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1 Introduction

Since mid-eighties non-cooperative game theory has emerged as one of the dom-
inant formal approaches to model institutions. The common denominator of
this approach is that it views political interaction as a non-cooperative game.
Non-cooperative voting games, in spite of the described relevance in political
economy and their peculiar features that make them attractive also from a
purely game theoretical point of view, have not been su¢ ciently analyzed. As a
matter of fact, the characterization of solutions in political models of elections
is based either on the assumption that voters do not behave strategically, or,
when strategic voting is allowed, on ad hoc assumptions, such as only two can-
didates, or limiting the analysis to symmetric equilibria, i.e. equilibria in which
�similar� voters take �similar� decisions. A crucial question is to understand
at which level the conclusions drawn from such models are sensitive to the way
problems are de�ned and to the assumptions that are imposed1 .
In this paper we focus on one of the most widely used assumption in the

theoretical literature of elections, which is to restrict the analysis to symmetric
equilibria. Palfrey and Rosenthal (1985), in a very famous paper on voter par-
ticipation in plurality election when voting is costly, motivate it by explaining
that �...it is natural to assume that voters in the same group (i.e. voters facing
a similar decision problem) use the same decision rule in equilibrium. We re-
strict the analysis to this kind of equilibrium, which we refer to as a symmetric
equilibrium. This approach simpli�es the problem considerably...�(Palfrey and
Rosenthal, 1985, p.67). Many models, with various objectives and motivations,
make use of this assumption. Among many others, see Palfrey (1989), Fedder-
sen and Pesendorfer (1996), and Börgers (2004). One can observe that such an
assumption was so extensively used that is taken nowadays as a given of the
problem.
The objective of this paper is to disentangle this assumption for plurality

games with positive cost of voting. There are two main reasons to focus on
this class of games. First of all, plurality games with positive cost of voting
are among the most studied voting games.2 Another important reason is that
the simple Nash equilibrium concept seems to be appropriate for solving this
type of games (see De Sinopoli and Iannantuoni, 2005), whereas without cost of
voting even quite strong re�nements as perfection or properness do not appear
su¢ ciently restrictive.
The strength of the assumption that �similar�voters make �similar�voting

decisions depends on what it is meant by �similar�. For example, by �similar
voters�can be meant either voters who simply have the same preference order
over candidates, or voters who have exactly the same utility function. Anal-
ogously, for similar voting decision can be meant either that they use exactly
the same strategy, or that their strategies have the same support. Combining

1Various authors study the use of game theory in political economy, see, among many
others, Hanson (2003).

2The analysis has been usually limited to two parties, while our result are of some interest
for three or more candidates
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the various interpretations we can obtain a stronger or a weaker assumption. If
the strongest assumption is irrelevant, than the weaker is. Viceversa a coun-
terexample to the neutrality of the weakest will be a counterexample for the
neutrality of the strongest. In the following, we will prove that the strongest
assumption is irrelevant in the case of pure strategy equilibria, while not even
the weakest assumption is neutral for mixed strategy equilibria.
More precisely, we �rst show that in any pure strategy equilibrium, if two

active voters (i.e., two voters who do not abstain) have the same preference order
over candidates, they do vote for the same candidate. Then we obtain, via an
example, a mixed strategy equilibrium in which two identical voters (i.e., with
exactly the same utility function) use pure strategy but they vote for di¤erent
candidates!

2 The model

Let K = (1; :::; k) be the �nite set of candidates and N = (1; :::; n) the �nite
set of voters. Under plurality rule every voter has k+1 pure strategies, namely
voting for each candidate or abstaining. Given a pure strategy vector, the
candidate receiving the largest amount of votes is elected, while in case of a tie
we assume an equal probability lottery among the winners. Given N and K,
a plurality game with positive cost of voting is identi�ed by the utility vectors�
ui
	
i2N , where u

i =
�
ui1; :::; u

i
k

�
and uic is the player i�s utility when candidate

c is elected, and by the vector of costs of voting � = (�1; :::; �n). In other words,
a plurality game with positive cost of voting with n voters and k candidates can
be seen as a point (u; �) 2 <nk � <n++. The pure strategy space of each player
is S = K [ f�g, where � denotes the abstention. As usual, (��i; s) denotes the
strategy combination where player i uses with probability 1 the pure strategy s
and the others play accordingly to ��i.

