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1 Introduction 

In a seminal paper, Wilson (1978) introduced two notions of core of an economy with 

differential information, the coarse core and the fine core. Since Wilson's work several 

alternative concepts of core have been proposed in the literature. Among them are 

the private core introduced in Yannelis (1991), and the weak fine core introduced in 

AlIen (1991) and Koutsougeras and Yannelis (1993). More recently, Vohra (1997) 

introduced the notion of incentive compatible core, and Volij (1998) the notion of 

internally consistent core. 

The ex-ante fine and weak fine cores were studied by Allen (1991), Koutsougeras 

and Yannelis (1993), and Einy, Moreno and Shitovitz (1998). In the present work 

we study the relationship between the (interim) fine core and the ex-post core of 

an economy with differential information. In Wilson's fine core the traders have the 

opportunity to communicate (i.e., to exchange information); specifically, the infor­

mation given to every member of a blocking coalition is the joint information of the 

members of the coalition. In addition, we assume that a blocking allocation must be 

measurable with respect to the "joint partition" of the members of the coalition (our 

main result, however, remains true without this additional assumption). 

We consider an atomless exchange economy (see Aumann (1964)) with differential 

information in which the space of states of nature is finite. We show that under 

standard conditions, in such economies the (interim) fine core is a subset of the 

ex-post core (see Theorem 1). (Since we assume that blocking allocations must be 

measurable with respect to the joint information of the blocking coalition, our interim 

fine core might be a larger set than Wilson's fine core; therefore this result holds also 

for vVilson's fine core.) Moreover, under these conditions the ex-post core of the 

economy is non!empty, while the fine core may be empty (see Example 3.1). Hence 

the fine core may be a proper subset of the ex-post core. We show that the inclusion 

result does not hold for economies with a finite number of traders. 
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2 The Model 

We consider a pure exchange economy £. with differential information. The commod­

ity space is ~~. The space of traders is a measure space (T, 2:, J-L), where T is a set (the 

set of traders), 2: is a a-field of subsets of T (the set of coalitions), and J-l is a measure 

on 2:. The space of states of nature is a measurable space (0, F), where 0 is a finite 

set and :F is a field of subsets of O. The traders do not necessarily know which state 

of nature W E 0 that actually occurred, but they may have some information about 

the state of nature. We assume that the information of a trader t E T is described by 

a measurable partition lIt of o. We denote by Ft the field generated by lIt. If Wo is 

the true state of nature, trader t observes the member of lIt which contains Wo. Every 

trader t E T has a probability measure qt on F which represents his prior beliefs. 

For simplicity it is assumed that if A E F is a non-empty set, then qt(A) > 0 for all 

t E T. The preferences of a trader t E T are represented by a random utility function, 

Ut : 0 x ~~ -t ~+ such that for every x E ~~, the function Ut(·, x) is F-measurable. 

It is also assumed that for every (t, x) E T x ~~, the mapping (t, x) -t Ut(w, x) is 

2: x B measurable, where w is a fixed member of 0, and B is the a-field of Borel 

subsets of ~~. 

An assignment is a function x : 0 x T -t ~~ such that for every w E 0 the function 

x(w,·) is J-L-integrable on T, and for every t E T the function x(·, t) is F-measurable. 

There is a fixed initial assignment e; e(w, t) represents the initial endowment of 

trader t E T in the state of nature w E o. An allocation is an assignment x such that 

IT x(w, t)dJ-l ~ IT e(w, t)dJ-l for every w E O. 

Since 0 is finite there is a finite number of different information fields Ft, t E T. 

We denote by F 1 , ... Fn the n distinct information fields of the traders. We assume 

that F = V~=l J:i , which means that F contains no superfluous events about which no 

trader has information, and therefore cannot affect anyone's consumption decisions. 

We use the following notations. For two vectors x = (Xl, ... , Xl) and y = 

(Y1, ... ,Yl) in ~l we write x ~ y when Xk ~ Yk for all 1 ~ k ~ 1, x > Y when 

x ~ y and x =I y, and x »y when Xk > Yk for all 1 ~ k ~ l. 

