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1 Introduction

A correlated equilibrium (Aumann (1974, 1987)) for a normal form game is a

Nash equilibrium of an extended game, where the extension consists of a corre-

lation device. The outcomes achieved by this solution concept typically improve

upon Nash equilibrium outcomes (Moulin and Vial (1978)). The interpretation

of correlated equilibrium requires a (fictitious) mediator; thus it would be de-

sirable to construct a communication process among the players only. Indeed, a

recent advancement in the literature (Aumann and Hart (2003), Barany (1992),

Ben-Porath (1998, 2003), Forges (1990), Gerardi (2004), Gossner (1998), Goss-

ner and Vieille (2001), Krishna (2005), Lehrer (1996), Lehrer and Sorin (1997),

Urbano and Vila (2002)) on communication in games considers the following

question: can any correlated equilibrium of a given normal form game be gener-

ated as the equilibrium outcome of a communication process among the players?

This approach certainly addresses the above desideratum, to the extent that the

communication process does not involve the mediator.

A significant body of this literature tries to “implement” a correlated equi-

librium of a given game. The typical main result in this literature suggests

that the mediator can indeed be replaced. That is, depending on the specific

set-up, any correlated equilibrium distribution of a given game (with mild as-

sumptions) can be obtained as a Nash equilibrium outcome of a well-specified

communication scheme. In this sense, a correlated equilibrium can therefore be

“implemented”. The literature also claims, as a corollary to the main theorem,

that the set of all correlated equilibria (for a restricted class of games) can also

be “implemented”.

Although these results are no doubt of importance in our understanding of

communication in games and the notion of correlated equilibrium, we argue in

this paper that the above mentioned literature fails to highlight a couple of key

issues regarding “implementation”. These papers do not really appeal to the

notions of the “theory of implementation”. Possibly as a result of this, two

problems creep in.
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First, the literature does not try to achieve full implementation. That is, it

does not address the issue concerning the potential problem of multiplicity of

equilibrium. It may be easily conceived that a communication scheme meant

to generate one particular correlated equilibrium distribution as an equilibrium

outcome may have multiple Nash equilibria leading to different outcomes. Ray

(2002) hints at the general difficulty in implementing a direct correlated equilib-

rium by showing an example where the disobedient strategy profile constitutes

an equilibrium that in fact Pareto-dominates the obedient strategy profile and

considers non-canonical devices for which the disobedient strategy profile ceases

to be an equilibrium.

Second, the way the recent literature claims the whole set of correlated

equilibria to be implementable (for example, Corollary 1 in Gerardi (2004))

does not conform with our understanding of the notion of implementation either.

The unmediated game forms used to achieve different correlated equilibria are

different. To implement the set of correlated equilibria, one should aim to

construct a single game form whose set of Nash equilibrium outcomes coincides

with the set of correlated equilibrium distributions in question. Clearly, this

has not been achieved by the recent literature, although it is of course worth

noting that earlier (Barany (1992), Forges (1990)) the research agenda in this

area was indeed to search for such a universal mechanism. The recent literature

has deviated from this earlier direction, overlooking this important distinction.

This paper appeals directly to the ingredients of the theory of implemen-

tation and takes a direct approach to check whether a specific correlated equi-

librium distribution can be implemented. We formulate an implementation

problem in which the social choice function associates with every payoff matrix

(a normal form game) a particular desirable correlated equilibrium distribution

of the game and ask whether this function is fully implementable or not. We

obtain a negative result. We show that many social choice functions that choose

such a correlated equilibrium distribution do not satisfy Maskin monotonicity,

and therefore cannot be fully implemented in Nash equilibrium.

We illustrate our approach and the result by considering a parametric ver-
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sion of the two-person Chicken game and a wide class of correlated equilibrium

distributions. Our paper provides a precise answer to the problem of full im-

plementation of a particular correlated equilibrium in a wide class - it cannot

be achieved. Of course, as follows from the work of Barany (1992) and Forges

(1990), the whole set of correlated equilibrium distributions can be implemented

by virtue of a universal mechanism. This is a distinction to be highlighted,

since it says that while the entire set of correlated equilibrium distributions

corresponds to the Nash equilibrium outcomes of a communication mechanism

among the players, the same cannot be said about specific correlated equilib-

rium distributions because of the multiple equilibrium difficulty. For a wide class

of correlated equilibrium distributions, no mechanism exists that fully imple-

ments them. This suggests a return to the Forges-Barany approach of universal

mechanisms in the quest of understanding correlation without mediation.