2.1 Results

We �rst investigate the symmetry assumption for pure strategy equilibria. A
very simple example shows that not even players with the same utility function
need to use the same strategy. Consider a situation in which there are only
two voters, say i and j, and only two alternatives, say k and l. Suppose that
both players strictly prefer k over l. Clearly, player i voting for k and player j
abstaining is a pure strategy Nash equilibrium, if the cost of voting is su¢ ciently
low. The main feature of this example is given by the fact that one player
abstains. It is immediate that if two players with the same preference order
vote, they vote for the same candidate:

Proposition 1 If players i and j have the same preference order over candi-
dates, and if they vote, they vote for the same candidate.

Proof. Assume that they vote di¤erently. Let W be the set of winning can-
didates. Because they vote, they both vote for candidate in W and they are
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not completely indi¤erent among the candidates in W (if not, abstaining, and
saving the cost, will be strictly preferred). Either player i or player j can assure
the election of one of their preferred candidates in W , simply switching his vote
by voting for it. Hence the result.
Despite of its triviality, the above Proposition is quite signi�cant. It tells

us that, limiting to the active voters, even the strongest symmetry assumption
is completely neutral. Indeed, in any pure strategy Nash equilibrium all the
players with the same preference order vote for the same candidate.
Unfortunately, this type of conclusion cannot be obtained for mixed strate-

gies. The weakest possible assumption that can be made in this context is that
two players with the same utility function, if they use a pure voting strategy,
they vote for the same candidate.
The following example shows that there are cases in which not even this

holds.
There are nine voters f1; 2; 3; 4; 5; 6; 7; 8; 9g, and three candidates fA;B;Cg.

The utility each voter gets from the election of any candidate is:

u1 = u2 =
�
u1A; u

1
B ; u

1
C

�
= (13; 10; 0)

u3 = u4 =
�
u3A; u

3
B ; u

3
C

�
= (65; 0; 10)

u5 = u6 =
�
u5A; u

5
B ; u

5
C

�
= (0; 100; 10)

u7 = u8 =
�
u7A; u

7
B ; u

7
C

�
= (10; 0; 10000)

u9 =
�
u9A; u

9
B ; u

9
C

�
= (10; 0; 14) :

The costs of voting are: �1 = �2 = �5 = �6 = �7 = �8 = 1
100 , �

3 = �4 = 259
40 ,

�9 = 171
25 . A Nash equilibrium of the above described game is the following:

e = (A1; B2;
4

5
�3 +

1

5
A3;

4

5
�4 +

1

5
A4; B5; B6; C7; C8;

99

100
�9 +

1

100
C9);

where ki denotes player i�s pure strategy of voting for candidate k, and �i his
abstention.
Notice that e is a regular equilibrium3 (see the Appendix for a complete proof

of this claim) and, hence, the above example is not a pathological one, because
the equilibrium e survives all the usual re�nements based either on perturbation
of strategies or on perturbation of utilities, and, moreover, a similar result holds
in a complete neighborhood of the described game.4

3 Conclusions

We have analyzed, under costly plurality voting, if it is the case that �similar�
voters make �similar�voting decisions. We have proved that in any pure strat-
egy equilibrium, if two active voters (i.e., two voters who do not abstain) have

