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Abstract

In this paper we discuss several aspects of simulation based Bayesian econo-
metric inference. We start at an elementary level on basic concepts of Bayesian
analysis; evaluating integrals by simulation methods is a crucial ingredient in
Bayesian inference. Next, the most popular and well-known simulation tech-
niques are discussed, the Metropolis-Hastings algorithm and Gibbs sampling
(being the most popular Markov chain Monte Carlo methods) and importance
sampling. After that, we discuss two recently developed sampling methods:
adaptive radial based direction sampling [ARDS], which makes use of a trans-
formation to radial coordinates, and neural network sampling, which makes
use of a neural network approximation to the posterior distribution of interest.
Both methods are especially useful in cases where the posterior distribution is
not well-behaved, in the sense of having highly non-elliptical shapes. The sim-
ulation techniques are illustrated in several example models, such as a model
for the real US GNP and models for binary data of a US recession indicator.
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1 INTRODUCTION 2

1 Introduction

In this paper we discuss several aspects of simulation based Bayesian econometric
inference [SBBEI]. In recent decades there has been a huge increase in the use of sim-
ulation methods for the Bayesian analysis of econometric models. This ‘Simulation
Revolution’ in Bayesian econometric inference is to a large extent due to the advent
of computers with ever-increasing computational power; see e.g. the discussion in
Geweke (1999), Van Dijk (1999) and Hamilton (2006). This computational power
allows researchers to apply elaborate Bayesian simulation techniques for estimation
in which extensive use is made of pseudo-random numbers generated on computers.

The basic principle in this line of research is that in most cases of empirical
econometric models one can not directly simulate from the distribution of interest.
Thus one applies in such cases an indirect sampling method. Two classes of indirect
simulation methods are Importance Sampling and Markov chain Monte Carlo. The
theory of Markov chain Monte Carlo [MCMC] methods starts with Metropolis et
al. (1953) and Hastings (1970). The Gibbs sampling method, the most well-known
MCMC method, is due to Geman and Geman (1984). Importance sampling, due to
Hammersley and Handscomb (1964), was introduced in econometrics and statistics
by Kloek and Van Dijk (1978), and further developed by Van Dijk and Kloek (1980,
1984) and Geweke (1989).

The Gibbs sampler has, in particular, become a popular tool in econometrics for
analyzing a wide variety of problems; see Chib and Greenberg (1995) and Geweke
(1999). Judging from numerous articles in recent literature, Gibbs sampling is still
gaining more and more momentum. Recent textbooks such as Bauwens, Lubrano
and Richard (1999), Koop (2003), Lancaster (2004), and Geweke (2005) discuss
how Gibbs sampling is used in a wide range of econometric models, in particular in
models with latent variables.

Evaluating integrals is a crucial ingredient in the Bayesian analysis of any model.
The reason is that the basic principle, Bayes’ rule, provides (a kernel of) the joint
posterior density of all parameters occurring in the model. One is typically interested
in the posterior means and standard deviations of some of the parameters; the
posterior probability that a parameter lies in a certain interval; and/or the marginal
likelihood of the model. For these purposes - and, of course, for prediction and
decision analysis - one has to integrate the joint posterior density kernel with respect
to all parameters. Therefore, the development of advanced sampling methods, that
perform this integration operation efficiently, makes Bayesian inference possible in a
wider class of complex models. This allows for more realistic descriptions of processes
in many situations, for example in finance and macro-economics, leading to more
accurate forecasts and a better quantification of uncertainty.

In order to make this paper self contained we start with a discussion of basic prin-
ciples of Bayesian inference such as prior & posterior density, Bayes’ rule, Highest
Posterior Density [HPD] region, Bayes factor, and posterior odds. Good knowl-
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edge of these principles is necessary for understanding the application of simulation
methods in Bayesian econometric inference. After the introduction to Bayesian in-
ference we proceed and discuss basic ideas of simulation methods. These methods
are applicable to posterior densities that are reasonably well-behaved. Recent work
in SBBEI deals with cases where the posterior is not well-behaved. We also discuss
some methods that can be used in such a situation. Highly non-elliptical shapes
in posterior distributions typically arise when some parameters have a substantial
amount of posterior probability near or at the boundary of the parameter region.
This feature may occur and is relevant in several econometric models. A practical
example is a dynamic economic process that is possibly non-stationary. Other exam-
ples are the presence of very weak instruments in an instrumental variable regression
model, and models with multiple regimes in which one regime may have neglectable
probability.

The contents of this paper is structured as follows. In Section 2 we briefly review
the basic principles of Bayesian inference. In Section 3 we first discuss several
well-known simulation techniques such as Importance Sampling, the Metropolis-
Hastings algorithm and the Gibbs sampler. Next, we discuss two recently developed
simulation methods: adaptive radial based direction sampling [ARDS], which makes
use of a transformation to radial coordinates, and neural network sampling, which
makes use of a neural network approximation to the posterior distribution of interest.
The final section provides some concluding remarks.

2 A Primer on Bayesian Inference

2.1 Motivation for Bayesian Inference

The dissatisfaction that many applied economic researchers feel when they consider
the ‘significance’ of regression coefficients, using the frequentist/classical approach,
is one major motivation to start with Bayesian inference. Consider the following
example.

Example: growth of real GNP in the US

Throughout this paper we use the (annualized) quarterly growth rate of the real Gross
National Product (GNP) in the United States several times for illustrative purposes. The
data are shown in Figure 1. Consider the ordinary least squares (OLS) regression for
T = 126 observations yt from 1975 to the second quarter of 2006 (with t-values in
parentheses):

yt = 1.99 + 0.22 yt−1 + 0.13 yt−2 + ût (t = 1, . . . , T )
(4.80) (2.57) (1.50)
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Figure 1: U.S. real Gross National Product - quantity index, 2000=100 (left), and
corresponding (annualized) growth rates in percents (right). The data are seasonally
adjusted. Source: U.S. Department of Commerce, Bureau of Economic Analysis.

where ût are OLS residuals. Now suppose one fixes the coefficient of yt−2 at zero; then
one obtains:

yt = 2.26 + 0.27 yt−1 + v̂t (t = 1, . . . , T )
(6.03) (3.13)

where v̂t are the OLS residuals. A naive researcher might conclude that in the second
model the influence of yt−1 on yt is “much more significant”. However, according to
a proper interpretation of the frequentist/classical approach, this is not a meaningful
statement. The reason for this is that in classical inference only the falsification of the
null hypothesis is possible. Otherwise stated, it is only relevant whether or not the null
hypothesis is rejected.

Another point is that the concept of ‘unbiasedness’ of an estimator is not mean-
ingful in non-experimental sciences: an unbiased estimator takes on average the
correct value when the process is repeated (infinitely) many times. However, in
non-experimental sciences this idea of repeating the process is not realistic. In non-
experimental sciences, a researcher cannot repeat the process he/she studies, and
he/she has to deal with only one given data set.

A proper way to consider the sensitivity of estimates and to use probability state-
ments that indicate a ‘degree of confidence’ is given by the framework of Bayesian
inference. So, apart from dissatisfaction with existing practice of the frequen-
tist/classical approach, there also exists a constructive motive to apply Bayesian
inference. That is, a second major motivation to start with Bayesian inference is
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that the Bayesian framework provides a natural learning rule, that allows for optimal
learning and (hence) optimal decision making under uncertainty.

In this section the basic principle of Bayesian inference, Bayes’ theorem, will
first be discussed. After that, some concepts that play an important role within
the Bayesian framework will be described, and a comparison will be made between
Bayesian inference and the frequentist/classical approach.

2.2 Bayes’ theorem as a learning device

Econometric models may be described by the joint probability distribution of y =
{y1, . . . , yN}, the set of N available observations on the endogenous variable yi,
where yi may be a vector itself, that is known upto a parameter vector θ. Bayesian
inference proceeds from the likelihood function L(θ) = p(y|θ), which is either the
density of the data given the parameters in case of a continuous distribution or
the probability function in case of a discrete distribution, and a prior density p(θ)
reflecting prior beliefs on the parameters before the data set has been observed. So,
in the Bayesian approach the parameters θ are considered as random variables of
which the prior density p(θ) is updated by the information contained in the data,
incorporated in the likelihood function L(θ) = p(y|θ), to obtain the posterior density
of the parameters p(θ|y). This process is formalized by Bayes’ theorem:

p(θ|y) =
p(θ)p(y|θ)

p(y)
. (1)

Note that this is merely a result of rewriting the identity p(y)p(θ|y) = p(θ)p(y|θ), the
two ways of decomposing the joint density p(y, θ) into a marginal and a conditional
density, see Figure 2 for a graphical interpretation of Bayes’ theorem. The marginal
likelihood p(y) =

∫
p(θ, y)dθ =

∫
p(y|θ)p(θ)dθ is the marginal density of the data

y, after the parameters θ of the model have been integrated out with respect to
their prior distribution. The marginal likelihood can be used for model selection,
see subsection 2.3.

Formula (1) can be rewritten as:

p(θ|y) ∝ p(θ)p(y|θ), (2)

where the symbol ∝ means “is proportional to”, i.e. the left-hand side is equal to the
right-hand side times a scaling constant (1/p(y) = 1/

∫
p(θ)p(y|θ)dθ) that does not

depend on the parameters θ; just like the integrating constant
√

2π in the standard
normal density.

The basic idea behind the Bayesian approach is that the prior density p(θ) and
the posterior density p(y|θ) are subjective evaluations of possible states of nature
and/or outcomes of some process (or action). A famous quote of De Finetti (1974)
is: “probabilities do not exist”, that is, probabilities are not physical quantities that
one can measure in practice, but they are states of the mind.
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prior density stochastic model
p(θ) p(y|θ)

↘ ↙

joint density of y and θ:
p(y, θ) = p(θ)p(y|θ)

↓

dual decomposition
of joint density:

p(y, θ) = p(y)p(θ|y)

↙ ↘
marginal likelihood posterior density
p(y) =

∫
p(θ, y)dθ p(θ|y) = p(θ)p(y|θ)/p(y)

Figure 2: Bayes’ theorem as a learning device

Bayes’ rule can be interpreted as follows. One starts with the prior density
p(θ); this contains intuitive, theoretical or other ideas on θ, that may stem from
earlier or parallel studies. Then one learns from data through the likelihood function
p(y|θ). This yields the posterior p(θ|y). Briefly stated, Bayes’ paradigm is a learning
principle, which can be depicted as follows:

posterior density ∝ prior density × likelihood

beliefs after ⇐ beliefs before & influence
having observed data observing data of the data

Note that we can apply Bayes’ rule sequentially: when new data will become avail-
able, we can treat the posterior density that is based on the current data set as the
prior density.

The key problems in Bayesian inference are the determination of the probability
laws in the posterior kernel, i.e. what families of posterior densities are defined, and
the computation of the marginal likelihood.
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Example: growth of real GNP in the US (continued)

In order to illustrate Bayes’ theorem, we consider the quarterly data on U.S. real GNP.
Figure 1 displays real GNP and the corresponding growth rate in percents. Here we
consider the naive model

yt = θ + εt, εt ∼ N (0, 25) i.i.d., t = 1, . . . , T, (3)

where yt is the (annualized) growth rate in period t and θ is the average growth rate. So,
growth rates are assumed to obey a normal distribution with known standard deviation
5. Clearly, the likelihood function is given by

p(y|θ) ∝ exp

(
−

∑T
t=1(yt − θ)2

2 · 25

)
, (4)

where we have omitted the scaling constant of the normal density, as it is irrelevant
in the analysis. Next, a prior density has to be specified for θ. Suppose that it is a
priori expected that average real GNP growth is approximately 4 (percent), and that one
believes that there is a 95% probability that average real GNP growth lies between 0
and 8 (percent). Such prior beliefs can be captured by a normal distribution with mean
4 and standard deviation 2 (percent), so that the prior density is given by

p(θ) ∝ exp

(
−(θ − 4)2

2 · 4
)

. (5)

Applying Bayes’ theorem (2) to formulas (4) and (5) results in a posterior

p(θ|y) ∝ exp

(
−θ2 − 8θ + 16

2 · 4
)

exp

(
−

∑T
t=1(θ − yt)

2

2 · 25

)

∝ exp

(
−θ2 − 8θ

2 · 4
)

exp

(
−Tθ2 − 2θ

∑T
t=1 yt

2 · 25

)

= exp

(
−1

2

{[
T

25
+

1

4

]
θ2 − 2

[∑T
t=1 yt

25
+ 1

]
θ

})

∝ exp


−1

2

[
T

25
+

1

4

] {
θ −

∑T
t=1 yt/25 + 1

T/25 + 1/4

}2



= exp


−1

2

[
T

25
+

1

4

] {
θ −

∑T
t=1 yt + 25

T + 25/4

}2

 (6)
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Figure 3: Illustration of Bayesian learning: average U.S. real GNP growth.

which is a kernel (= proportionality function) of a normal density with mean
PT

t=1 yt+25

T+25/4

and variance
(

T
25

+ 1
4

)−1
. So,

θ|y ∼ N
(∑T

t=1 yt + 25

T + 25/4
,

(
T

25
+

1

4

)−1
)

. (7)

Note that for T →∞ the posterior mean of θ approaches the sample mean
∑T

t=1 yt/T

and the posterior variance goes to 0, whereas filling in T = 0 (and
∑T

t=1 yt = 0) yields
the prior distribution.

Figure 3 provides a graphical illustration of Bayesian learning. It shows how the
distribution of the real GNP growth parameter θ changes when more observations be-
come available. In the graph, the posterior distributions are obtained from (7), where
the considered observations run from 1970 to 1971, 1975, 1980 and 1985, respectively.
For instance, the first posterior density includes the years 1970 and 1971, that is, 8
quarterly observations. All the posterior distributions are located to the left of the prior,
suggesting that the prior belief of 4 percent growth overestimates the actual growth rate.
It is further seen that parameter uncertainty is reduced when more observations are used.
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Conjugate priors

The example above demonstrates that a normal prior applied to a normal data gen-
erating process results in a normal posterior. This phenomenon that the posterior
density has the same form as the prior density is called “conjugacy”. Conjugate
priors are useful, as they greatly simplify Bayesian analysis. There exist several
forms of conjugacy. Without the intention to be exhaustive, we mention that a Beta
prior results in a Beta posterior for a binomial data process, and that a gamma prior
results in a gamma posterior for a Poisson data process. Although using conjugacy
facilitates Bayesian analysis, a possible critical remark is that conjugate priors are
often more driven by convenience than by realism.

General case of the normal model with known variance

The example above can be generalized. Suppose that the data y = (y1, . . . , yT ) are
generated from a normal distribution N (θ, σ2) where the variance σ2 is known, and
the prior distribution for the parameter θ is N (θ0, σ

2
0). So, we consider the same

model as before, but now we do not fill in specific values for the process variance σ2

and the prior parameters θ0 and σ2
0. In a similar fashion as before, it can be shown

that for this more general case

θ|y ∼ N
(

θ0σ
2 + σ2

0

∑T
t=1 yt

σ2 + Tσ2
0

,

(
1

σ2
0

+
T

σ2

)−1
)

. (8)

Interestingly, both the posterior expectation and the (inverse of the) posterior vari-
ance in (8) can be decomposed into a prior component and a sample component.
By defining the sample mean θ̂ = 1

T

∑T
t=1 yt and its variance σ2

θ̂
= σ2

T
, (8) can be

written as

θ|y ∼ N
(

σ−2
0

σ−2
0 + σ−2

θ̂

θ0 +
σ−2

θ̂

σ−2
0 + σ−2

θ̂

θ̂,
(
σ−2

0 + σ−2

θ̂

)−1
)

. (9)

In order to interpret (9), we note that the inverted variances σ−2
0 and σ−2

θ̂
essentially

measure the informativeness of prior beliefs and available data, respectively. For
instance, if σ−2

0 is much smaller than σ−2

θ̂
, then the prior density is flat relative to the

likelihood function, so that the shape of the posterior density is mainly determined
by the data. It is seen from (9) that the posterior expectation of θ is a weighted
average of the prior expectation θ0 and the sample mean θ̂; the weights reflect the
amount of prior information relative to the available sample information.

