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Abstract

Econometric issues that are considered fundamental in the develop-
ment of Bayesian structural inference within a Simultaneous Equation
Model are surveyed.

The difficulty of specifying prior information which is of interest to
economists and which yields tractable posterior and predictive distribu-
tions has started this line of research. A major issue is the nonstandard
shape of the likelihood due to reduced rank restrictions. It implies that
existence of structural posterior moments under vague prior information
is a nontrivial issue. The problem is illustrated through simple exam-
ples using artificially generated data in a so-called limited information
framework where the connection with the problem of weak instruments in
classical econometrics is also described.

A positive development is Bayesian inference of implied characteristics,
in particular, dynamic features of a Simultaneous Equation Model. The
potential of Bayesian structural inference, using a predictive approach for
prior specification and using Monte Carlo simulation techniques for com-
putational purposes, is illustrated by means of a prior and posterior anal-
ysis of the US business cycle in the period of the depression. A structural
prior is elicited through investigation of the implied predictive features.

Some connections with modern time series econometrics are empha-
sized, in particular, the formal mathematical equivalence of overidentifi-
cation in a SEM and cointegration in an vector autoregressive model.

It is argued that Bayesian structural inference is like a Phoenix. It
was almost a dead topic in the late eighties and early nineties but it has
become of renewed importance in models where reduced rank analysis
occurs. These models include structural vector autoregressive models,

∗I am indebted to Eric Zivot, Rodney Strachan and, in particular, to Frank Kleibergen for
stimulating discussions on the topic of this paper. I am also grateful to Lennart Hoogerheide,
Bernt Stigum, Tore Schwert and Nils Hjort for helpful comments on an earlier version of this
paper. Responsibility for any errors is entirely mine.
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asset price theory models, capital asset pricing models, factor models,
dynamic panel models, state space models, consumer demand and factor
demand systems, and error in variables models.

1 Introduction

A fundamental feature of economic systems based on the market mechanism is
that prices are jointly determined by the laws of demand and supply. Another
feature of a dynamic market system is the joint expansion and contraction of
such economic variables as consumption, investment and gross national output
during the business cycle. The econometric analysis of market price behavior
and the nature of business cycles is in the twentieth century greatly advanced
by the specification of the Simultaneous Equation Model (SEM). Important sta-
tistical implications of a linear SEM have been indicated by Haavelmo (1943).
Seminal studies on the identification and the estimation of SEM parameters are
contained in two Cowles Commission monographs (Koopmans (1950) and Hood
and Koopmans (1953)). As classical inferential method use is made, in most
cases, of the method of maximum likelihood, where an unknown ‘true’ model
structure is assumed . The classical econometrician is ‘condemned’ to find this
true structure. However, Drèze (1962) argues that such classical inference is not
adequate since on the one hand available information on parameters is ignored -
for instance the marginal propensity to consume is in the unit interval - while on
the other hand too many exact zero restrictions are imposed - for instance zero
restrictions due to the omission of certain variables in each equation. Drèze’s
paper has been a major stimulus for Bayesian structural inference of the SEM.

In this chapter we discuss some issues that have dominated the development
of Bayesian inference of the SEM in the second half of the twentieth century.
The first issue is the specification of prior information. As mentioned above,
Drèze started this discussion in 1962 with the common sense arguments that
many structural parameters are restricted to a priori plausible regions. This
does not only hold for these parameters but also for dynamic characteristics
of the SEM like correct signs of multipiers and plausible restrictions on the
period of oscillation. It is, however, not trivial to incorporate these inequality
restrictions in a class of analytically tractable priors like the natural conjugate
class. Further, Rothenberg (1963) pointed out that this natural conjugate class
is by itself highly restrictive for systems of equations. This result is known as
‘Rothenberg’s’ problem. The difficulty to incorporate flexible prior information
like inequality conditions or nonlinear restrictions and the restrictiveness of the
natural conjugate class of priors by itself are the starting points of new research
that started in the late sixties and the early seventies.

Two developments took place. First, in order to simplify the analysis, single
equation inference was pursued by Drèze (1976) and Zellner (1971). In this
approach a connection can be made with instrumental variable estimation. We
discuss some motivating examples in Section 2 and analyze the limited informa-
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tion approach in detail in Section 3.
A second development has been to tackle the problem of finding numerical

integration procedures that are computationally efficient and that allow for the
use of flexible prior information which is of interest to economists. The use of
Monte Carlo integration methods turned out to be revolutionary. The method
of importance sampling was introduced in Bayesian inference by Kloek and Van
Dijk (1978); see also Geweke (1989). This was followed by Markov Chain Monte
Carlo methods as Metropolis Hastings and Gibbs sampling. An excellent survey
is provided by Geweke (1999). We refer to that paper and the references cited
there, in particular, Hastings (1970) and Tierney (1994). We will not focus on
the description of Monte Carlo integration in this chapter.

The application of numerical procedures to the case of the SEM has not been
trivial. Here we come to an important econometric issue in Bayesian inference
of the SEM. The shape of the likelihood of a SEM is nonstandard. This holds
for the case of a model with no restrictions on the parameters but also for a
standard model of a market which is identified according to classical identifica-
tion conditions. This is different from the case of the linear regression model
where the marginal likelihood of parameters of interest belongs to the class of
Student-t densities. The problem of a nonstandard shape of the likelihood has
been analyzed by Van Dijk (1985), Bauwens and Van Dijk (1989), Kleibergen
and Van Dijk (1992, 1994a, 1998). The basic reason is the presence of singu-
larities in the parameter space due to reduced rank restrictions. We illustrate
Bayesian structural inference in simultaneous equation analysis through simple
examples in Section 3. Section 4 contains a condition which is sufficient for the
existence of posterior moments in the full information case.

