∫ x̄n−1

xn−1

· · ·
∫ x̄1

x1

xk
n nn(x1, . . . , xn)dx1 · · · dxn−1dxn

=
H∑

h=1

ch

πah1 · · · ah,n−1

1∑

D1=0

· · ·
1∑

Dn−1=0

[
(−1)D1+···+Dn−1× (61)

×
∫ x̄n

xn

xk
n Jn−1

(
n−1∑

i=1

ahixi,Di + ahnxn + bh

)
dxn

]

+

(
1
2

H∑

h=1

ch + d

)
1

k + 1
(x̄1 − x1) · · · (x̄n−1 − xn−1)(x̄

k+1
n − xk+1

n ),

where we define xi,0 = x̄i and xi,1 = xi (i = 1, 2, . . . , n− 1), the upper and lower bounds of the
integration intervals. We now make use of the following theorem:

Theorem A.2: If the n-th integral of a certain function f : R → R is given by Jn : R → R,
then it holds for ah, x ∈ Rn, bh ∈ R and k = 0, 1, 2, . . . that:

∫
xk

i Jn(a′hx + bh)dxi =
1

ahi

k∑

m=0

(
− 1

ahi

)m k!
(k −m)!

xk−m
i Jn+1+m(a′hx + bh). (62)

Proof: We will prove this theorem by induction with respect to k. First, note that for k = 0 we
have: ∫

Jn(a′hx + bh)dxi =
1

ahi

∫
Jn(a′hx + bh)d(a′hx + bh) =

1
ahi

Jn+1(a′hx + bh),
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which clearly corresponds to Theorem A.2 for k = 0. Now suppose that our proposition holds
for a certain nonnegative integer k. Then we have to show that this implies that the proposition
also holds for k + 1.

Partial integration with xk+1
i as the factor to be differentiated yields:

∫
xk+1

i Jn(a′hx + bh)dxi = xk+1
i

1
ahi

Jn+1(a′hx + bh)− k + 1
ahi

∫
xk

i Jn+1(a′hx + bh)dxi. (63)

The induction assumption is that Theorem A.2 holds for the value k. Using this induction
assumption we rewrite the second term of (63) as:

− 1
ahi

(k + 1)
∫

xk
i Jn+1(a′hx + bh)dxi =

=
1

ahi

k+1∑

j=1

(
− 1

ahi

)j (k + 1)!
(k + 1− j)!

xk+1−j
i Jn+1+j(a′hx + bh) (64)

Adding (64) to the first term of (63) yields:

∫
xk+1

i Jn(a′hx + bh)dxi =
1

ahi

k+1∑

j=0

(
− 1

ahi

)j (k + 1)!
(k + 1− j)!

xk+1−j
i Jn+1+j(a′hx + bh)

which is just equation (62) with k + 1 instead of k. We conclude that we have proved Theorem
A.2 by induction. 2

Substituting equation (62) of Theorem A.2 into (61) now yields E(Xk
n), which can be easily

adjusted to the general case of E(Xk
i ) (i = 1, 2, . . . , n) by taking ahi and xi instead of ahn and

xn:

E(Xk
i ) =

H∑

h=1

ch

πah1 · · · ahn

1∑

D1=0

· · ·
1∑

Dn=0

[
(−1)D1+···+Dn× (65)

×
k∑

m=0

(
− 1

ahi

)m k!
(k −m)!

xk−m
i Jn+m

(
n∑

i=1

ahixi,Di + bh

)]

+

(
1
2

H∑

h=1

ch + d

)
1

k + 1
(x̄k+1

i − xk+1
i )

n∏

j=1;j 6=i

(x̄j − xj)
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In a similar fashion it can be derived that E(XiXj) (i, j = 1, 2, . . . , n; i 6= j) is equal to:

E(XiXj) =
H∑

h=1

ch

πah1 · · · ahn

1∑

D1=0

· · ·
1∑

Dn=0

(−1)D1+···+Dn ×

×
[
xixjJn

(
n∑

i=1

ahixi,Di + bh

)

−ahixi + ahjxj

ahiahj
Jn+1

(
n∑

i=1

ahixi,Di + bh

)
(66)

+
1

ahiahj
Jn+2

(
n∑

i=1

ahixi,Di + bh

)]

+

(
1
2

H∑

h=1

ch + d

)
1
4
(x̄2

i − x2
i )(x̄

2
j − x2

j )
n∏

k=1;k 6=i,j

(x̄k − xk).

Using formulas (65) and (66), one can easily compute statistics of a three-layer feed-forward
neural network distribution, such as mean, variance, skewness, kurtosis, covariances and corre-
lations.