3For a de�nition of regularity see van Damme (1991).
4Remember that, �xed N and K, a game is a point in <nk �<n++.
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the same preference order over candidates, they do vote for the same candidate.
However, an example shows how this type of result cannot be hoped for mixed
strategies equilibria.
It would be interesting to develop a similar analysis for plurality games when

the cost of voting is zero. The main issue, in this class of games, is represented
by the fact that a concept as Nash equilibrium is completely inadequate.5 We
highlight that the example for mixed strategies above constructed has been ob-
tained working extensively with the abstention of voters using mixed strategies.
The fact that abstention is a weakly dominated strategy for plurality games
without cost of voting, leaves open the question if a result such �similar�voters
make �similar� voting decisions can be hoped also for mixed strategies when
the cost of voting is zero, at least if an appropriate solution concept is used.
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There are nine voters f1; 2; 3; 4; 5; 6; 7; 8; 9g, and three candidates fA;B;Cg.
The utility each voter gets from the election of any candidate is:

u1 = u2 =
�
u1A; u

1
B ; u

1
C

�
= (13; 10; 0)

u3 = u4 =
�
u3A; u

3
B ; u

3
C

�
= (65; 0; 10)

u5 = u6 =
�
u5A; u

5
B ; u

5
C

�
= (0; 100; 10)

u7 = u8 =
�
u7A; u

7
B ; u

7
C

�
= (10; 0; 10000)

u9 =
�
u9A; u

9
B ; u

9
C

�
= (10; 0; 14) :

The costs of voting are: �1 = �2 = �5 = �6 = �7 = �8 = 1
100 , �

3 = �4 = 259
40 ,

�9 = 171
25 .

Claim 2 A regular equilibrium of the above described game is the following:

e = (A1; B2; x�3+(1� x)A3; x�4+(1� x)A4; B5; B6; C7; C8; y�9+(1� y)C9):

where x = 4
5 , and y =

99
100 .

Proof: First of all, we prove that e is a quasi-strict Nash equilibrium. To
this end, notice that, since voting is costly, voting for the worst alternative is
strictly dominated by abstention. Hence, in order to check for best replies, we
have to consider only three strategies for each player.

Player 1

Let�s start with player 1. We have to check that, for the above strategy
combination of the others, voting for A gives an higher utility than voting for B
or abstaining. We �rst calculate the probabilities of any possible event (!�1),
i.e. the number of votes for any of the three candidates without the vote of
player 1:

Prf!�1 = (0; 3; 2)g = x2y

Prf!�1 = (1; 3; 2)g = 2x (1� x) y

Prf!�1 = (2; 3; 2)g = (1� x)2 y

Prf!�1 = (0; 3; 3)g = x2 (1� y)

Prf!�1 = (1; 3; 3)g = 2x (1� x) (1� y)

Prf!�1 = (2; 3; 3)g = (1� x)2 (1� y) :

Now we can compute the utility player 1 gets by voting for A:

u1 (��1; A) = x
2yu1B+2x (1� x) yu1B+(1� x)

2
y
u1A+u

1
B

2 +x2 (1� y) u
1
B+u

1
C

2 +

+2x (1� x) (1� y) u
1
B+u

1
C

2 + (1� x)2 (1� y) u
1
A+u

1
B+u

1
C

3 � �1 =

5



= 396
62510 +

198
62510 +

99
2500

23
2 +

4
6255 +

2
6255 +

1
2500

23
3 �

1
100 =

150 007
15 000 :

Let�s also compute the utility player 1 gets by voting for B :

u1 (��1; B) = x
2yu1B + 2x (1� x) yu1B + (1� x)

2
yu1B + x

2 (1� y)u1B+
+2x (1� x) (1� y)u1B + (1� x)

2
(1� y)u1B � �

1 =

= 396
62510 +

198
62510 +

99
250010 +

4
62510 +

2
62510 +

1
250010�

1
100 =

999
100 :

Let�s compute also the utility player 1 gets by abstaining:

u1 (��1; �) = x
2yu1B + 2x (1� x) yu1B + (1� x)

2
yu1B ++x

2 (1� y) u
1
B+u

1
C

2 +

+2x (1� x) (1� y) u
1
B+u

1
C

2 + (1� x)2 (1� y) u
1
B+u

1
C

2 =

= 396
62510 +

198
62510 +

99
250010 +

4
6255 +

2
6255 +

1
25005 =

199
20 :

Clearly, u1 (��1; A) > u1 (��1; B), as well as u1 (��1; A) > u1 (��1; �).

