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1 Introduction

Linear exchange economies with a finite number of consumers have been exten-
sively studied (see, for example, Gale (1957, 1960, 1976), Eaves (1976), Cheng
(1979) and Cornet (1989)). These economies are interesting in themselves for
different models but they are also interesting as a local approximation of an
economy with standard differentiable strictly quasi-concave utility functions (see
Champsaur-Cornet (1990)). Recently, Bonnisseau and Jofré (1994) have proved
that, on an open dense subset of the space of initial endowments, the equilibrium
price vector is an infinitely differentiable function of the initial endowments.

In this paper, we consider a pure exchange economy with a continuum of
agents whose preferences are represented by linear utility functions. Unlike
Mertens (1995) who is interested in a somewhat different equilibrium concept,
we deal with conventional Walrasian equilibrium. Our aim is to study how the
equilibrium prices vary with respect to preferences and initial endowments. Ac-
tually, our main objective is to see if the above quoted result of Bonnisseau and
Jofré (1994) holds in continuum economies.

We first state the model and give sufficient conditions of an increasing strength
for existence, uniqueness and continuity of equilibrium prices. Next, we provide
an explicit formula which will be used in the following to compute the equilibrium
price vector around a well-defined point where it is known. Finally, if we restrict
ourselves to economies with essentially bounded initial endowments and if we
assume that, from the point of view of preferences, there is only a finite number
of types of agents, we show that on an open dense subset of the space of initial
endowments, the equilibrium price vector is an infinitely differentiable function
of the initial endowments.

2 The Model. Existence, uniqueness and con-
tinuity of equilibrium prices

We consider in this paper linear exchange economies with a positive finite number
¢ of commodities and an atomless positive, bounded measure space (I, .4, 1) of
agents. For simplicity, we assume that I is the real interval [0,1], A the Borel
o-algebra of subsets of I and p the Lebesgue measure. The consumption set
of each agent ¢t € I is X; = IR%, his initial endowment is w(t) € RS and his
preference relation is represented by a linear utility function U; : X; — IR, defined
as Uy(z) = a(t)-z = Tf_, ax(t)zs, for some given vector a(t) € IRt If we denote
by w:I — RS and by a: I — IR the functions that respectively associate to
each agent his initial endowment and the vector a(t), a linear exchange economy
is defined by the following list of data £(a,w) = ((I, A, ), (a(t),w(t))ser)-

We will consider on £(a,w) the following assumptions that we adapt from



Cornet (1989):

(A1) The map a : I — IRS that associates to each agent t € I the vector
a(t) € IR which defines his utility function is measurable and a(t) # 0 for
almost every t € I.

(A.2) The map w : I — IRY that associates to each agent his initial endowment
is integrable and w(t) # 0 for almost every t € I.

(A.3) For every commodity h € {1,---,£}, there exist measurable subsets of
agents A, B C I, with u(A) > 0, u(B) > 0 such that a,(t) > 0 for almost every
t € A and wi(t) > 0 for almost every ¢t € B, where ax(t) and wx(t) denote the
h-th coordinate of a(t) and w(t) respectively. :

(A4) If A € Aissuch that for some H C {1,-:-,£}, wy(t) = 0 for almost every
t € A, forall h € H, and a,(t) = 0 for almost every t ¢ A, for all k£ ¢ H, then
either u(A) =0 or p(A) = 1.

(A.5) There exists J € A with u(J) > 0 such that w(t) >> 0 for almost every
teld.

(A.6) a(t) >> 0 for almost every t € I.
(A.7) w(t) >> 0, for almost every t € I.

Assumptions (A.1) and (A.2) are standard and define linear exchange econo-
mies with a continuum of agents. When it is made on some £(a,w), Assumption
(A.3) is clearly harmless, for if it were violated it would be simply possible to
remove the goods h that don’t satisfy (A.3). Note that (A.3) guarantees that
Jiw(t) >> 0. (A4) is an irreducibility assumption, first formulated by Gale
(1957) for an economy with a finite number of agents ; in view of (A.1) and
(A.2), (A.4) is in particular satisfied under (A.6) which guarantees desirability
of the commodities as in Aumann (1966). (A.5) (and a fortiori (A.7)) and (A.6)
strengthen (A.3) and (A .4).

Recall that an allocation is a p-integrable function z : I — IR. An allocation
z € L'(IRY) is said to be feasible if f; z(t)dy < [jw(t)dp. A quasiequilibrium
is a pair (p,z) € R, x L'(IR%), consisting of a nonzero price system p and a
feasible allocation z, such that for almost every t € I, p- z(t) £ p-w(t) and
a(t)-z > a(t) -z(t) = p-z > p-w(t). This quasiequilibrium is a competitive
(or Walrasian) equilibrium if for almost every ¢t € I, z(t) maximizes a(t) - z in
Bip)={z€ Rilp- 2 < p-w(t)}.

