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Multilevel Interterritorial Convergence and Additive Multidimensional Inequality 

Decomposition 

1. Introduction 

The purpose of this paper is twofold. First, interterritorial economic convergence is defined in 

terms of the reduction in the classical between-regions' inequality. Classical normative 

assumptions on inequality, such as symmetry or S-convexity, will prove useful in analyzing 

interterritorial convergence. The p- and a-convergence measures first suggested in the 

economic growth literature by Barro and Sala-i-Martin (1990, 1992) fail to meet such 

normative properties. 

Second, by using specific additive decomposable measures we are able to deal satisfactorily 

with multilevel interterritorial convergence decomposition. More generally, it can be proved 

that the use of these additive decomposable inequality indices produces an appropriate 

multidimensional inequality decomposition. As a particular case, Cowell (1985) detected that 

this property is satisfied by the classical Theil index. The generalization here allows for any 

general entropy index, including the appealing Theil 0 population-weights-based 

decomposable measure. Wodon (1998) has proposed an analogous multidimensional 

inequality decomposition for the Gini coefficient. We find that our methodology has some 

advantages. We explain the meaning of the difference of the between-groups component 

better when the number of groups becomes larger, as a second-order between-groups 

component. This difference is independent of the order followed in the disaggregation 

process and does not depend on the within-groups individual data. We contribute to a better 

understanding of the evolution of the between- and within-groups inequality terms, as the 

number of groups increases; and therefore to the evolution of the convergence process at 

different territorial levels. Finally, using the Eurostat 1980-1995 per capita GDP data set, we 

empirically apply our ideas to the Spanish territorial units. 



The paper is organized as follows. In the next section the main definitions, axioms and 

properties are presented. In section 3, the empirical analysis is carried out and finally, in 

section 4, the main conclusions are summarized. 

2. Definitions, axioms and propositions 

Let NI = {I, 2, ... , 11r} be a set with 11r individuals as the population at period t. Consider a 

disjoint exhaustive partition of the whole population into K subgroups (such as K regions), 

where 

is a n\-person subset ofNt , with 

Let 

be the set of non-negative real income levels of the population at period t and 

be the set of income levels of the population in region k containing n\ persons at period t , 

and be 

tit 

f, = L~,1 1nl 
)=1 

and 
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the whole population per capita income and the region k per capita income, respectively. 

Let us define the interregional convergence among the K regions between t and t+h as the 

change in the between-groups inequality index produced in the period: 

CK IB,K(y-1 y-K. 1 K) IB,K(y-1 y-K. 1 K) 
',I+h = ,+h ,+h"'" I+h,nl+h,···,n'+h -, , , ... , , ,n, , ... ,n, 

The between-groups inequality index is defined classically as the inequality index, 

I:m ntH~m, computed from a distribution in which all individuals are assigned their own 

subgroup mean income: 

B K -I - K 1 K -I 1 - K K I,' (~, ... ,~ ;n" ... ,n, )=I,(~ <D(n,), ... ,~ <D(n,» 

Where <D(~) = (I, ... ,I)Em ntH is the transposed ~-dimensional vector consisting of ones. 

Assume that the inequality index is temporally invariant, then: 

-I 1 - K K -I 1 - K K I, (~ <D(n, ), ... , ~ <D(n, » = I(~ <D(n, ), ... , ~ <l>(n, » 

Let us impose the following classical assumptions on the inequality index and analyze their 

normative implications for the measure of proposed interterritorial convergence. 

Al Symmetry 

The inequality index I: 9l nt++~m is symmetric in Y, that is I(Y) = I(PY), P being any 

permutation matrix. This imposes a restriction on the proposed convergence measure. 

