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1 Introduction 

Linear exchange economies with a finite number of consumers have been exten­
sively studied (see, for example, Cale (1957, 1960, 1976), Eaves (1976), Cheng 
(1979) and Cornet (1989)). These economies are interesting in themselves for 
different models but they are also interesting as a local approximation of an 
economy with standard differentiable strictly quasi-concave utility functions (see 
Champsaur-Cornet (1990)). Recently, Bonnisseau and Jofré (1994) have proved 
that, on an open dense subset of the space of initial endowments, the equilibrium 
price vector is an infinitely differentiable function of the initial endowments. 

In this papel', we consider apure exchange economy with a continuum of 
agents whose preferences are represented by linear utility functions. Unlike 
Mertens (1995) who is interested in a somewhat different equilibrium concept, 
we deal with conventional Walrasian equilibrium. Our aim is to study how the 
equilibrium prices vary with respect to preferences and initial endowments. Ac­
tual1y, our main objective is to see if the aboye quoted result of Bonnisseau and 
Jofré (1994) holds in continuum economies. 

We first state the model and give sufficient conditions of an increasing strength 
for existence, uniqueness and continuity of equilibrium prices. Next, we provide 
an explicit formula which will be used in the fol1owing to compute the equilibrium 
price vector around a wel1-defined point where it is known. Final1y, if we restrict 
ourselves to economies with essential1y bounded initial endowments and if we 
assume that, from the point of view of preferences, there is only a finite number 
of types of agents, we show that on an open dense subset of the space of initial 
endowments, the equilibrium price vector is an infinitely differentiable function 
of the initial endowments. 

2� The Model. Existence, uniqueness and con­
tinuity of equilibriulTI prices 

We consider in this papel' linear exchange economies with a positive finite number 
l of cornmodities and an atom1ess positive, bounded measure space (1, A, p.) of 
agents. For simplicity, we assume that 1 is the real interval [0,1], A the Borel 
u-algebra of subsets of 1 and p. the Lebesgue measure. The consumption set 
of each agent t E 1 is X t = IR~, his initial endowment is w(t) E IR~ and his 
preference relation is represented by a linear utility function Ut : X t -+ IR, defined 
as Ut(x) = a(t)·x = L~=l ah(t)xh, for sorne given vector a(t) E IR~. If we denote 
by w : 1 -+ IR~ and by a : 1 -+ IR~ the functions that respectively associate to 
each agent his initial endowment and the vector a(t), a linear exchange economy 
is defined by the fol1owing list of data &(a, w) = ((1, A, p.), (a(t), w(t) )tel). 

We will consider on &(a, w) the fol1owing assumptions that we adapt from 
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Cornet (1989): 

(A.1) The rnap a : l --+ IR~ that associates to each agent t E l the vector 
a(t) E IR~ which defines his utility function is rneasurable and a(t) =f O for 
alrnost every t El. 

(A.2) The rnap w : l --+ IR~ that associates to each agent his initial endowrnent 
is integrable and w(t) =f Ofor alrnost every t El. 

(A.3) For every cornrnodity h E {1,···, f}, there exist rneasurable subsets of 
agents A, B e l, with peA) > O, p(B) > Osuch that ah(t) > Ofor alrnost every 
t E A and Wh(t) > Ofor alrnost every t E B, where ah(t) and Wh(t) denote the 
h-th coordinate of a(t) and w(t) respectively. 

(AA) If A E .A is such that for sorne H e {1,···, f}, Wh(t) = Ofor alrnost every 
t E A, for aH h E H, and ak(t) = Ofor almost every t rt. A, for aH k rt. H, then 
either peA) = Oor peA) = 1. 

(A.5) There exists J E .A with p(J) > Osuch that w(t) » Ofor alrnost every 
tE J. 

(A.6) a(t) » Ofor alrnost every t E l. 

(A.7) w(t) » O, for alrnost every t E l. 

Assurnptions (A.1) and (A.2) are standard and define linear exchange econo­
mies with a continuurn of agents. \Vhen it is rnade on sorne t"(a,w), Assurnption 
(A.3) is clearly harmless, ror if it were violated it would be sirnply possible to 
rernove the goods h that don't satisfy (A.3). Note that (A.3) guarantees that 
Jlw(t) »0. (AA) is an irreducibility assurnption, first forrnulated by Cale 
(1957) for an econorny with a finite nurnber of agents ; in view of (A.1) and 
(A.2), (AA) is in particular satisfied undel' (A.6) which guarantees desirability 
of the cornrnodities as in Aurnann (1966). (A.5) (and a fortiori (A.7)) and (A.6) 
strengthen (A.3) and (AA). 

Recal1 that an aHocation is a p-integrable function x : l --+ IR~. An al1ocation 
x E Ll(IR~) is said to be feasible if JI x(t)dp ::; JI w(t)dp. A quasiequilibriurn 
is a pair (p, x) E IR~ X Ll (IR~), consisting of a nonzero price systern P and a 
feasible al1ocation x, such that for alrnost every t E l, p' x(t) ::; P . w(t) and 
a(t) . z > a(t) . x(t) =? p' z 2:: P . w(t). This quasiequilibriurn is a cornpetitive 
(or Walrasian) equilibriurn if for alrnost every t E l, x(t) rnaxirnizes a(t) . z in 
Bt(p) = {z E IR~ Ip· z ::; p . w(t)}. 