Before establishing an existence and uniqueness result, we prove a lemma for
which we need some additional notation. Given a price system p € R, let us
denote by H,(p) the commodity subset defined as

H,(p)={h€ {1,...,¢} | ﬂt—)=maxak—(t)}.

Ph L )

Let us denote by d;(p,w(t)) the demand correspondence of the agent t € I, by v,
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his indirect utility function. Finally, let e* € IR be the vector whose coordinates
are equal to 0, except the h-th which is equal to 1.

Lemma 2.1 Let &(a,w) be a linear exchange economy. Then forallp,qg € RS,
and for all t € I, such that a(t) # 0 and w(t) # 0, the following statements
hold:

i) di(p,w(t)) = co({p;‘;fﬂeh | h € Hy(p)}), where for X C IR*, co(X) denotes
the convez hull of X
i) v(p) = p-w(t) maxy, “—';,Eﬂ
iti) Let o €]0,1[ andlet v € RRL, be defined by rf = (pn)* (qn)'™®
for every he{l,---,€}. Then, forallte€l, itis satisfied that

vi(r®) < avy(p) + (1 — e)ve(q)
iv) Furthermore, the inequality is strict whenever v,(p) # v(q)

Proof. d,(p,w(t)) is the nonempty set of solutions and v(p) the value of the
linear programming problem

max a(t) -z subjectto 2>0 and p-z < p-w(t).

i) follows from necessary and sufficient conditions for optimality of any element
belonging to di(p,w(t)).

i1) follows from v;(p) = a(t) - z for any z € d,(p,w(?)).

For every t € I, let us now consider the function V, : IR® — IR defined
by Vi(q) = vi(exp(q1),...,exp(ge)). By definition of V; one has that Vi(q) =
maxp [Z£=1wk(t)ah(t)exp(qk - qh)] for every ¢ € IR®. One deduces that V; is
convex as the supremum of convex functions. #) follows from the convexity of

Vi.

The proof of iv) can be found in Cornet (1989) and lies on the simple obser-
vation that for all z,y € R,, a €]0,1], it is verified that ez + (1 —a)y > z%y!~°,
with a strict inequality if = # y. D

Next, we state the existence and uniqueness of equilibrium prices in linear
exchange economies with an atomless agent space. Proposition 2.1 extends Gale
(1976) and proves the existence of equilibria and the uniqueness of equilibrium

utility levels for almost every consumer. Proposition 2.2 extends Theorem 3 in
Cornet (1989).

Proposition 2.1 Under the assumptions (A.1)-(A.4), the atomless linear ez-
change economy E(a,w) has an equilibrium (z,p) such thatp >> 0 and [;z(t)dp =
Jrw(t)dp

Furthermore, if (z,p) and (y,q) are two equilibria of £(a,w), let us define for
a €]0,1], 2* = az + (1 —a)y, and for every h r¢ = (pr)*(qn)'~*. Then (2%,1%)
is also an equilibrium of € and for almost every t € I, vy(p) = ve(r®) = ve(q).
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Proof. The proof of the fist assertion is as in Mertens (1995) (see lemma 3). Let
a™(t) = a(t) + n71(1,...,1) and consider the sequence of perturbed economies
Ea=((1, A p),(a"(t),w(t))er). (£,) satisfies all assumptions of Aumann (1966)
for the existence of a competitive equilibrium (p*, z"), with p® >> 0, normalized
in the unit simplex, and f; z"(t)dpg = [;w(t)dg. W.l.o.g, one can assume that
P — p # 0. Then, by Fatou’s lemma (see for example Hildenbrand (1974) or
Artstein (1979)), there exists an integrable function z : [0,1) — IRf, such that
Jiz(t)dp < [jw(t)dp and z(t) is a limit point of (2"(t))n> for almost every
t € [0,1]. It is easy to check that (z,p) is a quasiequilibrium of £(a,w). Then let
A= {t€[0,1]|p-w(t) =0} and H = {h|py > 0}. In view of (A.3), #(A4) < 1. On
the other hand, for almost every t ¢ A, z(t) maximizes a(t) - x subject to z > 0
and p-z < p-w(t). Hence, a;(t) = 0 for almost every t ¢ A and for all h ¢ H.
It then follows from (A.4) that #(A) = 0 and that (z,p) is an equilibrium. From
(A.3), one deduces that p >> 0 and f; z(t)dp = f;w(t)dp.