2 Implementation

2.1 The Game

Consider the two-player non-cooperative game of Chicken as below, in which

each of the two players has two strategies, namely, A and B, with 0 ≤ a < b <

c < d. Let us also assume that b+d < 2c, the importance of which will be made

clear in the next subsection.

A B

A a, a d, b

B b, d c, c

We shall normalize a = 0, without loss of generality, in the rest of the paper.

This game has two pure Nash equilibria, namely, (A,B) and (B,A), and a mixed

Nash equilibrium in which each player plays A with probability ρ = (d−c)
b+(d−c) .
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2.2 The Correlated Equilibrium Distribution

For the above game (for fixed values of b, c and d), it will suffice for our purpose

to consider the following wide class of correlated equilibrium distributions, a

typical element of which is as follows.

A B

A 0 p1

B p2 p3

where, 0 < pi < 1, for i = 1, 2, 3, and
3P

i=1
pi = 1.

It is easy to check that, for the above distribution to be a correlated equi-

librium, we must have bp2 + cp3 ≥ dp3 and bp1 + cp3 ≥ dp3, i.e., we must have

ρp1 + p2 ≥ ρ and p1 + ρp2 ≥ ρ, where ρ = (d−c)
b+(d−c) .

A correlated equilibrium as above will be denoted by p, while the set of all

such correlated equilibrium distributions will be denoted by P . The (expected)

payoffs for two players from any p ∈ P are given by u1(p) = dp1+ bp2+ cp3 and

u2(p) = bp1 + dp2 + cp3, respectively.

One may consider the correlated equilibrium distribution that maximizes

the sum of the expected payoffs, called the utilitarian correlated equilibrium

distribution. Clearly, if b + d ≥ 2c, then any convex combination of the two

pure Nash equilibrium outcomes of the game generates the utilitarian correlated

equilibrium distribution with the sum of the expected payoffs b+ d. Under the

assumption that b+ d < 2c, we have the following.

Lemma 1 Under the assumption that b + d < 2c, the utilitarian correlated

equilibrium distribution of the game is p∗ ∈ P where p∗3 =
1−ρ
1+ρ =

b
b+2(d−c) and

p∗1 = p∗2 =
1−p∗3
2 , i.e., the utilitarian correlated equilibrium distribution of the

game is

A B

A 0
1−p∗3
2

B
1−p∗3
2 p∗3

where p∗3 =
1−ρ
1+ρ =

b
b+2(d−c) .
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Proof. Consider the (constrained maximization) problem of maximizing the

sum of the expected payoffs, (b+ d)(p1 + p2) + 2cp3 subject to the constraints,

ρp1 + p2 ≥ ρ and p1 + ρp2 ≥ ρ, where ρ = (d−c)
b+(d−c) . Note that the maximand is

equal to 2c− (p1 + p2)(2c− (b+ d)) and therefore the maximization problem is

equivalent to minimizing (p1+p2)(2c−(b+d)) subject to the above constraints.

It is now easy to check that the solution of the above problem is p1 = p2 =
ρ
1+ρ

and thus p3 =
1−ρ
1+ρ . Hence, the utilitarian correlated equilibrium distribution is

as proposed: p∗3 =
1−ρ
1+ρ =

b
b+2(d−c) and p∗1 = p∗2 =

1−p∗3
2 .

We also observe the following.

Lemma 2 Under the assumption that b+d < 2c, for any correlated equilibrium

distribution p ∈ P , p3 ≤ p∗3 =
1−ρ
1+ρ =

b
b+2(d−c) .

Proof. Consider any correlated equilibrium distribution p ∈ P . Recall that

the sum of the expected payoffs is (b+d)(p1+p2)+2cp3 = (b+d)(1−p3)+2cp3.
Suppose if possible, p3 > p∗3. Then, as b+d < 2c, the sum of the expected payoffs

for p becomes higher than that for p∗, which is a contradiction to Lemma 1.

Hence the proof.

2.3 The Implementation Problem

Suppose the two players are interested in playing the game according to a par-

ticular correlated equilibrium distribution, such as the utilitarian equilibrium

(or any other distribution p ∈ P ). They would like to achieve it, though, as the

unique Nash equilibrium outcome of a mechanism that does not contemplate

correlation devices. Their problem can then be formulated as an implementation

problem.

