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ABSTRACT

Economists wish to use data on matches to learn about the structural primitives that govern sorting.
I show how to use equilibrium data on who matches with whom for semiparametric estimation of match
production functions in many-to-many, two-sided matching games with transferable utility. Inequalities
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1 Introduction

Becker (1973) introduces the use of two-sided matching theory to analyze empirical evidence on mar-
riages between men and women. He models marriage as a competitive market with endogenous
transfers between spouses. Koopmans and Beckmann (1957) and Shapley and Shubik (1972) theoret-
ically analyze the same model of one-to-one, two-sided matching. Other markets can be modeled as
two-sided matching games with finite numbers of heterogeneous agents. Examples include the match-
ing of workers to firms and upstream to downstream firms. Simpler matching games where one side
of the market may care only about money include families to houses and bidders to multiple objects
for sale in an auction. Theoretical work is also ongoing on models of one- and many-sided matching.

Matching games are distinguished from simpler models of markets because agents on all sides of
the market make a limited number of matches. Either agents may be able to make an exogenously
limited number of matches, or nonlinearities in match payoffs may endogenously limit the number of
matches of any given party. Either way, agents on the same side of the market are rivals to match
with agents on the other side. In marriage, each woman can have only one husband, so men compete
to marry the most attractive women.

Matching games are inviting frameworks for empirical work as the models apply to a finite number
of agents with flexible specifications for the production functions generating match output. A typical
dataset for a matching market lists a series of observed matches and the characteristics of the parties
in each match. Economists assume the data come from a market in equilibrium and want to estimate
the production function generating match output for observed and counterfactual matches.

This paper provides a structural estimator for the production function that gives the total output
of a match as a function of observable agent characteristics. This production function subsumes
individual agent preferences in a transferable-utility matching game, a game where matched agents
exchange monetary transfers as part of a price-taking matching equilibrium. The match production
function governs who matches with whom, the dependent variable data I use for estimation. I do not
use data on the equilibrium transfers, although matched agents exchange such monies in the economic
model. Using data on only observed matches is helpful for studying markets such as marriage, where
the idea of exchanging money in a market setting is an approximation to how resources are allocated
in a household, as well as for studying relationships between firms, where the monies exchanged are
often private contractual details.

I present an empirical example from industrial organization. I use data on the identities of the
suppliers of individual car parts for particular car models. In this upstream-downstream market, a
match is a car part for a specific car model, and the two sides of the market are car-part suppliers,
like Bosch and Delphi, and the final assemblers of cars, like General Motors and Toyota. Suppliers
typically produce many different car parts. I focus on two related empirical questions. First, I estimate
the returns to specialization from the viewpoint of the supplier. I estimate how these returns from
specialization vary at the levels of producing car parts for a particular car, for a particular brand
of car, for a particular assembler (parent company) and for a particular home region for a brand
(Europe, North America, Asia). Second, I examine whether suppliers that can meet the quality
levels of Asian assemblers (Honda and Toyota receive the highest quality ratings from sources such as
Consumer Reports) are better able to compete and win contracts from non-Asian assemblers. If so,
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this pattern of sorting is consistent with an explanation where matching with Toyota makes a supplier
higher quality or with an explanation where Toyota only matches with high-quality suppliers. Either
way, matching with Toyota coincides with a competitive edge that helps win business from non-Asian
assemblers. In other words, the empirical evidence is compatible with a story where matching with one
type of firm (Asian assemblers) may be complementary with matching with other firms (non-Asian
assemblers).