Assume now that (z,p) and (y,q) are two equilibria of £ and let o €]0,1[.
From i) in lemma 2.1, we deduce that for almost every t € I, a(t) - 2%(t) =
ave(p)+ (1 —a)vi(q) = vy(r*). From the definition of the indirect utility function,
it follows that r* - 2%(t) > r* - w(t). On the other hand, [; 2%(t)dp = fjw(t)du
and it is easily seen that for almost every t € I, r® - 2°%(t) = r* - w(t) and
v(r®) = a(t) - z*. Hence (2*,7%) is an equilibrium of £. In view of v) in Lemma
2.1, v(r*) = vi(p) = v(q) for almost every t € I. o

Proposition 2.2 Under (A.1)-(A.4), let (z,p) and (y,q) be two equilibria of
E(a,w), with r* defined as in proposition 1.1, for o €]0,1[. Let also (H,-)f=l be
the partition of H = {1,...,£} generated by the equivalence relation: h ~ k &
9wPk = qkph. Then

i) For almost every t € I, there exists i such that Hy(r*) C H; and
wi(t) =0 for all k ¢ H;

it) Consequently, under (A.5), the equilibrium price vector p(a,w) 18
unique up to the multiplication by a positive scalar

Proof. For every h,k € H and for every t € I, it is verified that aZswy(t)ax(t) +
(1 — ) Lw(t)an(t) 2 (E&)a (ﬁ)(lﬁa) wi(t)an(t). Furthermore, the inequality is

= \rn/ \an
strict whenever wi(t) > 0, ax(t) > 0 and ZE £ 2,

Summing over k such that w(t) > 0, we get

ax(t) ax(t)

ap-w)™2 1 (1 - a)(g () A il

o

>r*-w(t)
Ty

Then, applying the second assertion of Proposition 2.1, we get that for almost
every t € I, H,(r*) C H,(p) N H(q), hence H,(r*) C H; for some i = 1,...,k.
Furthermore, if wi(t) > 0 for some k ¢ H;, it holds true that av,(p) + (1 —
a)v(g) > v(r*), a contradiction which proves the second part of ).
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If J is as in (A.5), then for almost every t € J Hy(r*) = H, which proves 1).
0

In the following, the equilibrium price is normalized so as to belong to the
unit-simplex A of IR%; recall that A is compact. We now restrict ourselves to
linear exchange economies that satisfy (A.1)-(A.7). Such an economy can be
described as a measurable mapping & of (I, 4, ) into RL, x Y, such that
[ eo& dp < 0o, where e denotes the second projection of R, x R%, on R:,.

The distribution a = po & of £ is called preference-endowment distribution.
It is known that the equilibrium price p(£€) only depends on the preference-
endowment distribution. ‘

Let D denote the space of probability measures a on Bﬁ_ & X Rﬁ_ + such that
J e da <« 00, endowed with the following metric: given a;, a2 € D, n(a1,a2) =
plag,az)+|f e day — [ e day|, where p denotes the Prohorov metric. Recall that
p induces the weak convergence topology on D and (D, ) is a separable space
(see Dierker (1975)).

In the following proposition, we state the continuity of the equilibrium price
function in a result where we consider economies as similar if they have similar
preference-endowment distributions and similar mean endowments.

Proposition 2.3 The equilibrium price function a — p(a) € A is continuous
on (D, 7).

Proof. See Hidenbrand (1974), Proposition 4 p. 152. m]

Corollary 2.1 Let E(a,w) and, for every n, E(a™,w") be economies satisfying
(A.1)-(A.7) and such that (a",w") converges to (a,w) almost everywhere, and
Jiw™(t)dp converges to [yw(t)dp. Then p(a™,w™) converges to p(a,w).

Proof. Since convergence almost everywhere implies convergence in distribution,
one obtain that 7(a(n»wn), Aew)) — 0 when n — 0o. Use now Proposition 2.3 to
obtain that p(a™,w") converges to p(a,w).

However, we can use Fatou’s lemma in order to give a direct proof of this
result. Let us consider z* : I — IR}, competitive equilibrium allocations
of the economies £(a™,w"). W.lo.g., one can assume that p(a®,w") converge
to some p € A and that lim,_ [;2"(t)dp exists. By Fatou’s lemma, one
concludes that there exists an integrable function z : I — IR%, such that
Jrz(t)dp < limpoo f{z™(t)dp < limpoeo [jw™(t)dpe = [yw(t)du and z() is a
limit point of (2™(t))a>1 for almost every t € I. It is easy to check that (p, ) is a
quasiequilibrium and, in view of (A.7), a Walrasian equilibrium of the economy
&(a,w). Hence p = p(a,w).



Fil !

Actually, we have just proved that every converging subsequence of p(a™,w™)
converges to p(a,w). As A is compact, it is enough to guarantee that p(a™,w") —

pla,w). ‘ o

3 An explicit formula for the equilibrium price
vector

From now and for the remainder of the paper, we fix the measurable mapping
a: I — IR’ which defines individual utility functions, so that the price vector
is a function w — p*(w) defined on L*(IR%,).

In this section, we provide the explicit formula which will be used in Section 4
to compute the equilibrium price vector around a point where it is known. In fact,
we show that the equilibrium price vector is the unique (up to a multiplicative
real factor) positive solution of a linear system. Towards stating the explicit
formula, we introduce the following notations.

