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ABSTRACT

A Bayesian model averaging procedure is presented within the class of
vector autoregressive (VAR) processes and applied to two empirical issues.
First, stability of the �Great Ratios� in U.S. macro-economic time series is
investigated, together with the presence and e¤ects of permanent shocks.
Measures on manifolds are employed in order to elicit uniform priors on
subspaces de�ned by particular structural features of linear VARs. Second,
the VAR model is extended to include a smooth transition function in a
(monetary) equation and stochastic volatility in the disturbances. The risk
of a liquidity trap in the USA, UK and Japan is evaluated, together with the
expected cost of a policy adjustment of central banks. Posterior probabilities
of di¤erent models are evaluated using Markov chain Monte Carlo techniques.

Key Words:Posterior probability; Grassman manifold; Orthogonal group;
Cointegration; Model averaging; Stochastic trend; Impulse response;
Vector autoregressive model; Great Ratios; Liquidity trap.
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1 Introduction.

In this paper we take account of model uncertainty and introduce a method of
using Bayesian model averaging in the class of vector autoregressive processes.
We demonstrate the operational implications of our approach by investigat-
ing two empirical issues. First, the stability of the �Great Ratios� in U.S.
consumption, investment and income is investigated, together with the pres-
ence and e¤ects of permanent shocks for the duration of the business cycle.
Second, the VAR model is extended to include a smooth transition func-
tion in a (monetary) equation and stochastic volatility in the disturbances.
The risk of a liquidity trap in the USA, UK and Japan is evaluated and the
expected cost of a policy adjustment of central banks.
The idea underlying Bayesian model averaging is relatively straightfor-

ward. Model speci�c estimates are weighted by the corresponding poste-
rior model probability and then averaged over the set of models considered.
Although many statistical arguments have been made in the literature to
support model averaging (e.g., Leamer, 1978, Hodges, 1987, Draper, 1995,
Min and Zellner, 1993 and Raftery, Madigan and Hoeting, 1997), only a few
recent applications suggest its relevance for macroeconometrics (Fernández,
Ley and Steel, 2001 and Sala-i-Martin, Doppelho¤er and Miller, 2004). Here
we mention three reasons for this relevance.
The �rst reason is relevance for forecasting and policy analysis. An im-

portant function of empirical economic analysis is to provide accurate infor-
mation for decision making. For example, there is evidence that permanent -
possibly productivity - shocks account for most �uctuations in consumption
(King, Plosser, Stock and Watson, 1991, and Lettau and Ludvigson, 2004)
and information may be required on the form of the response in consumption
to such a permanent shock. Centoni and Cubadda (2003), however, focus
upon business cycle �uctuations and �nd permanent shocks are not very im-
portant. While the decision maker is not directly interested in the underlying
model used to estimate the response, it is, however, the econometrician�s re-
sponsibility to detail the model upon which these estimates rely. If there
is any uncertainty about the veracity of the model, the expected loss (from
choosing a policy action) from that single model cannot equal the expected
loss that accurately accounts for model uncertainty.
A second reason for considering model averaging is methodological. There

are well known issues relating to the complexity of the model set and the
sequences used to select a model. The standard approach to providing in-
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ference is to select a single model and present empirical results based upon
this model. The usual strategy of model selection using sequential testing
procedures, however, introduces problems of model uncertainty. In the con-
text of sequential hypothesis testing, the pre-test problem is well understood
(see, for example, Poirier, 1995, pp. 519-523) and has received considerable
attention in the statistical and econometric literature. We do not intend (nor
are able) to survey the literature here, but mention that just within the unit
root and cointegration testing there have been several studies such as Elliott
and Stock (1994), Elliott (1998), Phillips (1996), Chang and Phillips (1995)
and Chang (2000) (see for useful discussion, Maddala and Kim, 1998, pp.
139-140 and 229-231).
The problem is self evident. Whether we accept or do not accept an

hypothesis, the veracity of the adopted hypothesis is uncertain. Subsequent
tests condition upon that uncertain outcome and have their own uncertain
outcomes. This process can lead to signi�cant size distortions and inappro-
priate reported standard errors. Generally, the resulting standard errors will
not fully re�ect the uncertainty associated with the estimates. The longer
the sequence of tests the more the problem compounds, and the sequence
can become very long if, for example, we consider: lag length; the type of
deterministic processes present; the number of cointegrating relations; overi-
dentifying restrictions on the cointegrating space; and even whether certain
variables are in some sense (weakly or strongly) exogenous for the inference
in question. Despite the extensive concern shown in the literature for the
pretest problem, however, a generally applicable strategy for dealing with
this issue does not appear to be available. It would seem the usual (implicit)
approach is to �. . . entirely ignore the problems caused by pretesting, not
because they are unimportant, but because, in practice, they are generally
intractable�(Davidson and MacKinnon, 1993, pp. 97-98).
An additional, related, problem due to the complexity of the model, is

the con�icting inferences that may arise depending upon which sequence of
tests is employed. For example, using the Johansen trace test and data on
consumption, investment and income from Paap and van Dijk (2003), we
�nd that the chosen cointegrating rank depends upon the chosen determin-
istic term1 and the rank may be zero or one. This suggests it is important

1As the deterministic processes enter the error correction term, testing for the pres-
ence of a trend in a VAR in levels, when cointegration is present, does not identify the
deterministic process.
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to determine the correct deterministic process before investigating the coin-
tegrating rank. However, the range of deterministic process that can occur
di¤ers if cointegration occurs or not. To take this example further, let us
assume a rank of one for these variables and we are now interested in 1)
whether the error correction term, zt; has a trend and 2) if the Great Ratios
of consumption to income and investment to income enter zt.2 Depending
upon whether we test stability of the Great Ratios �rst or test the presence
of various deterministic terms �rst, we �nd either we have no trend in zt and
that the Great Ratios do not enter zt; or that the Great Ratios do enter zt
and zt has a linear trend.
A third reason for considering Bayesian model averaging is a pragmatic

one. The support in the data is in many cases not clear or dogmatically for
or against a restriction, and researchers often do not have strong prior belief
in particular restrictions. The strategy of testing hypotheses on restrictions
and conditioning upon the outcome, e¤ectively assigns a weight of one to the
model implied by the restriction and zero to all other plausible models. Even
if the support is strongly for or against a particular restriction, with only
slight support for the alternative unrestricted model, imposing the restric-
tion ignores information from that less likely model which, if appropriately
weighted, could improve inference.
Thus, there is a con�ict between the analyst�s need to obtain the best

model and the decision-maker�s need for the least restrictive interpretation
of the information provided by the analyst. As an alternative to conditioning
on structural features, it is possible to improve policy analysis by present-
ing unconditional or averaged information. Gains in forecasting accuracy by
simple averaging have been pioneered by Bates and Granger (1969) and dis-
cussed recently by Diebold and Lopez (1996), Newbold and Harvey (2001)
and Terui and van Dijk (2002). Some explanation for this phenomenon in
particular cases was provided by Hendry and Clements (2002). Alternatively,
the averaging weights can be determined to re�ect the support for the model
from which each estimate derives. This requires accurate re�ection of the
uncertainty associated with the structural features de�ning the model.
We present a Bayesian approach for conducting unconditional inference

from the vector autoregressive model. Speci�cally, we focus on three con-
tributions. First, a general operational procedure is presented for specifying
di¤use prior information on structural features of interest which implies well-

2This implies a particular overidentifying restriction on the cointegrating space holds.
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de�ned posteriors whose moments exist. Given the prior, the information in
the likelihood function is supposed to dominate. As a result one can evaluate
the relative weights or probabilities of such structural features as the number
of stable equilibrium relationships among economic variables, the forms of
those equilibrium relationships, the dynamic responses to disequilibria, and
the type of deterministic processes that may be present. In order to obtain
these results we make use of manifolds and orthogonal groups and their mea-
sures. Then we can elicit uniform prior measures on relevant subspaces of
the parameter space. From these measures we develop prior distributions for
elements of these subspaces as the parameter of interest.
Second, using this methodology for prior elicitation and an e¢ cient Markov

chain Monte Carlo technique for simulating from the posterior, we show in
this paper how to obtain posterior inference and forecasts from model av-
erages in which the economically and econometrically important structural
features may have weights other than zero or one.
Third, we demonstrate the proposed methodology with an empirical in-

vestigation of two economic issues. First, the stability of the �Great Ratios��
as discussed in King, Plosser, Stock and Watson (1991) (hereafter KPSW) �;
the relative weights of permanent and transitory components in US consump-
tion, investment and income, and, �nally, the credibility of alternative paths
of responses to a possible productivity shock are investigated. Second, the
linear structural VAR model is extended to include a smooth transition func-
tion in a (monetary) equation and stochastic volatility in the disturbances.
Within this extended VAR model, the risk of a liquidity trap in the USA,
UK and Japan is estimated and the expected cost of a policy adjustment of
central banks is evaluated.
There exist several Bayesian analyses of VAR processes in the literature.