Before establishing an existence and uniqueness result, we prove a lernrna for 
which we need sorne additional notation. Given a price systern p E IR~+, let us 
denote by Ht(p) the cornrnodity subset defined as 

ah(t) ak(t)}Ht (p) = h E {1, ... ,f} I - = rnax - .{ Ph k Pk 

Let us denote by dt(p,w(t)) the dernand correspondence of the agent t E l, by Vt 
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his indireet utility function. Finally, let eh E IR~ be the vector whose coordinates 
are equal to O, except the h-th which is equal to 1. 

Lernrna 2.1 Let &(a, w) be a linear exchange economy. Then lor all P, q E IR~+ 
and lor all t E 1, such that a(t) # O and w(t) # O, the lollowing statements 
hold: 

i) dt(p,w(t)) = co( {p.;!t)eh I h E Ht(p)}), where lor X e IR'-, co(X) denotes 
the convex hull 01 X 

ii) Vt(p) = p. w(t) maxh a~~t) 
aiii) Let a E ]0, 1[ and let r E IR~+ be defined by rí: = (Ph)a (qh)l-a 

lor every h E {1,···, e}. Then, lor all t E 1, it is satisfied that 
Vt(ra) ::; aVt(p) + (1 - a)Vt(q) 

iv) Furthermore, the inequality is striet whenever Vt(p) # Vt(q) 

Proof. dt(p,w(t)) is the nonempty set of solutions and Vt(p) the value of the 
linear programming problem 

max a(t) . z subject to z ~ O and p. z ::; p' w(t). 

i) follows from necessary and sufficient conditions for optimality of any element 
belonging to dt(p,w(t)). 

ii) follows from Vt(p) = a(t) . x for any x E dt(p,w(t)). 

For every t El, let us now consider the function "t : IRe --+ IR defined 
by ltt(q) = Vt(exp(q¡), ... ,exp(qe)). By definition of ltt one has that ltt(q) = 
maXh [2:i=lwk(t)ah(t)exp(qk -qh)] for every q E IR'-. One deduces that ltt is 
convex as the supremum of convex functions. iii) follows from the convexity of 
ltt. 

The proof of iv) can be found in Cornet (1989) and lies on the simple obser­
avation that for all x,y E IR+, a E]O, 1[, it is verified that ax+(I-a)y ;;::: x yl-a, 

with a striet inequality if x # y. o 

Next, we state the existence and uniqueness of equilibrium prices in linear 
exchange economies with an atomless agent space. Proposition 2.1 extends Gale 
(1976) and proves the existence of equilibria and the uniqueness of equilibrium 
utility levels for almost every consumero Proposition 2.2 extends Theorem 3 in 
Cornet (1989). 

Propositioll 2.1 Under the assumptions (A.l)-(A.4), the atomless linear ex­
change economy &(a,w) has an equilibrium (x, p) such that p » Oand JI x(t)d¡t = 
J¡w(t)d¡t. 

Furthermore, i/(x,p) and (y,q) are two equilibria 01 &(a,w), let us definelor 
a E]O, 1[, za = ax +(1-'a)y, andlor every h rí: = (Ph)a(qh)l-a. Then (za,ra) 
is also an equilibrium 01 & and lor almost every t E 1, Vt(p) = Vt(ra) = Vt(q). 
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Proof. The proof of the fist assertion is as in Mertens (1995) (see lernrna 3). Let 
an(t) = a(t) +n-1(1, ... , 1) and consider the sequence of perturbed economies 
En = «(1, A, jl), (an(t),w(t))tE¡)' (En) satisfies aH assurnptions of Aurnann (1966) 
for the existence of a cornpetitive equilibriurn (pn, xn), with pn >> O, norrnalized 
in the unit sirnplex, and J¡ xn(t)djl = J¡w(t)djl. W.l.o.g, one can assurne that 
p'" -+ P =f O. Then, by Fatou's lernrna (see for exarnple Hildenbrand (1974) 01' 

Artstein (1979)), there exists an integrable function x : [0,1] -. lR~, such that 
f¡x(t)djl ::5 J¡w(t)djl and x(t) is a lirnit point of (xn(t))n~l for alrnost every 
t E [0,1]. It is easy to check that (x,p) is a quasiequilibriurn of E(a,w). Then let 
A = {t E [O, 1]lp·w(t) = O} and H = {hlph > O}. In view of (A.3), jl(A) < 1. On 
the other hand, for alrnost every t rt A, x(t) rnaximizes a(t) . x subjeet to x ~ O 
and p. x ::5 p . w(t). Hence, ah(t) = Ofor alrnost every t rt A and for aH h rt H. 
It then foHows frorn (AA) that jl(A) = Oand that (x,p) is an equilibriurn. Frorn 
(A.3), one deduces that p » Oand J¡ x(t)djl = J¡w(t)djl. 