Let C be the set of correspondences from the agent set I to the commodity
set {1,...,£}, and let Q be a subset (to be precised later) of L'(IR{,). We
consider the mapping O from 2 to C defined as follows : for each w € Q, the
image ©¥ is given by ©“(t) = H,(p*(w)), for every t € I. Let C be the range
of © and, for all C € C, let us define € = 071(C) = {w € QO = C}.
We fix now C = ¥ € C and define the following subsets of agents. For each
L € P (where P denotes the collection of all nonempty subsets of {1,---,¢}),
Ip={teI|lL=C(t)}. ¥ N =U{IL|L € P, p(IL) = 0}, note that u(N) =0,
I = (U{ILILE€P, p(I) >0} )UN and I NI, =B if L # L'. So, {IL|L €
P,p(L) > 0}UN is a finite partition of the agent set I. Let us define the non-
oriented graph G¢ as follows. The set of vertices is {IL|L € P, u(I) > 0}, and
there exists an edge between Iy, and Iy if and only if L N L' # (. We denote
by ZIC,---,IC the connected components of G¢ and by HS, ..., HS the subsets
of {1,---,¢}, defined by 'Hf = |J {L}, j = 1,---,n. One readily sees that

ILEIf
HS,---,HS is a partition of the commodity set {1,...,€}. Finally, for each
jE€E {1,--‘-,n}, we choose an element (Ir;, k') € I{ x HY, such that k€ I/,
that is, b’ € C(t) = H,(p*(w)), for all t € I};.

Next we state a lemma which shows the link between the equilibrium price
vector and the finite partition of I. For each good &, let S, = {t € I'|h € C(t)}.

Observe that p(S,) > 0 whatever the commodity k may be. Furthermore, It C
Spif he€ L ;ifh+#h'and {h,h'} C L, then It C SN Sh.

Lemma 3.1 There ezists a vector v° € RS, such that for all w € Q°, for all
J€{l,---,n} and for all h € HS, it is verified that pj(w) = 75 p}i(w).

Proof. Let us consider w € ¢, j € {1,---,n} and k € 'Hf. By definition of the
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commodity subsets 'HJG, there exists L € P such that I} € ch and h € L. By
definition of connected components, one deduces that there exist ¢ — 1 elements
of P, Ly,--+,L,—, and q goods h,,-- -, hy, such that h; € L‘NLy, hy € LyyN Ly,
k=2,---,¢g—1and hy € L,y N L. Recall that L = H,(p*(w)) for all t € I;. So,
by definition of the commodity subsets H;(p*(w)), one deduces that

p‘l-:.i (w) _ p‘l'lu ((.U) 11 t ) S
_ahj(t) = ——-ahl 0) for all £ € Spi N Sk,
p;llk (w) p;;'k+l (w) f ll .t

= €S, nSs k=2,...,9-1
ahk(t) ahk+1 (t) o e e 1
ph(w)  piw)
an® = @ for all £ € Sy, N Sh.

Note that, by construction, Ir; C SpiNSk,, Ir, C Sk, NSk, fork=2,---,¢9-1
and I, C Si, NSy Therefore, u(Sp;i N Sy,) > 0, p(Sk, N Shyyy) > 0, for k =
2,---,¢—1 and p(Sn, N S,) > 0. Let us consider ¢, € S, N Sy, tx € S, N Sy, ,,
for k=2,---,¢—1,t € Sy NSy, and define v¢ € RY, as follows

c _ ah(tq) ah(tq—l) ahz(tl) ahl(tj)
BT ang(ty) angy(te-1)  am(h) ap(t)

Hence, from the above equalities, we can conclude that p}(w) = 7 p}, (w).

~

Let us now define the linear map, I'C, from IRf to IR", as follows :

I$(z)= 3 y5an, forevery z € R,
heH§

where I'¢(z) is the j-th component of I'°(z), with j € {1,---,n}. Let us also
consider the n x n matrix A°(w), whose ij-element is defined by

() = T¢ (fizey w(t)dp) i j =z:
; —I§ (frew(t)dn) i j#i
where (Z)° is the complement set of ZZ. We will denote by A%(w) the (n —

1) x (n — 1) submatrix of A°(w) obtained by suppressing the j-th column and
the j-th row.

a

Lemma 3.2 The rank of A°(w) isn —1.

Proof. Let us first notice that A°(w) is a singular matrix. It is so because the
sum of its columns is zero. Let us calculate now the sum of the k-th column of
the (n — 1) x (n — 1) submatrix A§(w).

=1 i=1

it ik

> a§(w) = I¢ ( Jgeye 00 = > /Ifw<t>du) =1 ( /Icw(t)d#) > 0.