For any given game of Chicken, as above, we can define an implementation

problem as follows. Suppose the designer knows the structure of the Chicken

game. However, he does not know the actual payoffs for the two players in the

game. Alternatively, suppose the design of the mechanism is made by the two

players themselves, who are interested in a mechanism that “works” in order
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to implement the desired distribution for any chicken game. A mechanism

is a pair G = ((M1,M2), g), where Mi is player i’s set of messages, and g :

M1 ×M2 7→ Q is an outcome function. (Here, Q denotes the unit simplex over

{(A,A), (A,B), (B,A), (B,B)}.)
A payoff profile (not to be used by the mechanism designer, who specifies

only outcomes) < is described by three numbers,

< = {(b, c, d) | 0 < b < c < d, b+ d < 2c}.

An outcome in this implementation problem, denoted by q, is a probability

distribution over the four pure outcomes of the game. We shall use the notation

below. Q is the set of all such probability distributions.

A B

A 1− q1 − q2 − q3 q1

B q2 q3
The players’ payoffs (under a profile <) from an outcome q ∈ Q, are simply

the expected payoffs with respect to the probability distribution q and are given

by u<1 (q) = dq1 + bq2 + cq3 and u<2 (q) = bq1 + dq2 + cq3, respectively. The

preference over q ∈ Q for each player i (i = 1, 2) is denoted by º<i , under <,
which clearly is defined as, q º<i q0 if and only if, u<i (q) ≥ u<i (q

0) for any q,

q0 ∈ Q. We will denote the game induced by G with preferences ((º<i ))i by
G(<).
A social choice function (SCF) f assigns to each chicken game payoff profile <

an outcome f(<) ∈ Q. An SCF f is said to be Nash implementable if there exists

a mechanism G such that for every <, the unique Nash equilibrium outcome of

G(<) is f(<). The problem that concerns us here is to Nash implement any

fixed SCF f that, for each <, consists of a particular correlated equilibrium
distribution: f(<) = p(<) = p(b, c, d) ∈ P . Recall that, when any p ∈ P is

implemented the players’ payoffs are, respectively, u1(p) = dp1 + bp2 + cp3 and

u2(p) = bp1 + dp2 + cp3.
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3 The Main Result

Maskin (1999) showed that the following monotonicity condition is necessary

for Nash implementation of an SCF. An SCF f satisfies Maskin monotonicity

if whenever q ¹<i f(<) =⇒ q ¹<0i f(<), for any q ∈ Q, for i = 1, 2, we have

f(<0) = f(<). We shall now prove that no social choice function that assigns
p(<) = p(b, c, d) ∈ P satisfies the Maskin monotonicity condition. Therefore,

no such SCF can be fully implemented in Nash equilibrium.

Theorem 1 No social choice function that chooses a particular correlated equi-

librium distribution p ∈ P satisfies Maskin monotonicity. Therefore, it cannot

be fully implemented in Nash equilibrium.

Proof. For a fixed game of Chicken, let us first fix a particular social

choice function given by f(<) = p(<) = p(b, c, d) ∈ P . Let us denote the

corresponding probability of outcome (B,B) by p3(b, c, d). Recall from Lemma

2 that, p3(b, c, d) ≤ p∗3(b, c, d) =
b

b+2(d−c) , for any such (b, c, d). To check the

Maskin monotonicity condition, we need to consider two profiles such that their

lower contour sets are nested and then look at the outcomes that the social

choice function chooses at these two profiles.

To prove our result, we shall show that there exists a pair of profiles <
({(b, c, d) | 0 < b < c < d and b+ d < 2c}) and its corresponding p(b, c, d), and
<0 ({(b0, c0, d0) | 0 < b0 < c0 < d0 and b0 + d0 < 2c0}) with its p(b0, c0, d0), such
that the lower contour sets are nested, and however, p(b, c, d) 6= p(b0, c0, d0).

To do so, first fix any arbitrary profile <1, given by any arbitrary choice of
(b1, c1, d1) and thereby fix p3(b1, c1, d1). Now choose a b0 < b1 sufficiently small

such that b0
b0+2(d1−c1) < p3(b1, c1, d1) (one may do so as b

b+2(d1−c1) is a decreasing

function in b). Now, choose a c0 and a d0 such that b1− b0 = c1− c0 = d1− d0.