In the rest of the paper an economy £. is an economy with differential information 
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as it has been just described. Also for an economy £ and a state of nature wEn, we 

denote by £(w) the full information economy in which the commodity space is ~+, 

the space of traders is (T, E, J.L), and for every trader t E T his initial endowment is 

e(w, t) and his utility function is Ut(w, .). 

3 The Fine and Ex-Post Cores 

In this section we define the ex-post core and the interim fine core of an economy 

with differential information, and we show that if the space of traders of an economy 

is non-atomic (that is, the population measure J.L on (T, E) is non-atomic) then the 

interim fine core is a subset of the ex-post core. 

A function U : ~~ - ~ is (strictly) increasing if for all x, y E ~~, (x > y) x» y 

implies u(x) > u(y). 

Throughout the section we refer to the following conditions. 

(A.l) For every wEn, IT e(w, t)dJ.L » o. 

(A.2) For all t E T and wED, the function Ut(w,·) is continuous, and strictly 

increasing on ~~. 

(A.3) For all t E T and wED, the function Ut(w,·) is continuous, increasing on 

~~, and vanishes on the boundary of ~~. 

An allocation x is an ex-post core allocation for an economy E if there does not 

exist a coalition SEE, an assignment y, and a state of nature Wo E n such that 

(3.1) I1(S) > 0, 

(3.2) Is Y(Wo, t)dJ.L :::; Is e(wo, t)dJ.L, and 

(3.3) Ut(wo, y(wo, t)) > Ut(wo, x(wo, t)) for almost all t E S. 

If there exis~s S, y, and Wo such that (3.1) - (3.3) are satisfied then we say that 

y is an ex-post improvement of S upon x at wo. The ex-post core of an economy £ 

is the set of all ex-post core allocations of E. 

The ex-post core of an economy with differential information and its relationship to 

the set of rational expectations equilibria were studied by Einy, Moreno and Shitovitz 

(1998), who show that the ex-post core is non-empty under conditions (A.l) and either 
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(A.2) or (A.3). 

Let £ be an economy with differential information, and let 1 ~ i ~ n (recall that 

n is the number of distinct information fields of the traders of E). Define 

We assume that for all 1 ~ i ~ n the set 7i is measurable (i.e., 7i E ~) and p,(7i) > o. 

For every 8 E ~ let 

/(8) = {i 11 ~ i ~ n, and p,(8nTi ) > o}. 

If Q is a subfield of F, f : n ----+ 1R+ is an F-measurable function, and t E T we denote 

by EtU I Q) the conditional expectation of f with respect to qt. 

An allocation x is an interim fine core allocation for an economy £ if there does 

not exist a coalition 8, an assignment y and a non-empty event A E ViEI(S) Fi such 

that 

(3.4) J-L(8) > 0, 

(3.5) Is y(w, t)dJ-L ~ Is e(w, t)dJ-L, for every w E A, 

(3.6) for all t E 8, y(., t) is ViEI(S) )=i-measurable, and 

(3.7) for all w E A, 

iEI(S) iEI(S) 

almost everywhere on 8. 

If there exists 8, y, and A E ViEI(S) Fi such that (3.4) - (3.7) are satisfied then 

we say that y is an interim fine improvement of 8 upon x on A. The interim fine 

core of an economy £ is the set of all interim fine core allocations of £. 
, 

Our definition of interim fine core is that of Wilson's (1978) fine core, with the 

difference that in Wilson's definition a blocking assignment may not be measurable 

with respect to the joint information of the blocking coalition. Assuming measur­

ability of a blocking assignment makes it more difficult for a coalition to block an 

allocation, and therefore the resulting core may be larger than Wilson's fine core. 

Thus, the inclusion established in Theorem 1 below also holds for Wilson's fine core. 
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The measurability of the blocking assignment with respect to the joint information 

of the blocking coalition is also assumed in AlIen (1991), Koutsougeras and Yannelis 

(1993) and Vohra (1997). We now state and prove our result. 