So, AY (w) is a matrix with nonpositive nondiagonal terms and a strictly positive
sum of columns. The properties of such matrices (called diagonal dominant
matrices) are known and used in Leontief’s systems (see McKenzie (1960), Gale
(1960) or Nikaido (1972)) ; in particular, they are regular and have a nonnegative
inverse. Consequently the rank of the matrix A°(w) is n — 1. i

Theorem 3.1 For all w € QF, the equilibrium price vectors are the positive
solutions of the following linear system :

Pn
A°w)| i [ =0
Dh»
Forall j=1,---,n, forall h € ’HJG, h # b7, pp =~ ppi.

*

Proof. Consider w € €. Let us first show that p*(w) solves the linear system.
By lemma 3.1, it is sufficient to prove that

Phi(w)
AC(w) =0.
Pin(w)

Let us consider an equilibrium allocation z of the economy £(w). Then, for
almost all ¢ € I it is verified that p*(w) - z(t) = p*(w) - w(t). Hence,

fo 760 = 7(0)- [t = 3-pintorr ( I8 w(t)du)

where the last equality comes from Lemma 3.1 and from the definition of the map
I'C. By Lemma 2.1, one has, for all j = 1,---,n and for all 4 € 'Hf, zp(t) =0
ift ¢ I7. So fch zp(t)dp = [pwn(t)dp, whatever h € HS may be. Furthermore,
for all h ¢ HS, it is verifed that fzf zp(t)dp = 0.

It is also verified that
frep*(W)-2()dp = fro Theng pi(w)zn(t)dp
= Lheng Ph(w) Jre za(t)dp
Lhene ph(w) Jywn(t)dp
phi(w) L heHS v Jrwa(t)dp

Il

= P @)TE ([ wlt)d).

Hence one has forall j =1,---,n,
> pis(o) ( /zf w(t)dﬂ) = P ()T ( fetau- [ olt)du)
k#j




e

Since [;w(t)dp — ijc w(t)dp = f(zjc)cw(t)dp, one concludes that p*(w) solves the
linear system.

It remains to show that, if p is a positive solution of the linear system, then
p is an equilibrium price. By Lemma 3.2, we know that the rank of the matrix
A®(w) is n — 1 and so the solution set of the linear system is a one dimensional
subspace of IR’ which contains the half line {A\p*(w)|\ > 0}. Hence, the solution
set is IRp*(w) and every positive solution is an equilibrium price vector. mi

Corollary 3.1 Assume that we choose a good b7 as numeraire, with1 < j <n.
Then, for allw € Q°, the price vector p*(w) comes determinated by the following
equations :

[ Pra(w) } [ afj(w) }
. (o) = P':'-;(w) = (A% aJC-l.j(w)
phJ( )_1, pi,:,'n(uJ) - (AJ( )) a?—{-lj(w)
\ Pin(w) / \ aSw)

and for allj=1,---,n, forallh € 'HJ(-", h#h,
Ph(w) = 7 P (w)-

-1
Furthermore, all the elements of the matriz (AJC(w)) are non negative.

Proof. By the proof of Lemma 3.2, one obtains that the matrix AY(w) has full
rank. So, the given equation system has a unique solution. By Theorem 3.1,
we know that the equilibrium price vector p*(w), with p},;(w) = 1 is a solution.
Therefore, p*(w) is the unique solution of the system. Finally, as already noticed,

-1
the elements of the inverse matrix (AJC (w)) are non negative. g

4 A generic property of equilibrium prices

Let us now assume that the map a : I — RS, which defines the utility functions

of the agents, is a given simple function. More precisely, a(t) = T, aixa;(t),

where for all i € {1,---,s}, A; € A4, a; € R, x4, is the characteristic function

of A;, and A;NA; =0ifi # 3, I = U, Ai. In other words, from the point of

view of preferences, there exists in the economy a finite number s of agents. Note

tl.lha)t the subset of simple maps is dense in (L'(R%,), || - |l) and in (L=(RS,), ||
)

Moreover, we restrict ourselves to initial endowments w belonging to L= (IR ,.).
Note that it follows from the explicit computation of the equilibrium demand in
Lemma 2.1 that the corresponding equilibrium allocations belong to L*(R%).




Definition 4.1 The economy £(a,w) i3 said to be regular if there ezists a Wal-
rasian equilibrium allocation x : I — IR% belonging to L (R’ ), and a positive
number b, > 0, such that for almost allt € I and for all h € Hy(p*(w)), it is
verified that z4(t) > b,.

Let us denote by € the set of initial endowments w € L*(IR%,) such that
the economy &(a,w) is regular. In what follows, we prove that for each w € Q
there exists a neighbourhood of w included in  where the equilibrium prices
map p* is an infinitely differentiable function of the initial endowments. In order
to obtain such a result, we state some notations and prove, as technical lemmas,
some intermediate claims.