Assurne now that (x,p) and (y,q) are two equilibria of E and let o: E]0,1[. 
Frorn iii) in lernrna 2.1, we deduce that for alrnost every t E J, a(t) . zC\'(t) = 
aVt(p) +(1-0: )Vt(q) ~ Vt(rC\'). Frorn the definition of the indirect utility funetion, 
it fol1ows that rC\' . zC\'(t) ~ rC\' . w(t). On the other hand, J¡ zC\'(t)djl = J¡w(t)djl 
and it is easily seen that for alrnost every t E J, rC\' • zC\'(t) = rC\' . w(t) and 
Vt(rC\') = a(t)· zC\'. Hence (zC\', rC\') is an equilibriurn of E. In view of iv) in Lernrna 
2.1, Vt(rC\') = Vt(p) = Vt(q) for alrnost every t E J. O 

Propositioll 2.2 Under (A.1)-(A.4), let (x,p) and (y,q) be two equilibria 01 
E(a,w), with rC\' defined as in proposition 1.1, lor o: E]O, 1[. Let also (H¡)7=1 be 
the partition 01 H = {1, ... , l} generated by the equivalence relation: h I'V k {::} 
qhPk = qkPh. Then 

i) For almost every t E J, there exists i such that Ht(rC\') e H¡ and 
Wk(t) = Olor all k rt H¡ 

ii) Consequently, under (A.5), the equilibrium price vector p(a,w) is 
unique up to the multiplication by a positive scalar 

Proof. For every h, k EH and for every t E J, it is verified that o:~wk(t)ah(t)+ 
(1 - a)~wk(t)ah(t) > (u)C\' (~)(l-C\') wk(t)ah(t). Furtherrnore, the inequality is 

q" - p" q" 
striet whenever Wk(t) > O, ak(t) > Oand u =f ~. 

p" q" 

Surnming over k such that Wk(t) > O, we get 

ap . w(t) ah(t) + (1 _ o:)(q . w(t)) ah(t) ~ rC\' . w(t) ah~t). 
Ph qh rh 

Then, applying the second assertion of Proposition 2.1, we get that for alrnost 
every t E J, Ht(rC\') e Ht(p) n Ht(q), hence Ht(rC\') e H¡ for sorne i = 1, ... , k. 
Furtherrnore, if Wk(t) > O for sorne k rt H¡, it holds true that O:Vt(p) + (1 ­
a)Vt(q) > Vt(rC\'), a contradietion which proves the second part of i). 
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If J is as in (A.5), then for almost every t E J Ht(r CX 
) = H, which proves ii). 

O 

In the following, the equilibrium price is normalized so as to belong to the 
unit-simplex ~ of JRi; recall that ~ is compacto We now restrict ourselves to 
linear exchange economies that satisíy (A.1)-(A.7). Such an economy can be 
described as a measurable mapping & of (I, A, p) into JR~+ x JR~+ such that 
Je °&dp ~ 00, where e denotes the second projection of JR~+ x JR~+ on JR~+. 

The distribution 0= pO&-l of & is called preference-endowment distribution. 
It is known that the equilibrium price p( &) only depends on the preference­
endowment distribution. 

Let 1) denote the space of probability measures o on JR~+ x JR~+ such that 
Je do ~ 00, endowed with the following metric: given OI, 02 E 1), 7](0I, (2) = 
P(0I,02)+ IJ e do} - Je d02 1, where p denotes the Prohorov metric. Recall that 
p induces the weak convergence topology on 1) and (1),7]) is a separable space 
(see Dierker (1975)). 

In the following proposition, we state the continuity of the equilibrium price 
function in a result where we consider economies as similar if they have similar 
preíerence-endowment distributions and similar mean endowments. 

Proposition 2.3 The equilibrium price /1mction o -+ p(o) E ~ is continuous 
on (1),7]). 

Proof. See Hidenbrand (1974), Proposition 4 p. 152. o 

Corollary 2.1 Let &(a,w) and, for every n, &(an,wn) be economies satisfying 
(A.l)-(A.7) and such that (an,wn) converges to (a,w) almost everywhere, and 
J¡wn(t)dp converges to J¡w(t)dp. Then p(an,wn) converges to p(a,w). 

Proof. Since convergence almost everywhere implies convergence in distribution, 
one obtain that 7](O(an,wn),O(a,w») -+ Owhen n -+ oo. Use now Proposition 2.3 to 
obtain that p(an,wn) converges to p(a,w). 

However, we can use Fatou's lemma in order to give a direct proof oí this 
resulto Let us consider x n : l -+ JR~, competitive equilibrium allocations 
of the economies &(an,wn). W.l.o.g., one can assume that p(an,wn) converge 
to sorne p E ~ and that limn_ oo J¡ xn(t)dp exists. By Fatou's lemma, one 
concludes that there exists an integrable function x : l -+ JR~, such that 
J¡x(t)dp ~ limn_ooJ¡xn(t)dp ~ limn_ooJ¡wn(t)dp = J¡w(t)dp and x(t) is a 
limit point of (xn(t))n~l for almost every t E l. It is easy to check that (p,x) is a 
quasiequilibrium and, in view of (A.7), a Walrasian equilibrium oí the economy 
E(a,w). Hence p =p(a,w). 
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Actually, we have just proved that every converging subsequence of p(an , wn ) 

converges to p(a, w). As D. is compact, it is enough to guarantee that p(an, wn ) -+ 

p(a,w). O 

3� An explicit forlnula for the equilibrium price 
vector 

From� now and for the remainder of the papel', we fix the measurable mapping 
a : 1 -+ .m~+ which defines individual utility functions, so that the price vector 
is a function w -+ p*(w) defined on Ll(.m~+). 