The flexibility of Monte Carlo integration procedures using simulation meth-
ods has greatly advanced Bayesian inference of dynamic features of a SEM. The
elicitation of informative priors by investigation of the implications for short
and long term prediction is rather trivial using simulation methods. The poten-
tial use of Bayesian structural inference using a simple predictive approach and
using Monte Carlo as computational tool is illustrated in Section 5 through an
analysis of the US business cycle in the period of the great depression.

The simultaneous equations model itself has been under attack by Liu (1960)
and, in particular Sims (1980) because of its ‘incredible’ restrictions. The class
of Vector AutoRegressive (VAR) models advocated by Sims is considered as
more ‘data driven’ while the SEM is more ‘theory driven’. In Section 6 we
make some remarks on Bayesian inference in structural VAR models. Section 7
contains conclusions.

2 Motivation and Two Examples

Consider the stylized wage regression popular in empirical labor studies:

y1 = βy2 + x1γ + u1 (1)
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where y1 is log of hourly wage, y2 denotes education, which is measured as years
of schooling, and x1 equal to age - years of schooling - 6. This latter variable
captures work experience. We note that all variables are given in deviations from
their mean values. The structural parameter of interest, β ideally measures the
rate of return to schooling. The variable y2 (years of schooling) is potentially
endogenous, however, and correlated with u1 due to the omission of a variable
measuring (unobservable) ability. The degree of endogeneity is potentially very
high due to a high expected correlation between education and ability. Classical
inference makes use of instrumental variable estimation methods but potential
instruments for y2 (= education) are hard to find since these variables must
be correlated with education but uncorrelated with unobserved ability. Angrist
and Krueger (1992) suggest using quarter of birth as dummy variables. They
argue that quarter of birth is randomly distributed across the population and
so is uncorrelated with ability and it affects years of schooling weakly, through
a combination of the age at which a person begins school and the compulsory
schooling laws in a person’s state. Staiger and Stock (1997) give evidence that
inference on the rate of return to schooling can be greatly affected by the weak
quarter of birth instruments.

As a second example, consider the problem of determining the fraction of
temporary income consumers spend in a permanent income/consumption model.
Campbell and Mankiw (1989) use the simple regression equation

∆c = β∆y + u1 (2)

where c is log consumption, y is log income. In this simple model, β measures
the fraction of temporary income consumed. Consumption and income are
simultaneously determined and so ∆y is potentially highly correlated with u1.
In the permanent income model c and y are cointegrated with cointegrating
vector (1,-1) and the error correction model for ∆y suggests using lagged values
of ∆y, ∆c and the lagged error correction term, c−y, as instruments. However,
the growth rate of income is not predicted very well from this error correction
model so that the suggested instruments are expected to be fairly weak. Notice
that in this example the quality of the instruments is determined by the short-
run dynamics in the growth rate of income.

More formally, consider the following two-equation simultaneous equation
model

y1 = βy2 +X1γ + u1 (3)

y2 = X1π21 +X2π22 + v2 (4)

where y1 is a (T×1) vector of observations on the structural equation of interest,
y2 is a (T × 1) vector of observations on the included endogenous variable, β is
the scalar structural parameter of interest, X1 is a (T × k1) matrix of included
weakly exogenous variables, γ is a (k1×1) vector of structural parameters (not of
direct interest), X2 is a (T × k2) matrix of excluded weakly exogenous variables
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or instruments and π21 and π22 are (k1 × 1) and (k2 × 1) vectors of reduced
form parameters, respectively. It is assumed that k2 ≥ 1 so that the necessary
condition for identification of β is satisfied and we call k2 − 1 the degree of

overidentification. The variables in X = [X1

...X2], which may contain lagged
predetermined variables, are assumed to be weakly exogenous for the structural
parameters β and γ; see Engle, Hendry and Richard (1983). We assume that
the rows of the error terms u1 and v2 are independently normally distributed
with covariance matrix Σ, which has elements σij (j = 1, 2). We note that
(3)-(4) is known as the INcomplete Simultaneous Equation Model (INSEM).1

The interpretation of the parameters is crucial in this context. The parame-
ter ρ = σ12/(σ11σ22)1/2 measures the degree of endogeneity of y2 in (1) and π22

captures the quality of the instruments. The weak instrument problem occurs
in (1)-(2) when | ρ |≈ 1 and π22 ≈ 0 so that β is nearly nonidentified.2 3 The
weak instrument problem in the INSEM has been examined from a Bayesian
point of view by Kleibergen and Zivot (1998) and Gao and Lahiri (1999). In the
next section we discuss the connection between weak instruments and Bayesian
limited information.

3 Limited Information or Incomplete Simulta-
neous Equation Analysis

3.1 Parameterizations

There are several equivalent ways to parameterize the INSEM and Bayesian
analysis is influenced by the adopted parameterization. The structural form of
the INSEM is given in (3)- (4) and was the parameterization originally ana-
lyzed by Zellner (1971), see also Zellner, Bauwens and Van Dijk (1988). The
multivariate regression representation of the structural form is

Y B = XΓ + U (5)

1There is a slight difference between this model and a complete SEM which is analyzed
under limited information, as is done by Drèze (1976). For details see Bauwens and Van Dijk
(1989). In this chapter we make use of the INSEM.