Consider an arbitrary but fixed @ € Q. For each ¢ € {1,---,s}, let H; be
the set of goods H,(p*(@)), whoever agent t € A; may be. Let 8: 1 — IR, be
the map defined by 8(t) = min {M | h € {1,- --,E}}. For each i € {1,---,s},

an(t)
let B; denote the real number 5(t), whoever agent ¢ € A; may be. Using the

notations of the previous section, state C = ©“. We now consider the following
linear spaces

M = {ze€L®(R" | zu(t) =0 if k¢ H,(p*(@)), for almost all ¢t €1 },

L= {(fy) eL°°(fR)><JRf|/IC BOFOLt) = ¥ p(@)yh, forall j=1,---,n),

C
heHS

and the following mappings ¢ : L®(RY) — L*(R) x R', ¢ : L°(R%,) —
L>(R) x R%,, defined by

o(@) = ((a(®) - eO)enr [ 2B,

$() = ((lp (@) W)ery [, wOd(t))-

It is worth noticing that M and £ are closed (in L*(IR%) and L*(IR) x IR’
respectively), that M contains the equilibrium allocations of £(a,@) and that
z € L®(IR%) is an equilibrium allocation of £(a,w) if and only if ¢(z) = Y(w).

Lemma 4.1 p(M) C L.

Proof. Consider x € M and ¢(z) = (f,y). By definition of M and ¢,

f=at)-ot)= ¥ alBmi)=—= Y #@)e).

heH (p* (3)) B(t) heHuiman

Noticing that for all j = 1,--:,n, for almost all ¢ ¢ IJ-C, zp(t) = 0,if h ¢ ’HJC,
one deduces that for all j and for all k € 'HJG,

wo= [=Od® = [ aodo.

10

F



So, for all j = 1,---,n, we can conclude that

/chﬂ(t)f(t)du(t) /,_r o 2 Pi@)en(t)du(t)

7 heH(p*(@))
= ¥ 5@ [, ant)du(t)
heHS L

= >, @)y

c
heH;

Lemma 4.2 ¢ is continuous.

Proof. Let ¢\(z)(t) = a(t) - z(t), and @o(z) = [;z(t)du(t). The map ¢, :
L®(R*) — L*(R) is continuous because z € L®(IR’) and a is a simple func-
tion. On the other hand, if ||z, — z|l.c — 0, then there exists A € A, such that
#(I'\ A) = 0, and z,, converges uniformly to z on A. So, ¢y : L®(RR") = R is
also a continuous map. Therefore ¢ = (¢1,¢3) is continuous. o

Lemma 4.3 o(M) = L.

Proof. Let us denote by F; the following set
Fo={f € L°(R) | /A‘f(t)ckz(t) =0 forall i€{l, ,s}}
and for each : = 1,--.,s, let F; denote the set defined as follows

Fi={f € *(R) | /A FOd = a4, /A S(O)du(t) =0 for all i £},

Let Lo be the set defined by Lo = {(f,0) € L2(R) x R | f € F,}. For each
j=1,---,n,let £ C; denote the sets defined by

L£io= {(Pi(a’)ﬁfi,ﬂieh) | A CIJ-C, he H; and f; € .7",}

. 1 __ B Ai, Ak CTIF, Ai # Ax,
b= {(u(A.-)f' ﬁku(Ak)f’“O) fi€F, and fi€F }

It is easy to check that the sets Lo, £7, and L; are included in £. Consider
G = LoU(UX; £)U(UXL, £;). Tt is also easy to check that G generates £ (a
proof of this claim is given in the appendix). As ¢ is a linear function, it is
enough to prove that G C p(M).

Let (f,0) belong to L£o. For each i € {1,---,s}, consider a commodity A(z) €
H;. Define zngp)(t) = % and z4(t) = 0 if b # h(:), for all t € A;. By
construction, z € M and ¢(z) = (f,0).
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Consider now (f,y) € £ for some j € {1,---,n}. That is, f = p}(@) A )f,,

and y = Biet, with h € H;, A; CIf, and f; € Fi. So, B = p*(@)(a;)s. For each
i’ # i, let us consider h(i') € Hy, and define z: I — R as follows

( 0 i either t € Ay, ¢/ #1¢ and fc#h(i’),
or t€A; and k#h
1
i (t) = (@)————f; if t€ Ay, ' #¢ and k=h() .
k() j ph(w)ﬂ(Ai)ah(il)(t)f # ( )

1
() I ; =h
ph(@) WADan )f if teA; and &

.

By construction, 2 € M and ¢(z) = (f,y).
Finally, let us consider (f,0) € £; for some j € {1,...,n}. Thatis, f =
1
fi— fp, with A; A, CIC A, £ A, fi € F,and f, € F,. Two
WA B 7 :
possibilities can now occur, namely, H; = H, or H; # H,.

Suppose H; = H,. For each ¢’ # i,p, let us consider k(i) € Hy and a fixed
h € H; = H,. Define z : I — IR" as follows

( 0 £ either t € Ay, ¢! #1i,p and k # h(7),
or te A;UA, and k#h

zi(t) = < 1) if t€ Ay, i#4,p and k= h(d)
ah(i’)(

)
Pi(@ )f() if te AjUA, and k=h
. ah(t)

By construction, one concludes that z € M and ¢(z) = (f,0).