B Sampling from a four-layer neural network distribution

Appendix B.1 discusses how to draw from a four-layer neural network distribution using Gibbs
sampling. Appendix B.2 shows another way to draw from a four-layer neural network: auxiliary
variable Gibbs sampling.

B.1 Gibbs sampling from a four-layer neural network distribution

Suppose a density kernel of X ∈ Rn is given by

p(x) =
{

nn(x) if xi ∈ [xi, x̄i] ∀i = 1, . . . , n
0 else

(67)

where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is restricted. Suppose the function
nn(x) corresponds to the following four-layer feed-forward neural network with n inputs xi (i =
1, . . . , n), and H hidden cells:

nn(x) = exp

(
H∑

h=1

ch plin

(
n∑

i=1

ahixi + bh

)
+ d

)
, (68)

where plin : R→ R is the following piecewise-linear function:

plin(x) =





0 x < −1/2
x + 1/2 −1/2 ≤ x ≤ 1/2

1 x > 1/2
(69)

We rewrite the neural network density nn(x) = nn(xj , x−j) as

nn(xj , x−j) ∝ exp




H∑

h=1

ch plin


ahjxj +

n∑

i=1,i 6=j

ahixi + bh





 ,
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which is a kernel of the conditional density of xj given x−j . For each hidden cell h (h = 1, . . . , H)
there are two points xj where its input a′hx + bh moves from one of the intervals (−∞,−1/2),
[−1/2, 1/2] and (1/2,∞) to another one:

ahjxj +
n∑

i=1,i 6=j

ahixi + bh = ±1
2

⇔ xj =
1

ahj


±1

2
−

n∑

i=1,i 6=j

ahixi − bh


 . (70)

Consider only those ‘changing points’ x̃j,k (k = 1, . . . , m with m ≤ 2H) that are in the interval
of interest [xj , x̄j ], and order these m points such that:

x̃j,1 < x̃j,2 < · · · < x̃j,m−1 < x̃j,m

If we define x̃j,0 = xj and x̃j,m+1 = x̄j , we have m + 1 intervals [x̃j,k, x̃j,k+1] (k = 0, 1, . . . ,m) on
which a kernel of the conditional density of Xj given X−j is given by:

nn(xj , x−j) ∝ exp(ãkxj + b̃k) (71)

for certain constants ãk and b̃k (k = 0, 1, . . . , m). The primitive of (71) is given by

∫
exp(ãkxj + b̃k)dxj =





1
ãk

exp(ãkxj + b̃k) + Ck if ãk 6= 0

exp(b̃k)xj + Ck if ãk = 0.

where Ck (k = 0, 1, . . . ,m) are integration constants that we specify in such a way that the CDF
starts at the value 0 and is continuous in xj . After this kernel of the conditional CDF has been
obtained, Xj is drawn from its conditional distribution using the inverse transformation method:
one draws U ∼ U(0, 1) and computes:

Xj =
log [ãk (S U − Ck)]− b̃k

ãk
or Xj =

S U − Ck

exp(b̃k)

depending on whether Xj falls in a region with ãk = 0 or not; S is the ‘scaling constant’ of the
kernel, which is computed as the value of the kernel of the conditional CDF at x̄j .

Since it is easy to draw Xj conditional on X−j (j = 1, . . . , n), it is easy to perform Gibbs
sampling from a four-layer neural network distribution.

B.2 Auxiliary variable Gibbs sampling from a four-layer neural network dis-
tribution

Suppose a density kernel of X ∈ Rn is given by

p(x) =
{

nn(x) if xi ∈ [xi, x̄i] ∀i = 1, . . . , n
0 else

(72)

where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is restricted. Suppose the function
nn(x) corresponds to the following four-layer feed-forward neural network with n inputs xi (i =
1, . . . , n), and H hidden cells:

nn(x) = exp

(
H∑

h=1

ch g

(
n∑

i=1

ahixi + bh

)
+ d

)
, (73)
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where g : R → R is a monotonically increasing function taking its values in [0,1], which is
invertible on the interval (x, x̄) where it takes its values in (0,1). We will denote this invertible
function by g̃ : (x, x̄) → (0, 1) with inverse g̃−1 : (0, 1) → (x, x̄). Note that the interval (x, x̄)
may be equal to (−∞,∞). Examples of such a function g are the logistic, the piecewise-linear
and the scaled arctangent function.