A practical problem, which we have ignored in the analysis so far, is that prior be-
liefs are often difficult to specify and extremely subjective. So, it might happen that
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Figure 4: Illustration of symmetry of Bayesian inference and frequentist approach
in linear regression model and difference between these approaches

researchers strongly disagree on which prior density is appropriate for the inference
problem. As prior beliefs directly affect the posterior results, different researchers
may arrive at different conclusions. In order to reach some form of consensus, non-
informative priors are therefore frequently considered. Such priors are constructed
in such a way that they contain little information relative to the information coming
from the data. In the (generalized) example above, a “non-informative” prior can
be obtained by making the prior distribution N (θ0, σ

2
0) diffuse, that is, by letting

the prior variance σ2
0 go to infinity. This essentially amounts to choosing a uniform

prior p(θ) ∝ 1, reflecting no a priori preference for specific θ values. This implies
that the posterior becomes proportional to the likelihood function. It immediately
follows from (9) that an infinitely large prior variance results in

θ|y ∼ N (θ̂, σ2
θ̂
), (10)

which shows a nice symmetry with classical maximum likelihood [ML], as the ML
estimator θ̂ is N (θ, σ2

θ̂
) distributed. Note that to do classical inference some “true”

value has to be assumed for the unknown parameter θ, as otherwise the distribu-
tion N (θ, σ2

θ̂
) would contain unknown elements. Classical analysis is conditioned

on postulated “true” parameter values, whereas Bayesian analysis is conditioned on
the data. This is an important difference between the two approaches. Figure 4
illustrates the difference between Bayesian inference and the frequentist/classical
approach in the linear regression model. For example, a Bayesian may investigate
whether zero is a likely value for θ given the data, whereas a frequentist may an-
alyze whether the data (summarized in the ML estimator θ̂) are likely under the
hypothesis that the true value θ0 = 0.
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Example: illustration of Bayes’ rule in TV show game (Monty Hall problem)

We now illustrate the application of Bayes’ rule in a simple example of a game that
was played in the American TV show ‘Let’s make a deal’. It is known as the Monty Hall
problem, after the show’s host. In this TV show game, one could win a car by choosing
among three doors the door behind which a car was parked. The candidate was faced
with three closed doors: behind one door there was a car, behind the other two doors
there was nothing.1 The procedure of the game was as follows. First, the candidate
chose one door, say door 1. Second, the TV show host - who knew behind which door
the car could be found - opened one of the other two doors with no car behind it. So,
if the car was behind door 2, the show’s host opened door 3, and vice versa. If the
car was behind door 1, the host would open either door 2 or 3 with probability 1/2.
Suppose the presenter opened door 3. Finally, the candidate got the chance to switch
his/her choice from his/her initial choice (door 1) to the other closed door (door 2).
Throughout the episodes of the TV show there were many candidates who chose to stick
with their initially chosen door. The question is now whether this was a wise decision;
or stated otherwise, was this rationally an optimal decision? To answer this question,
we will make use of Bayes’ rule.

In order to be able to apply Bayes’ rule in this example, we must formulate the
TV show game as a model. In this model there is one parameter θ reflecting the door
with the car behind it, θ ∈ {1, 2, 3}. The data y are given by the door that the host
opens, y ∈ {2, 3}. We assume that there is no prior preference for one of the three
doors: Pr[θ = i] = 1/3 for i = 1, 2, 3. In the case in which the host opens the third
door, the likelihood is given by: Pr[y = 3| θ = 1] = 1/2, Pr[y = 3| θ = 2] = 1,
Pr[y = 3| θ = 3] = 0.

From the prior and the likelihood we can now obtain the posterior probability distri-
bution of θ using Bayes’ rule. First we obtain the marginal likelihood:2

Pr[y = 3] =
3∑

i=1

Pr[y = 3| θ = i] Pr[θ = i] =
1

2
· 1

3
+ 1 · 1

3
+ 0 · 1

3
=

1

6
+

1

3
=

1

2

Now we obtain the posterior probabilities:

Pr[θ = 1| y = 3] =
Pr[y = 3| θ = 1] Pr[θ = 1]

Pr[y = 3]
=

1/2 · 1/3
1/2

=
1

3

1The Monty Hall problem is also described as the situation with a car behind one door and a
goat behind the other two doors. Obviously, this does not intrinsically change the situation: the
point is that behind one door there is something that is worth considerably more money than what
is behind the other two doors.

2Note that we have a summation over the domain of θ here (instead of an integral), because
this is a (quite rare) case in which the parameter θ has a discrete distribution.
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Pr[θ = 2| y = 3] =
Pr[y = 3| θ = 2] Pr[θ = 2]

Pr[y = 3]
=

1 · 1/3
1/2

=
2

3

Pr[θ = 3| y = 3] =
Pr[y = 3| θ = 3] Pr[θ = 3]

Pr[y = 3]
=

0 · 1/3
1/2

= 0

We conclude that it would actually be the best rational decision to switch to door 2,
having a (posterior) probability of 2/3, whereas door 1 merely has a (posterior) probability
of 1/3. The problem is also called the Monty Hall paradox, as the solution may be
counterintuitive: it may appear as if the seemingly equivalent doors 1 and 2 should have
equal probability of 1/2. However, the following reasoning explains intuitively why the
probability that the car is behind door 1 is merely 1/3, after door 3 has been opened. At
the beginning the probability that the car is behind door 1 was 1/3, and the fact that
door 3 is opened does not change this: it is already known in advance that the host
will open one of the other doors with no car behind it. In other words, the data do not
affect the probability that the car is behind door 1. So after door 3 has been opened,
door 1 still has 1/3 probability, while door 2 now has the 2/3 probability that doors 2
and 3 together had before door 3 had been opened.

It is interesting to see which decision would result from the maximum likelihood ap-
proach in this case. Here the ML approach would yield the same decision: θ̂ML = 2.
The likelihood Pr[y = 3| θ] is highest for θ = 2: Pr[y = 3| θ = 2] = 1. However, it
should be noted that the ML approach does not immediately indicate what the prob-
ability is that the car is behind door 2; it does not immediately reveal the uncertainty
about the decision. Moreover, if one would have the prior information that in 3 out of
5 TV shows the car is behind door 1, and in 1 out of 5 shows behind door 2 or door
3, then the Bayesian approach would yield a different choice than the ML approach.
Then θ̂ML would still be θ̂ML = 2, whereas the posterior probabilities would then be
Pr[θ = 1| y = 3] = 3/5 versus Pr[θ = 2| y = 3] = 2/5. This illustrates how Bayes’
rule provides us with a natural method to include prior information that is relevant for
optimal decision making, and to assess the uncertainty about this decision.

2.3 Model evaluation and model selection

In this section, we discuss two Bayesian testing approaches for model selection. The
first is based on the highest posterior density [HPD] region, which is the Bayesian
counterpart of the classical confidence interval. The second is posterior odds anal-
ysis, comparing the probabilities of multiple considered models given the available
data. An important difference between the two approaches is that tests using the
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HPD region are based on finding evidence against the null model, whereas pos-
terior odds analysis considers the evidence in favor of each of the models under
scrutiny. So, the HPD approach treats models in an asymmetrical way, just like
frequentist/classical testing procedures. The posterior odds approach treats models
symmetrically.

2.3.1 The HPD region

The highest posterior density [HPD] region is defined such that any parameter point
inside that region has a higher posterior density than any parameter point outside.
Consequently, the usually considered 95% HPD region is the smallest region con-
taining 95% of the posterior probability mass. We note that a HPD region does not
necessarily consist of a single interval. For example, it might consist of two intervals
if the posterior density is bimodal.

Figure 5 shows the 95% HPD region for the average real GNP growth rate θ in
the normal model with known variance. The standard normal distribution has 2.5%
probability mass both to the right of 1.96 and to the left of −1.96, so that the 95%
HPD region for θ is (2.92− 1.96 · 0.91, 2.92 + 1.96 · 0.91) = (1.14, 4.70). It is seen
from Figure 5 that a real GNP model imposing zero average growth is rejected, as
θ = 0 is located outside the HPD region.

Although the Bayesian HPD region has similarities with the classical confidence
interval, the interpretations are very different. In the classical framework, the confi-
dence interval (constructed from the data) is considered random and the postulated
parameter value is given, so that one effectively tests whether the data are plausible
for the assumed parameter value. On the other hand, a Bayesian considers the HPD
region as given and the parameter outcome as random, so that it is effectively tested
whether the parameter outcome is plausible given the available data.

2.3.2 Posterior odds analysis

A HPD region based test considers the amount of evidence against the null model,
but it does not say anything about the amount of evidence in favor of the alternative
model relative to the null model. So, the null model and the alternative model are
treated asymmetrically. A testing approach in which models are directly compared
is posterior odds analysis. Its formalization for two possibly non-nested competing
models M1 and M2 is as follows. Given the available data y, the model probabili-
ties are Pr(M1|y) and Pr(M2|y), where Pr(M1|y) + Pr(M2|y) = 1. Using Bayes’
theorem, we can write these model probabilities as

Pr(M1|y) =
p(M1, y)

p(y)
=

Pr(M1)p(y|M1)

Pr(M1)p(y|M1) + Pr(M2)p(y|M2)
, (11)

Pr(M2|y) =
p(M2, y)

p(y)
=

Pr(M2)p(y|M2)

Pr(M1)p(y|M1) + Pr(M2)p(y|M2)
. (12)
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Figure 5: 95% HPD region for the average real GNP growth rate θ based on 24
quarterly observations from 1970 to 1975

The posterior odds ratio in favor of model 1, that is, the ratio of (11) and (12), is
now defined by

K1,2 =
Pr(M1|y)

Pr(M2|y)
=

Pr(M1)

Pr(M2)

p(y|M1)

p(y|M2)
. (13)

Model 1 is preferred if K1,2 is larger than 1, and model 2 is preferred in the opposite
case. The relationship (13) states that the posterior odds ratio K1,2 equals the prior

odds ratio Pr(M1)
Pr(M2)

, reflecting prior model beliefs, times the so-called Bayes factor

B1,2 =
p(y|M1)

p(y|M2)
, (14)

accounting for the observed data y. We note that the posterior odds ratio equals
the Bayes factor if the two models are a priori assumed to be equally likely, that is,
Pr(M1) = Pr(M2) = 0.5. The subsequent discussion on Bayes factors is quite brief,
but a more extensive treatment can be found in Kass and Raftery (1995).

The Bayes factor B1,2 is the ratio of the marginal likelihoods

p(y|M1) =

∫
p(y|θ1,M1)p(θ1|M1) dθ1, (15)

p(y|M2) =

∫
p(y|θ2,M2)p(θ2|M2) dθ2, (16)
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where θ1 and θ2 are the parameter vectors in the two models, and where the prior den-
sities p(θ1|M1) and p(θ2|M2) and the likelihood functions p(y|θ1,M1) and p(y|θ2,M2)
contain all scaling constants. It is interesting to note that the Bayes factor is closely
related to the likelihood ratio. However, the latter maximizes over the model pa-
rameters, whereas the former integrates them out. Furthermore, if both the models
M1 and M2 do not contain free parameters, then the Bayes factor is just the ratio
of two likelihoods evaluated at fixed parameter values.

Example: growth of real GNP in the US (continued)

As an illustration, we consider the normal real GNP growth model with standard de-
viation 5. As before, the average growth parameter θ has a normal prior density with
mean 4 and standard deviation 2. We use Bayes factors to compare the zero growth
model M1, imposing that θ = 0, with the unrestricted model M2. As model M1 does
not contain free parameters, the marginal likelihood for this model is just the likelihood
function evaluated at θ = 0, that is,

p(y|M1) = p(y|θ = 0) = (2π · 25)−T/2 exp

(
−

∑T
t=1 y2

t

2 · 25

)
. (17)

Furthermore, the marginal likelihood for model M2 is

p(y|M2) =

∫ ∞

−∞
p(y|θ, M2)p(θ|M2)dθ

=

∫ ∞

−∞
(2π · 25)−T/2 exp

(
−

∑T
t=1(yt − θ)2

2 · 25

)
(2π · 4)−1/2 exp

(
−(θ − 4)2

2 · 4
)

dθ

= (2π · 25)−T/2 exp

(
−

∑T
t=1 y2

t

2 · 25

)
1

2
√

2π
exp

(
−4

2

)
×

×
∫ ∞

−∞
exp


−

(T + 25/4)θ2 − 2
(∑T

t=1 yt + 25
)
θ

2 · 25


dθ.

(18)

As it can be shown that the integral in (18) is given by3

∫ ∞

−∞
exp


−

(T + 25/4)θ2 − 2
(∑T

t=1 yt + 25
)
θ

2 · 25


dθ =

√
2π√

T + 25/4
exp




(∑T
t=1 yt + 25

)2

2 · 25 · (T + 25/4)


,

3Dividing the integrand by the right-hand side yields a normal density that obviously integrates
to 1.
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it follows from (17) and (18) that the Bayes factor B1,2 becomes

B1,2 =
p(y|M1)

p(y|M2)

=
2
√

2π√
2π

exp

(
4

2

) √
T + 25/4 exp


−

(∑T
t=1 yt + 25

)2

2 · 25 · (T + 25/4)




=

(2π)−1/2
(

T
25

+ 1
4

)1/2
exp

[
−1

2

(
T
25

+ 1
4

) (
0−

PT
t=1 yt+25

T+25/4

)2
]

(2π)−1/2 4−1/2 exp
(
− (0−4)2

2·4

)

=
p(θ|y)

∣∣∣
θ=0

p(θ)
∣∣∣
θ=0

. (19)

the ratio of the posterior density and the prior density, both evaluated at the restricted
parameter value θ = 0.

Savage-Dickey density ratio

The remarkable result in the example above, that the Bayes factor is the ratio
of the posterior density and the prior density, evaluated at the restricted parameter
value, is not a coincidence. It is a special case of the Savage-Dickey density ratio
(Dickey 1971). We note that the result above can also be derived immediately from
Bayes’ theorem (1) by evaluating it for θ = 0 and rearranging it as

p(θ|y)
∣∣∣
θ=0

p(θ)
∣∣∣
θ=0

=
p(y|θ = 0)

p(y)
=

p(y|M1)

p(y|M2)
. (20)

Figure 6 provides a graphical illustration of the result. It shows that for θ = 0 the
unrestricted model M2 is preferred over the restricted model M1, as the Bayes factor
B1,2 is smaller than 1. Note that in the HPD approach the restricted model is also
rejected (Figure 5). However, it is certainly possible that the HPD approach and the
Bayes factor give different ‘signals’. For example, the value θ = 4.5 is not rejected by
the HPD approach, whereas the Bayes factor favors the unrestricted model (Figure
6).

We note that the Savage-Dickey density ratio (20) implies that the restricted
model M1 would always be favored if the prior for the restricted parameters θ is
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Figure 6: Prior and posterior densities for the average (annualized) real GNP
growth rate, where the posterior involves 24 quarterly observations from 1970 to
1975 (above), and the Bayes factor to test that the average growth rate equals the
value on the horizontal axis (below).

improper (= not integrating to a constant, “infinitely diffuse”), as the denominator
in the Bayes factor B1,2 would tend to zero. This phenomenon is the Bartlett paradox
(Lindley 1957, Bartlett 1957). It demonstrates that, at least for the parameters being
tested, improper priors should be avoided in posterior odds analysis.