A complete survey is outside the scope of our paper, although we mention
the following approaches. Using so-called �Minnesota�priors, which are of a
random walk nature, Doan, Litterman and Sims (1984) investigate Bayesian
forecasting and impulse response analysis using unrestricted VARs. Sims
and Zha (1999) investigate con�dence bands of impulse responses using un-
restricted VARs. Other papers using unrestricted VARs include Koop (1991
and 1994) and Canova and Matteo (2004). Structural features in VAR mod-
els, like cointegration, are investigated by Kleibergen and Van Dijk (1994),
Strachan (2003), Strachan and van Dijk (2003), Strachan and Inder (2004),
and Villani (2005) using di¤use type of priors. Cogley and Sargent (2005),
Primiceri (2005) and Sims and Zha (2006) specify a VAR with stochastic
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volatility. We extend the analysis of these di¤erent lines of research by
considering priors on structural features and by investigating the implied
forecasts and impulse responses using Bayesian model averaging.
The structure of the paper is as follows. In the Section 2 we introduce

the basic models of interest in this paper - the vector autoregressive models,
the general structural features of interest, and the restrictions they imply.
These models are used in the �rst empirical application but we extend them
in the second to account for a wider range of behaviours. In Section 3 we
present the priors, the likelihood and useful expressions for the posterior.
The tools for inference in this paper, posterior probabilities, are introduced
and general expressions are derived for highest posterior density intervals for
features of interest like impulse responses. We demonstrate the approach in
Sections 4 and 5 with an investigation of the two empirical economic issues
mentioned before. The �rst application employs the models from Sections 2
and 3 directly. The second application builds upon these models to permit
stochastic volatility and a smooth transition in central bank reaction func-
tions. In Section 6 we summarize conclusions and discuss possibilities for
further research.

2 A Set of Vector Autoregressive Models.

Since the in�uential work by Sims (1980), the class of vector autoregres-
sive (VAR) models has enjoyed much success in macroeconometrics: it can
incorporate a wide range of short and long run dynamic, structural and de-
terministic behaviour.
The statistical theory of cointegration (Granger, 1983, and Engle and

Granger, 1987), in which a set of nonstationary variables combine linearly
to form stationary relationships, and the attendant Granger�s representa-
tion theorem provide a useful speci�cation to incorporate this feature into
the VAR model and allows the separation of long run and short run behav-
iour. For details on a likelihood analysis of VAR models with cointegration
restrictions we refer to Johansen (1995).
When a VAR process cointegrates, the model may be written in the vector

error correction model (VECM) form. The VECM of the 1� n vector time
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series process yt; t = 1; : : : ; T; conditioning on l initial observations is

�yt =
�
d1;t�1 + yt�1�

+
�
�+ d2;t�2 +�yt�1�1 + : : :+�yt�l�l + "t (1)

= z1;t�� + z2;t� + "t (2)

where �yt = yt � yt�1; z1;t = (d1;t; yt�1) ; z2;t = (d2;t;�yt�1; : : : ;�yt�l) ;

� = (�02;�
0
1; : : : ;�

0
l)
0 and � =

�
�01; �

+0�0. The matrices �j j = 1; : : : ; l are
n�n and �+ and �0 are n� r and assumed to have rank r; and if r = n then
�+ = In: The 1 � n vector of errors "t are assumed to be iidN (0;
).3 We
de�ne the deterministic terms di;t�i; i = 1; 2; formally below.
To further simplify the expressions we introduce the following notation.

For the model in (2), de�ne the T �n matrix E = ("01; "02; : : : ; "0T )
0, the T �n

matrix Z0 = (�y01; : : : ;�y
0
T )
0 and the T � (r + ki) matrix Z = (Z1� Z2)

where Z1 =
�
z01;1; : : : ; z

0
1;T

�0
and Z2 =

�
z02;1; : : : ; z

0
2;T

�0
: Finally, let B be the

(r + ki) � n matrix B = [�0 �0]0. We may now write the model, given in
equation (1) and (2) as

Z0 = Z1�� + Z2� + E = ZB + E: (3)

Vectorising this expression we have

z0 = zb+ e (4)

where z0 = vec (Z0) ; z = (In 
 Z) ; b = vec (B) and e = vec (E) : Another
expression that will prove useful later is b� = vec (�) :
Next, we specify the restrictions of interest, combinations of which de�ne

di¤erent model features of interest which we may compare or weight using
posterior probabilities. The restrictions refer to the number of equilibrium
relations, to the structural (over)identi�cation restrictions of these relations,
to particular types of deterministic processes and to the lag length.
We denote the number of stable equilibrium relationships or, more pre-

cisely, the cointegrating rank by r, where r = 0; 1; : : : ; n: For cointegration
analysis of (1), the parameters of interest are the coe¢ cient matrices �+ and
� which are of rank r � n. Of particular interest then, is r which implies
there are (n� r) common stochastic trends in yt, and r is the number of I (0)
combinations of the element of yt extant. In the case r < n and assuming

3Throughout the paper, we denote the Normal distribution with mean a and covariance
matrix b by N (a; b) :
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for simplicity �1 = 0; �
+ is the matrix of cointegration coe¢ cients, yt�

+ = 0
are the stationary relations towards which the elements of yt are attracted,
and � is the matrix of factor loading coe¢ cients or adjustment coe¢ cients
determining the rate of adjustment of yt towards yt�

+ = 0:
A second feature of interest are the particular identifying restrictions

placed upon �: These will be denoted by o; where o = 0; 1; : : : ; J and o = 0
will be understood to refer to the just identi�ed model. A range of restrictions
commonly investigated are presented in Johansen (1995, Chapter 5). We
restrict ourselvest to two cases: no restriction on � (o = 0); and � = H 
(o = 1) where  is an s � r matrix such that the cointegrating space is
either completely determined (if r = s) or is restricted to be within the space
spanned by H.
The deterministic processes in the level, yt, and the equilibrium relations,

yt�
+, are given respectively by the terms d1;t�1 and d2;t�2 in (1). The contents

and dimensions of the di;t and the �i depend upon the particular deterministic
process that occur in yt�

+ and �yt (and therefore yt): In the discussion that
follows, �1 and �1 are 1� r vectors, while �2 and �2 are 1�n vectors. These
processes can be linear trends, non-zero means or zero mean for yt�

+, and no
drift, linear drift and quadratic drift in yt: For example, if �2 = (�02 �02)

0 then
d2;t = (1; t) and this implies yt will have a quadratic drift. If �2 = �2 then
d2;t = (1) and this implies yt will have a linear drift. We consider the �ve
commonly used combinations in the table below (see, for example, Johansen,
1995):

d d1;t�1 d1;t yt�
+ d2;t�2 d2;t yt

1 �1 + �1t (1; t) linear trend �2 + �2t (1; t) quadratic drift
2 �1 + �1t (1; t) linear trend �2 (1) linear drift
3 �1 (1) non-zero mean �2 (1) linear drift
4 �1 (1) non-zero mean 0 fg no drift
5 0 fg zero mean 0 fg no drift

Each model will be identi�ed by M� where � = (r; o; d) and � 2 �;
the set of all � considered. For example, the least restricted model will be
M(n;0;1); while the most restricted model will be M(0;1;5): As an example of
models we consider, KPSW begin their investigation with results using two
VAR models with six lags: the �rst having only a constant, M(n;0;3), and the
second having a constant and a trend, M(n;0;1). From these models they �nd
evidence that suggests support for two equilibrium relations of known form
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and a linear drift which within our model set is M(2;1;3): Thus, with n = 3 in
our application, we deal with a case of 4� 2� 5 = 40 models4.
We also allow for a range of lags of di¤erences, however as these have little

economic importance for the studies we look at, and for space considerations,
we do not discuss these further except to note here that this increases the
number of models to 40 times the number of di¤erent lag lengths we consider.5

3 Priors, Posteriors and Model Averaging.

In this section the priors and resultant posterior are presented beginning
with discussion of the distribution of the prior probabilities over the model
space which contains some models that are impossible and others that are
observationally equivalent. Next we consider the priors for the parameters

 and b: Conditional upon � the model in (2)-(4) is linear in the equation
parameters b. This fact makes it relatively straightforward to elicit priors
on 
 and b, however we adopt a transformation that improves the sampling
scheme and so give the full prior after we have given careful consideration to
the prior for �; before then presenting the method of posterior analysis.

3.1 The Prior.

In this paper we wish to treat all models as a priori equally probable, however
this is not a straightforward issue.6 The priors for the individual elements of
� = (r; o; d) are not independent, as certain combinations are either impossi-
ble, meaningless (such as, for example, r = 0 with o = 2) or observationally
equivalent to another combination (such as the models with r = n and d = 1
or 2). The natural prior probability to assign to impossible models is zero7.
However, the researcher must carefully consider how she wishes to treat ob-
servationally equivalent models.