2Empirically, the weak instrument problem is often characterized by a low first stage R2

or a low first stage F-statistic for testing π22 = 0.
3The effects of weak instruments on IV-based inference is discussed in Nelson and Startz

(1990a,b), Bound, Jaeger and Baker (1995), Hall, Rudebusch and Wilcox (1996), Staiger and
Stock (1997), Wang and Zivot (1997) and Zivot, Startz and Nelson (1997). In these papers it is
shown that the 2SLS/IV estimator of β is biased in the same direction as the OLS estimator
and the 2SLS/IV estimated standard errors are often spuriously too small which leads to
seriously size distorted confidence intervals for β. Wang and Zivot (1997) and Zivot, Startz
and Nelson (1997) show that inferences based on likelihood ratio and Lagrange multiplier
statistics are more robust than inferences based on Wald statistics.
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where Y = [y1, y2], X = [X1, X2] and U = [u1, v2] with

B =
[

1 0
−β 1

]
,Γ =

[
γ π21

0 π22

]
.

Since | B |= 1 the likelihood function for the INSEM is of the same form as a
seemingly unrelated regressions (SUR) model.
The unrestricted reduced form of the model is

y1 = X1π11 +X2π12 + v1, (6)

y2 = X1π21 +X2π22 + v2, (7)

In systems form the unrestricted reduced form is

Y = XΠ + V

where the rows of v are independently normally distributed with mean zero and
covariance matrix Ω. Since (6)- (7) is simply a multivariate linear model all of
the reduced form parameters are identified.

The identifying restrictions that tie the structural form to the reduced form
are γ = π11−π21β, π21−π22β = 0, σ11 = ω11−2βω12 +β2ω22, σ12 = ω12−βω22

and σ22 = ω22.
The restricted reduced form of the INSEM is obtained by imposing the iden-

tifying restrictions on the unrestricted reduced form and is given by

y1 = X1(π21β + γ) +X2π22β + v1, (8)

y2 = X1π21 +X2π22 + v2, (9)

where v1 = u1 − v2β. In system form we solve (5) for Y and obtain

Y = −XΓB−1 + UB−1.

where Ω = B−1′ΣB−1. The restricted reduced form is a multivariate regression
model with nonlinear restrictions on the parameters. In the absence of restric-
tions on the covariance structure of Σ, β is identified if and only if π22 6= 0 and
k2 ≥ 1. If ρ = 0, however, then β is identified even if π22 = 0.

The orthogonal structural form (Zellner, Bauwens and Van Dijk (1988) reads

y1 = y2β +X1γ1 + v2φ+ η1, (10)

y2 = X1π21 +X2π22 + v2. (11)

where (
η1

v2

)
∼ N

[(
0
0

)
,

(
σ11.2 0
0 σ22

)]
,
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σ11.2 = σ11 − σ12σ
−1
22 σ21 φ = σ−1

22 σ12

The parameter φmeasures the degree of endogeneity. Note that φ = ρ(σ11/σ22)
1
2

We are interested in cases where there are different degrees of identifiability.
It is well known that the likelihood is flat when there are nonidentified parame-
ters. It is of interest to note that different degrees of identification correspond to
the case of different degrees of the quality of instrumental variables in classical
IV estimation.

For convenience we consider the case of a Just Identified Model, where k2 = 1.
The structural representation is now

y1 = y2β + u1, (12)

y2 = xπ22 + v2, (13)

the unrestricted reduced form is

y1 = xπ12 + v1, (14)

y2 = xπ22 + v2, (15)

and the restricted reduced form is

y1 = xπ22β + βv2 + u1, (16)

y2 = xπ22 + v2. (17)

If ρ 6= 0, the structural parameter β is identified provided π22 6= 0 and can be
uniquely recovered from the reduced form via the transformation β = π12/π22.
In addition, if β is identified then the structural correlation coefficient ρ can be
recovered via the transformation ρ = (ω12−βω22)/((ω11−2βω12+β2ω22)ω22)1/2.
Similarly, if ρ is identified then β can be recovered from the elements of Ω.

The orthogonal structural form is

y1 = y2β + v2φ+ η1, (18)

y2 = xπ22 + v2. (19)

The case of nearly nonidentified parameters or the weak instrument context
is when π22 ≈ 0 and strong endogeneity occurs when | ρ = φ |≈ 1.

3.2 Marginal Likelihood or Posterior Analysis with a Uni-
form Prior of the Structural Model

In this subsection we present a Bayesian analysis of the INSEM for the simple
bivariate just identified model with no exogenous variables in the structural
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equation. We use flat priors for the parameters of interest and avoid getting into
the complicated algebra that accompanies the general analysis. Our discussion
draws on Zellner (1971), Drèze (1976), Bauwens and van Dijk (1989), Zellner,
Bauwens and van Dijk (1988), Kleibergen and van Dijk (1992, 1994a, 1998) and
Chao and Phillips (1998). A flat or diffuse prior for the structural parameters
β, π22 and Σ is of the form

p(β, π22,Σ) ∝| Σ |− 1
2h, h > 0. (20)

The likelihood function of the structural model for a sample of size T is

L(β, π22,Σ | y1, y2, x) ∝| Σ |− 1
2T exp{−1

2
tr[Σ−1U ′U ]}. (21)

and so the joint posterior based on the flat prior is

p(β, π22,Σ | y1, y2, x) ∝| Σ |− 1
2 (T+h) exp{−1

2
tr[Σ−1U ′U ]}. (22)

Using properties of the inverted Wishart distribution (see Zellner (1971) and
Bauwens and Van Dijk (1989)), Σ−1 may be analytically integrated out of the
joint posterior to give the following joint posterior for (β, π22):

p(β, π22 | y1, y2, x) ∝| U ′U |− 1
2 (T+h−3)=| (u1v2)′(u1v2) |− 1

2 (T+h−3) . (23)

Note that p(β, π22 | y1, y2, x) is of the same form as the concentrated likelihood
function for (β, π22) from the maximum likelihood analysis of the INSEM, apart
from the degrees of freedom parameter h

The marginal posteriors for β and π22 can be determined from (21) using
properties of the Student-t distribution and the decomposition

| (u1v2)′(u1v2) |=| u′1u1 || v′2Mu1v2 |=| v′2v2 || u′1Mv2u1 |, (24)

where MA = I − PA, PA = A(A′A)−1A′ for any full rank matrix A. Straight-
forward calculations yield the following result. 4

Theorem 1 Structural Inference, Drèze(1976).
The marginal posterior for β is a ratio of Student-t densities and is similar in
form to the concentrated likelihood function.