Example: illustration of Bayes’ rule, HPD region and posterior odds in World
Series

Consider the following illustrative, simple model for the World Series 2004 between the
Boston Red Sox and the St. Louis Cardinals. In this model we have data y = {y1, . . . , yn}
with

yi =

{
1 Boston Red Sox win match i
0 St. Louis Cardinals win match i

, i = 1, . . . , n.

that are assumed independently Bernoulli(θ) distributed, i.e. the model contains only



2 A PRIMER ON BAYESIAN INFERENCE 18

one parameter θ, the probability that the Boston Red Sox beat the St. Louis Cardinals
in match i (i = 1, . . . , n). The probability distribution of yi (i = 1, . . . , n) is:

Pr[yi| θ] = θyi(1− θ)1−yi

leading to the likelihood:

Pr[y| θ] =
n∏

i=1

Pr[yi| θ] = θn1(1− θ)n2

with n1 and n2 the numbers of matches that have been won by the Boston Red Sox
and the St. Louis cardinals, respectively. Suppose we have no a priori preference for the
parameter θ, so we specify a uniform prior: p(θ) = 1 for θ ∈ [0, 1], p(θ) = 0 else.

In the year 2004 the World Series consisted of only 4 matches that were all won by
the Boston Red Sox, so yi = 1 for i = 1, 2, 3, 4. Hence, after n of these matches the
likelihood is given by Pr[yi| θ] = θn, and the posterior density of θ is given by

p(θ| y) ∝ Pr[yi| θ] p(θ) =

{
θn 0 ≤ θ ≤ 1
0 else

for n = 1, 2, 3, 4. The scaling constant
∫

Pr[yi| θ] p(θ)dθ is

∫
Pr[yi| θ] p(θ)dθ =

∫ 1

0

θndθ =
1

n + 1

so we have

p(θ| y) =
Pr[yi| θ] p(θ)∫
Pr[yi| θ] p(θ)dθ

=

{
(n + 1)θn 0 ≤ θ ≤ 1
0 else

.

Figure 7 shows the graphs of the prior and posterior density of θ after n = 1, 2, 3, 4
matches. Note that after each match - won by the Boston Red Sox - more density mass
is located on the right side of θ = 0.5. The posterior cumulative distribution function
[CDF] of θ after n = 1, 2, 3, 4 matches is given by Pr[θ ≤ θ̃] = θ̃n+1. So, the 95% HPD
region is given by [0.051/(n+1), 1]. The 95% HPD region is [0.22, 1], [0.37, 1], [0.47, 1],
[0.55, 1] after n = 1, 2, 3, 4 observations, respectively.

We now consider a posterior odds analysis for the following two models M1 and
M2: model M1 in which θ ≤ 1/2 and model M2 in which θ > 1/2. Models 1 and
2 can be interpreted as the hypotheses that “the St. Louis Cardinals are at least as
good as the Boston Red Sox” and “the Boston Red Sox are better than the St. Louis
Cardinals”, respectively. The prior distributions for θ under models 1 and 2 are assumed
to be uniform on [0, 1/2] and (1/2, 1], respectively. Notice that the models M1 and M2

are non-nested. In the case in which the Boston Red Sox have won all matches, the
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marginals likelihoods are given by:

p(y|M1) =

∫
p(y|θ, M1)p(θ|M1)dθ =

∫ 1/2

0

θn2dθ =
2

n + 1

(
1

2

)n+1

,

p(y|M2) =

∫
p(y|θ, M2)p(θ|M2)dθ =

∫ 1

1/2

θn2dθ =
2

n + 1

[
1−

(
1

2

)n+1
]

.

So, if we assume equal prior probabilities Pr[M1] = Pr[M2] = 0.5, then the Bayes
factor and posterior odds ratio K1,2 are given by:

K1,2 ≡ Pr[M1|y]

Pr[M2|y]
=

(1/2)n+1

1− (1/2)n+1
.

The posterior probabilities of models M1 and M2 are given by Pr[M1|y] = (1/2)n+1

and Pr[M2|y] = 1− (1/2)n+1. So, the probability that “the St. Louis Cardinals are at
least as good as the Boston Red Sox” given n (n = 1, 2, 3, 4) observed matches (won
by the Boston Red Sox) is Pr[M1|y] = (1/2)n+1, which equals 0.25, 0.125, 0.06 and
0.03 for n = 1, 2, 3, 4.

We now compare these conclusions of Bayesian methods with the frequentist/classical
approach. In the frequentist/classical framework, a test of null hypothesis H0 : θ ≤ 0.5
versus alternative hypothesis H1 : θ > 0.5 (using the number of matches won by the
Boston Red Sox as a test statistic) has p-value (1/2)n after n (n = 1, 2, 3, 4) matches.
After four matches we have a p-value of 0.06, so that at 5% size we can not even reject
the null. Note that the posterior odds analysis already leads to a ‘preference’ of the
Boston Red Sox over the St. Louis Cardinals after one match, whereas four matches are
‘enough’ to make the HPD region based approach lead to a rejection of θ = 0.5.

2.4 Comparison of Bayesian inference and frequentist ap-
proach

In the previous subsections we have considered the principles of Bayesian inference.
In order to gain more insight into the key elements of Bayesian inference, we now
conclude this section with a brief comparison between Bayesian inference and the
frequentist/classical approach. Table 1 provides an overview of four points at which
these two approaches differ; for four elements of Bayesian inference the frequen-
tist counterpart is given. Note that at some points the frequentist approach and
Bayesian inference are each other’s opposite. In the frequentist approach, the data
are random and the parameters are fixed. Many realizations θ̂ are possible under
the assumption θ = θ0. Testing the hypothesis θ = θ0 amounts to checking whether
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Figure 7: Prior density and posterior density of parameter θ (probability that Boston
Red Sox win a match) after n = 1, 2, 3, 4 matches (that are won by the Boston Red
Sox) in World Series of the year 2004.

the observed realization θ̂∗ is plausible under θ = θ0 using the sampling density of θ̂.
So, one checks whether the observed data realization is plausible, while (infinitely)
many realizations are possible. On the other hand, in the Bayesian approach the
parameters are random, whereas the data are given. Testing the hypothesis θ = θ0

amounts to checking whether the value of θ0 is plausible given the data. So, (in-
finitely) many values of θ are possible, but one checks whether θ = θ0 is plausible
under the one data realization.
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Table 1: Comparison of frequentist (or classical) approach and Bayesian approach
in a statistical/econometric model with parameter vector θ and data y

Frequentist approach Bayesian approach

The parameters θ are fixed unknown
constants. There is some unknown true
value θ = θ0.

The parameters θ are stochastic vari-
ables. One defines a prior distribution
on the parameter space. All values in a
certain region are possible with a cer-
tain probability density.

The data y are used to estimate and
check the validity of the postulated
model, by comparing data with an (in-
finitely large, hypothetical) data set
from model.

The data y are used as evidence to up-
date the state of the mind: data trans-
form the prior into the posterior distri-
bution by the likelihood.

Frequency concept of probability : a
probability is the fraction of occur-
rences when a process is repeated in-
finitely often. It should be noted that,
although the frequentist approach is of-
ten used in non-experimental sciences,
repeating the process is only possible in
experimental situations.

Subjective concept of probability : a
probability is a degree of belief that an
event occurs. This degree of belief is
revised when new information becomes
available.

One can use the maximum likelihood
estimator θ̂ of θ as an estimator of θ.

One uses Bayes’ theorem to obtain the
posterior distribution of θ. One can use
the posterior mean or mode as an esti-
mator of θ.
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3 Simulation Methods

3.1 Motivation for Using Simulation Techniques

The importance of integration in Bayesian inference can already be seen from the
results in the previous section:

• In order to obtain the exact posterior density from Bayes’ theorem one needs
to evaluate the integral p(y) =

∫
p(y|θ)p(θ)dθ in the denominator of (1).

• In order to evaluate the posterior moments of (the elements of) θ, one requires
additional integration of the numerator. For example, two integrals have to
be evaluated for the posterior mean of θ:

E[θ|y] =

∫
θp(θ|y)dθ =

∫
θ

p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

dθ =

∫
θp(y|θ)p(θ)dθ∫
p(y|θ)p(θ)dθ

.

• In order to evaluate the posterior odds ratio in favor of model 1 versus model
2, one needs to evaluate two marginal likelihoods, and hence two integrals.

Note that in linear and binomial models (for certain prior specifications) these in-
tegrals can be computed analytically. For more complicated models, it’s usually
impossible to find analytical solutions. In general, we need numerical integration
methods for Bayesian inference. Basically there are two numerical integration meth-
ods: deterministic integration and Monte Carlo integration. Deterministic integra-
tion consists of evaluating the integrand at a set of many fixed points, and approxi-
mating the integral by a weighted average of the function evaluations. Monte Carlo
integration is based on the idea that E[g(θ)|y], the mean of a certain function g(θ)
under the posterior, can be approximated by its ‘sample counterpart’, the sample
mean 1

n

∑n
i=1 g(θi), where θ1, . . . , θn are drawn from the posterior distribution.

At a first glance, deterministic integration may always seem a better idea than
Monte Carlo integration, as no extra uncertainty (caused by the required random
variables) is added to the procedure. However, in deterministic integration the
number of required function evaluations increases exponentially with the dimension
of the integration problem, which is in our case the dimension k of the vector θ.
Therefore, deterministic integration approaches like quadrature methods become
unworkable if k exceeds, say, three. So, in many cases one has to make use of Monte
Carlo integration. However, only for a very limited set of models and prior densities
it is possible to directly draw random variables from the posterior distribution. Then
one may use indirect sampling algorithms such as importance sampling or Markov
chain Monte Carlo (MCMC) methods such as the Metropolis-Hastings algorithm.
In the following subsections direct sampling methods, importance sampling and
MCMC methods will be discussed.
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3.2 Direct sampling methods

Only in the ideal case, Monte Carlo integration reduces to estimating the posterior
expectation E[g(θ)|y] by the sample mean gDS = 1

n

∑n
i=1 g(θi), where θ1, . . . , θn are

directly sampled from the posterior. However, even when the posterior distribution
is non-standard, direct sampling methods are useful, as they can serve as building
blocks for more involved algorithms. For example, any sampling algorithm is based
on collecting draws from the uniform U(0, 1) distribution, so that suitable methods
to generate these “random numbers” are of utmost importance.

3.2.1 Uniform sampling

The most commonly used method to sample from the uniform distribution is the lin-
ear congruential random number generator [LCRNG], initially introduced by Lehmer
(1951). This generator creates a sequence of “random numbers” u1, . . . , un using the
recursion

ui = (a ui−1 + b) mod M, i = 1, . . . n, (21)

where mod M gives the remainder after division by M . The multiplier a and the
modulus M are strictly positive integers, while the increment b is also allowed to
be zero. The initial value u0 of the sequence is called the seed. In order to map
u1, . . . ,un to the unit interval, these values are divided by M . We note that the
recursion (21) is completely deterministic, so that the generated “random numbers”
are actually not random at all. For properly chosen a, b and M , it only seems as
if they are random. In practice, multiplicative LCRNGs are frequently considered.
These arise from (21) by setting b = 0, so that the increment is turned off. Two very
popular multiplicative LCRNGs are the Lewis-Goodman-Miller generator (Lewis
et al. 1969), obtained by setting a = 16807 and M = 231 − 1, and the Payne-
Rabung-Bogyo generator (Payne et al. 1969), obtained by setting a = 630360016
and M = 231 − 1. This concludes our discussion on uniform sampling. For a more
comprehensive text on generating pseudo-random numbers, the reader is referred to
Law and Kelton (1991).

3.2.2 Inversion method

The inversion method is an approach which directly translates uniform U(0, 1) draws
into draws from the (univariate) distribution of interest. The underlying idea is very
simple. If the random variable θ follows a distribution with cumulative distribution
function (CDF) denoted by F , then the corresponding CDF value U = F (θ) is
uniformly distributed, as

Pr(U ≤ u) = Pr(F (θ) ≤ u) = Pr(θ ≤ F−1(u)) = F (F−1(u)) = u (22)

with F−1 denoting the inverse CDF. By relying on this result, the inversion method
consists of first collecting a uniform sample u1, . . . , un, and subsequently transform-
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Figure 8: Illustration of the inversion method for the standard normal distribution.
The uniform draws u1 = 0.4 and u2 = 0.7 correspond to the standard normal real-
izations x1 ≈ − 0.25 and x2 ≈ 0.52, respectively.

ing this sample into realizations θ1 = F−1(u1), . . . , θn = F−1(un) from the distribu-
tion of interest. Figure 8 illustrates the inversion method for the standard normal
distribution. Clearly, as the standard normal CDF is steepest around 0, that region
is “hit” most frequently, so that most draws have values relatively close to 0. On
the other hand, not many draws fall into regions far away from 0, as these regions
are difficult to “hit”. This mechanism causes that draws are assigned to regions in
accordance with their probability mass. We note that the inversion method is par-
ticularly suited to sample from (univariate) truncated distributions. For example,
if a distribution is truncated to the left of some value a and to the right of some
value b, then all draws should fall into the region (a,b). This is easily achieved by
sampling u1 . . . , un uniformly on the interval (F (a), F (b)), instead of sampling them
on the interval (0, 1). All that has to be done is redefining

ui ≡ F (a) + [ F (b)− F (a) ] ui, i = 1, . . . n. (23)

For the inversion method, it is desirable that the inverse CDF F−1 can be eval-
uated easily. If F−1 has a closed-form expression, evaluation becomes trivial. For
example, the exponential distribution with mean 1

λ
has CDF

F (θ) = 1− exp(−λθ), θ > 0. (24)

By solving
u = F (θ) = 1− exp(−λθ) (25)
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for θ, it is seen that the inverse CDF is given by

θ = F−1(u) = −1

λ
ln(1− u). (26)

As the random variable U = F (θ) has the same uniform distribution as 1 − U ,
it follows from (26) that a sample θ1, . . . , θn from the exponential distribution is
obtained by applying the algorithm

Generate u1, . . . , un from U(0, 1).

Transform to θi = − 1
λ

ln(ui), i = 1, . . . , n.

Although it is desirable that the inverse CDF F−1 has a closed form expression,
this is not required. It is not even necessary that the CDF itself has a closed form
expression. However, in such situations one has to resort to some numerical approx-
imation. For example, an approximating CDF can be constructed by evaluating the
probability density function (or some kernel) at many points to build a grid, and
using linear interpolation. As the resulting approximation is piecewise linear, inver-
sion is straightforward. This strategy underlies the griddy Gibbs sampling approach
of Ritter and Tanner (1992), which will be discussed later on.

3.3 Indirect sampling methods that yield independent draws

If it is difficult to sample directly from the distribution of interest, hereafter referred
to as the target distribution, indirect methods might be considered. Such methods
aim to collect a representative sample for the target distribution by considering an
alternative “candidate” distribution. This candidate distribution should be easy to
sample from and it hopefully provides a reasonable approximation to the original
target distribution. Indirect sampling methods involve some correction mechanism
to account for the difference between the target density and the candidate density.
In this section, we discuss two indirect sampling approaches resulting in independent
draws, so that the Law of Large Numbers [LLN] and the Central Limit Theorem
[CLT] still apply.

3.3.1 Rejection sampling

The first indirect method we discuss is rejection sampling. Following this approach,
one collects a sample from the candidate distribution, and decides for each draw
whether it is accepted or rejected. If a draw is accepted, it is included in the sample
for the target distribution. Rejection means that the draw is thrown away. Note
that the rejection step is the correction mechanism which is employed in rejection
sampling.
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In order to apply the rejection method to some target density P , one first needs
to specify an appropriate candidate density Q. For example, one might consider
some normal or Student-t density. Next, some constant c has to be found such that

P (θ) ≤ cQ(θ) (27)

for all θ, so that the graph of the kernel cQ of the candidate density is entirely
located above the graph of the target density P . We note that (27) implies that P
is allowed to be a kernel of the target density, as the constant c can always adjust to
P . However, the candidate density Q should be such that the ratio P (θ)

Q(θ)
is bounded

for all θ, so that c is finite. Essentially, the rejection method consists of uniformly
sampling points below the graph of cQ, and accepting the horizontal positions of
the points falling below the graph of P . The remaining points are rejected. This
idea is illustrated by Figure 9 for a bimodal target density. The coordinates of the
points below the cQ graph are sampled as follows. The horizontal position θ is
obtained by drawing it from the candidate distribution with density Q. Next, the
vertical position θ̃ is uniformly sampled from the interval (0, cQ(θ)). As the point
(θ, θ̃) is accepted if and only if θ̃ is located in the interval (0, P (θ)), the acceptance

probability for this point is given by P (θ)
c Q(θ)

. The following rejection algorithm col-
lects a sample of size n from the target distribution with density P :

Initialize the algorithm:

The set of accepted draws S is empty: S = ∅.
The number of accepted draws i is zero: i = 0.