Player 2

Prf!�2 = (1; 2; 2)g = x2y

Prf!�2 = (2; 2; 2)g = 2x (1� x) y

Prf!�2 = (3; 2; 2)g = (1� x)2 y

Prf!�2 = (1; 2; 3)g = x2 (1� y)

Prf!�2 = (2; 2; 3)g = 2x (1� x) (1� y)

Prf!�2 = (3; 2; 3)g = (1� x)2 (1� y) :

Now we can compute the utility player 2 gets by voting for B:

u2 (��2; B) = x
2yu2B+2x (1� x) yu2B+(1� x)

2
y
u2A+u

2
B

2 +x2 (1� y) u
2
B+u

2
C

2 +

+2x (1� x) (1� y) u
2
B+u

2
C

2 + (1� x)2 (1� y) u
2
A+u

2
B+u

2
C

3 � �2 =
= 396

62510 +
198
62510 +

99
2500

23
2 +

4
6255 +

2
6255 +

1
2500

23
3 �

1
100 =

150 007
15 000 :

Let�s also compute the utility player 1 gets by voting for A :

u2 (��2; A) = x
2y

u2A+u
2
B+u

2
C

3 +2x (1� x) yu2A+(1� x)
2
yu2A+x

2 (1� y)u2C+

+2x (1� x) (1� y) u
2
A+u

2
C

2 + (1� x)2 (1� y)u2A � �
2 =

= 396
625

23
3 +

198
62513 +

99
250013 +

4
6250 +

2
625

13
2 +

1
250013�

1
100 =

23 767
2500 :

Let�s compute the utility player 1 gets by abstaining:
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u2 (��2; �) = x
2y

u2B+u
2
C

2 +2x (1� x) y u
2
A+u

2
B+u

2
C

3 +(1� x)2 yu2A+x2 (1� y)u2C+

+2x (1� x) (1� y)u2C + (1� x)
2
(1� y) u

2
A+u

2
C

2 =

= 396
6255 +

198
625

23
3 +

99
250013 +

4
6250 +

2
6250 +

1
2500

13
2 =

30 571
5000 :

Clearly, u2 (��2; B) > u2 (��2; A), as well as u2 (��2; B) > u2 (��2; �).

Player 3 and 4

Prf!�3 = (1; 3; 2)g = xy

Prf!�3 = (2; 3; 2)g = (1� x) y
Prf!�3 = (1; 3; 3)g = x (1� y)
Prf!�3 = (2; 3; 3)g = (1� x) (1� y) :

Now we can compute the utility player 3 gets by voting for A :

u3 (��3; A) = xyu
3
B + (1� x) y

u3A+u
3
B

2 + x (1� y) u
3
B+u

3
C

2 +

+(1� x) (1� y) u
3
A+u

3
B+u

3
C

3 � �3 =
= 99

1250 +
99
500

65
2 +

1
1255 +

1
500

75
3 �

259
40 =

1
20 :

Let�s compute now the utility player 3 gets by abstaining:

u3 (��3; �) = xyu
3
B + (1� x) yu3B + x (1� y)

u3B+u
3
C

2 +

+(1� x) (1� y) u
3
B+u

3
C

2 =

= 99
1250 +

99
5000 +

1
1255 +

1
5005 =

1
20 :

Let�s compute now the utility player 3 gets by voting for C:

u3 (��3; C) = xy
u3B+u

3
C

2 + (1� x) y u
3
B+u

3
C

2 + x (1� y)u3C+
+(1� x) (1� y)u3C � �

3 =

= 99
1255 +

99
5005 +

1
12510 +

1
50010�

259
40 = �

57
40 :

Clearly, u3 (��3; A) = u3 (��3; �) > u3 (��3; C) :
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Player 5 and 6