Match data come from the outcome to a market, which intermingles the preferences of all partic-
ipating agents and finds an equilibrium. Agents on the same side of the market (say men) are rivals
to match with agents on the other side of the market (say women). The equilibrium concept in a
matching game is the cooperative solution concept known as pairwise stability. This paper studies
matching games where matched parties can endogenously exchange monetary transfers in equilibrium.
At a pairwise stable equilibrium, without loss of generality no man would strictly prefer to pay the
transfer required for him to marry any woman other than his wife in the equilibrium outcome. In
the equilibrium, the required transfers for deviating to another woman will be functions of the char-
acteristics of all the agents in the market. I study the empirically relevant case where the researcher
lacks data on the equilibrium transfers. Therefore, estimation cannot be primitively based on the
individual rationality condition that says each agent takes the action that maximizes its payoffs. The
cooperative analog to the non-nested Nash solution concept that says each agent picks a strategy to
maximize payoffs will not suffice for estimation. Rather, estimation will need to be based on necessary
conditions that are implied by an equilibrium outcome being pairwise stable.

My main empirical interest is in large matching markets. In the automotive supplier application,
there are 1349 car parts (matching opportunities) in one particular car component category. For sim-
plicity, I treat each component category as a separate matching market. There are 1349 opportunities
for a cars parts supplier to match with an assembler in a single matching market. Further, there are
593 different component categories in the data; I use all of them in estimation. In Fox and Bajari
(2009), we apply a related version of the estimator in this paper to the matching between bidders
and items for sale in a FCC spectrum auction. There are 85 winning bidders and 480 items for sale
in the auction application. Both the automotive supplier and auction datasets are rich. There is
a lot of information on agent characteristics and a lot of unknown parameters that can be learned
from the observed sorting of suppliers to assemblers or bidders to items for sale. However, to take
advantage of these types of rich data sets, a researcher must propose an estimator that works around
a computational curse of dimensionality and a data curse of dimensionality.

First consider the computational curse of dimensionality. A standard parametric approach would
be to write down a likelihood function that gives the probability that the observed set of matches is
part of a pairwise stable outcome to a matching market, conditional on the observed characteristics of
all agents in the particular matching market. If the econometrician modeled heterogeneity as arising
from unobserved, match-specific aspects of payoffs, then the likelihood would be an integral over the
match-specific unobservables. The integrand to the likelihood would be the nested calculation of the
equilibrium set of matches for each draw of the errors. The computational cost of this approach can
be tremendous.

For estimation, I provide a computationally simple, maximum score estimator for match pro-
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duction functions (Manski, 1975, 1985; Horowitz, 1992; Matzkin, 1993; Fox, 2007). The estimator
uses inequalities derived from necessary conditions for pairwise stability.1 These necessary condi-
tions involve only observable characteristics; there is no potentially high-dimensional integral over
unobservable characteristics. Evaluating the statistical objective function is computationally simple:
checking whether an inequality is satisfied requires only evaluating match production functions and
conducting pairwise comparisons. The objective function is the number of inequalities that are sat-
isfied for any guess of the structural parameters. The estimate is any parameter than maximizes the
number of included necessary conditions. Because the set of necessary conditions can be large, I argue
that the estimator will be consistent if the researcher samples from the set of necessary conditions.
Numerically computing the global maximum of the objective function requires a global optimization
routine, although estimation is certainly doable with software built into commercial packages such as
MATLAB or Mathematica.

The maximum score estimator is consistent because of an assumed rank order property that re-
lates the necessary conditions to the probabilities of different equilibrium assignments, conditional
on all the agent characteristics in a market. Following the most straightforward identification ar-
gument using this rank-order property would lead to another curse of dimensionality in the size of
the matching market (Fox, 2009). This time a data curse of dimensionality would arise from having
to nonparametrically estimate the probabilities of different assignments conditional on all the agent
characteristics in a market. Both the number of distinct arguments and the number of conditioning
arguments are of quite high dimension. Maximum score bypasses this need to estimate equilibrium
assignment probabilities nonparametrically, even though the estimator is consistent because of the
properties of conditional assignment probabilities.