Do while i < n:

Obtain θ from candidate distribution with density q.

Obtain u from uniform distribution U(0, 1).

If u < P (θ)
c Q(θ)

then accept θ:

Add θ to the set of accepted draws: S = S ∪ {θ}.
Update the number of accepted draws: i = i + 1.

We note that although rejection sampling is based on using an approximating can-
didate distribution, the method yields an exact sample for the target distribution.
However, the big drawback of the rejection approach is that many candidate draws
might be required to obtain an accepted sample of moderate size, making the method
inefficient. For example, in Figure 9 it is seen that most points are located above the
P graph, so that many draws are thrown away. For large n, the fraction of accepted
draws tends to the ratio of the area below the P graph and the area below the cQ
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Figure 9: Illustration of rejection sampling. The candidate density Q is blown up by
a factor c such that its graph is entirely located above the graph of the target density
P . Next, points are uniformly sampled below the cQ graph, and the horizontal
positions of the points falling into the shaded area below the P graph are accepted.

graph. As the candidate density Q integrates to one, this acceptance rate is given
by

∫
P (θ) dθ/c, so that a smaller value for c results in more efficiency. Clearly, c is

optimized by setting it at

c = max
θ

P (θ)

Q(θ)
, (28)

implying that the optimal c is small if variation in the ratio P (θ)
Q(θ)

is small. This
explains that a candidate density, providing a good approximation to the target
density, is desirable.

3.3.2 Importance sampling

Importance sampling is another indirect approach to obtain an estimate for E[g(θ)],
where θ is a random variable from the target distribution. It is initially discussed by
Hammersley and Handscomb (1964) and introduced in econometrics by Kloek and
Van Dijk (1978). The method is related to rejection sampling. The rejection method
either accepts or rejects candidate draws, that is, draws either receive full weight or
they do not get any weight at all. Importance sampling is based on this notion of
assigning weights to draws. However, in contrast with the rejection method, these
weights are not based on an all-or-nothing situation. Instead, they can take any
possible value, representing the relative importance of draws. If Q is the candidate
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density (= importance function) and P is a kernel of the target density, importance
sampling is based on the relationship

E[g(θ)] =

∫
g(θ)P (θ) dθ∫

P (θ) dθ
=

∫
g(θ)w(θ)Q(θ) dθ∫

w(θ)Q(θ) dθ
=

E[w(θ̃)g(θ̃)]

E[w(θ̃)]
, (29)

where θ̃ is a random variable from the candidate distribution, and w(θ̃) = P (θ̃)

Q(θ̃)
is the

weight function, which should be bounded. It follows from (29) that a consistent
estimate of E[g(θ)] is given by the weighted mean

Ê[g(θ)]IS =

∑n
i=1 w(θ̃i)g(θ̃i)∑n

j=1 w(θ̃j)
, (30)

where θ̃1, . . . , θ̃n are realizations from the candidate distribution and w(θ̃1), . . . , w(θ̃n)
are the corresponding weights. As relationship (29) would still hold after redefining

the weight function as w(θ̃) = P (θ̃)

c Q(θ̃)
, yielding the acceptance probability of θ̃, there

exists a clear link between rejection sampling and importance sampling, that is, the
importance sampling method weights draws with the acceptance probabilities from
the rejection approach. Figure 10 provides a graphical illustration of the method.
Points for which the graph of the target density is located above the graph of the
candidate density are not sampled often enough. In order to correct for this, such
draws are assigned relatively large weights (weights larger than one). The reverse
holds in the opposite case. We note that although importance sampling can be
used to estimate characteristics of the target density (such as the mean), it does
not provide a sample according to this density, as draws are generated from the
candidate distribution. So, in a strict sense, importance sampling should not be
called a sampling method but it should be called a pure integration method.

The performance of the importance sampler is greatly affected by the choice of
the candidate distribution. If the importance function Q is inappropriate, the weight

function w(θ̃) = P (θ̃)

Q(θ̃)
varies a lot and it might happen that only a few draws with

extreme weights almost completely determine the estimate Ê[g(θ)]IS. This estimate
would be very unstable. In particular, a situation such that the tails of the target
density are fatter than the tails of the candidate density is concerning, as this would
imply that the weight function might even tend to infinity. In such a case, E[g(θ)]
does not exist, see (29). It is for this reason that a fat-tailed Student-t importance
function is usually preferred over a normal candidate density.

Using importance sampling to compute the marginal likelihood

As an application of importance sampling, we show how it can be used to com-
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Figure 10: Illustration of importance sampling. The weight function reflects the
importance of draws from the candidate density.

pute the marginal likelihood

p(y) =

∫
p(y|θ)p(θ) dθ, (31)

where y denotes the data and θ is the parameter vector. The most straightforward
approach to estimate (31) is based on the interpretation p(y) = E[p(y|θ)], where the
expectation is taken with respect to θ that obeys its prior distribution with density
p(θ). The resulting estimate is given by

p̂A =
1

n

n∑
i=1

p(y|θi), (32)

where θ1, . . . , θn are sampled from the prior distribution. However, this approach is
inefficient if the likelihood is much more concentrated than the prior, as most draws
from the prior would correspond to extremely small likelihood values. Consequently,
p̂A would be determined by only a few draws with relatively large likelihood values.
As an alternative, Newton and Raftery (1994) develop an estimate for p(y) which
is based on the importance sampling approach. Using the interpretation that the
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marginal likelihood is p(y) = E[p(y|θ)], one is clearly interested in E[g(θ)], where
g(θ) = p(y|θ) is the likelihood value. Next, as the expectation is taken with respect
to θ obeying its prior distribution, the target density is the prior, that is, P (θ) =
p(θ). Finally, by considering the posterior density as the candidate density, that is,
Q(θ) = p(θ|y) ∝ p(y|θ)p(θ), the weight function becomes

w(θ) =
P (θ)

Q(θ)
∝ p(θ)

p(y|θ)p(θ)
= p(y|θ)−1. (33)

This results in the importance sampling estimate

p̂NR =

∑n
i=1 w(θi)g(θi)∑n

j=1 w(θj)
=

∑n
i=1 p(y|θi)

−1p(y|θi)∑n
j=1 p(y|θj)−1

=

(
1

n

n∑
j=1

p(y|θj)
−1

)−1

, (34)

where θ1, . . . , θn are sampled from the posterior distribution. We note that the
posterior density p(θ|y) (used in p̂NR) usually gives a much better approximation
to the likelihood p(y|θ) than the prior p(θ) (used in p̂A). In particular, this holds
if data information strongly dominates prior information, which is the case if many
observations are used. However, a drawback of the harmonic mean p̂NR is that it is
consistent but also unstable, as the weight function w(θ) = p(y|θ)−1 takes extreme
values for occasionally sampled θj for which the likelihood value p(y|θj) is very small.
In order to overcome this objection, several modifications and generalizations of p̂NR

are proposed, see for example Gelfand and Dey (1994), and Newton and Raftery
(1994).

3.4 Markov chain Monte Carlo methods

Another approach to sample from non-standard distributions is the Markov Chain
Monte Carlo [MCMC] approach. An MCMC method aims to collect a sample rep-
resentative for the target distribution by construction of a Markov chain converging
to that distribution. After a sufficiently long burn-in period, so that the influence
of the initialization conditions has become negligible, draws from the Markov chain
are regarded as draws from the target distribution itself. However, as Markov chain
sampling naturally induces correlation, the resulting draws are not independent,
so that the Law of Large Numbers [LLN] and the Central Limit Theorem [CLT]
no longer apply. For ease of exposition, we only consider Markov chain theory for
discrete state spaces, but the obtained results can be extended immediately to con-
tinuous distributions. The reader is referred to Norris (1997) and Ross (1997) for
textbook discussions on Markov chain theory.
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Elementary Markov chain theory

In order to make this section self-contained, we start with reviewing some elemen-
tary Markov chain theory. A Markov chain is a discrete-time stochastic process
{θ0, θ1, . . . } satisfying the Markov property, that is, the next state only depends on
the current state and does not depend on the path of previous states. For a finite
discrete state space S, the one-step transition probability from state θ to state θ̃ is
denoted by

P (θ, θ̃) = Pr(θi+1 = θ̃|θi = θ), (35)

where θ, θ̃ ∈ S. For example, we could specify a Markov chain process for a time
series indicating whether an economy is in a recession or expansion; given that the
current period is a recession, there is a certain probability p̃ of escaping the recession
in the next period, and a probability 1− p̃ of staying in the recession.

By definition, it should hold that P (θ, θ̃) ≥ 0 and
∑

θ̃∈S P (θ, θ̃) = 1. Similarly,
the j-step transition probability is denoted by

P (j)(θ, θ̃) = Pr(θi+j = θ̃|θi = θ), (36)

where θ, θ̃ ∈ S. We note that (36) can be computed by summing the probabilities of
all paths moving from state θ to state θ̃ in j steps. Under mild regularity conditions,
it can be shown that the Markov chain converges to a unique distribution

P (θ̃) = lim
j→∞

P (j)(θ, θ̃), (37)

not depending on the initial state and satisfying the “invariance” condition

P (θ̃) =
∑

θ∈S

P (θ)P (θ, θ̃) (38)

for all θ̃ ∈ S. Intuitively, condition (38) says that the long-run proportion of states
being θ̃ is given by the limiting probability P (θ̃). The regularity conditions which
have to be satisfied are irreducibility and aperiodicity. The first requirement means
that all states in the state space are accessible from each other, that is, for all
θ, θ̃ ∈ S, there exists a non-negative integer k such that P (k)(θ, θ̃) > 0. The second
requirement means that, for any state θ ∈ S, the number of transitions necessary
to return to state θ does not need to be a multiple of some integer ≥ 2. The two
regularity conditions are, for example, satisfied if P (θ, θ̃) > 0 for all θ, θ̃ ∈ S, that
is, if it is possible to go from each state to any other state in one transition. Next,
we note that an irreducible and aperiodic Markov chain running backward is again
a Markov chain. After a sufficiently long burn-in period, the transition probabilities
of the reversed process are given by

R(θ, θ̃) = Pr(θi = θ̃|θi+1 = θ) =
Pr(θi = θ̃) Pr(θi+1 = θ|θi = θ̃)

Pr(θi+1 = θ)
=

P (θ̃)P (θ̃, θ)

P (θ)
,

(39)
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where θ, θ̃ ∈ S. The Markov chain is called time-reversible if it has the same
transition probabilities as its reversal, that is, if P (θ, θ̃) = R(θ, θ̃) for all θ, θ̃ ∈ S. It
is seen from (39) that this time-reversibility condition amounts to

P (θ)P (θ, θ̃) = P (θ̃)P (θ̃, θ) (40)

for all θ, θ̃ ∈ S. Intuitively, condition (40) says that, in the long-run, the process
moves as much from θ to θ̃ as it moves from θ̃ to θ.

3.4.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings [MH] algorithm, introduced by Metropolis et al. (1953)
and generalized by Hastings (1970), samples from a time-reversible Markov chain
converging to the target distribution. It has similarities with rejection sampling, as
some rejection mechanism is involved. However, rejected draws are dealt with in a
different way. An excellent exposition on the MH algorithm is Chib and Greenberg
(1995) in which theory and intuition as well as application of the algorithm are
discussed. An important survey on the broader class of MCMC methods is Tierney
(1994).

The intuitive derivation of the MH algorithm starts from the time-reversibility
condition

P (θ)PMH(θ, θ̃) = P (θ̃)PMH(θ̃, θ) ∀θ, θ̃ ∈ S, (41)

where P is a kernel of the target probability function and PMH is an appropriate but
currently unknown transition density. So, the limiting distribution of the Markov
chain is available, but the underlying process is not. Note that this is the opposite of
the situation in which one knows the transition process and has to derive the limiting
distribution, which is often encountered in Markov chain theory. The key idea is
that if the transition probabilities P (θ, θ̃) and P (θ̃, θ) satisfy the time-reversibility
condition (41) for the given target probabilities P (θ) and P (θ̃) for each θ, θ̃ ∈ S, then
this implies that the limiting distribution of the Markov chain is the desired target
distribution with probability function P (θ). The reason is that the time-reversibility
property implies that the invariance condition (38) is satisfied:

∑

θ∈S

P (θ)P (θ, θ̃) =
∑

θ∈S

P (θ̃)P (θ̃, θ) = P (θ̃)
∑

θ∈S

P (θ̃, θ) = P (θ̃), (42)

where the first equality follows from the time-reversibility property, and the last
equality obviously holds as the conditional probabilities of θ given θ̃ have to sum
to 1. Intuitively, it is clear that a Markov chain satisfying the time-reversibility
condition for the given target probabilities must have this target distribution as its
limiting distribution. When the Markov chain reaches the target distribution at a
certain step, all following steps will have this target distribution: at each following
iteration, each point θ ∈ S ‘gets back’ exactly the same probability mass that ‘leaves’
to any other point θ̃ ∈ S.
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So, we are looking for a Markov chain with transition probabilities satisfying
the time-reversibility condition (41). What may still seem to be an impossible task,
that is, recovering such a Markov chain, can be done by considering the following
approach. Suppose that the unknown transition density PMH is replaced by some
known but probably inappropriate candidate transition density Q satisfying irre-
ducibility and aperiodicity. Unless Q satisfies the time-reversibility condition for
all θ, θ̃ ∈ S, which is extremely unlikely, there exist states θ and θ̃ such that the
probability of going from θ to θ̃ is larger than the probability of going from θ̃ to θ:

P (θ)Q(θ, θ̃) > P (θ̃)Q(θ̃, θ), (43)

where we note that only the “greater than” inequality > is considered, as the “less
than” inequality < amounts to just interchanging the arbitrary states θ and θ̃.
In order to deal with the violation of the time-reversibility condition, a function
α : S×S → [0, 1], indicating the probability of accepting a transition, is introduced
such that

P (θ)Q(θ, θ̃)α(θ, θ̃) = P (θ̃)Q(θ̃, θ)α(θ̃, θ). (44)

As the right-hand-side value of (43) is too small as compared with the left-hand-side,
α(θ̃, θ) is set at its maximum value, which is 1 (since it is a probability):

α(θ̃, θ) = 1. (45)

Next, substituting (45) into (44) yields

α(θ, θ̃) =
P (θ̃)Q(θ̃, θ)

P (θ)Q(θ, θ̃)
< 1. (46)

It follows from (45) and (46) that the function α is defined by

α(θ, θ̃) = min

{
P (θ̃)Q(θ̃, θ)

P (θ)Q(θ, θ̃)
, 1

}
, (47)

where θ, θ̃ ∈ S. Now, a first proposal for the unknown transition density PMH

might be such that PMH(θ, θ̃) = Q(θ, θ̃)α(θ, θ̃) for all θ, θ̃ ∈ S. However, as Q
is already a transition density integrating to unity, and there exist θ and θ̃ such
that α(θ, θ̃) < 1, this proposal cannot be a transition density itself. However,
the “insufficient candidate probability mass problem” is easily fixed by adjusting
PMH(θ, θ) for which the time-reversibility condition is satisfied by definition. For a
discrete state space S, the adjusted transition density is defined by

PMH(θ, θ̃) = Q(θ, θ̃)α(θ, θ̃), θ̃ 6= θ, (48)

PMH(θ, θ) = 1−
∑

θ̃ 6=θ

Q(θ, θ̃)α(θ, θ̃) = Q(θ, θ) +
∑

θ̃ 6=θ

Q(θ, θ̃)(1− α(θ, θ̃)), (49)
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where α(θ, θ̃) is given by (47).
The MH algorithm is an interpretation of (48) and (49). For some current state

θ, one can make a transition according to the transition density PMH by drawing
a candidate state θ̃ from the density Q and accepting the transition, which is from
θ to θ̃, with probability α(θ, θ̃). Acceptance implies that the move is made, that
is, the next state is θ̃. Rejection means that the move is not made, that is, the
next state is again θ. By repeating this procedure many times, a Markov chain is
constructed. After a burn-in period, draws from the Markov chain are regarded as
draws from the target distribution. A sufficient condition for (long-run) convergence
is that Q(θ, θ̃) > 0 for all θ and θ̃ such that P (θ̃) > 0. The MH algorithm constructs
a Markov chain of length n as follows:

Initialize the algorithm:

Choose a feasible initial state θ0.