For the exactly identified model one obtains

p(β | y1, y2, x) ∝ | (y1 − y2β)′Mx(y1 − y2β) | 12 (T+h−5)

| (y1 − y2β)′(y1 − y2β) | 12 (T+h−4)
, (25)

4See Bauwens and Van Dijk (1989) and Kleibergen and van Dijk (1992, 1994a, 1998) for
details.
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The concentrated likelihood is given as

`(β | y1, y2, x) ∝
[ (y1 − y2β)′Mx(y1 − y2β)

(y1 − y2β)′(y1 − y2β)

] 1
2T

The difference between the concentrated likelihood function and the marginal
posterior reflects the difference between concentration and marginalization of
the likelihood function (21). The concentrated likelihood function may be in-
terpreted as the posterior density for β resulting from a flat prior conditional on
the modal values of Σ and π22 whereas the marginal posterior for β is obtained
after integrating out these parameters for the joint posterior.

For the just identified model we proceed as follows. Let G be the number of
equations in the system. Choose h = G+ 1 = 3 and rewrite (25) as

p(β | y1, y2, x) ∝ c(β) | (y1 − y2β)′Mx(y1 − y2β) |− 1
2 (1+0) (26)

where 1+0 refers to the dimension of β and the degrees of freedom parameter,
respectively.

c(β) =
[ | (y1 − y2β)′Mx(y1 − y2β) |
| (y1 − y2β)′(y1 − y2β) |

] 1
2 (T+h−4)

It is easily seen that c(β) is bounded from above and below by extreme eigen-
values of data matrices of moments of (y1 y2) and Mx(y1 y2). Thus (25) is
bounded by a Student-t density t(β | β̂2SLS , s

2y′2Mxy2, 0), which is not proper
(integrable) for −∞ ≤ β ≤ ∞. The nonintegrability or “fat-tails” of the poste-
rior is the result of integrating the joint posterior for (β, π22) across the infinite
ridge in the β direction that occurs at π22 = 0. Consequently, unless the range
of β is truncated a priori, posterior inference regarding β is not possible. For
a related discussion on the consequences of using improper priors for the non-
integrability of posteriors, see Berger (1985) and Berger, Liseo and Wolpert
(1999).

For overidentified models, it can be shown that the moments of the marginal
posterior for β exist up to the order of overidentification. We note that the dif-
ference in the exponents of (25) becomes then larger; for details see Kleibergen
and Van Dijk (1998). Hence, the marginal posterior of β is proper if there are
at least two instruments. One consequence of this result is that the existence
of posterior moments of β depends on the order condition for identification and
not the rank condition. Hence it is possible to sharpen inference about β by
simply adding more instruments to the model. This result was first pointed out
by Maddala (1976) and was explained analytically by Kleibergen and Van Dijk
(1998).

Finally, for large values of T , the marginal posterior for β may be approxi-
mated by

p(β | y1, y2, x) ∝ exp{−1
2

(y1 − y2β)′Px(y1 − y2β)}
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which is a normal density centered at the 2SLS estimate of β. Thus, for large T
the Bayesian results based on flat priors for the structural model will coincide
with classical results.

A second result is obtained by marginalizing (25) with respect to β.

Theorem 2 Local Nonidentification and Implied Reduced Form In-
ference, Kleibergen and Van Dijk (1998)
The marginal posterior of π22 is equal to the kernel of a univariate Student-t
centered at π̂OLS22 multiplied by the factor | π22 |−1.

p(π22 | y1, y2, x) ∝| π22 |−1| (y2 − xπ22)′(y2 − xπ22) |− 1
2 (T+h−4) . (27)

The factor | π22 |−1 creates a non-integrable asymptote since the posterior
density is infinite at π22 = 0 and, therefore, the posterior is not a proper density.
As a consequence forecasting and decision analysis are not feasible. The intu-
ition behind this result stems from the non-identifiability of β when π22 = 0.
When π22 = 0, β is not identified and the joint posterior of (β, π22) is flat in the
β direction along the axis where π22 = 0 (see Figures 1.1 - 3.3). As a result, the
integral of the joint posterior over β is infinite which produces the asymptote
at zero in the marginal posterior of π22.

Kleibergen and Van Dijk (1994a) and Chao and Phillips (1998) point out
that the non-integrability of (27) can be interpreted as a pathology that has
been imposed on the model by a peculiar prior induced on the reduced form
parameters (π12, π22) of (14)-(15). Since π12 = βπ22 there is a 1-1 relationship
between (β, π22) and (π12, π22) and a flat prior over (β, π22) implies, by the
change of variables formula, the non-flat prior for (π12, π22):

p(π12, π22) ∝ pSF (β, π22)
∣∣∣ ∂(β,π22)
∂(π21,π22

∣∣∣ =| π22 |−1 .

The induced prior for (π12, π22) gives infinite density to the point π22 = 0 in the
reduced form and thus the flat prior (20) is far from noninformative for π22 since
it favors infinitely the point π22 in the posterior. Another way of explaining the
result is that correlation between β and π22 which is present in the likelihood
is not reflected in the flat prior. Kleibergen and van Dijk (1994a) point out the
similarity between the discontinuity in the Bayesian results and the breakdown
of standard classical asymptotic results when π22 = 0. They note that a classi-
cal solution is to not allow π22 to equal zero, as in the local-to-zero asymptotics
of Staiger and Stock (1997), and they argue that a sensible Bayesian procedure
should also make this type of restriction. A procedure for dealing with this
problem is given by Kleibergen and van Dijk (1998) and discussed in the next
subsection.