Prf!�5 = (1; 2; 2)g = x2y

Prf!�5 = (2; 2; 2)g = 2x (1� x) y

Prf!�5 = (3; 2; 2)g = (1� x)2 y

Prf!�5 = (1; 2; 3)g = x2 (1� y)

Prf!�5 = (2; 2; 3)g = 2x (1� x) (1� y)

Prf!�5 = (3; 2; 3)g = (1� x)2 (1� y) :

Now we can compute the utility player 5 gets by voting for B :

u5 (��5; B) = x
5yu5B+2x (1� x) yu5B+(1� x)

2
y
u5A+u

5
B

2 +x2 (1� y) u
5
B+u

5
C

2 +

+2x (1� x) (1� y) u
5
B+u

5
C

2 + (1� x)2 (1� y) u
5
A+u

5
B+u

5
C

3 � �5 =
= 396

625100 +
198
625100 +

99
250050 +

4
62555 +

2
62555 +

1
2500

110
3 � 1

100 =
146 329
1500 :

Let�s compute the utility player 5 gets by voting for C :

u5 (��5; C) = x
2yu5C + 2x (1� x) yu5C + (1� x)

2
y
u5A+u

5
C

2 + x2 (1� y)u5C+
+2x (1� x) (1� y)u5C + (1� x)

2
(1� y)u5C � �

5 =

= 396
62510 +

198
62510 +

99
25005 +

4
62510 +

2
62510 +

1
250010�

1
100 =

1224
125 :

Let�s compute the utility player 5 gets by abstaining:

u5 (��5; �) = x
2y

u5B+u
5
C

2 +2x (1� x) y u
5
A+u

5
B+u

5
C

3 +(1� x)2 yu5A+x2 (1� y)u5C+

+2x (1� x) (1� y)u2C + (1� x)
2
(1� y) u

5
A+u

5
C

2 =

= 396
62555 +

198
625

110
3 + 99

25000 +
4
62510 +

2
62510 +

1
25005 =

23 281
500 :

Clearly, u5 (��5; B) > u5 (��5; C), as well as u5 (��5; B) > u5 (��5; �).

Player 7 and 8

Prf!�7 = (1; 3; 1)g = x2y

Prf!�7 = (2; 3; 1)g = 2x (1� x) y

Prf!�7 = (3; 3; 1)g = (1� x)2 y

Prf!�7 = (1; 3; 2)g = x2 (1� y)

Prf!�7 = (2; 3; 2)g = 2x (1� x) (1� y)

Prf!�7 = (3; 3; 2)g = (1� x)2 (1� y) :

8



Now we can compute the utility player 7 gets by voting for C :

u7 (��7; C) = x
2yu7B+2x (1� x) yu7B+(1� x)

2
y
u7A+u

7
B

2 +x2 (1� y) u
7
B+u

7
C

2 +

+2x (1� x) (1� y) u
7
B+u

7
C

2 + (1� x)2 (1� y) u
7
A+u

7
B+u

7
C

3 � �7 =
= 396

6250 +
198
6250 +

99
25005 +

4
6255000 +

2
6255000 +

1
2500

10010
3 � 1

100 =
18 571
375 :

Now we can compute the utility player 7 gets by voting for A :

u7 (��7; A) = x
2yu7B + 2x (1� x) y

u7A+u
7
B

2 + (1� x)2 yu7A + x2 (1� y)u7B+

+2x (1� x) (1� y) u
7
A+u

7
B

2 + (1� x)2 (1� y)u7A � �
7 =

= 396
6250 +

198
6255 +

99
250010 +

4
6250 +

2
6255 +

1
250010�

1
100 =

199
100 :

Now we can compute the utility player 7 gets by abstaining:

u7 (��7; �) = x
2yu7B + 2x (1� x) yu7B + (1� x)

2
y
u7A+u

7
B

2 + x2 (1� y)u7B+

+2x (1� x) (1� y)u7B + (1� x)
2
(1� y) u

7
A+u

7
B

2 =

= 396
6250 +

198
6250 +

99
25005 +

4
6250 +

2
6250 +

1
25005 =

1
5 :