Do for i = 1, . . . , n:

Obtain θ̃ from candidate transition density Q(θi−1, ·).
Obtain u from uniform distribution U(0, 1).

Compute transition probability α(θi−1, θ̃), defined by
(47).

If u < α(θi−1, θ̃) then accept transition:

θi = θ̃.

Else reject transition:

θi = θi−1.

Several approaches can be adopted to specify the candidate transition density Q,
Frequently, Q is such that the resulting Markov chain is either an “independence
chain” or a “random walk chain”. An independence chain has the property that the
candidate state θ̃ is drawn independently of the current state θ, that is,

Q(θ, θ̃) = Q(θ̃), (50)

where θ, θ̃ ∈ S. Typical choices for the candidate density Q(θ̃) are normal or
Student-t densities. It follows from (47) and (50) that the acceptance probability in
an independence chain is given by

α(θ, θ̃) = min

{
P (θ̃)Q(θ)

P (θ)Q(θ̃)
, 1

}
= min

{
w(θ̃)

w(θ)
, 1

}
, (51)
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that is, the minimum of a ratio of importance weights and one. The interpretation
of (51) is that a transition from θ to θ̃ resulting in a larger importance weight is
always made, whereas a transition resulting in a smaller importance weight is not
always performed. We note that (51) establishes a link with importance sampling.
As an alternative to the independence chain, we have also mentioned the random
walk chain. A random walk chain draws the transition step θ̃ − θ instead of the
state θ̃ resulting from this transition, that is,

Q(θ, θ̃) = Q(θ̃ − θ). (52)

Typical choices for Q(θ̃− θ) are normal or Student-t densities centered around 0, so
that the expectation of the next state θ̃ = θ + (θ̃− θ) is the current state θ. Finally,
we mention that if the transition density is symmetric, that is, Q(θ, θ̃) = Q(θ̃, θ) for
all θ, θ̃ ∈ S, the acceptance probability α(θ, θ̃) reduces to

α(θ, θ̃) = min

{
P (θ̃)

P (θ)
, 1

}
, (53)

as in the original Metropolis algorithm (Metropolis et al. 1953). The acceptance
probability (53) has a similar interpretation as (51). A transition from θ to θ̃ imply-
ing an increase in the target density is always made, whereas a transition implying
a decrease is not always performed.

3.4.2 Gibbs sampling

The MH algorithm is a very general MCMC approach; one can generally apply it
– given that one has a good candidate density, of course. A more problem specific
method within the MCMC class is the Gibbs sampling algorithm of Geman and
Geman (1984). The Gibbs sampler is based on decomposing the multidimensional
random variable θ into k components θ1, . . . , θk, which are not necessarily univariate.
It constructs a Markov chain, converging to the target distribution, by iteratively
drawing the k components of θ conditional on the values of all other components.
Gibbs sampling may be seen as an application of the divide-and-conquer princi-
ple. For many seemingly intractable target densities, it is possible to derive a set
of conditional densities for which sampling is straightforward. The Gibbs sampler
exploits this notion, as it precisely considers these conditional densities. Its use-
fulness is, for example, demonstrated by Gelfand et al. (1990), Gelfand and Smith
(1990), and Smith and Roberts (1993). Casella and George (1992) provide a tuto-
rial on Gibbs sampling using simple examples to explain how and why the method
works. As Gibbs sampling is an intuitively simple method that enables simulation
from posterior distributions - and hence Bayesian inference - in many models that
are useful for decision making and forecasting in practice, the Gibbs sampler has
become enormously popular.
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An obvious requirement for the Gibbs sampler is that all full conditional dis-
tributions can be sampled from. These conditional distributions are described by
the densities P (θj|θ−j), j = 1, . . . , k, where θ−j = (θ1, . . . , θj−1, θj+1, . . . θk) de-
notes the set of k − 1 components excluding the j-th component. The Gibbs sam-
pling algorithm collects n draws θi = (θ1

i , . . . , θ
k
i ), i = 1, . . . , n, as follows. The

components θj
i , i = 1, . . . , n, j = 1, . . . , k, are augmented into a single sequence

θ1
1, . . . , θ

k
1 , θ

1
2, . . . , θ

k
2 , . . . , θ

1
n, . . . , θ

k
n, and the elements of this Gibbs sequence are gen-

erated such that

θj
i results from P (θj|θ−j

i−1), i = 1, . . . , n, j = 1, . . . , k, (54)

where θ−j
i−1 = (θ1

i , . . . , θ
j−1
i , θj+1

i−1 , . . . θk
i−1) denotes all components except θj at their

most recent values. The complete algorithm is as follows:

Initialize the algorithm:

Choose a feasible initial state θ0 = (θ1
0, . . . , θ

k
0).

Do for draw i = 1, . . . , n:

Do for component j = 1, . . . , k:

Obtain θj
i from conditional target density

P (θj|θ−j
i−1).

Figure 11 illustrates how the Gibbs sampler works for two 2-dimensional target dis-
tributions involving correlation and bimodality. Clearly, as each time one of the two
components (either θ1 or θ2) is fixed while the other component is sampled from its
conditional distribution, a Gibbs path moves in orthogonal directions parallel to the
coordinate axes. So, the horizontal position is updated given the current vertical
position, and the vertical position is updated given the current horizontal position.
The figure displays Gibbs paths after 10 iterations and after 1000 iterations, and
it indicates that the orthogonal movement may cause the Gibbs sampler to break
down. First, the two left-hand graphs demonstrate that high correlation results in
a slowly moving Gibbs path, so that the Gibbs sampler might be stuck in a small
region for quite a long time. This problem increases when the correlation between
the two components becomes higher. Second, the two right-hand graphs demon-
strate that if the target density has two modes located far away from each other,
“mode hopping” does not occur often. This essentially induces the same problem
as high correlation, that is, the Gibbs sampler might be stuck in a local region for
a very long time. Consequently, an enormous number of draws might be needed to
obtain a representative coverage of the entire target density. However, we note that
in many cases a reparameterization of the sampling problem can be found to deal
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Figure 11: Illustration of the Gibbs sampler for a correlated target density (left)
and a bimodal target density (right). The generated Gibbs paths are shown for 10
iterations (above) and 1000 iterations (below).

effectively with such high correlations, see for example Gilks and Roberts (1996).

Gibbs sampling is a special case of the Metropolis-Hastings algorithm

The Gibbs sampling algorithm is actually a special case of the MH algorithm. This
can be understood as follows. First, it should be noted that an overall transition
from state θi−1 = (θ1

i−1, . . . , θ
k
i−1) to state θi = (θ1

i , . . . , θ
k
i ) consists of k subsequent

transitions from (θj
i−1, θ

−j
i−1) to (θj

i , θ
−j
i−1), where j = 1, . . . , k. In each of these k

transitions, one of the components of θ is updated given the most recent values of
the other components. As the density for the j-th transition is given by

Qj((θ
j
i−1, θ

−j
i−1), (θ

j
i , θ

−j
i−1)) = P (θj

i | θ−j
i−1), (55)

where j = 1, . . . , k, the density for the overall transition from state θi−1 to state θi

becomes

Q(θi−1, θi) =
k∏

j=1

P (θj
i | θ−j

i−1). (56)
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By defining the candidate transition density of the MH algorithm by (55) and (56),
the corresponding acceptance probabilities can be computed. The acceptance prob-
ability of the j-th transition from (θj

i−1, θ
−j
i−1) to (θj

i , θ
−j
i−1) is given by

αj((θ
j
i−1, θ

−j
i−1), (θ

j
i , θ

−j
i−1)) = min

{
P (θj

i , θ
−j
i−1) Qj((θ

j
i , θ

−j
i−1), (θ

j
i−1, θ

−j
i−1))

P (θj
i−1, θ

−j
i−1) Qj((θ

j
i−1, θ

−j
i−1), (θ

j
i , θ

−j
i−1))

, 1

}

= min

{
P (θj

i , θ
−j
i−1) P (θj

i−1| θ−j
i−1)

P (θj
i−1, θ

−j
i−1) P (θj

i | θ−j
i−1)

, 1

}

= min

{
P (θj

i , θ
−j
i−1)/P (θj

i | θ−j
i−1)

P (θj
i−1, θ

−j
i−1)/P (θj

i−1| θ−j
i−1)

, 1

}

= min

{
P (θ−j

i−1)

P (θ−j
i−1)

, 1

}
= 1, (57)

where i = 1, . . . , k. As all k transitions are accepted with probability 1, the overall
transition from θi−1 to θi is accepted with probability 1, that is,

α(θi−1, θi) = 1. (58)

Thus, the Gibbs sampler is a special case of the MH algorithm in which rejections
do not occur. This explains the enormous popularity of Gibbs sampling.

Griddy Gibbs sampling and the Metropolis-Hastings-within-Gibbs method

For application of the Gibbs sampling algorithm it is desirable but not necessary
that all k conditional distributions can be directly sampled from. For example, if a
“difficult” conditional distribution is one-dimensional, an approximating cumulative
distribution function [CDF] can be constructed by building a density grid and us-
ing linear interpolation. Subsequently, the inversion method can be applied to the
piecewise linear approximation. This is the griddy Gibbs sampling approach, pro-
posed by Ritter and Tanner (1992). Alternatively, an MH step might be considered
to sample from the (not necessarily univariate) “difficult” conditional distribution.
This implies that each time a candidate transition is considered for the complicated
component, which is either accepted or rejected in the Markov chain. Although
this approach is just a special case of the MH algorithm, it is usually called the
MH-within-Gibbs approach.

3.4.3 Gibbs sampling with data augmentation

For many models involving latent variables (such as the unobserved utilities in probit
choice models), the parameters θ have a non-standard posterior distribution. More-
over, for such models, evaluation of the likelihood function and hence the posterior
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density might be complicated and computationally intensive. This is for example
the case in the conditional probit model of Hausman and Wise (1978), see also Mc-
Culloch and Rossi (1994). However, standard distributions would arise if the latent
data z would be known. So, “observing” z would greatly facilitate the sampling
procedure. The data augmentation algorithm of Tanner and Wong (1987) is a use-
ful extension of the Gibbs sampler which is based on this notion. It extends the
sampling space, as both the parameters θ and the latent data z are sampled. In
the algorithm, z is drawn conditional on θ, and θ is drawn conditional on z. So,
the latent data are imputed using the current parameter values, and subsequently
the parameters are sampled as if the latent data are observed. By repeating this
procedure many times, a Gibbs sequence is constructed involving both θ and z. Dis-
regarding z, the process results in a Markov chain for the parameters θ converging
to the posterior distribution. Data augmentation for the conditional probit model is
discussed by Albert and Chib (1993), McCulloch and Rossi (1994) and McCulloch,
Polson and Rossi (2000). Wei and Tanner (1990) and Chib (1992) consider data
augmentation for the censored regression model.

Example: data augmentation in binary probit model for US recession indicator

In order to provide a simple illustration of the data augmentation approach, we ap-
ply it to a binary probit model with the purpose to explain and predict recessions in
the United States using leading indicators. The data augmentation procedure follows
Albert and Chib (1993). We define a recession indicator such that the economy is in a
recession if the growth rate of U.S. real GDP is negative in at least the current period
and either the preceding or next period. As leading indicators, we consider the growth
rate of the Dow Jones Industrial Average, real consumption growth, the growth rate of
the money stock M3, the term structure (the 10 year Treasury Bond yield minus the 1
year Treasury Bond yield), and the oil price. We use quarterly data running from the
first quarter of 1968 to the fourth quarter of 2001. We find that the economy is in a
recession for 12 of the 136 observed periods. A preliminary analysis indicates that a lag
of two quarters between the leading indicators and the recession measure is appropriate.
The binary probit model is given by

zt = x′tβ + εt, εt ∼ N (0, 1) i.i.d., t = 1, . . . , T, (59)

yt =

{
1 if zt > 0
0 if zt ≤ 0

, (60)

where yt is the binary recession variable and xt contains an intercept and the five leading
indicators. The variable zt is not observed. We consider the non-informative prior
p(β) ∝ 1 for the parameters β.

The conditional distributions for β and z are easily derived. First, if zt would be
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Table 2: Sampling results for the binary probit model with a U.S. recession indicator
as the dependent variable. In the first three columns, the estimated mean, standard
deviation, and autocorrelation (in the Gibbs sequence) are reported for each param-
eter. In the fourth and fifth column, the Maximum Likelihood parameter estimates
and corresponding standard errors are shown.

mean s.d. a.c. ML s.e.

intercept 0.335 0.762 0.869 0.183 0.719

Dow Jones −0.144 0.048 0.946 −0.121 0.046

real consumption −1.262 0.520 0.936 −1.070 0.491

money stock M3 −1.782 0.596 0.978 −1.454 0.551

term structure −2.297 0.720 0.986 −1.860 0.669

oil price 0.062 0.031 0.918 0.053 0.030

observed, the model would reduce to a linear regression model with known variance σ2.
Using the symmetry with classical maximum likelihood (which holds in this case but does
not hold in general), we obtain that

β|z, y ∼ N ((X ′X)−1X ′z, (X ′X)−1), (61)

where xt, t = 1, . . . , T , are stacked in the matrix X. Second, given the parameters β
and the observed data y, it holds that

{
zt|β, y ∼ N (x′tβ, 1) I{zt ≤ 0} if yt = 0
zt|β, y ∼ N (x′tβ, 1) I{zt > 0} if yt = 1

, (62)

for t = 1, . . . , T . In sum, this gives the data augmentation algorithm:

Initialize the algorithm:

Choose initial β0.

Do for draw i = 1, . . . , n:

Sample zt from

{ N (x′tβi−1, 1) I{zt ≤ 0} if yt = 0
N (x′tβi−1, 1) I{zt > 0} if yt = 1

.

Sample βi from N ((X ′X)−1X ′z, (X ′X)−1).

We take a burn-in period of 1000 draws and we consider 50000 effective draws with the
zero vector as the initial location for the Markov chain. Alternatively, one might take the



3 SIMULATION METHODS 41

−2 −1 0 1 2 3

0.2

0.4

0.6
intercept 

−0.4 −0.3 −0.2 −0.1 0.0
0

4

8
Dow Jones 

−3 −2 −1 0 1

0.4

0.8
real consumption 

−4 −3 −2 −1 0
0.0

0.4

0.8
money stock M3 

−5 −4 −3 −2 −1 0

0.2

0.4

0.6 term structure 

−0.05 0.00 0.05 0.10 0.15 0.20

5

10

15 oil price 

Figure 12: Marginal posterior densities for the binary probit model with a U.S.
recession indicator as the dependent variable.

Maximum Likelihood [ML] parameter estimates as the initial values. In this illustration
we use all draws after the burn-in, but other popular operationalizations are thinning (for
example, only keeping every tenth draw) and independent runs (running many different
chains from dispersed starting values and only keeping the final value), see for example
Smith and Roberts (1993). The latter two approaches aim at reducing correlations at
the expense of many (relatively uninformative) lost draws.