A simple example with artificially generated data
For illustrative purposes, posteriors are calculated from simulated data from

(12)- (13) with T = 100, β = 0, σ11 = σ22 = 1, x ∼ N(0, 1) for three cases
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representing: strong identification/good instruments (π22 = 1); weak identifica-
tion/weak instruments (π22 = 0.1) and non identification/irrelevant instruments
(π22 = 0). These cases are combined with cases of: strong (ρ = 0.99), medium
(ρ = 0.5) and no (ρ = 0) degree of endogeneity. The joint posterior (25) from
the simulated data is plotted in Figures 1.1 - 3.3 for the three cases. 5 The
bivariate and contour plots are highly informative and give three typical shapes
of the marginal likelihood: bell-shaped, multimodality, and elongated ridges.

Table 1. The shape of the marginal likelihood/posterior with
uniform prior

Degree of Endogeneity: ρ

SE ME NE
ρ = .99 ρ = .5 ρ = 0

NI elongated ridges
Level of π = 0 (1,1) (1,2) (1,3)
Identification/
Quality of WI multi-modality
Instruments π = 0.1 (2,1) (2,2) (2,3)

SI bell-shaped
π = 1 (3,1) (3,2) (3,3)

(I) Strong identification/good instruments give regular bell shaped
posterior curves

Consider Figures 3.1-3.3. When ρ = 0, the bivariate posterior has the fa-
miliar bell-like shape of a bivariate normal distribution and is centered near the
2SLS estimate of β (which is also the LIML estimator since the model is just
identified) and the OLS estimate of π22. When ρ = 0.99, the bivariate posterior
reduces to a thin single-peaked bell-like shape. We emphasize that the plots of
pSF (π22 | Y, x) do not always display the spike at π22 = 0 due to the fact that
they are drawn for a finite grid of points that exclude π22 = 0.

5The author is heavily indebted to Eric Zivot for helpful discussion on the topic of these
experiments and for providing the figures. The posteriors are normalized over the displayed
range. All plots are computed using GAUSS 3.2
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Figure 1.1: Unidentification/Irrelevant Instruments and Strong Endogeneity
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Figure 1.2: Unidentification/Irrelevant Instruments and Medium Endogeneity
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Figure 1.3: Unidentification/Irrelevant Instruments and No Endogeneity
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Figure 2.1: Weak Identification/Weak Instruments and Strong Endogeneity
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Figure 2.2: Weak Identification/Weak Instruments and Medium Endogeneity
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Figure 2.3: Weak Identification/Weak Instruments and No Endogeneity
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Figure 3.1: Strong Identification/Good Instruments and Strong Endogeneity
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Figure 3.2: Strong Identification/Good Instruments and Medium Endogeneity
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Figure 3.3: Strong Identification/Good Instruments and No Endogeneity
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(II) Weak identification/weak instruments give multimodal poste-
rior curves

Consider Figures 2.1-2.3. For the case with ρ = 0.99, the bivariate posterior
for β, π22 is multimodal and actually separates into two L-shaped regions about
the point π22 = 0 and β = 0. In addition, the bivariate posterior develops
a long series of bell curves in the β direction at π22 = 0, suggesting that β
is undetermined at that value of π22. This ”shelf” is the result of the lack of
identification of β at π22 = 0.

(III) Nonidentification/irrelevant instruments give elongated ridges
in posterior surface

Consider Figures 1.1-1.3. In the irrelevant instrument (unidentified) case, the
bivariate posterior is again multimodal but now the “shelf” in the β direction
at π22 = 0, is very prominent. The posterior does not separate this time and
the contour plot indicates a wide range of possible values for β. This is what
we expect with data generated from an unidentified model.

Given the generated data one can easily compute OLS and IV/2SLS esti-
mates for β and π22. For the good instrument case the OLS estimate of β has a
strong bias and a small standard error. The IV/2SLS estimate of β is closer to
the true value of zero. The 95% confidence interval easily covers zero. The OLS
results for the reduced form give a 95% confidence interval which does not cover
zero confirming the good quality of the instrument. The marginal posterior for
β is very similar to the shape of a normal curve centered on the IV estimate
with a standard deviation equal to the standard error of the IV estimate, so the
classical and Bayesian analysis give very similar information. Note however the
spike in the posterior of π22.

For the weak instrument case, the OLS estimate of β is even more biased and
the estimated standard error is smaller than in the good instrument case. The
marginal posterior for β is multimodal and has extremely fat tails with secondary
modes. The wide distribution of mass reflects a great deal of uncertainty about
the true value of β and its convoluted shape reflects the width and prominence
of the ”shelf” in the bivariate posterior. Interestingly, the posterior degenerates
near the OLS estimate which, in turn, is close to the point of concentration of
the finite sample distribution of the IV estimate in the case of poor instruments.