4This reduces to 26 models when we account for impossible models and observationally
equivalent models. See Subection 3.1 below for further discussion on this point.

5Generally, if we consider L di¤erent lag lengths the number of observationally distinct
models is L (1 + 5 (n+ s)) :

6The authors are grateful to Geert Dhaene, John Geweke and an anonymous referee
for useful comments on this issue.

7Although the actual prior probability we assign to impossible models - provided it is
less than one - is irrelevant as the marginal likelihood for these models will be zero, such
that the posterior probability will be zero by design.
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It would seem sensible to regard this set of observationally equivalent
models as just one model and then assign equal prior probabilities to all
these models. For example, at r = 0 the models with d = 2 and d = 3 are
observationally equivalent. If we were to treat these two as one model, they
would receive half the prior probability of other models with rank 0 < r <
n. Systematic employment of this principle, however, would bias the prior
weight in favour of models with 0 < r < n: This could shift the posterior
weight of evidence in favour of some economic theories for which we wish to
determine the support.8

Alternatively we could specify all possible combinations of the indices in
� be equally likely to avoid biasing the evidence in favour of other classes of
models. However, any bias towards some models can be viewed as simply
a result of Bayes Theorem. This is the view we take and we implement
the �rst approach (treating observationally equivalent models as one model)
in the following way. We �rst assign probabilities to various values of the
model features such as di¤erent cointegrating ranks, p (r) ; or deterministic
processes, p (d). We then set the prior weighting for each model as k (M�) =
p (r) p (o) p (d) : Next, set k (M�) = 0 for impossible combinations and for
each set of combinations of � that imply observationally equivalent models,
we set k (M�) = 0 for all but one of the combinations. Finally we compute
the prior model probabilities as p (M�) = k (M�) =��k (M�) where in the
denominator we have summed k (M�) over all �.
To demonstrate these prior probabilities we use the �rst application in this

paper. As we have n = 3, r 2 [0; 1; 2; 3] so we use p (r) = (n+ 1)�1 = 0:25
and with d 2 [1; 2; 3; 4; 5] we set p (d) = 0:2: In our application we consider
two states of overidenti�cation of �: In the �rst state � is unrestricted (o = 0)
and in the second we have � = H (o = 1) and so we set p (o) = 0:5 for
o 2 [0; 1] :
For each model implied by a particular value of �; we need to specify a

prior for the parameters in the model. We use a proper inverted Wishart with
scale matrix S = In10 and degrees of freedome � = 10 as the prior for 
. As
b changes dimensions across the di¤erent versions of � implied by di¤erent
models and each element of the vector b has the real line as its support, the
Bayes factors for di¤erent models will not be well de�ned if an improper prior

8This issue could be viewed as a con�ict between the desire to be uninformative across
statistical models and the desire to be uninformative across economic models.
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on b; such as p (bj�;M�) _ 1 were used.9 For this reason a weakly informative
proper prior for b must be used. We defer giving an expression for the full
prior to the end of the next subsection, but the prior for b conditional upon
(
; �;M�) has zero mean and covariance matrix V = 
 
 ��1I(r+ki).

10 We
choose the value of � = 10 as this provides a mild degree of shrinkage towards
zero which has been shown to improve estimation (See Ni and Sun, 2003).
Further evidence on the in�uence of this choice can be found in Strachan and
Inder (2004).
As � and � appear as a product in (2), r2 restrictions need to be imposed

on the elements of � and � to just identify these elements. Much of the
work to date in Bayesian cointegration analysis has used linear identifying
restrictions. That is, by assuming c� is invertible for known (r � n) matrix
c and the restricted � to be estimated is � = � (c�)�1 : The free elements
are collected in �2 = c?� where c?c0 = 0: For example, if c = [Ir 0] then

� =
h
Ir �

0
2

i0
and a prior is then speci�ed for �2.

11

We also note that a requirement to employ linear restrictions is that we
know enough about the cointegrating space to be able to choose c such that
c� is nonsingular such that �2 = c?� (c�)

�1 exists. Making use of this
assumption to impose these linear restrictions, however, has the unexpected
and undesirable result that it makes this assumption a priori impossible (see
the Appendix, Theorem 4).
Assuming that c is known, Kleibergen and van Dijk (1994 & 1998) (com-

pare also Bauwens and Lubrano, 1996) demonstrate how a �at prior on �2 can
result in, at best, nonexistence of moments of �2; and, at worst, an improper
posterior distribution thus precluding inference. They also outline how local
nonidenti�cation precludes the use of Markov Chain Monte Carlo (MCMC)
methods due to reducibility of the Markov chain. As a solution they propose
using the Je¤reys prior as the behaviour of this prior in problem areas of
the support o¤sets the problematic behaviour of the likelihood: a related
solution is proposed in Kleibergen and Paap (2002) and Paap and Van Dijk

9For the original discussion on this point see Bartlett (1957) and more recently O�Hagan
(1995), Strachan and van Dijk (2003) and Strachan and van Dijk (2005).
10If an informative prior is used on for the cointegrating space then we recommend the

prior for B in Koop, León-González and Strachan (2005).
11There exist practical problems with incorrectly selecting c: The implications for clas-

sical analysis of this issue are discussed in Boswijk (1996) and Luukkonen, Ripatti and
Saikkonen (1999) and in Bayesian analysis by Strachan (2003). In each of these papers
examples are provided which demonstrate the importance of correctly determining c:
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(2003). Using these approaches avoids the issue of local nonidenti�cation,
results in proper posteriors and allows use of MCMC, although the posterior
again has no moments of �2:
As is indicated before, a �at prior on �2 cannot be employed to obtain

posterior probabilities for M� since the dimensions of �2 depend upon �:
It would appear, then, that we need to be informative to obtain inference.
Denoting the space spanned by � by p = sp (�), we can say it is p, and not �,
that is the primary object of interest and this space is in fact all we are able
to uniquely estimate. The parameter p is an r-dimensional hyperplane in Rn

containing the origin and as such is an element of the Grassman manifold12

Gr;n�r (James, 1954), p 2 Gr;n�r.
We save the technical discussion for the Appendix, but to implement this

approach, we specify � to be semi-orthogonal, i.e., �0� = Ir; and specify a
Uniform distribution for � (for some background information, see Strachan
and Inder (2004) and Strachan and van Dijk (2003)).
A Uniform prior for p over Gr;n�r is implied by a Uniform prior for � over

Vr;n. This prior has the form p (�jM�) = c
�1
� where13 c� =

R
Gr;n�r

d� and �
is the r-frame with �xed orientation in p. The measure on Gr;n�r used in
the above expression is derived from its relationship with the spaces Vr;n and
O (r) ; see the Appendix and the reference given there.14

For the cases in which we impose identifying restrictions discussed in
Section 2 of the form � = H (o = 1), we impose  2 Vr;s and impose
the Uniform prior on Vr;s: This implies that we are unformative about the
orientation of the vectors � in sp (�) : For computational and mathematical
simplicity we also convert H to be semiorthogonal by the transformation
H ! H (H 0H)�1=2 : This transformation is innocuous since the space of H;
which is the important parameter, is unchanged by this transformation.
As � is semiorthogonal, it is clear that the posterior distribution will

12The authors would like to thank Soren Johansen for making this point to one of the
author�s. Villani (2005) also makes use of a prior on p:
13We acknowledge that this notation is not technically correct. If we were to denote the

measure for the Grassman manifold as dgnr ; then we should really write c� =
R
Gr;n�r

dgnr :

However, for notational clarity we use the notation d�:
14More recently, the topic of invariance to rescaling of the data has been raised in

conversations with colleagues. Our prior is not invariant, but nor are any other priors
presented in the literature with the exception of Kleibergen and van Dijk (1994) and
Strachan (2003). However, only Strachan (2003) can be used for BMA and this only if
the data dependence is ignored. We do not consider invariance further here except to note
that it may be regarded as an important issue worthy of further investigation.
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be nonstandard regardless of the form we choose for the prior. Therefore, to
obtain an expression for the posterior useful for obtaining draws of �; wemake
use of the fact that the matrices � and � always occur in a product form as
�� such that we can introduce any full rank square r�r (unidenti�ed) matrix
U such that �� = �UU�1� = ����. Note that the matrices �� and � have
the same support, however, � is semiorthogonal with the Stiefel manifold
as its support while �� has as its support the nr dimensional real space.
We give �� a Normal prior with zero mean and covariance matrix n�1Inr.
We can easily transform back to the parameters of interest via � = ��U�1

and � = ��U: The prior for �� resembles that of Geweke (1996) except that
our prior implicitly speci�es, in addition to a proper prior for U , that the
marginal prior for � = ��U�1 is Uniform. The approach we use extends that
of Koop, León-González and Strachan (2005).
We let b� denote the vector b with the elements of � replaced by the

corresponding elements of �� and recall b�� = vec (��) : The prior for b�

is N
�
0;