Clearly, u7 (��7; C) > u7 (��7; A), as well as u7 (��7; C) > u7 (��7; �) :

Player 9

Prf!�9 = (1; 3; 2)g = x2

Prf!�9 = (2; 3; 2)g = 2x (1� x)
Prf!�9 = (3; 3; 2)g = (1� x)2 :

Now we can compute the utility player 9 gets by voting for C :

u9 (��9; C) = x
2 u

9
B+u

9
C

2 + 2x (1� x) u
9
B+u

9
C

2 + (1� x)2 u
9
A+u

9
B+u

9
C

3 � �9 =
= 16

257 +
8
257 +

1
25
24
3 �

171
25 =

1
5 :

Now we can compute the utility player 9 gets by abstaining:

u9 (��9; �) = x
2u9B + 2x (1� x)u9B + (1� x)

2 u9A+u
9
B

2

= 16
250 +

8
250 +

1
255 =

1
5 :

Now we can compute the utility player 9 gets by voting for A :

u9 (��9; A) = x
2u9B + 2x (1� x)

u9A+u
9
B

2 + (1� x)2 u9A � �
9 =

= 16
250 +

8
255 +

1
2510�

171
25 = �

121
25 :

9



Clearly, u9 (��9; C) = u9 (��9; �) > u9 (��9; A) :

This completes the proof that

e = (A1; B2;
4

5
�3 +

1

5
A3;

4

5
�4 +

1

5
A4; B5; B6; C7; C8;

99

100
�9 +

1

100
C9):

is a quasi-strict equilibrium.
Before proceeding, we review the de�nition of regular equilibrium and some

basic properties we are going to use.
Let � = (N; fPigi2N ; fUigi2N ) be a normal form games, i.e. N is the set

of players, Pi the pure strategy of player i, and Ui :
Q
i

Pi ! < the payo¤

functions. Let mi = #Pi, Xi = <mi and X �
Q
i

Xi. Let the payo¤ functions

Ui be extended to X in the obvious way6 , i.e. Ui(x) =
P
x(p)U(p).

Let �x a pure strategy vector �p 2 P , where P =
Q
i

Pi and consider the

system:

xip [Ui (x; p)� Ui (x; �pi)] = 0 8i 2 N; 8p 2 Pi; p 6= �pi (1)X
p2Pi

xip � 1 = 0 8i 2 N:

Let F (� j �p) be the mapping de�ned by the left hand side of (1), more pre-
cisely

F pi (x j �p) = xip [Ui (x; p)� Ui (x; �pi)] 8i 2 N; 8p 2 Pi; p 6= �pi (2)

F �p
i (x j �p) =

X
p2Pi

xip � 1 8i 2 N:

Note that if �� is an equilibrium of � with �p 2 C(��),7 then F (�� j �p) = 0. Let
J(�� j �p) be the Jacobian of F (� j �p) evaluated at ��, i.e.

J(�� j �p) = @F (x j �p)
@x

����
x=��

:

With this background, we can now de�ne:

De�nition 3 A Nash equilibrium �� is regular if J(�� j �p) is nonsingular for
some �p 2 C (��) :

6This extension corresponds to the usual one made for mixed strategies, but, here, we do
not ask these to belong to the simplex.

7With C(��) it is denoted the carrier of ��:
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In the next Lemma we list some well known properties of regular equilibria
that we will need (see van Damme, 1991, lemmas 2.5.4 and 2.5.2).