In the irrelevant instrument case, the IV estimate of β has a Cauchy distribu-
tion centered at the point of concentration (see Phillips (1989)). The marginal
posterior for β is unimodal, tightly peaked about the point of concentration
but with long fat tails. The posterior is remarkably similar to the finite sample
distribution of the IV estimate in the totally unidentified case determined by
Phillips (1989). The tightness of the posterior about the point of concentration
reflects the inability of the instrument to remove any of the bias due to simul-
taneity, while the fat tails of the distribution reflects the lack of information in
the data about the true value of β.
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3.3 Weakly informative priors

The embedding approach

The incomplete simultaneous equation model can be considered as a mul-
tivariate regression model with nonlinear restrictions on the parameters. In
the embedding approach one starts from an unrestricted reduced form model
and considers the transformation to the restricted reduced form. For the exact
identified case Kleibergen and van Dijk (1998) start with a flat prior for the
unrestricted reduced form parameters (π12, π22,Ω),

p(π12, π22,Ω) ∝| Ω |− 1
2h, h > 0, (28)

and use this prior to deduce a prior for the restricted reduced form parameters
β, π22 and Ω via the change of variable formula. The absolute value of the
Jacobian of the transformation from (π21, π22) to (β, π22) is

| J |=
∣∣∣ ∂(π12,π22)

∂(β,π22)

∣∣∣ =| π22 |,

so the implied prior for the restricted reduced form parameters is

p(β, π22,Ω) ∝| π22 || Ω |−
1
2h, h > 0. (29)

Notice that the implied prior for the restricted reduced form parameters degen-
erates at π22 = 0 and so gives zero prior weight to a model for which β is not
identified. Intuitively, one can think of the joint prior (29) as the product of
three priors

p(β, π22,Ω) = p(β | π22)p(π22)p(Ω)

where

p(β | π22) ∝ | π22 |
p(π22) ∝ constant

p(Ω) ∝ | Ω |− 1
2h, h > 0

The conditional prior, p(β | π22), can be thought of as a limiting form of a
normal prior with mean β0 and variance σ2

0/π
2
22. Such a normal prior has a

variance that increases as π22 approaches zero.
For the overidentified case the transformation is nontrivial. Here one can

make use of a singular value decomposition; see Kleibergen and van Dijk (1998)
and Kleibergen (2001) for details.

The Information Matrix approach

The implied prior (29) is very similar to the Jeffreys prior derived from
the structural model (12) - (13). The Jeffreys prior is invariant to smooth 1-1
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transformations of the parameter space and is proportional to the square root
of the determinant of the information matrix of the model. Kleibergen and van
Dijk (1994a) derive the Jeffreys prior for the general structural model (4) - (5)
and in the just identified case this prior reduces to

p(β, π22,Σ) ∝| π22 || Σ |−2 .

Combining the likelihood function (21) with the prior (29) gives the joint pos-
terior

p(β, π22,Ω | y1, y2, x) ∝| π22 || Ω |−
1
2 (T+h) exp{−1

2
tr[Ω−1V ′V ]}. (30)

and integrating out Ω−1 one obtains

p(β, π22 | y1, y2, x) ∝| π22 || U ′U |−
1
2 (T+h−3) (31)

The result of the embedding and information matrix approach is that infer-
ence on the reduced form parameters is possible but structural inference with
weakly or exactly identified models is not feasible for a finite sample. One so-
lution in this respect is to use a penalty function as discussed in Kleibergen
and Paap (1998) and Paap and Van Dijk (1999). Another approach is to limit
the range of the structural parameters. This approach is presented in the next
subsection

4 Full Information Analysis and Restrictions on
the Range of Structural Parameters

Consider the linear simultaneous equation model (SEM), given in (5). The
prior information with respect to the structural parameters (B,Γ,Σ) is given as
follows. The diagonal elements of B are restricted to unity due to normalization
and a certain number of zero elements of B and Γ follow from zero identifying
restrictions. The unrestricted elements of B and Γ are denoted by the s-vector
θ. The stochastic prior information on θ and Σ can be described by the prior
density

p(θ,Σ) ∝| Σ |−1/2h (32)

where h is interpreted as a p rior degrees of freedom parameter. So, we have a
uniform prior on θ defined on the region of integration S, where S is equal to
the s-dimensional real space.

The likelihood function of the parameters (θ,Σ) can be derived using the
assumptions on the model. Combining the prior density (2) with the likelihood
gives the joint posterior density of (θ,Σ). Marginalization with respect to Σ
can be performed by making use of properties of the inverted-Wishart density.
Then one obtains the kernel of the marginal posterior density of θ as

p(θ | Y,X) ∝‖ B ‖T | Q |−1/2(T+h−G−1) (33)
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with

Q = U ′U (34)
= (Y B +XΓ)′(Y B +XΓ)

For details we refer to Drèze and Richard (1984), Zellner (1971, Chapter 9)
or Bauwens and Van Dijk (1989). The right-hand side of (33) is similar to a
concentrated likelihood function of θ as defined by Koopmans and Hood (1953,
p. 191). The difference is the exponent of | Q | which is− 1

2T for the concentrated
likelihood function and which depends on the particular value of h in our case.
For h = G+ 1 the expressions are proportional.

One can derive an upper bound function to this marginal posterior. For
convenience, define ZA = Y B+XΓ, where Z = (Y X) and A′ = (B′ Γ′). Let
R(Z) denote the rank of Z.

THEOREM 3. Given R(Z) = G+K, it follows that

‖ B ‖T | Q |−1/2(T+h−G−1)≤ c | Q |−1/2(h−G−1) (c > 0) (35)

if and only if R
(
B
Γ

)
= G.

A proof is given in Van Dijk (1985).

We analyze the condition R(B′ Γ′)′ = G and analyze a bound on the range of
the degrees of freedom parameter h. Let q be a vector of constants, q 6= 0, then
q′A′Z ′ZAq ≥ εq′q, with ε > 0. It follows that

q′A′Z ′ZAq ≥ (1/2)q′(A′Z ′ZA+ εI)q > 0 (36)

Given that | A′Z ′ZA |=
∏G
i=1 λi, where λi is the i-th characteristic root (λ1 ≥

λ2 ≥ · · · ≥ λG > 0), and given that | A′Z ′ZA+ εI |=
∏G
i=1(λi + ε), one obtains

| A′Z ′ZA |≥ (1/2)G | A′Z ′ZA+ εI |> 0 (37)

with λG ≥ ε > 0. The determinant given at the right-hand side of the in-
equality (37) has the same functional form as the determinant of the inverse of
a matricvariate Student t density [see, e.g., Dickey (1967), Zellner (1971, Ap-
pendix B5), and Drèze and Richard (1984, p. 589)]. The difference is, however,
the presence of exact restrictions in the matrix A.