The obtained marginal densities for β are displayed in Figure 12. It is seen that the
posterior densities have asymmetric tails and that, for all five leading indicators, nearly
all posterior density mass is located such that the sign of the response parameter is as
expected. Table 2 reports the estimated mean, standard deviation and autocorrelation
for each parameter, together with the ML parameter estimates and the corresponding
standard errors. All autocorrelations are larger than 0.85, and five of the six autocorre-
lations are larger than 0.90, indicating that the Markov chain only moves slowly through
the parameter space. The table further shows that the estimated posterior standard
deviations are larger than the corresponding ML standard errors and that the estimated
posterior means are larger (in absolute values) than the corresponding ML parameter
estimates. The explanation for this difference is that a Bayesian analysis allows for exact
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inference when the number of observations is limited, whereas the ML results are based
on asymptotic approximations.

3.4.4 Auxiliary variable Gibbs sampling

Auxiliary variable Gibbs sampling is a sampling approach developed by Damien et
al. (1999), who extend the original work of Edwards and Sokal (1988). Similar to
data augmentation (Tanner and Wong 1987), latent variables are incorporated in
the sampling process in order to facilitate drawing from the full set of conditional
distributions. However, contrary to data augmentation, the latent variables are not
“missing data” from the model. Instead, the latent variables are introduced in an
artificial way. The approach of Damien et al. (1999) might be interpreted as a rever-
sion of the independence chain MH algorithm. We recall that the MH algorithm first
draws a candidate state θ̃, given the current state θi−1, and subsequently considers
a uniform draw u ∈ (0, 1) to determine whether the candidate state is accepted.
The sampling approach of Damien et al. (1999) turns this around, that is, first an
auxiliary draw u from the uniform distribution is obtained and subsequently the
state θ̃ is sampled inside the acceptance region determined by u. The gain of this
reversion is that the state θ̃ is accepted by definition. However, the price to pay is
that sampling inside the acceptance region amounts to drawing from some truncated
distribution.

Auxiliary variable Gibbs sampling is based on a decomposition of the target
density P . This decomposition is given by

P (θ) ∝ π(θ)
ñ∏

j=1

lj(θ), (63)

where π is a kernel of some density from which draws are easily obtained, and lj (j =
1, . . . , ñ) are non-negative functions. For practical implementation, lj (j = 1, . . . , ñ)
should be invertible for univariate θ, i.e. invertible for any univariate component of
θ when keeping all the other components constant. We note that decomposition
(63) nests the prior-likelihood decomposition from Bayes’ theorem, given by

p(θ|y) ∝ p(θ)
N∏

j=1

p(yj|θ), (64)

where p(yj|θ) is the contribution to the likelihood by the j-th observation. Note that
such a decomposition is possible, as long as the observations yj (j = 1, . . . , N) are
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independent (conditional on θ and exogenous/predetermined variables). In the ap-
proach of Damien et al. (1999), a set U = (U1, . . . , U ñ) of uniform auxiliary variables
is introduced such that

U j|(θ = θ̃) ∼ U(0, lj(θ̃)), j = 1, . . . , ñ, (65)

resulting in the joint density

P (θ, u) = P (θ)P (u|θ)

∝ π(θ)
ñ∏

j=1

lj(θ)
ñ∏

j=1

I{ 0 < uj < lj(θ)}
lj(θ)

= π(θ)
ñ∏

j=1

I{ 0 < uj < lj(θ)} (66)

and the conditional density

P (θ|u) ∝ π(θ) I{ lj(θ) > uj, j = 1, . . . , ñ}. (67)

Note that the marginal density of θ remains formula (63). Similar to data aug-
mentation, the sampling space is extended, as both θ and U are sampled from their
conditional distributions. We note that an iteration of this Gibbs procedure requires
drawing from ñ uniform distributions, and drawing from some truncated version of
an “easy” distribution (by the assumption made on π). The complete algorithm is
as follows:

Initialize the algorithm:

Choose a feasible initial state θ0.

Do for draw i = 1, . . . , n:

Obtain uj
i from uniform distribution U(0, lj(θi−1)), j =

1, . . . , ñ.

Obtain θi from π(θ) I{ lj(θ) > uj
i , j = 1, . . . , ñ}.

Collect θ1, . . . , θn.

Now, by setting ñ = 1 and suppressing the index j, the link with the independence
chain MH algorithm becomes clear. First, it should be noted that ui = u l(θi−1),
where u is some draw from U(0, 1). Next, it should be noted that θi is such that

l(θi) > ui. Consequently, θi satisfies the condition u < l(θi)
l(θi−1)

, which is equivalent to

u < min

{
l(θi)

l(θi−1)
, 1

}
, (68)
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as u ∈ (0, 1). This shows that auxiliary variable Gibbs sampling is essentially
a reversion of the independence chain MH algorithm with target density P (θ) ∝
π(θ)l(θ) and candidate density Q(θ) ∝ π(θ).

Example: auxiliary variable Gibbs sampling in binary logit model for US reces-
sion indicator

Damien et al. (1999) demonstrate that their approach is useful for non-conjugate and
hierarchical models by working out several examples. As an illustration of the method,
we consider the binary logit model, given by

zt = x′tβ + εt, εt ∼ Logistic i.i.d., t = 1, . . . , T, (69)

yt =

{
1 if zt > 0
0 if zt ≤ 0

, (70)

where yt is the U.S. recession variable from the binary probit example, and xt contains
an intercept and the five leading indicators (lag of two quarterly periods: growth rate
of the Dow Jones Industrial Average, real consumption growth, growth of money stock
M3, the term structure, and the oil price). We note that Dellaportas and Smith (1993)
put forward an alternative procedure to sample the parameters, involving an adaptive
rejection algorithm. The binary logit model has likelihood function

p(y|β) =
T∏

t=1

(
exp(x′tβ)

1 + exp(x′tβ)

)yt
(

1

1 + exp(x′tβ)

)1−yt

=
T∏

t=1

exp(ytx
′
tβ)

1 + exp(x′tβ)
. (71)

We consider a (non-conjugate) normal prior for β with mean µ and covariance matrix
Σ, so that

p(β) ∝ exp

(
− 1

2
(β − µ)′Σ−1(β − µ)

)
. (72)

It follows from (71) and (72) that the posterior is given by

p(β|y) ∝ exp

(
− 1

2
(β − µ)′Σ−1(β − µ)

) T∏
t=1

exp(ytx
′
tβ)

1 + exp(x′tβ)
= π(β)

T∏
t=1

lt(β). (73)

The decomposition in (73) provides the basis for an auxiliary variable Gibbs algorithm.
For the binary logit model, the truncation condition lt(β) > ut

i amounts to
{

x′tβ < ln(1− ut
i)− ln(ut

i) if yt = 0
x′tβ > ln(ut

i)− ln(1− ut
i) if yt = 1

, (74)

for t = 1, . . . , T . An algorithm to sample the parameters β would be:
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Figure 13: Marginal posterior densities for the binary logit model with a U.S. reces-
sion indicator as the dependent variable.

Initialize the algorithm:

Choose a feasible initial state β0.

Do for draw i = 1, . . . , n:

Obtain ut
i from U

(
0,

exp(ytx′tβi−1)

1+exp(x′tβi−1)

)
, t = 1, . . . , T .

Obtain βi from N (µ, Σ) I{ (74) holds for t = 1, . . . , T }.
Collect β1, . . . , βn.

Unfortunately, a drawback of the algorithm above is that β has to be sampled from
a multivariate truncated distribution for which rejection-based sampling might be very
inefficient. A more efficient algorithm can be obtained by breaking up the parameter
vector β and drawing its components separately from truncated univariate normal distri-
butions using the inversion method. In order to determine the conditional distributions
of the components βj conditional on the remaining components β−j and the auxiliary
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Table 3: Sampling results for the binary logit model with a U.S. recession indicator
as the dependent variable. In the first three columns, the estimated mean, stan-
dard deviation, and autocorrelation are reported for each parameter. In the fourth
and fifth column, the Maximum Likelihood parameter estimates and corresponding
standard errors are shown.

mean s.d. a.c. ML s.e.

intercept 0.324 1.314 0.985 0.216 1.236

Dow Jones −0.268 0.091 0.923 −0.216 0.081

real consumption −2.159 0.966 0.935 −1.819 0.844

money stock M3 −3.190 1.044 0.991 −2.544 0.969

term structure −4.124 1.254 0.972 −3.259 1.146

oil price 0.117 0.062 0.980 0.095 0.052

variables U , it should be noted that if
(

βj

β−j

)
∼ N

((
µj

µ−j

)
,

(
Σj,j Σj,−j

Σ−j,j Σ−j,−j

))
, (75)

then

βj
∣∣∣β−j ∼ N

(
µj + Σj,−jΣ

−1
−j,−j(β

−j − µ−j), Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j

)
. (76)

For ease of exposition and since the extension to the general case is straightforward, we
assume that Σ is a diagonal matrix, so that (76) boils down to

βj
∣∣∣β−j ∼ N

(
µj, Σj,j

)
. (77)

Using this result and rewriting the truncation condition (74) in terms of βj, we obtain
the final algorithm:
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Initialize the algorithm:

Choose a feasible initial state β0.

Do for draw i = 1, . . . , n:

Obtain ut
i from U

(
0,

exp(ytx′tβi−1)

1+exp(x′tβi−1)

)
, t = 1, . . . , T .

Do for component j = 1, . . . , k:

Obtain βj
i from

N
(
µj, Σj,j

)
I

{
βj < min

t:yt=0,xt,j>0

{
ln(1− ut

i)− ln(ut
i)−

∑
l 6=j xt,lβ

l

xt,j

}}

I

{
βj > max

t:yt=0,xt,j<0

{
ln(1− ut

i)− ln(ut
i)−

∑
l 6=j xt,lβ

l

xt,j

}}

I

{
βj > max

t:yt=1,xt,j>0

{
ln(ut

i)− ln(1− ut
i)−

∑
l 6=j xt,lβ

l

xt,j

}}

I

{
βj < min

t:yt=1,xt,j<0

{
ln(ut

i)− ln(1− ut
i)−

∑
l 6=j xt,lβ

l

xt,j

}}
.

Collect β1, . . . , βn.

We apply the algorithm described above to the data set from the binary probit example.
Again, we take a burn-in period of 1000 draws and we consider 50000 effective draws
with the zero vector as the initial location for the Markov chain. Furthermore, we con-
sider a (fairly non-informative) normal prior p(β) with the density mass located around
the origin and a covariance matrix which is 100 times the identity matrix. The estimated
marginal densities for β are displayed in Figure 13. As for the binary probit example, we
observe that the posterior densities have asymmetric tails and that, for all five leading
indicators, nearly all posterior density mass is located such that the sign of the response
parameter is as expected. Table 3 reports the estimated mean, standard deviation and
autocorrelation for each parameter, together with the ML parameter estimates and the
corresponding standard errors. As for the binary probit example, it can be seen that the
Markov chain only moves slowly through the parameter space, and that the posterior
densities are more spread out, away from zero, than the ML results would suggest.
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3.5 Some recently developed simulation methods

The simulation methods that we discussed in the previous subsections are popular
simulation algorithms that are applicable to many posterior densities, as long as
these posterior densities are reasonably well-behaved. In this subsection we discuss
two recently developed simulation methods that are flexible and robust in the sense
that these methods also yield reliable results in the case of a posterior with highly
non-elliptical shapes, e.g. multi-modality, extreme skewness, and/or heavy tails.

3.5.1 Adaptive Radial-based Direction Sampling

Adaptive radial-based direction sampling [ARDS] methods, due to Bauwens et
al. (2004), constitute a class of Monte Carlo integration methods that involve a
transformation from the usual Carthesian coordinates to radial coordinates. The
ARDS algorithms can be especially useful for Bayesian inference in models with
non-elliptical, possibly multi-modal target distributions. A key step is a radial-based
transformation to directions and distances. After the transformation a Metropolis-
Hastings or importance sampling method is applied to evaluate generated directions.
Next, given these directions, distances are generated from the exact target distribu-
tion. An adaptive procedure is applied to update the initial location and covariance
matrix in order to sample directions in an efficient way.

The main idea is that sampling from an ill-behaved distribution can be facili-
tated by slicing this target distribution in a clever way, that is, by drawing along
one-dimensional lines. Suitable directions, defining these lines, are obtained through
either an MH step or an importance sampling step. The MH variant is called Adap-
tive Radial-Based Metropolis-Hastings Sampling [ARMHS], and the importance
sampling variant is called Adaptive Radial-Based Importance Sampling [ARIS].

The ARDS algorithms have three major advantages. First, the algorithms do
not require much information on the shape of the target density: only approximate
guesses of location and scale are required as initial values. Second, the ARDS algo-
rithms are flexible and robust: they can handle highly non-elliptical target densities
such as multi-modal, extremely skew or heavy-tailed target densities. Third, the
ARDS algorithms can handle linear inequality conditions on the parameter space
without any additional complications for the implementation.

The ARDS methods are inspired by other algorithms in which directions are
generated in order to facilitate the integration or simulation process. The ARDS
algorithms extend earlier methods like the algorithm of Box and Muller (1958) for
generating normal variates, the adaptive direction sampling [ADS] algorithms due
to Gilks et al. (1994), the mixed integration method by Van Dijk et al. (1985), and
the spherical integration method by Monahan and Genz (1997).
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The radial transformation

Since the radial transformation is the key step of the ARDS algorithms, we start by
describing the transformation from Cartesian coordinates to radial coordinates. The
original m-dimensional parameter space is transformed into a (m − 1)-dimensional
space of directions and a unidimensional complementary space of distances. In
our notation, θ̃ = (θ̃1, . . . , θ̃m) denotes the Cartesian coordinates of a point, and
(ρ, η) denotes the corresponding radial coordinates. Here η = (η1, . . . , ηm−1) in-
dicates the direction of the point relative to the origin, and ρ is related to the
Euclidean distance. The m-dimensional transformation from (θ̃1, . . . , θ̃m) ∈ Rm to
(ρ, η) = (ρ, η1, . . . , ηm−1) ∈ R× {η ∈ Rm−1 : η′η < 1} is given by

ρ = sgn(θ̃m)
√

θ̃′θ̃, (78)

ηj =
θ̃j

ρ
, j = 1, . . . , m− 1, (79)

with inverse transformation

θ̃j = ρ ηj, j = 1, . . . m− 1, (80)

θ̃m = ρ
√

1− η′η . (81)

By defining θ̃∗ = (θ̃1, . . . , θ̃m−1), the Jacobian of the transformation is

Jθ̃(ρ, η) = det

(
∂θ̃∗(ρ,η)

∂η′
∂θ̃∗(ρ,η)

∂ρ
∂θ̃m(ρ,η)

∂η′
∂θ̃m(ρ,η)

∂ρ

)
= det

(
ρ Im−1 η

− ρ η′√
1−η′η

√
1− η′η

)

=
ρm−1

√
1− η′η

= Jθ̃(ρ)Jθ̃(η), (82)

where

Jθ̃(ρ) = ρm−1, (83)

Jθ̃(η) = (1− η′η)−1/2. (84)

The form of this Jacobian has some important implications which are used in ARDS.
It is shown by Bauwens et al. (2004) that the implementation of the ARDS algo-
rithms is only based on the Jacobian factor Jθ̃(ρ), and does not depend on Jθ̃(η).

Basically, θ̃ is transformed to m− 1 Cartesian coordinates on the unit circle and
a stretching factor ρ. This is illustrated in Figure 14 for m = 2 dimensions. Here we
note that the sign of ρ determines whether θ̃ is located above or below the θ̃1 axis.
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Figure 14: The relationship between Cartesian coordinates and radial coordinates in
the two-dimensional case

Radial-based Metropolis-Hastings sampling

We now define the radial-based Metropolis-Hastings algorithm [RMHS], which is
based on a candidate density that is taken to be multivariate normal with parame-
ters µ and Σ. However, Bauwens et al. (2004) show that actually any elliptically con-
toured candidate distribution can be considered without affecting the sampling re-
sults. After defining RMHS, we will define the adaptive RMHS algorithm [ARMHS],
where µ and Σ are iteratively updated using the sample of draws from a previous
round of the RMHS algorithm.