Denote the difference b1 − b0 by δ > 0. Denote the profile associated with the

numbers (b0, c0, d0) by <0.
Consider the lower contour set of f(<0) under <0 which is the set of distri-

butions q ∈ Q such that u1(q) ≤ u1(p(b0, c0, d0)) and u2(q) ≤ u2(p(b0, c0, d0)).
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This lower contour set is characterized by the following two inequalities:

d0q1 + b0q2 + c0q3 ≤ d0p1(b0, c0, d0) + b0p2(b0, c0, d0) + c0p3(b0, c0, d0) (1)

and

b0q1 + d0q2 + c0q3 ≤ b0p1(b0, c0, d0) + d0p2(b0, c0, d0) + c0p3(b0, c0, d0) (2)

Now take any q in the lower contour set of f(<0) under <1, i.e., with u1(q) ≤
u1(p(b0, c0, d0)) and u2(q) ≤ u2(p(b0, c0, d0)) under <1. This lower contour set
is characterized by the following two inequalities:

d1q1 + b1q2 + c1q3 ≤ d1p1(b0, c0, d0) + b1p2(b0, c0, d0) + c1p3(b0, c0, d0),

i.e., d0q1 + b0q2 + c0q3 + δ(q1 + q2 + q3)

≤ d0p1(b0, c0, d0) + b0p2(b0, c0, d0) + c0p3(b0, c0, d0) + δ
3X

i=1

pi(b0, c0, d0)

i.e., d0q1 + b0q2 + c0q3

≤ d0p1(b0, c0, d0) + b0p2(b0, c0, d0) + c0p3(b0, c0, d0) + δ(1− q1 − q2 − q3)

(3)

and

b1q1 + d1q2 + c1q3 ≤ b1p1(b0, c0, d0) + d1p2(b0, c0, d0) + c1p3(b0, c0, d0),

i.e., b0q1 + d0q2 + c0q3 + δ(q1 + q2 + q3)

≤ b0p1(b0, c0, d0) + d0p2(b0, c0, d0) + c0p3(b0, c0, d0) + δ
3X

i=1

pi(b0, c0, d0)

i.e., b0q1 + d0q2 + c0q3

≤ b0p1(b0, c0, d0) + d0p2(b0, c0, d0) + c0p3(b0, c0, d0) + δ(1− q1 − q2 − q3)

(4)

Clearly, any q in the lower contour set of f(<0) under <0 (satisfying the inequal-
ities 1 and 2) is also in the lower contour set of f(<0) under <1 (satisfying the
inequalities 3 and 4). Thus, the lower contour sets of f(<0) for these profiles
are nested.
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However, for Maskin monotonicity to be satisfied, we must have p(b1, c1, d1) =

p(b0, c0, d0). To show that this is not true, recall that by our choice of b0,
b0

b0+2(d1−c1) < p3(b1, c1, d1). Also, by our choices of c0 and d0, p∗3(b0, c0, d0) =
b0

b0+2(d0−c0) =
b0

b0+2(d1−c1) < p3(b1, c1, d1). Finally, from Lemma 2, we have,

p3(b0, c0, d0) ≤ p∗3(b0, c0, d0). Hence, p3(b0, c0, d0) < p3(b1, c1, d1). Thus, such a

social choice function does not satisfy Maskin monotonicity and therefore cannot

be fully implemented in Nash equilibrium.

4 Remarks

In this short note, we have argued that the recent literature that considers the

problem of implementing a specific correlated equilibrium distribution, rather

than the whole set of correlated equilibrium distributions, is flawed in an im-

portant way, as the corresponding social choice function may not be fully im-

plemented. We have illustrated our point by using a specific game and a wide

class of correlated equilibrium distributions.

Within our set-up, one may still wish to consider subgame-perfect imple-

mentation to implement a correlated equilibrium distribution as the unique

subgame-perfect equilibrium outcome of a suitably constructed extensive game

form.

Also, as is well-known, under very mild conditions, any social choice function

can be virtually Nash implemented in the sense that it is possible to implement

an outcome that is arbitrarily close to the desired one (Abreu and Matsushima

(1992), Abreu and Sen (1991), Matsushima (1988)). Virtual implementation is

possible if and only if the condition ‘non-empty intersection of lower contour

sets’ is met. In our context, it is indeed met as we have the outcome (a, a) in

the Chicken game. One could thus try to construct a mechanism that will give

rise to virtual implementation. This kind of approximation would then provide

a way out to the difficulty pointed out here.
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