It is important to distinguish between the interpretation of the rank condi-
tions on A in a classical and Bayesian framework. The classical rank condition
for identification is derived for a set of unknown constant structural parameters.
Given this rank condition, the event of underidentification of the structural pa-
rameters is in the classical approach a set of measure zero. In our Bayesian
case the rank condition on A (or on U) has a an other interpretation. That is,
since the unrestricted elements of A, given in the vector θ, are random variables
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R(A) is a random variable. The assumption R(A) = G is interpreted as follows.
The event that a nontrivial linear combination of vectors of parameters of the
G equations is zero has prior probability zero and the event R(A) = G has
prior probability one. Given R(A) = G with probability one, it follows that
| A′Z ′ZA |> 0 with probability one. But it is important to make a distinction
between two cases of simultaneous equation models. The first case is one where
| A′Z ′ZA | tends to zero in the prior parameter region of θ, which we denote by
S. It follows that the right-hand side of (35) tends to infinity if h > G+ 1. The
assumption P [R(A) = G] = 1 implies, therefore, that the probability function
of R(A) has to be truncated at the value R(A) = G. In order to obtain a finite
upper bound for the right-hand side of (35) one can make use of the following
solution. Truncate the uniform prior density p(θ) in such a way that it is zero
on an open subset of the region S where | A′Z ′ZA |< ε, ε > 0 and p(θ) is equal
to a positive constant elsewhere on S. This implies that | Q |=| A′Z ′ZA |≥ ε
on a subset of S. One can investigate the sensitivity of the upper bound by
varying ε. This approach implies that in the evaluation of posterior moments
one replaces an infinite integral by a (truncated) finite value of the integral.
This may be unattractive approach. Consider, for instance, the following sim-
ple two equation model that is interpreted as a market model for a particular
commodity,

q + β1p+ γ1I = u1 (38)
q + β2p+ γ2W = u2

where q represents the quantity traded of a certain commodity and p its price.
Values of the endogenous variables p and q are jointly determined given a value
of the exogenous variables I and W (e.g., I represents income and W represents
weather conditions). If h > G + 1, and if γ1 and γ2 tend towards zero and β1

tends towards β2, then the upper bound function given at the right-hand side
of (35) and the kernel p(θ | Y, Z), equation (34) tend both to infinity. The rate at
which p(θ | Y, Z) tends to infinity depends on the particular value of h. Note that
if γ1 = γ2 = 0 and β1 = β2, then | A′Z ′ZA |= 0 and ‖ B ‖=| β2 − β1 |= 0. So,
in this case the upper bound function, mentioned above, is infinitely large, but
p(θ | Y,Z) is zero; see Bauwens and Van Dijk (1989) for illustrative examples.

The second case of a linear SEM is one where the exact restrictions on the
structural parameters are such that | A′Z ′ZA |6= η, η > 0 for all values of θ
in the original region of S. In this case the discrete random variable R(A) has
degenerated to the constant G. A simple example is

C = γ + βY + u (39)
Y = C + Z

where C, Y and Z represent T-vectors of observations on consumption ex-
penditure (C), total expenditure (Y ) and autonomous expenditure (Z). After
substitution of the second equation into the first one, one can verify in a straight-
forward way that | Q |=| u′u |6= η, η > 0 for all values of γ and β. We note
that (39) is a simultaneous equation model with identities.
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A third case is to use different normalization restrictions, in particular, a
natural restriction is A′A = I. In recent work Strachan (2000), Villani (2000)
and Strachan and Van Dijk (2001) use these type of restrictions on the pa-
rameters such that the condition of this section is fulfilled. As a consequence
structural moments will exist.

5 Prior and posterior analysis of the US busi-
ness cycle during the depression6

In this subsection we use an informal predictive approach to construct priors
and illustrate Bayesian structural inference within the context of a well-known
econometric model: Klein’s model I; see Klein (1950).

This model describes the behavior of consumption, investment and wages
over, roughly, the period 1920-1940. As such it describes the period of the great
depression in the USA. The prior information on B, Γ, and Σ is specified as
follows. The prior specification with respect to the nuisance parameters is taken
from a noninformative approach. The exactly known parameter values of B and
Γ are implied by the specification of Klein’s Model I. Then there remain nine
unrestricted structural parameters collected in the vector θ.

We specify a number of prior densities of θ and demonstrate how Monte
Carlo may be used to investigate the implied prior information with respect to
the reduced form parameters, the stability characteristics of the model, and the
final form parameters (if these exist).

Our first and simplest prior for the vector θ is uniform on the nine-dimensional
unit region minus the region where ‖ B ‖< .01. We investigate the implications
of our prior information for the multipliers and dynamic characteristics of the
model. We obtained the implied prior means and standard deviations of these
functions of θ by drawing θ vectors from the nine-dimensional standard uni-
form distribution. Each θ vector was checked with respect to the condition
‖ B ‖> .01. In case this condition was not satisfied, the vector was rejected and
replaced by a new vector.

As a next step we modified our first prior in several ways by adding sets of
extra constraints, given as follows.

1. The system is assumed to be stable. For that reason we only accept
vectors θ satisfying | DRT |< 1, where DRT is the dominant root of the
characteristic polynomial.