Territorial convergence measures do not change under any permutation on the territorial 

mean income levels between two regions with the same population. The ~-convergence 

measure proposed by Barro and Sala-i-Martin (1990, 1992) does not satisfy this anonymity 
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axiom and makes it very much dependent on the rankings of the initial distribution. For 

example, if there are two regions each with two people and real regional mean incomes 

represented by (100,100; 200,200) and in the next period the positions are reversed to (200, 

200; 100, 100), p-convergence will compute a positive convergence value. However, our 

index will reveal a zero net convergence process (as if there is at first a process of 

convergence and then a counteracting divergence process of the same magnitude). 

A2 Non-negativity 

The inequality index is non-negative and equals zero if and only if perfect equality holds. 

This technical assumption on inequality guarantees a zero convergence value under changes 

along perfect regional equality. 

A3 Differentiability 

The inequality index is twice continuously differentiable, and so becomes the convergence 

proposed index. 

A4 S-convexity 

The inequality index 10 is strictly S-convex. This is equivalent to I(Y) > I(A Y), where A is 

any bistochastic matrix that is not a permutation matrix. This is also equivalent to requiring 

that the inequality index satisfy the principle of transfers: a transfer from a richer to poorer 

person, with no reranking between them, reduces inequality. This axiom makes our 

convergence measure consistent with the Lorenz domination criterion when the mean income 

of the distribution does not change. In this case, the measure is also consistent with any S

concave social evaluation function W(Y), Atkinson (1970) and Dasgupta et al. (1973). 

Neither the p- nor the cr-convergence measures are S-convex. Consider the previous example 

with two regions each with two people and mean incomes represented by (100,100; 200,200). 

If in the next period the positions are (250, 250; 50, 50), p-convergence will compute a 

positive(!) convergence value, while our S-convex index will compute a negative 
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convergence value. The a-convergence (standard deviation of logs) measure is not S-convex 

at the extreme tails of the distribution, Creedy (1977). 

AS The population replication axiom (PRA) 

The inequality index satisfies the PRA, that is I(Y) = I(Y,Y, ... ,Y), where (Y,Y, ... ,Y)e9l m\+ 

given any positive integer r. If we replicate the population r times, the inequality remains 

unchanged. This is a very common assumption when comparing income distributions that 

differ in sample size, Dasgupta et al. (1973) and Shorrocks (1983). This axiom together with 

A4 makes our convergence measure consistent with the Lorenz domination criterion when 

overall mean income does not change but population changes, and with any S-concave social 

evaluation function that satisfies the PRA. 

A6 Income-homogeneity of degree zero 

The inequality index is a relative index (homogeneous of degree zero in income levels), that 

is, I(Y) = I(kY), for any real scalar k>O. This axiom together with A4 and AS makes our 

convergence measure consistent with the Lorenz domination criterion when overall mean 

income and population change, and with any S-concave ray-increasing social evaluation 

function that satisfies the PRA, see Shorrocks (1983). Both p- and a-convergence measures 

satisfy A6 as they are intended to measure reductions in relative regional disparities. 

A 7 Additive inequality decomposability 

The inequality index is additive decomposable if it can be written as (Shorrocks, 1980): 

K 
-I 1 - K K '" k -I 1 - K K k I(~",r;.t' ... ,y",,) = I(Y, <l>(n, ), ... ,Y, <l>(n, )) + L.,., w, (Y, ,n" ... ,Y, ,n, )I(Y, ) = 

k=1 

The two terms of the right-hand side expression are the between-groups and within-groups 

inequality components, respectively. 
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It is well known that A 7 imposes several restrictions on the class of inequality measures 

considered. Shorrocks (1980) considered A7 together with AI, A2, A3, A5 and A6 and 

proved that the inequality indices must adopt the form of the General Entropy class, which 

are strictly S-convex and therefore satisfy A4, the principle of transfers. This class has the 

property that the weights take the form: 

A8 Additive multilevel inequality decomposability 

The inequality index is additive multi level decomposable. Ifwe make a subpartition S 

from partition K (such as the S subregions within the K regions), then the inequality index 

can be written as: 

where Sk is the number of subregions within region k. 