 ��1I(ki+r)

�
. The full prior distribution for the parameters in a

given model is then

p (
; b�; b��jM�) _ exp
n
��
2
b�0
�

�1 
 I(ki+r)

�
b� � n

2
b0��b��

o
j
j�(n+r+k�+1)=2 :

3.2 Posterior Analysis.

An expression for the posterior distribution of the parameters for any model
given the data is obtained by combining the prior, p (
; b�; b��jM�) ; with the
likelihood for the data L (yj
; b�; b�� ;M�) where y represents all data. That
is,

p (
; b�; b��jM�; y) _ p (
; b�; ��jM�)L (yj
; b�; b�� ;M�) = k (
; b�; ��;M�jy) :
(5)

As we will be using a Gibbs sampling scheme we need to present the con-
ditional posterior for each parameter. To simplify the presentation of the
posteriors, we use the transformation �� = �UU�1� = ���� and the fact
that, conditional upon b�� ; the model in (3) and (4) is linear.
As the model is linear conditional upon b�� ; standard results show that

the posterior for b� will be
b� � N

�
b; V

�
(6)

where b =
�
In 


�
Z 0Z + �I(ki+r)

��1
Z 0
�
z0 and V =

�
V �1 + V �1��1 = 
 
�

Z 0Z + �I(ki+r)
��1

:
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Next, in the equation (3) we vectorise Z1�
��� to obtain vec (Z1�

���) =
z1b�� where z1 = (��0 
 Z1) : Thus we can rewrite the expression in (4) asez0 = z1b�� + e where ez0 = vec (Z0 � Z2�) ; and use standard results again to
show the posterior for b�� will be

b�� � N
�
b�� ; V ��

�
(7)

where b�� = V �� (�
�
�1 
 Z 01) ez0 and V �� = [(�

�
�1��0 
 Z 01Z1) + nInr]
�1
:

We use the following scheme at each step i to obtain draws of (b�;
; ��) :

1. Initialize (b�;
; b��) =
�
b�(0);
(0); b

(0)
��

�
.

2. Draw 
jb�; b�� from IW (S + �B0B + E 0E; T )

3. Draw b�j
; b�� from N
�
b; V

�
4. Draw b��j
; b� from N

�
b�� ; V ��

�
.

5. Repeat steps 2 to 4 for a suitable number of replications.

An important component of Bayesian inference is the posterior probability
of each model, p (M�jy). These can be derived from the marginal likelihoods
m� for each model via the expression

p (Mijy) =
mip (Mi)X

�2�

m�p (M�)
=

mi=m0p (Mi)X
�2�

m�=m0p (M�)
(8)

where the summation in the denominator is over all elements of � and the
marginal likelihood m0 is for some model M0: The marginal likelihood for a
model is given by

m� =

Z
R(ki+r)n

Z

>0

Z
Gr;n�r

k (
; b�; ��;M�jy) (db��) (d
) (db�) ; (9)

where b� 2 R(ki+r)n, 
 is positive de�nite (denoted 
 > 0). The expression in
(8) suggests two ways to compute the model probabilities. We could either
compute the m� directly and use the �rst expression, or we could compute
the ratio m�=m0 for each model and use the second expression.
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IfM0 nests within all of the models in the model set (M0 need not actually
be in the model set considered) then we can use the Savage-Dickey density
ratio (SDDR) to estimate m0=mi (Verdinelli and Wasserman (1995) and see
Koop, León-González and Strachan (2005) for an example of an application
of this approach). To demonstrate brie�y, the model M0 = M(0;1;5) nests
within all models at the point b� = 0; and the SDDR can be computed as
the ratio of the marginal posterior to the marginal prior at the point b� = 0.
Thus

m0

mi

=
p (b� = 0jM�; y)

p (b� = 0jM�)
:

Given our earlier choices for the prior, the expression p (b� = 0jM�) = ��n(k�+r)=2

�ni=1
�[(�+k�+r+1�i)=2]

�[(�+1�i)=2] : Given sequences of draws
�

(i); b

(i)
��

�
; i = 1; : : : ; K

from the posterior and
�

(j); b

(j)
��

�
; j = 1; : : : ; K from the prior15, the mar-

ginal posterior density for b� can be approximated by

bp (b� = 0jM�; y) = K�1
KX
i=1

p
�
b� = 0j
(i); b(i)�� ;M�; y

�
:

Alternatively we could directly estimate mi using, for example, the ap-
proach of Gelfand and Dey (1994). This approach is attractive if the di-
mension of the integral to be approximated is not large. In our case we
can reduce the dimension as the posteriors of b� and 
 have standard con-
ditional forms and so we can readily integrate these out of the full joint
posterior to obtain an expression for p (b�� ;M�jy) _ g�k (b��jM�; y) (db��) :
We can write m� = g�c� where g� is known and given in the Appendix and
c� =

R
k (b��jM�; y) db�� is the only unknown term to be estimated.

To estimate the marginal likelihood, we must estimate the term c�. We
approximate this integral using the method proposed by Gelfand and Dey
(1994) which uses the relation

1

c�
=

Z
q

k

k

c�
(db��) :

in which q = q (b��) is a proper known density and k = k (b��jM�; y). As
we have we have a sequence of draws b(i)�� ; i = 1; :::; J; from the posterior

15It is relatively straightforward to show that the conditional priors are all proper and
of standard Normal and inverted Wishart forms.
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distribution for b��, we can estimate c� by

bc� = J

�
�Ji=1

q(i)

k(i)

��1
:

As our choice for q, we use a truncated Normal with mean zero and
covariance matrix Inr 1n : The truncation is such that the density is zero for
b0��b�� > ��nr where Pr (�nr > ��nr) = 0:01 and �nr is a Chi-squared random
variable with nr degrees of freedom. Except for the truncation, this the
same density as the prior and implies a Uniform density for �:16 With a non-
diagonal covariance matrix this density for �� would imply a Matrix Angular
Central Gaussian distribution (Chikuse, 1990) for �. Our choice of q implies
the ratio k=q has the form of a kernal for a 1-1 poly-t density but over a
compact support. This density will have fat tails and so q=k will tend to be
stable, however the truncation further ensures the stability.
Alternative approaches exist for estimating c�. For the computation of

the posterior probabilities, we need only draws of �� to approximate c�. If
the model set becomes large then computation times for the above strategy
may become rather large. A sensible strategy then would be to include the
model in the sampling scheme. This could be achieved using a method such
as the reversible jump methodology of Green (1995). Kleibergen and van
Dijk (1998) and Kleibergen and Paap (2002) develop MCMC schemes in
the simultaneous equations model and the VECM. Strachan (2003) employs
this approach when � has been identi�ed using restrictions related to those
of the ML estimator of Johansen (1992). Alternatively one may use the
Adaptive Radial based method of Bauwens, Bos, van Dijk and van Oest
(2004) or the neural network mixture method of Hoogerheide, Kaashoek and
van Dijk (2006). Bauwens and Lubrano (1996) and Strachan and Inder (2004)
demonstrate other approachs.

3.3 Bayesian Model Averaging with MCMC.

In this section we outline how we implement Bayesian model averaging to
provide unconditional inference. One of the advantages of our approach
over previous approaches is that for all model speci�cations we consider, as
shown in the Appendix, the posterior will be proper and all �nite moments

16The symmetric truncation for the symmetric density has no implications for the dis-
tribution on the cointegrating space or �.
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of �� (or �) exist. The importance of this statement becomes evident when
we consider that economic objects of interest to decision-makers are often
linear or convex functions of the cointegrating vectors. As we wish to report
expectations of these objects, we require the existence of moments of ��.
Suppose we have an economic object of interest � which is a function of

the parameters for a given model (b�;
; ��jM�), � = � (b�;
; ��jM�). We
wish to report the unconditional (upon any particular model) expectation of
this object. That is, we wish to report an estimate of

E (�jy) =
X
�2�

E (�jy;M�) p (M�jy)

where E (�jy;M�) is the expectation of � from model �: To obtain this
estimate, denote the ith draw of the parameters from the posterior dis-
tribution for model M� as

�
b�(i);
(i); ��(i)

�
and so the ith draw of � as

�(i) = �
�
b�(i);
(i); ��(i)jM�

�
. Next suppose we have i = 1; : : : ; J draws

of the parameters from the posterior distribution for each model. To ap-
proximate E (�jy), we �rst obtain estimates of E (�jy;M�) from each model
by bE (�jy;M�) =

1

M
�Mi=1�

(i) for each �:

These estimates are then averaged as

bE (�jy) = JX
j=1

bE (�jy;M�) bp (M�jy)

in which bp (M�jy) is an estimate of p (M�jy) :