2. The long-run effects in the structural equations are all assumed to be in
the unit interval.

3. The short run multipliers are assumed to be less than 5 in absolute value
and to have the correct sign.

6The material in this subsection is taken from Van Dijk (1986) and Van Dijk and Kloek
(1978).
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4. The same set of constraints as mentioned under 3 was applied to the long
run multipliers.

5. The period of oscillation is assumed to be between 3 and 10 years. This
is in accordance with the observed length of business cycles in the period
1890-1920 (see Historical Statistics of the United States 1975).

Eight different priors were obtained by combining the sets of extra con-
straints, 1 to 5, in several ways. We note that, due to space limitations, we
present only results based on prior 2 (prior 1 with extra constraint 1) and prior
8 (prior 2 with extra constraints 1-5). Prior and posterior means and standard
deviations of the period of oscillation and the dominant root are given, and we
also present prior and posterior probabilities of the four states of the system.

Table 2. Means and Standard Deviations of Period of Oscillation
and Dominant Root: Probability of States

Period of
Oscillation Damped Explosive

(years) | DRT | Oscillatory Monotone Oscillatory Monotone
FIML 34.83 .76 NA NA NA NA
(no prior)

Prior 2 5.22 .78 .96 .04 0 0
(4.74) (.17)

Posterior 2’ 15.06 .84 .9999 .0001 0 0
(2.90) (.08)

Prior 8 5.42 .72 .98 .02 0 0
(1.57) (.18)

Posterior 8’ 9.61 .77 .9927 .0073 0 0
(0.37) (.08)

NA = not available

We observe that the prior constraints on the period of oscillation have rather
large effects. The question arises whether this information is acceptable. The
posterior mean and standard deviation of period of oscillation under prior 2
suggest that the hypothesis of a 10-year period is acceptable. Inspection of the
prior and posterior densities of the period of oscillation in Figure 4 reveals that
for the case of prior 2 the information from the likelihood function has modified
the prior information substantially. The posterior probability that the period of
oscillation is less than or equal to 10 years is less than .02. Further, the effect of
constraint 5 is clearly reflected in the posterior density 8’. These results suggest
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Figure 4: Prior and posterior densities of period of oscillation and dominant
root
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rejection of the constraint 5. When considering these results we investigated
specification errors. Bayesian diagnostic results indicate that there are errors in
the dynamic specification of the consumption function. So, instead of reducing
the parameter space by making use of the sets of prior constraints 1-5, we have
to enlarge the parameter space by including, e.g., lagged consumption in the
consumption equation. Preliminary results obtained with an enlarged version
of Klein’s Model I confirm this.

6 Remarks on Structural Inference in Vector
Autoregressive Models

The empirical validity of the large number of structurally identifying restrictions
in large scale macro-econometric models was questioned by several researchers
in the nineteen sixties and -seventies. These restrictions were considered to
be ‘incredible’. Further, due to the oil price shock in the seventies and due
to the deregulation in several western economic systems in the eighties, many
economic time series, in particular financial series, appear to be nonstationary.
As a consequence research in the field of dynamic econometric modeling was
redirected towards the analysis of systems of equations which have very few
restrictions and which allow for nonstationarity.

As an alternative to the class of Simultaneous Equation Models the class of
Vector AutoRegressive (VAR) Models was proposed; see Sims (1980). Within
this class of models one may investigate the issue of stationary versus non-
stationary behavior of linear combinations of economic variables, otherwise
stated the issue of cointegration restrictions and the existence of error correc-
tion models; see Engle and Granger (1987) and Johansen (1991). Well known
examples of cointegration models are permanent income hypotheses and other
present value models relating to prices and dividends of stocks, and short and
long term interest rates. It is of interest to observe that the mathematical struc-
ture of a cointegration model and a simultaneous equation model are the same;
see Hoogerheide and Van Dijk (2001). As a consequence the same local non
identification problem occurs as discussed in Section 3; see Kleibergen and Van
Dijk (1994b).

In order to obtain meaningful inference in such models research should be
directed towards the construction of flexible vector autoregressive models with
some structural restrictions referring to the long run. Interesting results have
been obtained in the field of macro-econometric modeling by Garrett et al
(2001), Strachan and Van Dijk (2001), Sims and Zha (1999) and Paap and
Van Dijk (1999).

7 Conclusions

Given the advances in computing methods and the analytical insight into the
shape of the likelihood and the marginal posterior of a SEM, the Bayesian ap-
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proach to a SEM can give useful insight in the structural effect of certain vari-
ables. However, using only vague prior information and relatively short data
periods implies that structural inference is very often fragile. The conclusion on
fragile finite sample inference is also reached in classical instrumental variable
inference; see Dufour (1996), Staiger and Stock (1997) and Zivot, Nelson and
Startz (1997). These authors show that traditional classical asymptotic infer-
ence, e.g. Wald tests on the structural parameters based on 2SLS break down
when instruments are weak due to the near nonidentification of β. As a result,
nonstandard methods are required for inference on structural parameters. Using
the results of Kleibergen (2001) and Kleibergen and Van Dijk (1998), we have
shown that similar results hold for Bayesian inference methods. Using informa-
tion from a predictive approach strengthens inference considerably. Data based
priors may also be useful in this respect; see Schweder and Hjort (2002). Flex-
ible VAR models with some structural restrictions are an interesting topic for
research, forecasting and policy analysis. We emphasize that the specification of
informative proper priors on a large econometric model is not a trivial matter.
This is the reason why the approaches discussed in this paper are explored.

It may be concluded that Bayesian structural inference is like a Phoenix.
It was almost a dead topic in the late eighties and early nineties but it has
become of renewed importance in models where reduced rank analysis occurs.
These models include structural vector autoregressive models, asset price theory
models, capital asset pricing models, factor models, dynamic panel models,
state space models, consumer demand and factor demand systems, and error in
variables models.
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