We shall follow Wodon (1998) and call the new second term of the right-hand side 

expression, IB,sK, the second-order between-groups inequality along the sUbpartition S within 

the groups of the first partition K. It is obtained as a weighted sum of the between-groups 

inequality along the subpartition S within any group of the first partition K. The weighting 

scheme is the same as the within-groups component weights. 

The overall inequality can then be divided into the following three components: (1) a first

order between-groups inequality along the first partition, plus (2) a second-order between

groups inequality along the second partition within the groups of the first partition, plus (3) a 

within-groups component for the groups of the second partition. Similarly, the overall 

convergence along the second partition can be divided into two components: (1) the 

convergence along the first partition plus (2) a second-order convergence of the second 
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partition along the first partition. This procedure can be generalized to any finite multi level 

decomposition in subpartitions. 

As well, if the inequality index is additive decomposable, then we obtain 

which has the property that 

First, the second-order between-groups inequality can be computed as the difference between 

the two between-groups of the two partitions. Second, it is not negative, indicating that the 

larger the number of groups, the larger the between-groups component. Naturally, the 

between-groups component converges to the overall inequality when the number of groups 

approaches the number of individuals. Note also that it increases exactly the same amount as 

the within-groups component decreases as 

Proposition I 

Ifthe inequality index satisfies AI, A2, A3, A5, A6 and A7, then it also satisfies A8. [Recall 

that A4 is also satisfied provided that the inequality index belongs to the General Entropy 

class, Shorrocks (1980)]. 

The proof of this proposition is shown in a separate section. 

We can generalize this theorem highlighting more properties of the proposed decomposition. 
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A9 Additive multidimensional inequality decomposability 

The inequality index is additive multidimensional decomposable. If we make any two disjoint 

exhaustive partitions of the entire population N°K
t and N°J

t (say two subgroups partitioned 

along two dimensions such as regions and education level), then we obtain the subpartition 

NOKJ formed with the set of all the mutually exclusive N°K
t x N°J

t subgroups, 

OK OJ 11 12 KJ N, xN, ={N, ,N, , ... ,N, } 

where 

k" k" N,'l = {1,2, ... ,n/'} 

K J IIn;j =n, 
k=1 j=l 

Let us rename the subpartition NOKJ as the subpartition N'P 

'P OK OJ 1 2 P N =N, xN, = {N"N, , ... ,N, } 

where 

N/ = {1,2, ... ,n/} 

P 

"nP =n L.J, , 
p=1 

Then the inequality index can be written in the following ways, depending on the sequence 

followed to construct the subpartitions NOKJ or N°JK
, which are eventually identical: 
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J P 

I(J;", 1';,1"'" Y",/) = I(Y,I<D(n:), ... ,f,J <D(n;)) + L w( OI(Y,Jt, ... , f,JK) + L wiOI(Y,P) 
J=I p=1 

In this case, IB,JI( stands for the second-order between-groups inequality along partition J 

within the groups of partition K (and being IB,KJ, the opposite). It is obtained as a weighted 

sum of the between-groups inequality along the partition J within any group of the partition 

K. 

Again if the inequality index is additive decomposable, then we obtain 

I(Y. Y Y) = IB,K + IW,K = IB,J + IW,J = IB,P + IW'P = 
1,/' 2,1'"'' 11,1 

IB,K + IB,KJ + IW'P = IB,J + IB,JK + IW'P 

which has the properties that 

These are similar to the ones described in connection with A8. As well, the overall between

or within-groups components of the mutually exclusive subgroups are generated 

independently of the order followed in the decomposition sequence. This property is not met 

by the Gini coefficient, see Wodon (1998). Again, the larger the groups, the larger/lower the 

between-/within-groups component, tending to the value of the overall inequalitylzero as 

disaggregation approaches individuals as partitions. We think these properties should be 

required to give good explanations for the shifts in inequality when analyzing multilevel or 

multidimensional inequality decomposition. Cowell (1985) noted that the classical Theil 

index satisfied this axiom. A generalization for the whole General Entropy class follows. 