4 The Great Ratios.

In this subsection we provide empirical evidence on the role of permanent
shocks in logarithms of U.S. consumption (ct), investment (it) and income
(inct) as studied by KPSW. The KPSW study proposes these variables are
subject to a single common permanent productivity shock and that the con-
sumption/income and investment/income ratios are stable. They also report
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evidence that the bulk of the �uctuations in these variables is due to the per-
manent shock. Using an extended data set up to and including July 200517,
we report evidence upon the number of common permanent shocks, the sup-
port for the stability of the consumption/income and investment/income
ratios as implied by the KPSW model, and the proportion of variability in
the three variables in the system yt = (ct; it; inct) over the business cycle
that is due to permanent shocks. Finally, we report full densities of impulse
responses to permanent shocks to demonstrate the importance of model un-
certainty.
Evidence on Permanent Shocks and the �Great Ratios�.
KPSW translate the above features of the system of variables into re-

strictions upon a VECM and investigate the support for these restrictions.
These model restrictions are that there is one common stochastic trend and
ct � inct and it � inct will both be stationary I (0) processes. We therefore
allow the rank, r; to vary over all possible values, r 2 [0; 1; : : : ; n] and for the
log di¤erences ct� inct and it� inct to either form the cointegrating relations
(if r = 2) or the variables will enter the cointegrating relations via these
relations (if r = 1). Finally we also allow for the range of �ve combinations
of deterministic processes suggested in Section 2. An additional feature of
the model of KPSW is that if ct� inct and it� inct are stationary, we would
not expect them to contain trends. Thus we would expect the evidence to
suggest d < 2: The set of 234 models18 may be summarised as r 2 [0; 1; 2; 3],
o 2 [0; 1], d 2 [1; 2; 3; 4; 5] and l 2 [0; 1; : : : ; 8].19
Beginning with the support for the alternative models in the model set,

the modal model with posterior probability of 78%, has six lags of di¤erences,
one stochastic trend (r = 2), the great ratios do not form the cointegrating
relations, o = 0, and the equilibrium relations and the levels contain deter-
ministic trends (d = 2). The posterior probabilities of the models (averaged
over lags and computed using the method of Gelfand and Dey (1994)) are
given in Table 1. These results show that both with and without the overi-

17The data are seasonally adjusted, quarterly observations covering the period from the
�rst quarter 1951 to the second quarter of 2005, on Personal Consumption Expenditures,
Gross Private Domestic Investment, and GDP (Source: Bureau of Economic Analysis).
18Simply multiplying up the cardinality of each set of (r; o; d; l) would produce 360 mod-

els. However, several models are impossible and so excluded, or observationally equivalent
to another and so we count these as one model. See Section 3.1 for discussion on this
point.
19All models with lags below 5 had zero posterior probability.
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dentifying restrictions, the weight of support is upon there being one common
stochastic trend in yt (p (r = 2jy) = 91%), with some support for a second
stochastic trend (p (r = 1jy) = 8:2%). This result gives substantial support
to the �rst feature suggested by the model proposed in KPSW, that these
variables share a single permanent shock. The second feature, that ct � inct
and it� inct are cointegrating relations, however, has a posterior probability
of only 9:1%: These two conclusions agree with the �ndings of Centoni and
Cubadda (2003) (hereafter CC) who use an extended data set to April 2001.
Finally, we also �nd strong evidence that the equilibrium relations are I (0)
with linear deterministic trends as p (d = 2jy) = 87:9%:20

Table 1: Posterior probabilities of structural features for real business cycle
model. Note that the cells for observationally equivalent models have been
merged.

Just Identi�ed Models (o = 0)
r d = 1 d = 2 d = 3 d = 4 d = 5
0 0:00 0:00 0:00
1 0:02 0:01 0:00 0:01 0:01
2 0:01 0:81 0:01 0:01 0:01
3 0:00 0:00 0:00

Over Identi�ed Models (o = 1)
1 0:01 0:01 0:00 0:00 0:00
2 0:00 0:06 0:00 0:00 0:00

E¤ects of Permanent Shocks: Next we consider the importance of the
permanent shocks in the business cycle. Decomposing the variance into the
components due to transitory and permanent shocks, we gain an impression
of the relative importance of these e¤ects for the variability of the consump-
tion, investment and income. KPSW derive an identi�cation scheme for this
decomposition based upon a particular economic theory. In our data there
is uncertainty associated with this theory.
KPSW estimate the proportion of variance due to permanent shocks in

the time domain for the model M(2;1;3) with 8 lags of di¤erences. For it and

20The results p (o = 1jy) = 0:91 and p (d = 2jy) = 0:789 most likely re�ect the (probably
temporary) fall in the savings ratio and the rise in the investment ratio towards the end
of the 1990s which is very evident in the data. Thus these conclusions are possibly sample
dependent. The issue of structural breaks is not considered, but we note it as a possible
direction for further research.
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inct they report proportions varying from 0.88 (ct), 0.12 (it) and 0.45 (inct) at
one quarter after the shock to 0.89 (ct), 0.47 (it) and 0.81 (inct) respectively
at 24 quarters after the shock. Our interest is in the proportion of business
cycle �uctuations due to permanent shocks and so follow CC who consider
the variance decomposition within the frequency domain.
With their slightly shorter sample, CC found proportions of variability

over an 8-32 quarter period of 0.57 for ct, 0.14 for it and 0.18 for inct. Ta-
ble 2 reports the proportions of �uctuations over 8 to 32 quarters that are
due to permanent shocks for the three variables using our updated data set
and extended model set. We see from these results that the KPSW model
assigns a larger proportion of the variability in consumption and income to
the permanent (productivity) shock than the other models. The remaining
models generally agree with each other, at least in the relative sizes if not the
exact values. Thus, using our Bayesian model averaging approach we �nd
support for the conclusion of CC that the single permanent shock is not the
main determinant of business cycle �uctuations.

Table 2: Estimated variance decompositions into permanent components in
the frequency domain.

Estimation method ct it inct
Averaged over all models 0.17 0.43 0.26
CC model M(2;0;3) 0.19 0.40 0.25
KPSW model M(2;1;3) 0.24 0.38 0.32
Best model M(2;0;2) 0.17 0.51 0.22

We conclude by reporting for each variable the impulse response path
from a permanent shock. We assume there is only one permanent shock
(and so condition upon r = 2), but average over the other model features.
The impulses for ct; it and inct are shown in Figures 1, 2 and 3 respectively.
The upper panel in each �gure shows the full density over all 60 periods.
The bands represent the boundaries of 20%, 40%, 60% and 80% highest
posterior density regions (HPDs). These are contours of the density that
de�ne the smallest possible regions containing the stated mass. To aid with
the interpretation of these �gures we have included in the lower panels the
pro�les of the density of the impulses at three points in time after the shock.
These are at h = 10; h = 30 and h = 60 periods after the shock.
We see that the 20% and 40% HPDs are very sensitive to changes in the

shape of the density and so re�ect small movements in the bulk of the mass.
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The 60% and 80% HPDs are less sensitive and tend to show the general
direction of the response. The lower panels show the changes in the shape
of the densities that cause the movements in these HPDs. In each case there
are two or more paths that in�uence the densities at di¤erent intervals.
For consumption, the peak near zero slowly loses prominence to the more

dispersed, higher mass as the period increases. For investment, there are
three paths at early stages, with the higher path dominating. Over time,
however the central path becomes the only important path. Looking at the
response path of income, we see there are two separate paths that compete
immediately after the shock, and they both remain important as we move
out along the time horizon. The higher path, however, moves only slightly
down toward zero and becomes more signi�cant.
The form of these densities are important for giving a full account of the

uncertainty associated with the responses. In each case the secondary (or
more) paths derive from models with low posterior probabilities. However,
neglecting these models and using only the best model (e¤ectively assuming
model certainty) would produce very di¤erent estimates of, say, expected loss
from a particular action.