In this section, we provide the explicit formula which will be used in Section 4 
to compute the equilibrium price vector around a point where it is known. In fact, 
we show that the equilibrium price vector is the unique (up to a multiplicative 
real factor) positive solution of a linear system. Towards stating the explicit 
formula, we introduce the following notations. 

Let e be the set of correspondences from the agent set 1 to the cornmodity 
set {l, ... , f}, and let n be a subset (to be precised later) of Ll(.m~+). We 
consider the mapping e from n to e defined as follows : for each w E n, the 
image e w is given by eW(t) = Ht(p*(w)), for every t E l. Let Cbe the range 
of e and, for all C E C, let us define nC = e-1(C) = {w E nlew = C}. 
We fix now C = ew E e and define the following subsets of agents. For each 
L E P (where P denotes the collection of all nonempty subsets of {l,oo·, f}), 
h = {t E llL = C(t)}. If N = U{hIL E P, ¡.t(h) = O}, note that ¡.t(N) = O, 
1 = (U{hIL E P, ¡.t(h) > O})UN and h n lu = 0 if L =1 L'. So, {hlL E 
P, p,( L) > O} UN is a finite partition of the agent set l. Let us define the non­
oriented graph Gc as follows. The set of vertices is {hlL E P,¡.t(h) > O}, and 
there exists an edge between h and h, if and only if L n L' =1 0. We denote 
by If, ... ,I~ the connected components of Gc and by 1ff, ... ,1f~ the subsets 
of {l,oo., f}, defined by 1f'j = U {L}, j = 1,,,,, n. Qne readily sees that 

hEIf 

'Jíf,·· " 1f~ is a partition of the commodity set {l, ... , f}. Finally, for each 
j E {l,oo.,n}, we choose an element (hj,hi ) E If x 1f'j, such that hi E Li, 
that is, hi E C(t) = Ht(p*(w)), for all t E 1M, 

Next we state a lernma whieh shows the link between the equilibrium price 
vector and the finite partition of l. For each good h, let Sh = {t E llh E C(t)}. 
Observe that p,(Sh) > Owhatever the cornmodity h may be. Furthermore, h e 
Sh if hE L; if h =1 h' and {h,h'} eL, then h e ShnSh', 

Lemma 3.1 There exists a vector , C E .m~+ such that for all w E nc , for all 
j E {l,"', n} and for all h E 1f'j, it is verified that P"h(w) = IfPhj(w). 

Proof. Let us consider w E nC , j E {l,· ", n} and h E 1f'j. By definition of the 
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commodity subsets 1í'j, there exists L E P such that h E If and h E L. By 
definition of conneeted components, one deduces that there exist q - 1 elements 
of P, L1,"', Lq- 1 and q goods h1," " hq , such that h1 E Li nLb hk E Lk- 1 nLk, 
k = 2"," q -1 and hq E Lq- 1 n L. Recall that L = Ht(p"(w)) for all t E h. So, 
by definition of the commodity subsets Ht(p"(w)), one deduces that 

Phi (w ) PhI (w) 
ahi(t) ahl (t) 

Ph" (w) Ph"+1 (w)
- for all t E Sh" n Shk+l k = 2, ... , q - 1 

ah,,(t) ah"+1 (t) 

Ph/W) Ph(w) 
for aH t E Shqn Sh. 

ahq(t) ah(t) 

Note that, by construction, lo e Shi nShl' h" e Sh" nShk+l' for k = 2, .. " q-l 
and h e Shqn Sh' Therefore, ¡.t(Shi n Shl) > O, ¡.t(Sh" n Sh"+I) > O, for k = 
2", " q - 1 and ¡.t(Shqn Sh) > O. Let us consider tq E Shqn Sh, tk E Sh" n Shk+l 
for k = 2" ", q - 1, ti E Shi n Shl' and define ,0 E JR~+ as follows 

° ah(tq ) ah(tq_¡) ah2(t¡) ahl (ti) 
'h = ahq(tq ) ahq_l (t q_¡) ahl (tI) ahi(ti)' 

Hence, from the aboye equalities, we can conclude that p;;(w) = ,fPhi(W). 

Let us now define the linear map, rO, from JR'- to JRn, as foHows : 

r'j(x) = L ,fXh, for every x E JR'-, 
hE'H

J 
c 

where r'j(x) is the j-th component of rO(x), with j E {1,··· ,n}. Let us also 
consider the n x n matrix AO(w), whose ij-element is defined by 

if j = i 

if j -¡. i 

where (If)C is the complement set of Ir. We will denote by A'j(w) the (n ­
1) x (n - 1) submatrix of AO(w) obtained by suppressing the j-th column and 
the j-th row. 