Suppose H; # H,. Consider h € H; and h, € H,, h, # h. As in the proof of
Lemma 3.1, there exist ¢ — 1 elements of P, Ly,---,L,_; and g goods hy,- -, h,
such that &, € H,‘J- NLi, hi € Ly, ﬂLk, k= 2,-++,4—1 and hq € Lq_l N H;.
For each k = 1,---,9 — 1, let A;4) be a subset of Ir,, that is H;x) = Lx. By
definition of the commodity subsets Hy(p*(®)), one has

pi®) _ ph(@) _
@) _am ) for all t € A;
i, (@) Phyy, (@)
= B0 forall t€ Ay k=2,---,q—1
an () | G, *) 1
P (@) Pi, (@)
= —E__  forall te A,
an,(t) an,(t) P
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Recalling that ¢ is a linear mapping and £ C ¢(M, j = 1,--+,n, one deduces
that there exist z*, 7 € M, k=1,.--,¢, such that

1
1y — Yy e f: M
elel) = ((a')hlﬂ(Ai)f"’e )
t(k))hk XA,(k)’ hk) 3 k = 1, *ryq -1

p(c¥) = ((at(k 1) hk Ao )) ‘(k_‘),e’”‘); k=2..--,q
( hq (A ehq) .

k(g
Let us denote o = [ M—, forall k=1,---,q—1. Let us now consider
=1 (@i ke

q-1
the map z : I — R¢, defined by z = z! = 7' + Y _ay(z**! — 7).
k=1

By a simple computation,

1 1
olz) = ((a;,)h,mﬂ,—aq_l(af)hqu,-,o)

= (o (#(A)f' i )

Lemma 4.4 v is a continuous function.

Proof. Denote ¢ = (11,%;). The map 9, is continuous (see Lemma 4.2). Recall
that v,(p*(w),w(t)) = p*(w) - w(t) maxh% = p*(w) - w(t) ﬁ% with b €
H(p*(w)). Note that the continuity of the equilibrium price vector mapping
obtained in Corollary 2.1 implies that p* is a continuous function with respect
to the initial endowments w € L®(R%,). Then if |[w’ —w|e — 0, as a is
a simple function, one has for large enough v, Hy(p*(w*)) C Hy(p*(w)) and
v(p*(w¥),w”(t)) = p*(w¥) - w¥(t) ‘f'iwt,,) with & € Hy(p*(w)). It is now obvious

that v(w¥) = (v,(p‘(w”),w (t)))tel converges to v(w) for || * [|co- o
We are ready now to state the main results of this section.
Theorem 4.1 For each w € Q, there ezists a neighbourhood W of w included

in Q, such that for allw' € W, Hy(p*(w')) = Hy(p*(w)), for almost allt € I. In
particular, Q is an open subset of L=(IR%,).
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Proof. Let @ be arbitrary but fixed as in Lemmas 4.1, 4.2, 4.3. As we have
already noticed, Corollary 2.1 implies the continuity of the equilibrium prices
with respect to the initial endowments. So, there exists a neighbourhood V of @,
such that for all w € V, Hy(p*(w)) C Hy(p*(@)), for almost all ¢t € I. From this,
it is readily deduced that for all w € V, every equilibrium allocation of £(a,w)
belongs to M and hence 1(w) € (M) = L. On the other hand, let

A= {z € M| 3b,,z4(t) > b, for almost all ¢ € I and for all h € Hy(p*(@))}.

Since £(a,®) is a regular economy, £(a,@) has an equilibrium allocation Z € A
and Y(@) = ¢(z) € ¢(A). Note that A is an open subset of M. Since ¢ is a
continuous linear mapping from M onto L, it follows from the open mapping
theorem (see, for example, Beauzamy (1985) or Kothe (1969) p. 166), that ¢(A)
is open in L. Since 1 is continuous, there exists a neighbourhood V' of @ such
that (V') N L C ¢(A). Finally, w e VNV' = t(w) € p(A), that is w € Q
and H;(p*(®)) C Hi(p*(w)) C Hi(p*(@)). O

Corollary 4.1 For each w € 1, let W be as in Theorem 4.1. The mapping
w' — p*(w') is infinitely differentiable on W.

Proof. Using the notations of Section 3, set C' = ©“. It follows from Theorem
4.1 that W is included in Q€. Consequently, the formula given in Corollary 3.1
remains true on W. As a continuous linear function of w', each integral used in the
computation of the elements of the matrix A°(w’) is an infinitely differentiable
function of w' (see Cartan (1977) for a relevant definition of differentiability on
Banach spaces). On W, each coordinate of p*(w') is a polynomial function of
such integrals. o

Theorem 4.2 Q) is a dense subset of L®(IR. ).