5 The Risk of a Liquidity Trap in the UK,
the USA and Japan and Evidence of its
Importance for Monetary Policy.

5.1 Introduction.

In recent decades some industrialized nations, in particular Japan, seem to
have reached a state of the economy where in�ation, interest rates and eco-
nomic growth are all low. Some illustrative data (interest rates21, rt; prices22,
pt; and real per capita GDP, gt) are given in Figure 5 for the UK, USA and
Japan. With low or negative in�ation and already low interest rates, mon-
etary policy to activate the economy by lowering interest rates even further
may not be e¤ective or possible anymore. One may characterize this state

21The interest rate is the overnight Federal Funds Rate for the US, Quarterly average
of elibible bills for the UK, and the Money Market (call money) rate for Japan.
22For each country, pt is taken to be the log of the CPI for the US and Japan, and the

log of the RPI for the UK.
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of the economy as the liquidity trap and - clearly - Central Bank authorities
wish to avoid such a state.
The literature on the liquidity trap is extensive. Discussions of this issue

date from Keynes (1936) and Hicks (1937)23 who focussed upon the form of
the IS-LM model and a positive lower bound on long interest rates. More
recent work, however, tends to focus upon the importance of the zero lower
bound (ZLB) on short maturity interest rates. Eggertsson and Woodford
(2003a,b and 2004) demonstrate how the ZLB on interest rates complicates
the conduct of monetary policy in a low in�ation environment and the role of
�scal policy in such a situation. Summers (1991) identi�ed a trade-o¤, due
to the ZLB, between the aims of achieving a zero-in�ation target and stable
output. Fuhrer and Madigan (1997) use simulation to provide evidence on
the importance of a ZLB on US interest rates in a low in�ation environment
in contrast to a high in�ation environment, and conclude that the optimal
rate of in�ation should be positive rather than zero. Other interesting studies
include Reifschneider and Williams (2000), Orphanides and Wieland (1998),
and Wolman (1998).
In this subsection we generalise the VAR model to allow for both coin-

tegration and multivariate stochastic volatility (VECM-SV) and a smooth
transition function in a monetary equation (VECM-SV-ST) to allow infer-
ence on central bank reactions to the risk of (near) zero interest rates. We
have two aims: 1) to provide estimates of the probability of encountering the
LT, pLT , for the US, the UK and Japan between 1975 and quarter three of
2006 using statistical methods that are informed by empirical observations
rather than economic or calibrated model based results; and 2) to obtain
inference on the expected cost of encountering the liquidity trap.
We de�ne the LT as occurring if interest rates fall below some low level,

r, for two or more consecutive quarters in the next twelve months and the
probability of this event is pLT;t. The reasoning behind this de�nition of the
LT is that we assume r is a boundary for what the central bank believes is
an absorbing state under current strategies. Once interest rates fall below
this level, the bank or the government must adopt di¤erent strategies, such
as appropriate �scal stimulus, to escape the LT.
Initially we assume the boundary r is known to be either 0.25% or 0.5%,

23Boianovsky (2003) outlines early discussion by Hicks (1937) who attributed the con-
cept of the LT to Keynes and focussed on a lower bound on long (bond) rates. More
recent discussions tend to focus upon the ZLB for short rates. Boianovsky (2003) gives an
interesting overview of the development of the term and concept of the �liquidity trap�.

23



but we later estimate r. In that the computation of pLT;t relies on the entire
forecast distribution, not just the mean forecast, our approach resembles
the approach of Orphanides and Wieland (1998). We impose the ZLB by
working with the log of the interest rates and so this approach implies a
nonlinear reaction function similar to that used in, for example, Fuhrer and
Madigan (1997). The modeling strategy implies conditional independence
of the forecast distributions. We compute the probability, pt;i, at each time
t that the interest rate i periods in the future will be below r for each
i = 1; 2; 3; 4. We can then compute pLT;t from these values of pt;i.
In the �rst stage of the work we a VECM-SVwith no central bank reaction

to LT and compute pLT;t with known r: The evidence suggests the pLT;t
signi�cantly increased in the US and particularly in Japan around the turn
of the century but has fallen more recently.
While pLT;t may be low, the cost of LT, lLT is high, thus the expected

cost (pLT;tlPT ) will be large enough to prompt banks to react. An example
of a strategy that might produce such a response is the forward-looking ad-
justment to the Taylor Rule discussed in Reifschneider and Williams (2000).
This change in behaviour, which we model in the second stage of the study,
will show up in the equation for rt. In the second stage, the results from the
VECM-SV-ST show that allowing the bank to react to the possibility of the
LT results in signi�cantly lower probability estimates over the full period for
each country and estimated values of r of 0:28% (US), 0:38% (Japan), and
0:46% (UK).

5.2 Cointegrating VAR with stochastic volatility and
smooth transition.

As evidenced from the literature (Cogley and Sargent 2005, Primiceri 2005
and Sims and Zha 2006), it is important to appropriately model heteroscedas-
ticity for these variables. Therefore values of pt;f are estimated from a reduced
form vector error correction model as in (1), but with multivariate stochastic
volatility given by

�yt = z1;t�� + z2;t� + ut�tA
�1
t (10)

where ut is a vector of independent standard Normal variables. The speci-
�cation for the covariance matrix is similar to that of Primiceri (2005). We
denote the covariance of "t = ut�tA

�1
t at time t as 
t and decompose 
t as
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A0t
tAt = �
0
t�t where �t = diag f�1;t; �2;t; �3;tg and At is given as

�ytAt = (�gt; �t;�lrt)

24 1 %1;t %2;t
0 1 %3;t
0 0 1

35 =
0@ �gt

�t + %1;t�gt
�lrt + %2;t�gt + %3;t�t

1A :

We do not give economic interpretations to these expressions beyond assum-
ing that the central bank reaction function is embedded in the mean equation
for the interest rates (see for example, Garratt et al. 2003).
De�ne the log structural variances hi;t = ln (�i;t) for i = 1; 2; 3 and collect

the parameters into 3�1 vectors ht = (h1;t; h2;t; h3;t)0 and %t =
�
%1;t; %2;t; %3;t

�0
.

We assume these parameter vectors evolve according to the state equations

ht = ht�1 + �t and %t = %t�1 + �t: (11)

The vectors �t and �t are assumed independent of each other and Normally
distributed with zero mean. �t has 3 � 3 covariance matrix 	 and the �rst
element of �t has variance s1 and is independent of the remaining elements
which have 2� 2 covariance matrix S2.
Recent evidence suggests it is less important to allow time variation in

the reduced form coe¢ cients if heteroscedasticity is appropriately modelled.
While providing evidence themselves, Sims and Zha (2006) point to the re-
sults for the US by Primiceri (2005) and the contrast between the results of
Cogley and Sargent (2001) and Cogley and Sargent (2005) in support of this
claim for the US. We therefore assume constant reduced form mean equation
coe¢ cients.
In the second stage of the study we again use a VAR model, but we

augment the equation for the log interest rates with parameters that will be
di¤erent from zero if the central does react to the possibility of the LT, and
the same variables multiplied by the probabilities of the liquidity trap.
This augmentation in the reduced form equation comes from an aug-

mented reaction function. The modeling strategy assumes the central bank
obtains forecasts of interest rate distributions while ignoring the possibility
of the LT. If the forecast distributions imply a high enough value for pLT;t
such that the expected costs of the LT is signi�cant, the bank will then in-
corporate this into its interest rate setting strategy via a shift in the reaction
function. For example, assume that ignoring the possibility of the LT, the
interest rate rule produces ln rNoLT;t: Estimates of pLT;t are then obtained
from the forecast densities of rNoLT;t.
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Next, assuming pLT;t = 1, the interest rate rule produces ln rLT;t. Com-
bining the two rules we therefore have the rule for setting the interest rate,
rt; as

ln rt = (1� pLT;t) ln rNoLT;t + pLT;t ln rLT;t

= ln rNoLT;t + pLT;t (ln rLT;t � ln rNoLT;t) :

As pLT;t is a continuous bounded variable, this speci�cation implies a
smooth transition function for the reaction function where the transition
function is pLT;t which itself is a function of forecast densities of rNoLT;t. The
resulting mean equation for the log interest rates in the reduced form VAR
will be functions of the reaction functions that produce ln rLT;t and ln rNoLT;t.
We augment the model (10) with this speci�cation of the monetary policy
equation. Denoting by a subscript 3 the coe¢ cients in the equation for ln rt,
the resulting equation in the VECM-SV-ST for the interest rates will be

ln rt = z1;t��3 + z2;t�3 + pLT;t

h
z1;t��

#
3 + z2;t�

#
3

i
+ ut�tA

�1
t :

From the form above, we have simple testable hypotheses to establish
the evidence for or against the hypothesis that monetary policy responds to
the likelihood and extent of the event LT. If the monetary authority does
not behave di¤erently when faced with the liquidity trap then Et (ln rLT;t) =
Et (ln rNoLT;t), which implies �

#
3 = 0 and �

#
3 = 0.

An important determinant of the role of expectations formation is whether
shocks are permanent or transitory. We wish to remain uninformative on the
exact speci�cation of the model and so, to allow for the proportion of vari-
ability in the variables that is due to permanent shocks to cover the full
range from zero (implied by no stochastic trends) to one (implied by three
stochastic trends in the system), we consider models with r = 0; 1; 2; and
3: Deterministic processes and the lag structure a¤ect the forecasting per-
formance of the model which is important in this application. We therefore
allow d = 3; 4; and 5 and l = 0; 1; 2; and 3:
The full (general) model now has the form

�yt = z1;t��+ z2;t� + pLT;t
�
z1;t��

# + z2;t�
#
�
+ ut�tA

�1
t

= ezt eB + ut�tA
�1
t (12)

where �z = (0; 0; �z03 )
0 and�z = (0; 0;�z03 )

0 ; ezt = (z1;t�; z2;t; pLT;tz1;t�; pLT;tz2;t) ;eB = [�0;�0; �z0;�z0]0 : This augmentation of the monetary policy equation im-
plies the model has the form of a Seemingly Unrelated Regression model, we
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will refer to it as the SUR model. We collect all the mean coe¢ cients intoeb = (b00; b01; bz0; )0 where b1 = �vec (�)0 ; vec (�)0�0 ; bz = �vec (�z3)0 ; vec (�z3)0�0 ;
and b0 is the vector of zero elements in �z and �z: Collecting the nonzero
elements into b = (b01; b

z)0 ; so that eb = (b00; b0)0 :
5.3 Priors and posteriors.