Lemma 3.2 The rank 01 AO(w) is n-1. 

ProoE. Let us first notice that A°(w) is a singular matrix. It is so because the 
sum of its columns is zero. Let us calculate now the sum of the k-th column of 
the (n - 1) x (n - 1) submatrix A'j(w). 

t a5.(w) = rf (1 Ce w(t)d¡.t - t Ác W(t)d¡.t) = rf (Ác w(t)d¡.t) > O. 
...1 (X" ) i=1 Xi Xi 
i~i i~i." 
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So, Ay (w) is a matrix with nonpositive nondiagonal terms and a strictly positive 
sum of columns. The properties of such matrices (caHed diagonal dominant 
matrices) are known and used in Leontief's systems (see McKenzie (1960), Gale 
(1960) 01' Nikaido (1972)) ; in particular, they are regular and have a nonnegative 
inverse. Consequently the rank of the matrix AC (w) is n - 1. el 

Theorem 3.1 For all w E nc , the equilibrium price vectors are the positive 
solutions o/ the /ollowing linear system : 

. c' CFor al1 J = 1, ... ,n, for aH h E 1íj , h =f hJ
, Ph = fh Phi· 

Proof. Consider w E nC • Let us first show that P* (w) solves the linear system. 
By lemma 3.1, it is sufficient to prove that 

= O. 

Let us consider an equilibrium al1ocation x of the economy é(w). Then, for 
almost aH t El it is verified that p*(w) . x(t) = p*(w) . w(t). Hence, 

h¡ p·(w) . x(t)dp = p·(w) .h¡ w(t)dp =EPh.(w)rf (h¡ w(t)dp) 

where the last equality comes from Lemma 3.1 and from the definition of the map
rC. By Lemma 2.1, one has, for aH j = 1,"" n and for aH h E 1-lf, Xh(t) = O 
if t rI. Ir So Jrc xh(t)d¡l = JI Wh(t)dp, whatever h E 1íf may be. Furthermore, 

for aH h rl.1íf, 
J

it is verifed that Jrc xh(t)dp = O. 
J 

It is also verified that 

Hence one has for aH j = 1,' .. , n, 
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Since Jr w(t)dJ-L - Jxr; w(t)dJ-L = J(XC)C w(t)dJ-L, one concludes that p*(w) solves the, , 
linear system. 

It remains to show that, if P is a positive solution of the linear system, then 
p is an equilibrium price. By Lernma 3.2, we know that the rank of the matrix 
AO(w) is n - 1 and so the solution set of the linear system is a one dimensional 
subspace of IRi which contains the half line PP* (w) 1,\ > O}. Hence, the solution 
set is IRp*(w) and every positive solution is an equilibrium price vector. o 

Corollary 3.1 Assume that we choose a good hi as numeraire, with 1 ~ j ~ n. 
Then, for allw E nO, the price vectorp*(w) comes determinated by thefollowing 
equations : 

p'jti- I (w)
Phi(W) = 1, 

Phi+ 1 (w) 

Phn(W) a~i(w)
 

andfor allj = 1,' ",n, for all hE 1íf, h =f hi ,� 

Ph(W) = ,yfPh,(W).� 

Furthermore, allthe elements ofthe matrix (Af(W))-1 are non negative. 

Proof. By the proof of Lemma 3.2, one obtains that the matrix Af(w) has ful1 
rank. So, the given equation system has a unique solution. By Theorem 3.1, 
we know that the equilibrium price vector p*(w), with Phi(W) = 1 is a solution. 
Therefore, p*(w) is the unique solution of the system. Final1y, as already noticed, 

the elements of the inverse matrix (Af(W))-1 are non negative. o 

4 A gelleric property of equilibriulTI prices 

Let us now assume that the map a : 1 -+ IR~+, which defines the utility functions 
of the agents, is a given simple function. More precisely, a(t) = Ei=1 a¡XA¡(t), 
where for aH i E {1, .. " s}, A¡ E .A, a¡ E IR~+, XA¡ is the characteristic function 
of A¡, and A¡ nAi = 0 if i =f j, 1 = Ui=1 A¡. In other words, from the point of 
view of preferences, there exists in the economy a finite number s of agents. Note 
that the subset of simple maps is dense in (Ll(IR~+), 11·111) and in (LOO(IR~+), 11· 
1100). 

Moreover, we restrict ourselves to initial endowments w belonging to LOO(IR~+). 
Note that it foHows from the explicit computation of the equilibrium demand in 
Lemma 2.1 that the corresponding equilibrium al1ocations belong to LOO(IR~). 
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Definition 4.1 The economy í'(a,w) is said to be regular ifthere exists a Wal­
rasian equilibrium allocation x : 1 -+ lR~ belonging to Loo(lR~), and a positive 
number b~ > O, such that for almost all t E 1 and for all h E Ht(p"(w)), it is 
verified that Xh(t) ~ b~. 

Let us denote by n the set of initial endowments w E Loo(lR~+) such that 
the economy í'(a, w) is regular. In what follows, we prove that for each w E n 
there exists a neighbourhood of w included in n where the equilibrium prices 
map p" is an infinitely differentiable function of the initial endowments. In order 
to obtain such a result, we state sorne notations and prove, as technicallemmas, 
sorne intermediate claims. 