Proposition 2 

If the inequality index satisfies AI, A2, A3, AS, A6 and A7, then it also satisfies A9. 
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3. The empirical results 

We apply our methodology to the interterritorial convergence in Spain at different levels and 

make use of two sources of regional data. The first is the longer biannual BBV Regional per 

capita GDP data set from 1955 to 1991 and the second is the recent shorter annual Eurostat 

per capita GDP series from 1980 to 1995. Both series contain data for the Autonomous 

Community (Spanish regions) and provincial (Spanish subregions) levels, so we can take 

advantage of our methodology. 

First, Graph 1 shows the well known result, reported elsewhere l
, that positive per capita 

regional GDP convergence is produced from 1955 to 1980. From then on, this process is 

decelerated. Moreover, we can also assess that this convergence process is even greater at the 

provincial level. This is due to the second-order convergence process produced among 

provinces within the Autonomous Communities (AC) from 1955 to 1983 (with an exception 

in 1975), as is observed in Graph 2. Again this convergence process is not so clear from 1983 

onwards. 

Nevertheless, the recent picture is clearer from analyzing the Eurostat data set, where the data 

is presented at the NUTSl (big areas), NUTS2 (AC) and NUTS3 (provinces) level. 

According to this data set, the convergence process is (weakly) reversed from 1980 onwards, 

as shown in Graph 3. Moreover, the divergence process is mainly generated at the NUTS 1 

level. No second-order divergence, neither among the AC within the NUTS1, nor among the 

provinces within the AC, is observed in the period as shown in Graph 4. 

This divergence process in the period seems not to be dependent on the particular proposed 

convergence index used. Graph 5 shows the same results for the Theil 0 index. The reason is 

that the between-groups S-convex relative inequality is clearly reduced at all levels. In Graph 

6, relative dispersion of the NUTS 1 values across time is presented. It reveals clearly that 

relative dispersion has increased in the period. This seems to be very much the same at the 

provincial level. Graph 7 shows the popUlation-weighted Lorenz curves differences from both 

the period 1980-1992 and from the period 1980-1995. In the period 1980-1992 we obtain a 
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strict negative Lorenz dominance result, and in the whole period 1980-1995 we obtain an 

almost negative Lorenz dominance result, except from the very lowest tail of the distribution. 

These empirical facts are not well captured by either the non-weighted p- or the non-weighted 

(j- convergence2
• We would like to point out two important facts in relation to the comparison 

with these alternative convergence measures. 

First of all, the non-anonymous non-S-convex and non-weighted p-convergence measure 

gives a non-significant negative convergence process at the NUTS 1 level in the whole period 

(Graph 10). But it reports a significant positive convergence (!), at the 92% level, at the 

provincial level (Graph 12), when there is almost a negative Lorenz curve dominance in the 

period. This result is partly due to the dependence of the measure on the initial ranking (and 

therefore to the violation of the S-convexity condition) and is also partly because the index is 

not weighted for population. 

Let us stress this second characteristic: the importance of the population-subgroups-size 

weighting scheme in the convergence measurement. In Graph 8 we present the same Lorenz 

curves without the population weights. Notice the great difference from Graph 7. The 

misleading result may, in part, come from the fact that Lorenz dominance is not produced in 

this case. Real S-convex indices will not necessarily capture the true result based on non

weighted popUlation data sets. Graph 9 shows how the divergence process, coming from non

population-weighted Theil 1 indices, is less important in this period than when it is measured 

by the appropriate population-weighted indices. 