We describe the sampling scheme for r, %t; ht; and b. Given r, %t; ht; and b;
the probabilities in the vector pLT = (pLT;1; : : : ; pLT;T )

0 can then be computed
directly and used to update the posteriors for r, %t; ht; and b.
We use the same priors for the variances of the state equations, 	; s1

and S2; as Primiceri (2005), and our priors for the initial values %0 and h0
are Normal with the mean equal to the OLS estimate from the �rst 20%
of the sample and covariances 0:004I3 and I3. A good description of the
method of drawing %t and ht using the Kalman �lter is given in Primiceri
(2005) and so we refer readers to that paper for a full explanation. Brie�y,
for %t; measurement equations are constructed for %1;t and

�
%2;t; %3;t

�
from�

�yt � ezt eB�At = ut�t and for ht the measurement equation is obtained by
squaring and taking logs of the elements of the above equation. That is, if
the ith element of �yt � ezt eB is byi;t = exp fhi;tgui;t; then the measurement
equation for hi;t is given by24 ln

�by2i;t� = 2hi;t+ ln �u2i;t� : As the error ln �u2i;t�
is not Normal, the mixture of Normals approximation of Kim et al. (1998)
is used to implement the Kalman Filter.
For the vector b we again use a conditional Normal prior with zero mean

but with covariance V = In 
 ��1I(r+ki): This prior is consistent with the
one in Section 3 in that it imposes shrinkage towards random walks and
conditions upon the covariance of the error, in this case E (u0tut) = In: In
deriving the posterior for b; we begin by postmultiplying (12) by At��1t and

vectorising to obtain ez0;t = ezteb + eet where eet = u0t;
eb = vec

� eB� ; ez0;t =
��1t A0t�y

0
t and ezt = �

��1t A0t 
 ezt� : Stacking the vectors ez0;t; ezt and eet asez0 = �ez00;1; : : : ; ez00;T �0 ; ez = (ez01; : : : ; ez0T )0 and ee = (ee01; : : : ; ee0T )0 we obtain a formez0 = ezeb + ee which is similar to (4). Combining this form with the Normal
prior for eb given above, we obtain the conditional Normal posterior with
mean b = V ez0ez0 and covariance matrix V = ��In(r+ki) + ez0ez��1 : Recall some
24In fact we use the o¤set adjustment such that the dependent variable is ln

�by2i;t + 0:001�
in place of ln

�by2i;t� :
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elements of eb are known to be zero and are collected into the vector b0. We
draw the remaining non-zero elements of eb conditional upon b0(= 0) using
well known results for the conditional Normal distribution. That is, with the

partition eb = (b00; b0)0 and the conformable partitions of b = �b00; b0:�0 and
V =

�
V 00 V 0:

V :0 V ::

�
;

then the posterior for b (conditional upon b0; r; %t; ht) is Normal with mean
b: � V :0V 00b0 and covariance matrix V :: � V :0V

�1
00 V 0:.

For the threshold parameter r we specify a Uniform distribution over the
range from (0%; 1%].25 Using a random walk Metropolis Hastings (MH) al-
gorithm to obtain draws of ln (r) results in low acceptance rates. To improve
the acceptance rates we use a Metropolis Hastings scheme in which draws
are obtained from a candidate density that approximates the posterior. This
candidate is a Rao-Blackwellized estimate from a preliminary run using the
random walk MH scheme.
To obtain model probabilities and the probability of the restriction bz = 0,

we use the Savage-Dickey density ratio to compute the Bayes factors. Details
and examples of these techniques in a VECM are provided in Koop, Leon-
Gonzales and Strachan (2005).

5.4 The Results.

The estimated probabilities for the range of stochastic and deterministic
processes (r and d) presented in Table 3 suggest there exists model uncer-
tainty. The modal model probabilities are Pr (d = 5; l = 3; r = 3jy) = 0:18 for
the US, Pr (d = 3; l = 1; r = 3jy) = 0:21 for Japan and Pr (d = 4; l = 2; r = 1jy) =
1:00 for the UK. The estimated probability of the restriction bz = 0 is al-
most one in each case suggesting that either central banks do not concern
themselves with the risks associated with LT, or the evidence is weak due
to there being too few observations where pLT;t would be large enough to be
informative about bz.
Conditioning upon the model with bz = 0; the estimated probabilities of pLT;t
are plotted in Figure 5 for r = 0:25%; r = 0:5% with the interest rate rt: This

25Proper priors are required for r and b as there is a point of local nonidenti�cation at
the points r = 0 and b = 0.
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�gure also plots the estimated pLT;t from the model without the restriction
bz = 0 and the value of r estimated from the model in (12). The UK results
agree with Mervyn King�s (1999) assessment that there has been little risk of
the LT with pLT;t always low and between 2% and 3%. The situation in the
US and Japan is rather more interesting. The results for Japan indicate, not
surprisingly, that the country met our de�nition of the LT from the beginning
of 1999 and there appears to be a chance of escaping this situation emerging
in 2006Q3. The probability of the LT in the US increases signi�cantly after
2001Q1 to be between 10% and 20%, and begins to fall again after the middle
of 2005.
Table 3: Posterior probabilities of structural features for real business cycle
model. Note that the cells for observationally equivalent models have been
merged.

The US Japan The UK
r d = 3 d = 4 d = 5 d = 3 d = 4 d = 5 d = 3 d = 4 d = 5
0 0.08 0.10 0.04 0.06 0.00 0.00
1 0.03 0.13 0.13 0.04 0.26 0.04 0.00 1.00 0.00
2 0.04 0.03 0.08 0.04 0.12 0.06 0.00 0.00 0.00
3 0.15 0.24 0.29 0.05 0.00 0.00

Table 4 reports the average estimates of pLT;t over various periods and
with di¤erent assumptions about r. The �rst column identi�es the period
over which values are averaged. The second column gives the average interest
rate for that period. The third and forth columns give the estimates of
pLT;t for r = 0:25% and r = 0:50% respectively. The �nal column gives
estimated pLT;t when the model allows the central bank to react di¤erently
to the potential LT and r is estimated. The actual estimates in each case
and for all t, are shown in Figure (6). The results in Table 4 and Figure
(6) clearly indicate that for the US and Japan, the probability of LT has
increased since 1994 while it has fallen in the UK. This change has coincided
with a fall in the level of interest and in�ation rates (see Figure (5)). However,
when we permit the central bank to react to the risk of the LT, we see that
the probabilities are noticeably lower and slightly pre-empt the rise in the
risk of the LT. The fall in pLT;t when we allow banks to react to the risk
of LT suggests that the banks did alter their behaviour, however slightly, to
mitigate the risk of a LT.
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Table 4: Average estimated pLT;t for r = 0:25%, r = 0:5% and r es-
timated. Values are averaged over the periods in the �rst column and the
second column gives the average interest rate, rt, for each period.

rt pLT;tjr = 0:25% pLT;tjr = 0:5% pLT;tjr
The US (estimated r = 0:35%)

1975-1994 7.99% 0.84% 1.17% 0.86%
1995-2001 5.29% 0.93% 1.37% 1.46%
2002-2004 1.38% 3.98% 7.33% 7.75%
2005-2006Q3 3.92% 2.89% 4.20% 2.58%

Japan (estimated r = 0:24%)
1975-1994 6.01% 0.95% 1.35% 1.14%
1995-2001 0.39% 46.90% 82.33% 60.42%
2002-2004 0.00% 97.80% 98.17% 92.32%
2005-2006Q3 0.03% 96.40% 97.78% 92.89%

The UK (estimated r = 0:12%)
1975-1994 10.34% 0.84% 1.11% 0.88%
1995-2001 5.84% 0.45% 0.64% 0.49%
2002-2004 4.01% 0.40% 0.65% 0.44%
2005-2006Q3 4.56% 0.22% 0.31% 0.27%

Due to the rare nature of the event LT, any evidence that it matters
for central banks will be very weak. Recent work on IS-LM models based
upon optimising behaviour such as Krugman (1998) and McCallum (2000),
focuses on the lower bound on short rates and suggests this bound could
be zero. Our work does not aim to provide direct evidence for or against
this result. Rather we provide evidence (albeit weak) that central banks in
the US and Japan react di¤erently when setting rates and faced with an
increase in the possiblility that rates will go �too low�. The formal evidence
suggests the central banks do not respond to the increased risk of the LT
(as the probability bz = 0 is one in all cases). However, allowing banks to
respond (by letting bz 6= 0) noticeably a¤ected the risk for the US and Japan.
Allowing when bz 6= 0 the probability of a LT for Japan reduces, although
not signi�cantly and not always.
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6 Conclusion.