Consider an arbitrary but fixed w E n. For each i E {1,···, s}, let Hi be 
the set of goods Ht(p"(w)), whoever agent t E Ai may be. Let 13 : 1 -+ lR++ be 

the map defined by ¡3(t) = min {:~\~11 h E {1, .. ·, el}. For each i E {1, "', s}, 
let ¡3i denote the real number ¡3(t), whoever agent t E Ai may be. Using the 
notations of the previous section, state e = E>w. We now consider the following 
linear spaces 

M = {x E Loo(lRl
) I Xh(t) = O if h f{. Ht(p"(w)), for almost all t El}, 

l = {(f, y) E Loo(lR) xlRl 'lc ¡3(t)f(t)d¡.t(t) = I: p"(W)Yh, for all j = 1,"', n}, 
~ hEH

J 
c 

and the fol1owing mappings cp : Loo(lRe) -+ Loo(lR) x lRe, 'ljJ : Loo(lR~+) -+ 

Loo (lR) x lR~+, defined by 

cp(x) = ((a(t) . x(t))tEI' hx(t)d¡.t(t)) , 

'ljJ(w) = ((Vt(p"(w),w(t))tEI'hw(t)d¡.t(t)). 

It is worth noticing that M and l are closed (in Loo(lRl ) and Loo(lR) x lRe 
respectively), that M contains the equilibrium allocations of í'(a,w) and that 
x E Loo(lR~) is an equilibrium allocation of í'(a,w) if and only if cp(x) = 'ljJ(w). 

Lernrna 4.1 cp(M) e l. 

Proof. Consider x E M and cp(x) = (J,y). By definition of M and cp, 

f(t) =a(t) . x(t) = I: ah(t)xh(t) = 13(1 ) I: Ph(w)Xh(t).
hEH,(p.(w)) t hEHc(p.(w)) 

Noticing that for allj = 1,"',n, for almost all t f{. Ir, Xh(t) = O, if h f{. 'Hf, 
one deduces that for all j and for all h E 'Hf, 

Yh = hXh(t)d¡.t(t) = h9 Xh(t)d¡.t(t). 
J 
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So, for aH j = 1,' .. ,n, we can conclude that 

he ¡3(t)f(t)d¡i(t) ­
J 

o 

Lemma 4.2 'P is continuous. 

Proof. Let 'PI(X)(t) = a(t) . x(t), and 'P2(X) = Jl x(t)d¡1(t). The map 'PI : 
Loo(IEt) --+ LOO(IR) is continuous because X E LOO(IRi ) and a is a simple func­
tion. On the other hand, if IIxn - xll oo --+ O, then there exists A E A, such that 
p(I \ A) = O, and Xn converges uniformly to x on A. So, 'P2 : LOO(IRi ) --+ IR is 
also a continuous map. Therefore 'P = ('P}, 'P2) is continuous. O 

Lemma 4.3 'P(M) = .c. 

Proof. Let us denote by :Fa the foHowing set 

:Fa = {f E LOO(IR) I l. f(t)(~l(t) = O for aH i E {1,···, s}} 

and for each i = 1, ... , s, let :F¡ denote the set defined as follows 

:F¡ = {f E LOO(IR) I li f(t)d¡i(t) = Jl(A¡), l., f(t)d¡1(t) = O for aH i' =f i}. 

Let .ca be the set defined by .ca = {(J, O) E LOO(IR) X IRi I f E :Fa}. For each 
j = 1, .. " n, let .cj,.cj denote the sets defined by 

.cj = {(ph(W) Jl(~¡)f¡,¡3¡eh) I A¡ e Ir, hE H¡ and f¡ E:F¡} 

.cj = {(Jl(~¡)f¡ - ¡3k~~k)!k, O)� 
j�It is easy to check that the sets .ca, .c , and .cj are included in .c. Consider 

g = .ca U (Ui:I .cj)U (Ui:I .cj). It is also easy to check that g generates .c (a 
proof of this claim is given in the appendix). As 'P is a linear function, it is 
enough to prove that g e 'P(M). 

Let (J, O) belong to .ca. For each i E {1,"', s}, consider a commodity h(i) E 
Hj. Define Xh(j)(t) = !(t)(t)' and Xh(t) = O if h =f h(i), for aH t E Aj. By

ah(i) 

construction, x E M and 'P( x) = (J, O). 
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· 1
Consider now (1, y) E O for sorne j E {1, . ", n}. That is, J = Ph(w) ¡.t(A )J¡,

i
and y = !3¡eh, with h E H¡, A¡ e Ir, and J¡ E :F¡. So, !3¡ = p*(w)(a¡)h' For each 
i' =f i, Jet us consider h(i') E Hi" and define x : 1 --+ ]Rl as follows 

if { either t E A¡I, i' =f i and k =f h(i'),o 
or t E A¡ and k =f h 

ph(w) (A) 1 ()Ji if t E A', i' =f i and k = h(i') .
¡.t ¡ ah(i') t 

By construction, x E M and cp(x) = (1, y). 