Finally, we point out another relevant result that arises from the previous evidence. A great 

deal of spatial polarization (at NUTS 1 level) has been observed in this period. The fact that 

the divergence is mainly produced at the NUTS 1 level, but not at the intermediate AC (nor at 

the between-provinces) level within NUTSl as shown in Graph 4, gives some intuition on the 

increasing polarization. The information in Graphs 6, lO and 11 gives more intuition on this 

I See, for instance, Raymond and Garcia (1994), Mas et al. (1994), De la Fuente (1996) and Rabadan and Salas 
(1996). 
2 The non-weighted ~- or the non-weighted (j- convergence measures do not explicitly take into account the 
population size of the subgroups (they are computed as if all subgroups have the same population size), and 
they have nothing to do with the between-groups weighted sum of the previous section. 
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NUTS 1 polarization between two groups: Noreste, Este and Madrid, on the one hand; and the 

rest, on the other. In Graph 11, three subperiods are taken into account (1980-85; 1985-90; 

1990-95) for the specific NUTS 1. We can anticipate that a great deal of conditional 

convergence is taking place. If specific NUTS 1 dummy variables were considered in the 

convergence equation, a significant negative beta parameter will emerge. Some authors 

interpret this fact as indicating that conditional convergence toward the particular NUTS 1 

steady states is being produced. Moreover, the marked separation of the cases into two 

different sets of NUTS 1 , in Graphs 10 and 11, suggests that a great deal of polarization is 

taking place. This needs to be explored in more detail in future research. 

4. Conclusions 

In this paper we justify the use of a between-groups S-convex relative inequality to measure 

interregional convergence, within an axiomatic normative context. We have detected a 

weakly divergent interterritorial process in the period 1980-1995 using the Eurostat per capita 

GDP data. This divergence was not fully detected by either the traditional non-weighted p- or 

the non-weighted (l"- convergence measures. 

In addition, the use of additive decomposable inequality indices makes the additive 

multidimensional (and multi level) inequality decomposition possible and helps us better 

understand the evolution of the between- and within-group inequality terms (and 

convergence) when the number of regions increases. We observe that this divergence is 

mainly generated at the NUTS 1 level, which is compatible with the high level of increasing 

polarization observed at this level. 
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Proof of Proposition 1 

If the inequality index is additive decomposable it can be written as: 

K 
-I 1 - K K ~ k -I 1 - K K k 1(1';,1' 1';", ... , Yn,,) = 1(Y, <D(n, ), ... , Y, <D(n, )) + L." w, (Y, , n" ... , Y, , n, )1(Y, ) 

k=1 

and in turn, 

k -kl kl -kSk kSk ~ S -I 1 -Sk Sk s 1(Y, ) = 1(Y, <D(n, ), ... , Y, <D(n, )) + L." w, (Y, , n, , ... , Y, , n, )1(Y,) 
sek 

so 

K 
-I 1 -K K ~ k -I 1 -K K -kl kl -kSk kSk 1(Y,) = 1(Y, <D(n,), ... ,Y, <D(n, ))+L."w,(Y, ,n" ... ,Y, ,n, )1(Y, <D(n, ), ... ,Y, <D(n, ))+ 

k=1 

K 
~ k -I 1 - K K ~ -I 1 - Sk Sk L." w, (Y, , n, , ... , Y, , n, ) L." W;5 (Y, , n, , ... , Y, , n, )1(Y,S) 
k=1 sek 

As the index belongs to the General Entropy class the weights must take the form: 

k()=,,; Y, 
( 

-k JC 
w,. " _ 

I Y, 

and we have 

so 

K (-k JC _ -I 1 -K K ": Y, -kl kl -kSk kSk 1(Y,)-I(Y,<D(n,), ... ,Y, <D(n, ))+L-n;- -=- 1(Y, <D(n, ), ... ,Y, <D(n, ))+ 
k=1 Y, 

f~(~Jc1(Y,S) 
s=1 Y, 

Then, the overall inequality index can be written as: 
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K 
-I 1 -K K '" k -kl kl -kSk kSk I(Y,) = I(Y, <D(n, ), ... , Y, <D(n, )) + L.J w, OI(Y, <D(n, ), ... , Y, <D(n, )) + 

k;1 

so the proposition is proved. The proof of Proposition 2 is analogous. 
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