Theorem 1. Assume that c is an atomless economy (i.e., such that the population 

measure J1 on (T,~) is non-atomic) that satisfies conditions (A.l) and either (A.2) 

or (A.3). Then the interim fine core of C is a subset of the ex-post core of c. 

Proof: Let x be an interim fine core allocation of an atomless economy c. As­

sume, contrary to our claim, that x is not an ex-post core allocation of c. Then there 

exists a coalition S E ~ with J1(S) > 0, a state of nature Wo E n, and an assignment 

y such that Is Y(Wo, t)dJ1 :s; Is e(wo, t)dJ1, and Ut(wo, y(wo, t)) > Ut(wo, x(wo, t)) for 

almost all t E S. Define the function x : T ---+ ~~ by x(t) = x(wo, t) for all t E T. 

Then x is an allocation of the full information economy c (wo). Moreover, x is not 

in the core of the economy £(wo). Therefore by the Theorem of Vind (1972) (see 

also Proposition 7.3.2 in Mas-Colell (1985)), there exists a coalition Q E ~ with 

J1( Q) > J1(T) - min {J1(T1) , ... J1(Tn )} , and an integrable function y : T ---+ ~~ such 

that Isy(t)dJ1::; Is e(wo,t)dJ1, and Ut(wo,y(t)) > Ut(wo,x(t)) for almost all t E Q. 

Let A(wo) be the atom of the field F containing Wo. Define a function z : n x T ---+ ~~ 

by 

z(w, t) = 
{ 

y(t) if w E A(wo) 

e(w, t) otherwise. 

Then z(·, t) is .r-measurable for all t E T. Therefore z is an assignment in c. We 

show that z is an interim fine improvement of Q upon x on A(wo). 

Since e(w,·) = e(wo,') for all w E A(wo) (because e(·, t) is F-measurable for all 

t ET), we have< 

is z(w, t)dJ1::; is e(w, t)dJ1, 

for all wEn. 

Now as J1( Q) > J1(T) - min {J1(T1), ... J1{Tn )} , we have J{ Q) = {I, ... n}, and 

ViEI(Q) F;, =.r. Therefore A(wo) E ViEI(Q) F;,. Since for all t E T the function 
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Ut(·,x(·, t)) is F-measurable, for all t E T we have 

and 

Et(Ut{-,x(·,t)) I V :Fi) = Ut{-,x(·,t)), 
iEI(Q) 

Et ( ul, z ( ., t)) I V :Fi) = Ut (-, z ( ., t)). 
iEI(Q) 

Now for all W E A(wo) we have 

Et(Ut{-, z(·, t)) I ViEI(Q) Fi)(W) = Ut(w, z(w, t)) = Ut(w, y(t)) = Ut(wo, y(t)) 

> Ut(wo, x(t)) = Ut(wo, x(wo, t)) = Ut(w, x(w, t)) 

= Et (Ut {-, x(., t)) I ViEI(Q) Fi)(W). 

Thus, z is an interim fine improvement of Q upon x on A(wo), which contradicts the 

fact that x is a interim fine core allocation of £. D 

The following example shows that in atomless economies the interim fine core may 

be a proper subset of the ex-post core. In fact, in this example the interim fine core 

is empty, while the ex-post core is not. 

Example 3.1. Consider an economy £ in which the commodity space is ~~, and the 

set of traders is ([0,3], E, /1), where E is the t7-field of Borel subsets of [0,3] and /1 is 

the Lebesgue measure. The space of states of nature is n = {WI' W2}, and F = 2f!. Let 

TI = [0,1], T2 = (1,2], and T3 = (2,3]. The information partition of a trader t E Tl 

is ITI = {{WI' W2}}, his prior is ql = (~, ~), and his initial endowments are e(wI' t) = 

e(w2,t) = (4,0). The information partition of a trader t E T2 is IT2 = {{Wl,W2}} ' 

his prior is q2 = (~, ~), and his initial endowments are e(wl, t) = e(w2, t) = (0,4). 