Finally, let us consider (1, O) E [,j for sorne j E {1, ... , n}. That is, J = 

¡.t(~¡)J¡ - !3p~~p)Jp, with A¡, Ap e If, Ap =f A¡, J¡ E :F¡, and Jp E :Fp. T~o 
possibilities can now occur, narneJy, H¡ = Hpor H¡ =f Hp. 

Suppose H¡ = Hp. For each i' =f i,p, Jet us consider h(i') E H¡I and a fixed 
h E H¡ = Hp. Define x : 1 --+ ]Rl as follows 

if { either t E A" i' =f i,p and k =f h(i'),O 
or t E A¡ UAp and k =f h 

J(t) if t E A¡I, i =f i,p and k = h(i')
ah(¡,)(t) 

* _ J(t)
Ph(W) ah(t) if tE A¡ U Ap and k = h 

By construetion, one concludes that x E M and cp( x) = (1, O). 

Suppose H¡ =f Hp. Consider h E H¡ and hp E Hp, hp =f h. As in the proof of 
Lernrna 3.1, there exist q -1 eJernents of P, Lb' .. ,Lq- 1 and q goods hb . ", hq , 

5uch that h1 E H¡j n Lb hk E Lk- 1 n Lk, k = 2"," q - 1 and hq E Lq- 1 n H¡. 
For each k = 1"", q - 1, Jet A¡(k) be a subset of h k, that is H¡(k) = Lk. By 
definition of the cornrnodity subsets Ht(p*(w)), one has 

Ph(W) PhI (w)- for all t E A¡
ah(t) ahl(t) 

Phk (w) Phk+l (w)
- for all t E A¡(k) k=2,... ,q-1

ahk(t) ahk+l(t) 

Phq(W) Php(w) 
- for all t E Ap•

ahq(t) ahp(t) 
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Recalling that e.p is a linear mapping and [,i e e.p(M, j = 1, .. " n, one deduces 
that there exist x k 

, xk E M, k = 1" .. ,q, such that 

e.p(xl ) - (a,j" ,,(~./';, eh,) 

e.p(xk) - ((ai(k)hk (1 )XAi(k),ék); k=I,·",q-l
J.l i(k) 

1 
e.p( xk) - ((ai(k-l)hk (A. )XAi(k_l),ék); k = 2, .. " q

J.l I(k-l) 

qe.p(X9) - ((aphq J.l(~p) fp, é ) . 

Let us denote ak = rr ((ai(r;hr ,for aH k = 1,' . " q -1. Let us now consider 
r=l ai(r) hr+l 

q-l 

the map x : 1 ~ JRi, defined by x = xl - Xl +¿ak(xk+l - xJ:+I). 
k=l 

By a simple computation, 

'1'(x1 = ((a,; )h, ,,(~,; /" - ",-1 (a, lh, ,,(~, /" O) 

- (ai)hl (J.l(~i)fi - /3i~~p)fp, O) . 
o 

Lernrna 4.4 tP is a continuous lunetion. 

Proof. Denote tP = (tPlltP2)' The map tP2 is continuous (see Lernma 4.2). Recall 
that Vt(p*(w),w(t)) = p*(w) . w(t) maxh a.h((t)) = p*(w) . w(t) a.h(t)) with h E 

Ph W Ph W 

Ht(p*(w)). Note that the continuity of the equilibrium price vector mapping 
obtained in CoroHary 2.1 implies that p* is a continuous funetion with respeet 
to the initial endowments w E LOO(JR~+). Then if IIwll 

- wll oo ~ O, as a is 
a simple function, one has for large enough v, Ht(p*(w ll )) e Ht(p*(w)) and 
Vt(p*(WIl),WIl(t)) = p*(wll ) . wll(t) ~h((tl) with h E Ht(p* (w)). It is now obvious 

Ph W 

that v(wll ) = (Vt(P*(WIl),WIl(t))) converges to v(w) for 11 . 1100' o 
tEI 

We are ready now to state the main results of this section. 

Theorern 4.1 For each w E 0, there exists a neighbourhood W 01 w included 
in 0, such that for all w' E W, Ht(p*(w')) = Ht(p*(w)), lor almost allt El. In 
particular, °is an open subset 01 LOO(JR~+). 
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Proof. Let w be arbitrary but fixed as in Lernmas 4.1, 4.2, 4.3. As we have 
already noticed, CoroHary 2.1 implies the eontinuity of the equilibrium priees 
with respect to the initial endowments. So, there exists a neighbourhood V of w, 
sueh that for aH w E V, Ht(p'"(w)) e Ht(p'"(w)), for almost aH t E l. From this, 
it is readily dedueed that for all w E V, every equilibrium aHoeation of &(a,w) 
belongs to M and henee "p(w) E <p(M) = .c. On the other hand, let 

A = {x E M I 3bx , Xh(t) 2:: bx , for almost all t El and for aH h E Ht(p'"(w))}. 