In this paper we have presented a Bayesian approach to obtaining uncondi-
tional inference on structural features of the vector autoregressive model by
means of evaluating posterior probabilities of alternative model speci�cations
using a di¤use prior on the features of interest. The output produced this way
allows forecasts and policy recommendations to be made that are not condi-
tional on a particular model. Thus this model averaging approach provides
an alternative to the more commonly used model selection approach. Specif-
ically we provide techniques for estimating marginal likelihoods for models of
cointegration, deterministic processes, short-run dynamics and overidentify-
ing restrictions upon the cointegrating space. The estimates are derived using
a mixture of analytical integration and MCMC. We apply the methodology
to investigating the importance and e¤ect of permanent shocks in US macro-
economic variables, with a focus upon the support for the behaviour implied
by the model KPSW and to the evidence and relevance of the liquidity trap
for central bank behaviour for the US, Japan and the UK.
The method presented in this paper has already found applications in sev-

eral other areas. Koop, Potter and Strachan (2005) investigate the support
for the hypothesis that variability in US wealth is largely due to transitory
shocks. They demonstrate the sensitivity of this conclusion to model in-
certainty. Koop, León-González and Strachan (2006) develop methods of
Bayesian inference in a �exible form of cointegrating VECM panel data
model. These methods are applied to a monetary model of the exchange rate
commonly employed in international �nance. Other current work includes
investigating the impact of oil prices on the probability of encountering the
liquidity trap in the UK and stability of the money demand relation for
Australia.
More recent work is looking to develop methods of inference in very large

model sets (as occurs in, say, models with the additional dimension of an
unknown number of regime shifts) using the reversible jump methodology
proposed by Green (1995).
We end with mentioning two other topics for further research. First, there

exists the issue of the robustness of the results with respect to prior and model
speci�cation. Very natural extensions of our approach are to include prior
inequality conditions in the parameter space of structural VARs and consider
forms of nonlinearity and time variation in the model itself as Primiceri (2005)
does for the VAR. For instance, in using a SVAR for business cycle analysis
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one may use prior information on the length and amplitude of the period
of oscillation. An example of a possible nonlinear time varying structure
that may prove useful is presented in Paap and van Dijk (2003). Systematic
use of inequality conditions and nonlinearity implies a more intense use of
MCMC algorithms. Second, one may use the results of our approach in
explicit decision problems in international and �nancial markets like hedging
currency risk or evaluation of option prices.
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8 Appendix

In this appendix we provide the theorems used in the paper. For background
and proofs we refer to the unpublished report Strachan and van Dijk (2006).
We also sketch the line of reasoning leading to some theorems.
To integrate (9) with respect to (
; b�; b��) we �rst analytically integrate

(5) with respect to (b�;
) as these parameters have conditional posteriors of
standard form. This integration gives us the following.

Theorem 1 The marginal posterior for (b�� ;M�) is

p (b�� ;M�jy) _ g�k (b��jM�; y) (db��) ; (13)

k (b��jM�; y) = jIr� + ��0D0�
�j�T=2 jIr� + ��0D1�

�j(T�n)=2 exp
n
�n
2
tr��0��

o
:

The expressions for g�, D0 and D1 are

g� = (2�)�r=2 �n(k�+r)=2n�nr=2 jS + S00j�T=2 jI� + Z 02Z2j
�n=2

D1 = Z 01M22Z1; M22 = IT � Z2 (Z
0
2Z2 + �Iki)

�1
Z 02 and

D0 = D1 � S01S
�1
11 S10
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where
S10 = Z 01M22Z0 and S00 = Z 00M22Z0.

Proof . See, for example, Zellner (1971) or Bauwens and van Dijk (1990)26.�

Theorem 2 The Jacobian for the transformation from p 2 Gr;n�r to vec
�
�2
�
2

R(n�r)r is de�ned by

dgnr = ��(n�r)r�rj=1
� [(n+ 1� j) =2]

� [(r + 1� j) =2]

���Ir + �
0
2�2

����n=2 �d�2� (14)

where � (q) =
R1
0
uq�1e�udu for q > 0:

Next we provide a theorem that linear identifying restrictions with a �at
prior give zero weight to the chosen linear restrictions. The Jacobian de�ned
by (14) implies that a �at prior on p is informative with respect to �2 and
vice versa. This leads us to consider the implications of a �at prior on �2 for
the prior on p.

Theorem 3 The Jacobian for the transformation from �2 2 R(n�r)r to p 2
Gr;n�r is de�ned by�
d�2

�
= �(n�r)r�rj=1

� [(r + 1� j) =2]

� [(n+ 1� j) =2]

��Ir + (c�)0�1 �0c0?c?� (c�)�1��n=2 (dgnr )
= J dgnr : (15)

Proof . Invert (14) and replace �2 by c?� (c�)
�1.�

The following proof demonstrates the claim in Section 3.2 that assuming
we know which rows of � are linearly independent so as to impose linear
identifying restrictions makes this assumption a priori impossible.

Theorem 4 Given r; use of the normalisation �2 = c?� (c�)
�1 results in

a transformation of measures for the transformation �2 2 R(n�r)r ! p 2
Gr;n�r that places in�nite mass in the region of null space of c relative to the
complement of this region.

26Remark: From the expression (13) that we see that not only is d� invariant to � ! �C
for C 2 O (r), but so is the kernel of the marginal density for � given M!; k (�jM!; y) ;
and thus the complete posterior for � given M!.
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Proof . Let �c? be the plane de�ned by the null space of c. De�ne
a ball, B, of �xed diameter, d, around �c? and let N0 = B \ Gr;n�r and
N = Gr;n�r �N0. Since for d > 0,

R
N
Jdgnr is �nite whereas

R
N0
Jdgnr = 1,

we have R
N0
JdgnrR

N
Jdgnr

=1:

�
Discussion: Essentially, the Jacobian for �2 ! p places in�nitely more

weight in the direction where c� is singular. Thus, normalisation of � by
choice of c with a �at prior on �2 implies in�nite prior odds against this
normalisation.
To support the use of model averaging in this application, we provide

here proofs that the posterior will be proper and all �nite moments of ��

exist. From the expression for k (b��jM�; y) above, we can see the marginal
posterior for b�� is a polynomial times the kernal for a Normal. The expec-
tation with respect to the divergent Lebesgue measure of the polynomial is
�nite as it is the kernal of a 1-1 poly-t (Drèze, 1977). The measure with
respect to a convergent measure will then be �nite. As all moments of a
Normal exist, the expectation of this polynomial with respect to kernal of
the Normal - a convergent measure - will be �nite. Taking the density as the
expectation of a polynomial with respect to a Normal distribution also tells
us that jb��jc k (b��jM�; y) for any c � 0 will be �nite and so all moments will
exist. �
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Figure 1: Logarithms of U.S. consumption (ct), investment (it) and income
(inct). The data are seasonally adjusted, quarterly observations covering the
period from the �rst quarter 1951 to the second quarter of 2005, on Personal
Consumption Expenditures, Gross Private Domestic Investment, and GDP
(Source: Bureau of Economic Analysis).
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Figure 2: This �gure shows the densities over 60 periods of the impulse re-
sponses of consumption to a permanent shock. The upper panel shows the
20% (0-0.2), 40% (0.2-0.4), 60% (0.4-0.6) and 80% (0.6-0.8) highest posterior
density intervals. The lower panel shows the density pro�les for the impulse
response at h = 10; 30 and 60 periods into the future.
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Figure 3: This �gure shows the densities over 60 periods of the impulse
responses of investment to a permanent shock. The upper panel shows the
20% (0-0.2), 40% (0.2-0.4), 60% (0.4-0.6) and 80% (0.6-0.8) highest posterior
density intervals. The lower panel shows the density pro�les for the impulse
response at h = 10; 30 and 60 periods into the future.
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Figure 4: This �gure shows the densities over 60 periods of the impulse
responses of income to a permanent shock. The upper panel shows the
20% (0-0.2), 40% (0.2-0.4), 60% (0.4-0.6) and 80% (0.6-0.8) highest posterior
density intervals. The lower panel shows the density pro�les for the impulse
response at h = 10; 30 and 60 periods into the future.
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Figure 5: Plot of annual in�ation (DCPI or DRPI), annual growth in real per
capita GDP (DGDP) and interest rates (Rt) for the US, the UK and Japan.
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Figure 6: In each panel is plotted: the estimated probability of LT (Left
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