Finally, the information partition of a trader t E T3 is IT3 = {{WI}, {W2}} , his prior 

is q3 = (~, ~), and his initial endowments are e(wI' t) = (4,0) and e(w2' t) = (0,4). 

All traders hav~ the same utility function, given for (w, (x, y)) E n x ~~ by 

U(W, (x, y)) = FY. 

Let x be the allocation in £ given by 

{ 

(2,1) 
X(WI' t) = 

(4,2) 
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and 

{ 
(2,4) t E TI 

X(W2' t) = 
(1,2) t E T2 UT3 . 

It is easy to see that x is the unique ex-post core allocation of the (atornless) econ-

omy e. Moreover, x is not an interim fine core allocation of e. Indeed, define the 

assignment y in e given by 

whereas 

y(W, t) = { (2,2) 
e(w, t) otherwise. 

Et(u(·, y(., t)) I V F i ) = 2 
iEI(S) 

4)2 
Et(u(·,x(·,t)) I V Fd = -3- < 2. 

iEI(S) 

Therefore y is an interim fine improvement of S upon x on n. Thus, x is not an 

interim fine core allocation of e. By Theorem 1, the interim fine core is empty. Note 

also that since the Wilson's fine core is a subset of our interim fine core, it is also 

empty in this example. 

The allocation x in Example 3.1 is a rational expectations equilibrium alloca­

tion of e (see Radner (1979) and AlIen (1981)), which corresponds to a "completely 

revealing" equilibrium price system p, where p(wd = G, j) and P(W2) = (j, ~). 

Our next example shows that Theorem 1 does not hold for finite economies. 

Example 3.2. Consider a finite economy £, in which the commodity space is R!, and 

the set of traders is T = {1,2,3}. The space of states of nature is n = {WI,W2}, and 

F = 2°. Traders' initial endowments are e(wl' 1) = e(w2' 1) = (60,0,0), e(wI' 2) = 

e(w2,2) = (0,60,0), and e(wI,3) = e(w2,3) = (0,0,60). The information partition 

of traders 1 and 2 is ITI = {{ WI, W2}}, and that of Trader 3 is IT3 = {{ WI}, {W2}} . 

All traders have the same prior, q = (~, ~), and the same utility function, given for 

(w, (x,y,z)) En x R! by 

u(W, (x, y, z)) = Vx + Vu +..jZ. 
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Define the allocation x in [ by 

and 

{ 

(19, 19, 19) 
X(Wl' t) = 

(22,22,22) 

t E {I, 2} 

t = 3, 

{ 

(13,13,13) t E {1,2} 
X(W2' t) = 

(34,34,34) t = 3. 

We show that x is an interim fine core allocation of [, but it is not an ex-post core 

allocation of [. For t E {1,2} and wEn we have 

Now, if y is an assignment in [ which is feasible for {1,2} at each state of nature, 

then for all wEn we have 

min{El(U(·'Y(·' 1)) I Fl V F2)(w),E2(u(·,y(·,2)) I Fl V F2)(W)} :::; 2V30 
< ~(Vi9 + v13). 

Therefore y cannot be an interim fine improvement of {I, 2} upon x on n. It is clear 

that if S =1= {1,2} is a coalition, then it does not have an interim fine improvement 

upon x on a non-empty event in ViEI(S) F i . Thus, x is an interim fine core allocation 

of [. Define an assignment y : n x T ~ ~t by 

{ (3~, 30, 30) (w, t) E n x {1,2} 
y(w, t) = 

e(w,3) otherwise. 

Then y is an ex-post improvement of {I, 2} upon x at the state of nature W2, and 

therefore x is not an ex-post core allocation in [. 

Note that i~ this argument we have not assumed measurability of the blocking 

assignment y with respect to the joint partition of the blocking coalition; hence in 

this example Wilson's fine core is not a subset of the ex-post core either. 
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