Proof. Consider w € L®(IR:,) and z € L®(IR}) a Walrasian allocation of the
economy &(a,w). For each real number € > 0, let w*® denote the initial endowment
map defined by
W) = w(t) +e Y, €
h€H(p*(w))
and let z° denote the allocation defined by

() = z(t) + ¢ Y. €M

h€H(p*(w))

Obviously, Vh = 1,---,¢, ||wi — wi]jc < €. Moreover, z§(¢) > ¢ for almost all
t € I and for all b € Hy(p*(w)). To prove that w® € Q, it suffices to prove that

14




(2%, p*(w)) is a competitive equilibrium of the economy &(a,w®). Indeed,

v (p*(W),w(t)) = p*(w)- W (1) mf?"ﬁzi((ei—))

an(t)
= |p*(w) w(t) + ep*w): D eh) max——, and
( heH:(p*(w)) o ph(w)
a(t)-z5(t) = a(t)-z(t) + ea(t): > €
heH(p*(w))
= p*(w) - w(t) max a*h(t) +ea(t). > €
hpi(w) heH:(p* ()
Finally, note that
t
(e IAC) DY eh) max a_h( ) =ca(t). Y, €
hEH:(p*(w)) hpiw) hEH (" ()
o
Appendix
Proof that G generates L.
Let (f,y) be an element of L. Let us consider two cases.
First case. Suppose that y = 0. Let a; = /;f(t)c#l(t), t=1,---,m. Since

(f,0) € L, one has for each connected component j = 1,--+,n, Y a;8 =0.

A,’CI;’

Consider now a fixed connected component j. Let S; = {i | A; C Z}, such that o; #
0}and S = {i | A; C T¥, such that o; = 0}. For for each 7, such that 4; C I7,

define the following function

EAD tya, if o #0
filt) = i
f()xa if i =0
So, if t € I?, then f(t) = GESJu(_A? filt) + ieESif(t)XAi.

Note that if S/ = {1,--,s}, the proof is finished because if a; = 0, then

fi € Fo.
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¢ # k may be.

Suppose now that S; # 0. Then there exist 7, k, such that a;,a; # 0. By

definition of £, one obtains that a; = ——Za,ﬂ, Then, f(t )XI“ can be written

t;é k
as follows

(f-xz) (1) = #(A 0+ “‘) f(t) + X fB)xa

i€S; # {€Ss
l#k

_ _i aiﬂt (o 5}
= 3 Z—(A)kt +Z )fz )+ Y f(t)xa;

ies; K i€s; i€Si
itk .#
_ (L - B
= o (a0 - g0 + S
itk

Finally, note that ( belongs to £;, whatever ¢ € S;,

1
u(Ae)fi ﬂku( )fk’)

Second case. Suppose now that y # 0. Let J; = {h € HY|y» # 0}. If J; = 0,
we are in the first case. So, consider j such that J; # 0, and let S(j) = S"U ;.
On the other hand, there exists k € Sj, ie. ak # 0. Consider hy € H;. By
definition of £, one has a; = Za,ﬂ, Z PrYn. For each h € HY such

Br i1 ﬂ k hexy
that h # hy, consider now Ay C Z?, such that h € Hypy. So, if t € I, then
f(t) can be written as follows

1 1 .
(f'XT}”) @) = - m -‘ezs:aiﬂi fi(®) + Ben(Ar) (hg‘;l’hyh) fi(?)
.;ek
+Z ) + 2 f(xa;
"5:; i€ss

_ p;llkyhk fk(t) + Z'ﬁ—ft(t) _ Z aiﬂi fk(t)

,Bkl‘(Ak) i€s; F‘(Ai) i€s; ﬂkl‘(Ak)
gk ink
Phyh
+ et) + X f(t)xa,
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_ P;;kyhk
= Bw(a O T ( O gy ))
PRk _ B
,,ezﬂ,“ ( TS ﬂf(h)ﬂ(Af(h))XA")
h#hi
PhYh
heﬂ? ,Bi(h)ﬂ(Ai(h))XAi(h) + iezsjf(t)XA.‘.

So, for each connected component j, one has

((F - xz) (O mhneres) = S (At),0) + Lo ( piy fk<t>,ﬂkeh~)

%, (42)
+2a,( T - 5 fk(t))

i€S - .Bk”(A )

|¢k
PhYh By
Fi(t) — Z——=x ,0)
"GZ“” . (”(A") ® Binyi(Aimy) "~
h#hk
Yhs Ph N
+ XA; ’:Bi e ) .
hg;' :Bi(h) (ﬂ(A,(h)) (k) (h)

ha#th;

Note that if i € $7, then (f;,0) € Lo. Note also that ( Phy fk(t),ﬂkeh*) ,

(Ax)
(MT?:‘(h)—)XA«hpﬂf(h)e"z belong to £%; and ( a0 - g u(A Bon(Ag) K10
k
mfk(t) - WXAHO) belong to L. (=]
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