Auxiliary variable Gibbs sampling is possible if the density kernel p can be decomposed as
follows:

p(x) ∝ π(x)
K∏

k=1

lk(x), (74)

where π is a density kernel from which sampling is easy, and lk (k = 1, . . . , K) are non-negative
functions of x ∈ Rn. The trick is that a set U = (U1, . . . , UK) of auxiliary variables is introduced
such that a kernel of the joint density of X and U is given by:

p(x, u) ∝ π(x)
K∏

k=1

I {0 < uk < lk(x)} . (75)

It is easily seen that (74) is a marginal density kernel corresponding to the joint density (75).
Therefore one can sample X ∼ p(x) by sampling both X and U from (75) and forgetting U .

Kernels from the conditional distributions of X and U are easily obtained from the joint
density kernel:

p(x|u) ∝ π(x)I {lk(x) > uk, k = 1, . . . ,K} (76)

p(u|x) ∝
K∏

k=1

I {0 < uk < lk(x)} (77)

It follows from (76) and (77) that an iteration of the auxiliary variable Gibbs sampler consists of
drawing X from a truncated version of an ‘easy’ distribution with density kernel π, and sampling
Uk (k = 1, . . . ,K) from K independent uniform distributions.

We rewrite (72) as:

p(x) ∝
n∏

i=1

I {xi < xi < x̄i}
H∏

h=1

exp

(
ch g

(
n∑

i=1

ahixi + bh

))
. (78)

which has the shape of (74) with

π(x) =
n∏

i=1

I {xi < xi < x̄i} , (79)

lh(x) = exp

(
ch g

(
n∑

i=1

ahixi + bh

))
for h = 1, . . . , H. (80)

where π(x) is the ‘easy’ density kernel of n independent variables Xi (i = 1, . . . , n) with distri-
bution U(xi, x̄i).

Drawing U conditionally on the values of X is straightforward. Combining (77) and (80), it
follows that the elements Uh (h = 1, . . . , H) are drawn independently from the distributions:

Uh|X = x ∼ U

(
0, exp

[
ch g

(
n∑

i=1

ahixi + bh

)])
(81)
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Drawing X conditionally on the values of U is a little harder. We choose to break up X and
sample the elements Xi (i = 1, . . . , n) conditionally on the values of U and the set of all other
elements X−i. Combining (76), (79) and (80), we derive a density kernel of the conditional
distribution of Xi given X−i and U :

p(xi|u, x−i) ∝ I {xi < xi < x̄i} I {lh(xi, x−i) > uh, h = 1, . . . , H} (82)

We now take a closer look at the inequalities lh(xi, x−i) > uh (h = 1, . . . ,H). First, we can rule
out that ch = 0 or ahi = 0 for any h, since in that case we just delete the involved hidden cell.
If we consider lh(xi, x−i) as a function of xi for given values of x−i, denoted by lh,x−i(xi), then
the inverse l−1

h,x−i
(if it exists) is given by:

l−1
h,x−i

(uh) =
1

ahi


g̃−1

(
log(uh)

ch

)
−




n∑

j=1,j 6=i

ahjxj + bh





 . (83)

Note that this inverse exists only if log(uh)/ch ∈ (0, 1), and that the cases in which the inverse
l−1
h,x−i

does not exist are the cases in which hidden cell h implies no restriction for xi. Also notice
that this implies an upper bound for xi if chahi > 0 and a lower bound if chahi < 0.

We conclude that (82) is a density kernel of the distribution

Xi|U = u,X−i = x−i ∼ U(xi,LB(u, x−i), xi,UB(u, x−i)), (84)

with

xi,LB(u, x−i) = max
{

max
1≤h≤H

{
l−1
h,x−i

(uh)
∣∣∣∣chahi > 0,

log(uh)
ch

∈ (0, 1)
}

, xi

}

xi,UB(u, x−i) = min
{

min
1≤h≤H

{
l−1
h,x−i

(uh)
∣∣∣∣chahi < 0,

log(uh)
ch

∈ (0, 1)
}

, x̄i

}
,

where l−1
h,x−i

(uh) is given by (83), and where [xi, x̄i] is the interval to which Xi (i = 1, . . . , n) is
a priori restricted.

The auxiliary variable Gibbs sampling procedure is now given by:

Initialization: Choose feasible x0 = (x0
1, . . . , x

0
n).

Do for j = 1, 2, . . . ,m

Do for h = 1, 2, . . . , H

Obtain uj
h ∼ Uh|X = xj−1 from (81).

Do for i = 1, 2, . . . , n

Obtain xj
i ∼ Xi|U = uj , X−i = xj−1

−i from (84).

Here xj−1
−i denotes

xj−1
−i = xj

1, . . . , x
j
i−1, x

j−1
i+1 , . . . , xj−1

n ,

the set of all components except xi at their current values. Note that this procedure only requires
drawing from uniform distributions, which is done easily and fast.
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