Lemma 4 Let �� be an equilibrium and let �p 2 C(��). Then: (i) J(�� j �p) is
nonsingular if and only if J(�� j �pp) is nonsingular for every �pp 2 C(��); (ii)
If �� is quasi-strict then J(�� j �p) is not singular if and only if ~J(�� j �p) is not
singular, where ~J(�� j �p) denotes the Jacobian obtained crossing out rows and
columns corresponding to strategies that do not belong to C(��)

The above lemma shows that the strategy used as �reference point� does
not a¤ect the de�nition of regularity, and that moreover, if an equilibrium is
quasi-strict (as our equilibrium e), we can limit the analysis to the Jacobian
associated to the map ~F

�
� j �C; �p

�
de�ned by eliminating strategies which do

not belongs to C(e). In other words, to check the regularity of the quasi-strict
equilibrium

e = (A1; B2;
4

5
�3 +

1

5
A3;

4

5
�4 +

1

5
A4; B5; B6; C7; C8;

99

100
�9 +

1

100
C9):

we have just to consider the Jacobian of the map F : <6 ! <6 de�ned by:

F�3 = x
3
�

h
u3
�
s; x4�; x

9
�; x

4
A; x

9
C ; �

�
� u3

�
s; x4�; x

9
�; x

4
A; x

9
C ; A

�i
F�4 = x

4
�

h
u4
�
s; x4�; x

9
�; x

4
A; x

9
C ; �

�
� u4

�
s; x4�; x

9
�; x

4
A; x

9
C ; A

�i
F�9 = x

9
�

h
u9
�
s; x3�; x

4
�; x

3
A; x

4
A; �

�
� u9

�
s; x3�; x

4
�; x

3
A; x

4
A; C

�i
FA3 = x

3
� + x

3
A � 1

FA4 = x
4
� + x

4
A � 1

FC9 = x9� + x
9
C � 1

where s = (A1; B2; B5; B6; C7; C8); and evaluate this Jacobian at
(x3�; x

3
A; x

4
�; x

4
A; x

9
�; x

9
C ; s) = e; that is to say at x

3
� = x

4
� =

4
5 ; x

3
A = x

4
A =

1
5 ; x

9
� =

99
100 and x

9
C =

1
100 .

It is quite easy to compute F�3 , F
�
4 , and F

�
9 :

F�3 = x
3
�

h
u3
�
s; x4�; x

9
�; x

4
A; x

9
C ; �

�
� u3

�
s; x4�; x

9
�; x

4
A; x

9
C ; A

�i
=

= x3�

h
5x4�x

9
C + 5x

4
Ax

9
C � 65

2 x
4
Ax

9
� � 5x4�x9C � 25x4Ax9C + 259

40

i
=

=x3�

h
�20x4Ax9C � 65

2 x
4
Ax

9
� +

259
40

i
It�s immediate to calculate that:
@F�

3

@x3�

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= 0,

11



@F�
3

@x4�

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= 0,

@F�
3

@x9�

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= � 26
5 ;

@F�
3

@x3A

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= 0;

@F�
3

@x4A

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= � 259
10 ;

@F�
3

@x9C

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= � 16
5 :

We have now to analyze F�9 :

F�9 = x
9
�

h
u9
�
s; x3�; x

4
�; x

3
A; x

4
A; �

�
� u9

�
s; x3�; x

4
�; x

3
A; x

4
A; C

�i
=

= x9�

h
5x3Ax

4
A � 7x3�x4� � 7

�
x3�x

4
A + x

3
Ax

4
�

�
� 8x3Ax4A + 171

25

i
=

= x9�

h
�3x3Ax4A � 7x3�x4� � 7x3�x4A � 7x3Ax4� + 171

25

i
It�s immediate to calculate also in this case the following:
@F�

9

@x3�

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= � 693
100 ,

@F�
3

@x4�

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= � 693
100 ,

@F�
3

@x9�

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= 0;

@F�
3

@x3A

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= � 3069
500 ;

@F�
3

@x4A

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= � 3069
500 ;

@F�
3

@x9C

���
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

= 0:

Then,

@F
@x

��
(x3�;x

3
A;x

4
�;x

4
A;x

9
�;x

9
C ;s)=e

=

26666664
0 0 �26

5 0 �259
10

�16
5

0 0 �26
5

�259
10 0 �16

5�693
100

�693
100 0 �3069

500
�3069
500 0

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

37777775
that is not singular, being its determinant equal to 51 282

625 and this completes
the proof that e is a regular equilibrium.
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