Sinee &(a,w) is a regular eeonomy, &(a,w) has an equilibrium aHoeation x E A 
and "p(w) = <p(x) E <p(A). Note that A is an open subset of M. Sinee <p is a 
eontinuous linear mapping from Monto .c, it follows from the open mapping 
theorem (see, for example, Beauzamy (1985) or Kothe (1969) p. 166), that <p(A) 
is open in .c. Sinee"p is eontinuous, there exists a neighbourhood V' of w sueh 
that "p(V') n .c e <p(A). Finally, w E V n V' => "p(w) E <p(A), that is w E o 
and Ht(p'"(w)) e Ht(p'"(w)) e Ht(p'"(w)). o 

Corollary 4.1 For each w E O, let W be as in Theorem 4.1. The mapping 
w' -. p'"(w') is infinitely differentiable on J;V. 

Proof. Using the notations of Seetion 3, set e = E)w. It follows from Theorem 
4.1 that W is included in Oc. Consequently, the formula given in CoroHary 3.1 
remains true on W. As a eontinuous linear function of w', eaeh integral used in the 
eomputation of the elements of the matrix AC (w') is an infinitely differentiable 
function of w' (see Cartan (1977) for a relevant definition of differentiability on 
Banaeh spaees). On W, eaeh eoordinate of p'"(w') is a polynomial function of 
sueh integrals. o 

Tbeoreln 4.2 O is a dense subset 01 LOO(.m~+). 

Proof. Consider w E LOO(.m~+) and x E LOO(.m~) a Walrasian alloeation of the 
economy &(a,w). For eaeh real number é > 0, let wt: denote the initial endowment 
map defined by 

wt:(t) = w(t) + é L é 
hEHc(p·(w)) 

and let xt: denote the aHoeation defined by 

xt:(t) = x(t) + é L eh. 
hEHc(p·(w)) 

Obviously, Vh = 1,'" ,.e, Ilwh - whlloo < é. Moreover, xh(t) 2:: é for almost aH 
t E 1 and for aH h E Ht(p'" (w)). To prove that wt: E O, it suffiees to prove that 
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(xe,p*(w)) is a competitive equilibrium of the economy &(a,we). Indeed, 

ah(t)
Vt(p*(w),we(t)) = p*(w) ·we(t) mf,xph(w) 

ah(t)
- (P*(W). w(t) + é p*(w) . ¿ eh) max-(-), and 

h P"h whEH¡(po(w)) 

- a(t). x(t) + é a(t) . ¿ eh 
hEHI(po(w)) 

p*(w) . w(t) mf'x a*h(~) + é a(t) . ¿ eh 
Ph hEH¡(po(w» 

Final1y, note that 

o 

Appendix 

Proof that 9 generates 1:-. 

Let (/, y) be an element of 1:-. Let us consider two cases. 

First case. Suppose that y = O. Let a¡ = f f(t)d¡J,(t), i = 1,"" m. Since
lA¡ 

(/, O) E 1:-, one has for each connected component j = 1,"', n, ¿ a¡J3¡ = O. 
A¡CIj 

Consider now a fixed connected component j. Let Si = {i IA¡ e Ir, such that a¡ =f 
O} and Si = {i I A¡ e Ir, such that a¡ = O}. For for each i, such that A¡ e Ir, 
define the fol1owing funetion 

Jl(A¡) f(t)XA¡ if a¡ =f O 
f¡(t) = a¡ 

{ 
f(t)XA¡ if a¡ =O 

So, if t E Ir, then f(t) = ~ (a~.)f¡(t) + ¿f(t)XA¡'� 
IESj Jl, iESJ� 

Note that if Si = {1,· .. , s}, the proof is finished because if a¡ = O, then 

f¡ E Fo· 

15 



Suppose now that Sj =f 0. Then there exist i, k, such that O¡,Ok =f O. By 
1 

definition of 1:-, one obtains that Ok = --/3¿O¡/3¡. Then, f(t)XI'f can be written 
k¡# 

as follows 

(J. XIj) (t) 

1 ( O¡/3¡ ) o¡--/3 ¿ -(A)fk(t) +?= (A.)f¡(t) +¿f(t)XAi
k .ESj /-l k 'ESj /-l I ¡eS) 

i¡tlc i¡tlc 

1 /3¡)= ¿O¡ ( (A.)f¡(t) - /3 (A )fk(t) + ¿f(t)XAi' 
'ESj /-l I k/-l k ¡eS) 
i¡tlc 

Final1y, note that (/-l(~¡) f¡ - /3k~¡Ak) fk, O) belongs to I:-i , whatever i ESil 

i =f k may be. 

Second case. Suppose now that y =f O. Let Ji = {h E 1íjlYh =f 0}. If Jj = 0, 
we are in the first case. So, consider j such that Ji =f 0, and let SU) = Si USi' 
On the other hand, there exists k E Si' Le., 0k =f o. Consider hk E Hk. By 

definition of 1:-, one has 0k = - ~ ¿oi/3i + ~ ¿ P'hYh. For each h E 1íj such 
fJk i1:-k fJk heKWI 

that h =f hk , consider now A¡(h) e Ij, such that h 
)

E Hi(h)' So, if t E Ij, then 
f(t) can be written as fol1ows 

O¡
+ ¿ (k)f¡(t) 

iESj /-l I 

i¡tlc 

¿f(t)XAi 
¡eSj 
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So, for each connected component j, one has 
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