RMHS is based on an independence chain MH algorithm. It uses draws from
a N (µ, Σ) candidate where hopefully µ and Σ provide good approximations to the
unknown mean and covariance matrix of the target distribution. In contrast with
the MH algorithm, the draws are not used for construction of a Markov chain in
the original parameter space. Instead, a composite transformation is made. For
expository purpose we treat this transformation explicitly in two steps. The first
step is a location-scale transformation of a realization θ to a realization θ̃. This
transformation aims at standardizing the candidate density with respect to the lo-
cation, scale, and correlations of the target (posterior) density, denoted by p(θ). It
is defined by the affine transformation

θ̃ = θ̃(θ|µ, Σ) = Σ−1/2(θ − µ) (85)

with inverse transformation

θ = θ(θ̃|µ, Σ) = µ + Σ1/2θ̃ (86)

and Jacobian
Jθ(θ̃) = det(Σ1/2). (87)
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The second step is the radial transformation, which is defined by (78) and (79), with
inverse transformation given by (80) and (81), and Jacobian (82).

Combining the two transformations, one obtains the composite transformation

(
ρ
η

)
=

(
ρ(θ̃(θ|µ, Σ))

η(θ̃(θ|µ, Σ)

)
(88)

with inverse transformation
θ = θ(θ̃(ρ, η)|µ, Σ) (89)

and Jacobian
Jθ(ρ, η) = Jθ̃(ρ, η)Jθ(θ̃) = Jθ̃(ρ)Jθ̃(η)det(Σ1/2). (90)

Applying the two transformations to a candidate realization θi from N (µ, Σ) yields
a distance ρ∗i and a vector of directions η∗i . Ignoring the distance, the candidate
direction is either accepted or rejected in an MH step: the direction becomes

ηi =

{
η∗i with probability α(ηi−1, η

∗
i )

ηi−1 with probability 1-α(ηi−1, η
∗
i )

(91)

for some acceptance probability α(ηi−1, η
∗
i ) that will be given below. An iteration

of RMHS is completed by drawing from the target distribution on the line defined
by the direction ηi. This can be done as follows. First, one draws a distance ρi

from the transformed target distribution for given direction ηi using the numerical
inverse transformation method. Next, ηi and ρi are transformed to the original
space by inverting the radial transformation and the location-scale transformation.
Therefore, the steps of one iteration of RMHS are as follows:

1. Obtain candidate: Get realization θ∗i from N(µ, Σ).

2. Standardization: Transform θ∗i to θ̃∗i = Σ−1/2(θ∗i − µ).

3. Radialization: Transform θ̃∗i to (ρ∗i , η
∗
i ) using (78) and (79).

4. MH step: ηi =

{
η∗i with probability α(ηi−1, η

∗
i )

ηi−1 with probability 1− α(ηi−1, η
∗
i )

.

5. Inversion step: Sample ρi from its conditional density p(ρ|ηi) by applying
the inversion method to the density grid obtained in step 4.

6. Deradialization: Transform (ρi, ηi) to θ̃i using (80) and (81).

7. Destandardization: Transform θ̃i to θi = µ + Σ1/2θ̃i.
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Note that step 4 of an RMHS iteration requires the acceptance probability α(ηi−1, η
∗
i ),

while step 5 requires the distribution of the distance ρi conditional on the direction
ηi. Bauwens et al. (2004) show that α(ηi−1, η

∗
i ) is given by

α(ηi−1, η
∗
i ) = min

{
I(η∗i )

I(ηi−1)
, 1

}
(92)

where

I(η) =

∫ ∞

−∞
κ(ρ|η)dρ, (93)

and where κ(ρ|η) is a kernel of the conditional density p(ρ|η) of step 5, defined by

p(ρ|η) ∝ κ(ρ|η) = P (θ(ρ, η|µ, Σ))|Jy(ρ)|, (94)

where P (θ) is (a kernel of) the target density. Note that in order to obtain the
acceptance probability α(ηi−1, η

∗
i ), the one-dimensional integral I(η) defined by (93)

is computed by a deterministic integration rule. Since the density of ρ conditional
on η is proportional to the integrand of I(η), evaluations of the integrand, gathered
during the deterministic integration phase, can be used in order to construct a
grid for κ(ρ|η). Using the numerical inverse transformation method, sampling the
distance ρ conditional on the direction η – step 5 of RMHS – is straightforward.
We can further reduce the computational effort by generating several draws of ρ for
each draw of η, thereby capitalizing on the construction of the grid for κ(ρ|η).

Further note that the integral I(η) has infinite integration bounds. However,
in practice we use finite integration bounds for its numerical evaluation. In order
to obtain bounds for the distance ρ we impose minimum and maximum values for
each element of θ in the original space. It is often possible to find sensible bounds
by either theory and/or common sense. Bauwens et al. (2004) show that, as these
bounds on the elements of θ can be considered as linear restrictions, additional linear
restrictions do not cause any additional complications for the algorithm.

Convergence of radial-based Metropolis-Hastings sampling

RMHS is a combination of a Metropolis-Hastings sampler for the directions and
direct sampling of the distance ρ. Hence, the transition kernel of RMHS is the
transition kernel of the MH step, and we can rely on known convergence results for
the MH algorithm, see e.g. Smith and Roberts (1993). As long as the covariance
matrix Σ is non-singular, these convergence results are preserved after applying the
location-scale transformation. Moreover, they are also preserved after applying the
radial transformation given that this transformation does not induce singularities,
which is the case if η 6= ±1 and ρ 6= 0. As these singularities have Lebesgue measure
zero, the radial transformation does not affect convergence properties. So, the sam-
pled RMHS chain converges in distribution to the target distribution. Nevertheless,
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in practice convergence after a finite number of draws should obviously be monitored
by the usual tools, see e.g. Van Dijk and Kloek (1980) and Oh and Berger (1992).
But at least, since only the direction η, and not the distance ρ, is generated from
a possibly ‘wrong’ candidate distribution, the risk of collecting a ‘wrong’ sample is
substantially reduced. In other words, ARMHS is quite robust, as the distance ρ
conditional on the direction η immediately comes from the target distribution, that
is, sampling on a given line mimics exactly the target density.

Adaptive radial-based Metropolis-Hastings sampling

For implementation of RMHS, the mean µ and the covariance matrix Σ of the nor-
mal candidate distribution have to be specified. Good enough initial approximations
are usually the posterior mode and minus the inverse Hessian of the log posterior
evaluated at the mode. Heuristically, convergence of RMHS should improve if µ and
Σ are taken closer to the target mean and covariance matrix. Adaptive radial-based
Metropolis-Hastings sampling [ARMHS] considers a sequential adaptive approach.
Given a generated sample θ1, θ2, . . . , θn from a previous run of the algorithm, µ and
Σ are replaced by the Monte Carlo estimates of the posterior mean and covariance
matrix, which are given by:

µ̂ =
1

n

n∑
i=1

θi (95)

Σ̂ =
1

n

n∑
i=1

(θi − µ̂)(θi − µ̂)′ (96)

Using these estimates, one can proceed with a new sampling round. This process
can be repeated any number of times. In order to monitor convergence over sam-
pling rounds, we find the Mahalanobis distance particularly useful. It is defined
as Mahj = (µ̂(j) − µ̂(j − 1))′[Σ̂(j)]−1(µ̂(j) − µ̂(j − 1)), where j indicates the sam-
pling round. The Mahalanobis distance measures the extent to which the estimated
posterior mean changes between successive sampling rounds, while accounting for
parameter uncertainty and the underlying correlation structure.

Adaptive radial-based importance sampling

Radial-based importance sampling (RIS) replaces the MH step of RMHS for the
direction η by an importance sampling step. So, step 4 of an RMHS iteration
changes. In RIS, every sampled direction ηi is kept, a distance ρi is sampled condi-
tional on it, and the resulting radial coordinates are transformed to a draw θi in the
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original space, which is weighted according to the appropriate importance weight

w(ηi) =
p(ηi)

q(ηi)
∝ I(ηi), (97)

where I(η) is defined by (93). As RIS can be interpreted as a special case of im-
portance sampling, convergence properties of RIS follow directly from those for the
latter method. Important diagnostics are given by the distribution of the weights
w(ηi). For details, see Geweke (1989).

In a similar fashion to ARMHS, the parameters µ and Σ of the location-scale
transformation can be updated by replacing them by their Monte Carlo estimates.
We will refer to this adaptive extension of RIS as adaptive RIS (ARIS).

Example: ARDS in two-regime mixture model for the US GNP growth rate

In order to illustrate the advantages of the ARDS methods, we investigate a mixture
model for the analysis of economic growth in the USA, which is also considered by
Bauwens et al. (2004). Bauwens et al. (2004) compare the performance of the ARDS
methods with the (independence chain) Metropolis- Hastings algorithm and importance
sampling with a Student-t candidate distribution (with 5 degrees of freedom). They
compare estimation results after a given computing time with the ‘true’ results - esti-
mation results after many more draws - and inspect the graphs of estimated marginal
densities resulting from different sampling methods. Here we take another approach to
investigate the accuracy of different simulation methods given the same computing time.
For each simulation method, we repeat the simulation process ten times with different
random seeds, after which we compute the standard deviations of the ten estimates
of the posterior means. We note that in these empirical examples the mixture process
refers to the data space. However, such mixture processes may give rise to bimodality
and skewness in the parameter space.

In models for the growth rate of the gross national product, great advances have
been made by allowing for separate regimes in periods of recession and expansion. How-
ever, these models may give rise to difficulties with respect to convergence of sampling
methods due to multiple modes. Here we consider a mixture model with two AR(1)
regimes for real GNP growth:

yt =

{
β11 + β12yt−1 + εt with probability p,
β21 + β22yt−1 + εt with probability 1− p,

εt ∼ N(0, σ2), (98)

where yt denotes the quarterly growth rate. The data (source: Economagic) consist of
observations from the first quarter of 1959 to the last quarter of 2001. Note that we have
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a 6-dimensional vector θ = (β11, β12, β21, β22, σ, p)′. The priors for β11, β12, β21, β22 and
p are chosen uniform, and the prior for σ is taken proportional to 1/σ, which amounts
to specifying a uniform prior for log(σ). So, we have p(θ) = p(β11, β12, β21, β22, σ, p) =
1/σ. For identification, it is imposed that β11 < β21. In order to numerically evaluate
the integral I(η) in (93), parameter bounds are specified; see Table 4.

We choose the same sampling setup as Bauwens et al. (2004). In our adaptive
approach, additional sampling rounds are considered as long as the Mahalanobis distance
is larger than 0.02. However, we allow for at most 8 rounds. In any round, ARMHS
and ARIS draw 5000 directions and 5 distances per direction, resulting in a sample of
size 25 000. In order to make the computing times comparable, the MH and importance
sampling algorithms are allowed to collect a larger sample of size 250 000. The scale of
the initial candidate distribution is taken sufficiently large, so that MH and importance
sampling can initially cover the whole density mass.

Sampling results are given by Table 4, which also gives the ‘large sample’ values
(computed from 250 000 ARMHS draws). Notice that each standard deviation of the
10 estimates of the posterior means is smaller for the ARDS methods than for the MH
and IS approach with a Student t candidate, where the ARIS somewhat outperforms the
ARMHS method. Even though 10 times less draws have been generated, the ‘quality’
of those draws is much higher. This can be seen from the acceptance rate that is
much higher for ARMHS than for MH, and from the weight of the 5% most influential
points that is much smaller for ARIS than for IS. It should be noted that it is also
possible to apply the data augmentation algorithm to this model. However, this approach
requires more ‘inputs’ than the ARDS methods. For the data augmentation method,
the conditional posterior distribution of each parameter has to be derived, whereas the
ARDS methods only require a kernel of the posterior density (and approximate guesses
of the location and scale).

In this model we define the latent variables Zt (t = 1, . . . , T ) as:

Zt =

{
0 if period t is a period of regime 1
1 if period t is a period of regime 2

t = 1, 2, . . . , T. (99)

Conditionally on the values of the parameters, the latent variables Zt (t = 1, . . . , T )
have a Bernoulli distribution. Conditionally on the latent variables Z (and each other),
(β11, β12), and β21, β22 are normally distributed, while σ2 and p have an inverted gamma
and a beta distribution, respectively. The results of the data augmentation method are
given by Table 5. The number of draws has been chosen in order to make the comput-
ing time comparable with the ARIS method. Notice that each standard deviation of the
10 estimates of the posterior means is smaller for the data augmentation than for the
ARDS methods. Estimates of the marginal densities are given by Figure 15. Note the
bimodality in the marginal posterior of p and the skewness for the β parameters. These
shapes can be explained by inspecting the scatter plots of parameter draws. Figure 16
shows draws of (p, β11) and (p, β21). If p → 0 (p → 1), then β11 and β12 (β21 and β22)
become unidentified, so that a wide range of values is possible for these parameters.
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Table 4: Sampling results for the two-regime mixture model for US real GNP growth

Bounds ARDS ARMHS ARIS MH IS Large sample

min. max. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

β11 -4.00 4.00 0.11 0.64 0.10 0.59 -0.14 0.88 0.01 0.72 0.07 0.70

(s.d. 10x) (0.06) (0.04) (0.12) (0.09)

β12 -1.00 1.00 0.45 0.24 0.45 0.25 0.42 0.28 0.40 0.28 0.41 0.27

(s.d. 10x) (0.03) (0.03) (0.04) (0.04)

β21 -4.00 4.00 1.32 0.74 1.27 0.78 1.22 0.83 1.28 0.85 1.30 0.79

(s.d. 10x) (0.07) (0.05) (0.11) (0.10)

β22 -1.00 1.00 -0.07 0.39 -0.02 0.38 0.05 0.39 0.01 0.40 -0.04 0.41

(s.d. 10x) (0.03) (0.02) (0.04) (0.04)

σ 0.00 2.00 0.82 0.05 0.82 0.06 0.82 0.06 0.82 0.06 0.82 0.06

(s.d. 10x) (0.00) (0.00) (0.00) (0.00)

p 0.00 1.00 0.59 0.38 0.53 0.38 0.48 0.39 0.52 0.39 0.55 0.38

(s.d. 10x) (0.03) (0.02) (0.04) (0.04)

Draws per iteration (η × ρ) 5000× 5 5000× 5 250 000 250 000

Number of iterations 8 5 8 8

Average time per iteration (in s) 23.7 23.5 25.1 24.8

Mahalanobis distance 0.04 0.02 0.20 0.15

Acceptance rate (in %) 17.6 1.2

5% most influential weights (in %) 57.9 99.7

Further, note the two modes in the distributions of (p, β11) and (p, β21): one mode for
p close to 0 and one mode for p close to 1. In fact, the data augmentation algorithm
hardly moves from one mode to the other. This can be seen from the high serial corre-
lation in the data augmentation sequence for the parameter p, which is 0.996. For other
models and data sets, the probability of “mode hopping” can be even smaller than in
this example. In that case, the data augmentation may require billions of draws in order
to obtain reliable estimation results. In such situations, the ARDS methods are much
more reliable (and quicker) alternatives.
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Table 5: Data augmentation sampling results for the two-regime mixture model for
US real GNP growth

mean s.d.

β11 0.019 0.748

(s.d. 10x) (0.018)

β12 0.407 0.287

(s.d. 10x) (0.002)

β21 1.237 0.737

(s.d. 10x) (0.017)

β22 -0.012 0.393

(s.d. 10x) (0.008)

σ 0.820 0.056

(s.d. 10x) (0.000)

p 0.525 0.377

(s.d. 10x) (0.012)

Draws 600 000

Computing time (in s) 119.4

Figure 15: Estimates of marginal posterior densities in model (98) for US real GNP,
based on draws generated by the data augmentation algorithm
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Figure 16: Model (98) for US real GNP: scatter plots of draws generated by the data
augmentation algorithm
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3.5.2 Neural network sampling

Neural network [NN] sampling methods, due to Hoogerheide et al. (2007), con-
stitute a class of Monte Carlo integration methods that involve a neural network
approximation to (a kernel of) the target density. Just like the ARDS algorithms,
the NN algorithms may be especially useful for Bayesian inference in models with
non-elliptical, possibly multi-modal posterior distributions. A key step is the con-
struction of a NN function that provides a ‘reasonably good’ approximation to the
target density. After a NN approximation to the target density has been obtained,
this NN function is used as a candidate density in the Metropolis-Hastings or im-
portance sampling method.

Hoogerheide et al. (2007) show examples of highly non-elliptical, bimodal poste-
rior distributions that may occur in the instrumental variables [IV] regression model
with weak instruments. In these cases a sampling method based on an approximation
by a mixture of Student-t densities (which is a specific type of NN function) out-
performs several competing algorithms – the Gibbs sampler, importance sampling
and the Metropolis-Hastings algorithm with a Student-t candidate distribution –
in the sense of yielding more accurate estimates of posterior moments in the same
computing time. Hoogerheide et al. (2007) propose a quick, iterative method for
constructing such an approximation to a target density by a mixture of t densities,
the Adaptive Mixture of t [AdMit] method that will be discussed below.

The NN sampling algorithms share two advantages with the ARDS methods.
First, the NN sampling algorithms also require little information on the shape of the
target density. Again, only approximate guesses of location and scale are required
as initial values. Second, the NN sampling algorithms are also flexible and robust.
NN sampling methods can also handle highly non-elliptical target densities such as
multi-modal, extremely skew or heavy-tailed target densities.

Neural network sampling methods provide estimates of characteristics of a pos-
terior distribution with density kernel p(θ) with θ ∈ Rm by the following steps:

1. Construct a neural network approximation nn : Rm → R to the target density kernel
p(θ).

2. Obtain a sample of draws from the density (kernel) nn(θ).

3. Perform importance sampling or the (independence chain) Metropolis-Hastings al-
gorithm,
using this sample of draws from nn(θ) in order to obtain estimates of the charac-
teristics of p(θ).

Hoogerheide et al. (2007) consider three types of neural networks that are members
of the class of four-layer feed-forward neural networks. Here we only consider the
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type that performs best in their examples, the mixture of Student-t distributions:

nn(θ) =
H∑

h=1

ph t(θ|µh, Σh, ν), (100)

where ph (h = 1, . . . , H) are the probabilities of the Student-t components and where
t(θ|µh, Σh, ν) is a multivariate t density with mode vector µh, scaling matrix Σh, and
ν degrees of freedom:

t(θ|µh, Σh, ν) =
Γ((ν + m)/2)

Γ(ν/2)(πν)m/2
|Σh|−1/2

(
1 +

(θ − µh)
′Σ−1

h (θ − µh)

ν

)−(ν+m)/2

.

(101)
Note that this mixture of t densities is a four-layer feed-forward neural network
function

nn(θ) = eG2 (CG1(Aθ + b) + d) + f, θ ∈ Rm, (102)

in which the vector functions G1(.) and G2(.) apply the following scalar functions
g1(.) and g2(.) to each element of their argument vector, respectively:

g1(x) = x2 and g2(x) = x−(ν+m)/2 Γ((ν + m)/2)

Γ(ν/2)(πν)m/2
, x ∈ R,

and with weights eh = ph |Σh|−1/2 (h = 1, . . . , H), f = 0 and:

A =




Σ
−1/2
1
...

Σ
−1/2
H


 , b =




−Σ
−1/2
1 µ1
...

−Σ
−1/2
H µH


 , C =




ι′m/ν 0 · · · 0

0 ι′m/ν
...

...
. . . 0

0 · · · 0 ι′m/ν


 , d = ιH ;

ιk denotes a k× 1 vector of ones. Notice that (θ−µh)
′Σ−1

h (θ−µh) is the sum of the

squared elements of Σ
−1/2
h (θ− µh). The reason for this choice is that a mixture of t

distributions allows for easy and quick sampling, and that the Student t distribution
has fatter tails than the normal distribution. This property causes that these NN
sampling methods can cope with fat-tailed target distributions. Note that the ph

(h = 1, . . . , H) in (100) have to satisfy
∑H

h=1 ph = 1. Zeevi and Meir (1997) show
that under certain conditions any density function can be approximated to arbi-
trary accuracy by a convex combination of ‘basis’ densities; the mixture of Student
t densities in (100) falls within their framework. This makes these NN sampling
methods flexible and robust, as a wide variety of target density functions can be
well approximated by mixtures of t distributions.
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The Adaptive Mixture of t [AdMit] method

The Adaptive Mixture of t [AdMit] method of Hoogerheide et al. (2007) constructs
a mixture-of-t approximation to a certain target density with kernel P (θ) by the
following steps.

First, compute the mode µ1 and scale Σ1 of the first Student t distribution in the
mixture as µ1 = argmaxθ P (θ), the mode of the target distribution, and Σ1 as minus
the inverse Hessian of log P (θ) evaluated at its mode µ1. Then draw a set of points
θi (i = 1, . . . , n) from the ‘first stage candidate density’ nn(θ) = t(θ|µ1, Σ1, ν), with
small ν to allow for fat tails; for example, ν = 1. Next, add components to the
mixture, iteratively, by performing the following steps:

Step 1: Compute the importance sampling weights w(θi) = P (θi)/nn(θi) (i = 1, . . . , n).
In order to determine the number of components H of the mixture we make
use of a simple diagnostic criterion: the coefficient of variation, i.e. the stan-
dard deviation divided by the mean, of the IS weights w(θi) (i = 1, . . . , n).
If the relative decrease in the coefficient of variation of the IS weights caused
by adding one new Student-t component to the candidate mixture is small,
e.g. less than 10%, then stop: the current nn(θ) is our approximation to the
target density. Otherwise, go to step 2. Notice that nn(θ) is a proper den-
sity, whereas P (θ) is merely a density kernel. So, the neural network does not
provide an approximation to the target density kernel P (θ) in the sense that
nn(θ) ≈ P (θ). Instead, nn(θ) provides an approximation to the density of
which P (θ) is a kernel in the sense that the ratio P (θ)/nn(θ) has relatively
little variation.

Step 2: Add another Student t distribution with density t(θ|µh, Σh, ν) to the mixture
with µh = argmaxθ w(θ) = argmaxθ{P (θ)/nn(θ)} and Σh equal to minus
the inverse Hessian of log w(θ) = log P (θ) − log nn(θ) evaluated at its mode
µh. Here nn(θ) denotes the mixture of (h − 1) Student t densities obtained
in the previous iteration of the procedure. An obvious initial value for the
maximization procedure for computing µh = argmaxθ w(θ) is the point θi with
the highest weight w(θi) in the sample {θi|i = 1, . . . , n}. The idea behind this
choice of µh and Σh is that the new t component should ‘cover’ a region where
the weights w(θ) are relatively large: the point where the weight function w(θ)
attains its maximum is an obvious choice for the mode µh, while the scale Σh

is the covariance matrix of the local normal approximation to the distribution
with density kernel w(θ) around the point µh.

If the region of integration of the parameters θ is bounded, it may occur that
w(θ) attains its maximum at the boundary of the integration region; in this
case minus the inverse Hessian of log w(θ) evaluated at its mode µh may be a
very poor scale matrix; in fact this matrix may not even be positive definite.
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In that case µh and Σh are obtained as estimates of the mean and covariance
matrix of a certain ‘residual distribution’ with density kernel:

res(θ) = max{p(θ)− c̃ nn(θ), 0}, (103)

where c̃ is a constant; we take max{., 0} to make it a (non-negative) density
kernel. These estimates of the mean and covariance matrix of the ‘residual dis-
tribution’ are easily obtained by importance sampling with the current nn(θ)
as the candidate density, using the sample θi (i = 1, . . . , n) from nn(θ) that we
already have. The weights wres(θi) and scaled weights w̃res(θi) (i = 1, . . . , n)
are:

wres(θi) =
res(θi)

nn(θi)
= max{w(θi)− c̃, 0} and w̃res(θi) =

wres(θi)∑n
i=1 wres(θi)

,

(104)
and µh and Σh are obtained as:

µh =
n∑

i=1

w̃res(θi)θi Σh =
n∑

i=1

w̃res(θi)(θi − µh)(θi − µh)
′. (105)

There are two issues relevant for the choice of c̃ in (103) and (104). First, the
new t density should appear exactly at places where nn(θ) is too small (relative
to P (θ)), i.e. the scale should not be too large. Second, there should be enough
points θi with w(θi) > c̃ in order to make Σh nonsingular. A procedure is to
calculate Σh for c̃ equal to 100 times the average value of w(θi) (i = 1, . . . , n);
if Σh in (105) is nonsingular, accept c̃; otherwise lower c̃.

Step 3: Choose the probabilities ph (h = 1, . . . , H) in the mixture nn(θ) =
∑H

h=1 ph t(θ|µh, Σh, ν)
by minimizing the (squared) coefficient of variation of the importance sam-
pling weights. First, draw n points θh

i from each component t(θ|µh, Σh, ν)
(h = 1, . . . , H). Then minimize E[w(θ)2]/E[w(θ)]2, where:

E[w(θ)k] =
1

n

n∑
i=1

H∑

h=1

ph w
(
θh

i

)k
(k = 1, 2), w

(
θh

i

)
=

P (θh
i )∑H

l=1 pl t
(
θh

i |µl, Σl, ν
) .

(106)

Step 4: Draw a sample of n points θi (i = 1, . . . , n) from our new mixture of t distri-
butions, nn(θ) =

∑H
h=1 ph t(θ|µh, Σh, ν), and go to step 1; in order to draw a

point from the density nn(θ) first use a draw from the U(0, 1) distribution to
determine which component t(θ|µh, Σh, ν) is chosen, and then draw from this
multivariate t distribution.

It may occur that one is dissatisfied with diagnostics like the coefficient of varia-
tion of the IS weights corresponding to the final candidate density resulting from the
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procedure above. In that case one may start all over again with a larger number of
points n. The idea behind this is that the larger n is, the easier it is for the method
to ‘feel’ the shape of the target density kernel, and to specify the t distributions of
the mixture adequately.

Note that an advantage of the AdMit approach is that it does not require the
specification of a certain bounded region where the random variable θ ∈ Rm takes
its values.

After the construction of the NN approximation to the target density, one can
simply use the NN candidate density in importance sampling or the Metropolis-
Hastings algorithm. Here an advantage is that it is very easy to sample from a
mixture of t distributions. Convergence properties of the NN sampling methods
follow directly from those for the importance sampling and Metropolis-Hastings al-
gorithms.

Example: NN sampling in two-regime mixture model for the US GNP growth
rate

In order to illustrate the advantages of the AdMit methods, we investigate a mixture
model for the analysis of economic growth in the USA, which is also considered by
Bauwens et al. (2004) and the previous subsection of this paper. We consider a mixture
model with two AR(1) regimes for real GNP growth:

yt =

{
β11 + β12yt−1 + εt with probability p,
β21 + β22yt−1 + εt with probability 1− p,

εt ∼ N(0, σ2), (107)

where yt denotes the quarterly growth rate. The data (source: Economagic) consist
of observations from the first quarter of 1959 to the last quarter of 2001. We specify
the prior p(θ) = p(β11, β12, β21, β22, σ, p) = 1/σ. For identification, it is imposed that
β11 < β21.

First, the AdMit approach constructs a candidate distribution; in this case it yields
a mixture of 10 Student t distributions. Next, we use this candidate distribution in
the (independence chain) MH algorithm and IS. Sampling results are given by Table 6.
The number of draws has been chosen in order to make the computing time compa-
rable with the methods in the previous subsection (ARDS methods, MH, IS, and data
augmentation). For both AdMit methods, we repeat the simulation process ten times
with different random seeds, after which we compute the standard deviations of the ten
estimates of the posterior means. Notice that except for the parameter β12, for which
the data augmentation algorithm is somewhat more precise, the AdMit methods outper-
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form the competing approaches. This is remarkable, as the AdMit methods only require
a kernel of the posterior density (and approximate guesses of the location and scale),
whereas the data augmentation method requires that the conditional posterior distribu-
tion of each parameter is derived. The serial correlation in the AdMit-MH sequence for
the parameter p is 0.914, which is much lower than the serial correlation of 0.996 in the
data augmentation approach.

In this example, the ARDS methods have a lower precision than the AdMit methods,
given the same computing time. This is caused by the much smaller number of draws
in the ARDS algorithms. The process of evaluating a one-dimensional integral over
distances given a direction and sampling from the exact conditional target distribution
given a direction is relatively quite time consuming. However, because of this sampling
from the exact target distribution given a direction, the ARDS methods may be more
robust and reliable than the AdMit methods in other cases of highly non-elliptical pos-
terior distributions. Furthermore, an interesting topic for further research is to combine
these algorithms in a clever way.
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Table 6: NN Sampling results for the two-regime mixture model for US real GNP
growth

AdMit-IS AdMit-MH

mean s.d. mean s.d.

β11 0.052 0.743 0.053 0.716

(s.d. 10x) (0.011) (0.013)

β12 0.409 0.284 0.410 0.282

(s.d. 10x) (0.005) (0.006)

β21 1.276 0.762 1.278 0.762

(s.d. 10x) (0.004) (0.009)

β22 -0.026 0.399 -0.025 0.400

(s.d. 10x) (0.002) (0.002)

σ 0.820 0.055 0.820 0.055

(s.d. 10x) (0.000) (0.000)

p 0.547 0.374 0.548 0.374

(s.d. 10x) (0.002) (0.005)

Draws 500 000 500 000

Computing time: NN construction (in s) 73.3 73.3

Computing time: NN sampling (in s) 40.5 40.9

Computing time: total (in s) 113.8 114.2

Acceptance rate (in %) 9.5

5% most influential weights (in %) 67.7

4 Concluding remarks

In this paper we discussed several aspects of simulation based Bayesian econometric
inference [SBBEI]. First, we showed that the Bayesian framework provides a natural
learning rule, that allows for optimal learning and (hence) optimal decision making
under uncertainty. The Bayesian framework provides a proper way to consider the
sensitivity of estimates and to use probability statements that indicate a ‘degree
of confidence’. We discussed the basic principles of Bayesian inference (prior &
posterior density, Bayes’ rule, Highest Posterior Density [HPD] region, posterior
odds) and described some substantial differences between Bayesian inference and the
frequentist/classical approach. We showed that evaluating integrals by simulation
methods is a crucial ingredient in Bayesian inference.

After that, we discussed some of the most popular and well-known simulation
techniques, plus two recently developed sampling methods: adaptive radial based di-
rection sampling [ARDS], which makes use of a transformation to radial coordinates,
and neural network sampling, which makes use of a neural network approximation



to the posterior distribution of interest. Both methods are especially useful in cases
where the posterior distribution is not well-behaved, in the sense of having highly
non-elliptical shapes. We illustrated the simulation techniques with several example
models, such as a model for the real US GNP and models for binary data of a US
recession indicator.

The development of advanced sampling methods, that perform the evaluation of
integrals efficiently, makes Bayesian inference possible in an ever increasing number
of complex models. This allows for more realistic descriptions of many processes
in several fields of research, for example in finance and macro-economics, leading
to more accurate forecasts, a better quantification of uncertainty, and hence better
policies.

It should be noted that we did not attempt to provide a complete survey of
simulation methods. For further reading we refer to the textbooks by, in alphabetical
order, Bauwens et al. (1999), Geweke (2005), Koop (2003), Lancaster (2004) and
Rossi et al. (2005).
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