A typical dataset for a matching market lists observed matches and the characteristics of agents
in those matches. In many-to-many applications, such as automotive suppliers and assemblers, other
objects are often not recorded in the data available to academic researchers. As stated before, the
transfers between upstream and downstream firms may be private contractual relationships. Likewise,
the profit or revenue to each party from its set of matches can be but is typically not observed. In
many-to-many matching, the quota of each agent is the maximum number of physical matches that
they can make. Binding quotas make agents on the same side of the market, say automotive suppliers,
rivals to match with the agents on the other side of the market, say automotive assemblers. In the
car-parts application, quotas are a modeling abstraction. I do not have data on quotas. Finally, even
though matching models allow quota slots to be unfilled or people in a marriage market to be single,
often data on unmatched agents are not available. The maximum score estimator in this paper does not
require data on these variables that are part of the model’s data generating process but are typically
unobserved in empirical applications: transfers, revenues, profits, quotas and the characteristics of
unmatched agents. I make no statistical assumptions about these variables; they are not given some
parametric distribution and then integrated out. Rather, the maximum score estimator uses necessary
conditions that do not require the values of these variables. Thus, the estimator is practically oriented
towards realistic datasets for the automotive supplier and other similar applications.

In order to borrow insights from Manski (1975) and the related literature on maximum score
1There is a tradition of using necessary conditions or inequalities to estimate complex games. See Haile and Tamer

(2003) and Bajari, Benkard and Levin (2007) for applications to noncooperative, Nash games.
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methods, this paper relies on one non-primitive assumption: the rank order property. The rank
order property is an assumption about the stochastic structure of the model and will be discussed
below. The upside of this assumption is that allows me to tap into previous results and to propose a
computationally simple estimator for the large and rich matching markets that motivate my empirical
interest. The resulting estimator is also semiparametric: it does not rely on parameterizing the
distribution of unobservables with a finite vector of parameters.

The rank order property is developed in more detail in a companion paper on nonparametric iden-
tification (Fox, 2009). By nonparametric (as opposed to semiparametric in this paper), I mean that
the object of interest, the production function, is not specified up to a finite vector of parameters.
Neither is the distribution of unobservables. Fox (2009) is the first to study nonparametric identi-
fication in any sort of matching game. In that paper, I ask what economic objects can be learned
using a population dataset on equilibrium matches and agent characteristics. As agents on one side of
the market are rivals to match with agents on the other side, the identification results are not simple
extensions of those for single-agent models or those for noncooperative Nash games. The identifica-
tion paper does not talk about developing a practical estimator for large datasets. Altogether, the
rank order property allows a unified approach to be taken to computationally simple semiparametric
estimation and nonparametric identification in matching games.

After earlier versions of this paper were circulated, Fox and Bajari (2009), Akkus and Hortacsu
(2007), Baccara, Imrohoroglu, Wilson and Yariv (2009), Levine (2008), Mindruta (2009), and Yang,
Shi and Goldfarb (2009) have conducted empirical work using the matching maximum score estimator
I develop here. Their applications are, respectively, matching between bidders and items for sale in a
spectrum auction, mergers between banks after deregulation in the United States, matching between
offices and employees with attention paid to several dimensions of social networks, matching between
pharmaceutical developers and distributors, matching between individual research team members in
the patent development process, and matching between professional athletes and teams with a focus on
marketing alliances between players and teams. In addition to the empirical application to automotive
suppliers, these disparate applications show the relevance of matching estimation in empirical work
in economics and allied fields such as corporate finance, marketing and strategy.

Recently, Dagsvik (2000), Choo and Siow (2006), and Weiss (2007) have introduced logit-based
estimators for matching games with transfers. These authors study only one-to-one matching, namely
marriage. Their estimators have not been extended to many-to-many matching, which is essential
for most empirical applications outside of family economics, particularly applications in industrial
organization and labor economics. Section 8 compares the maximum score estimator to the logit-based
estimators in more detail. I briefly also compare my estimator to the parametric likelihood or method-
of-moments estimators introduced for a non-nested class of matching games, those where agents cannot
exchange monetary transfers (Gale and Shapley, 1962). Most empirical industrial organization and
labor settings allow the matched agents, often firms or workers, to exchange monetary transfers in
order to sell their services. Therefore, I believe matching games with transfers is the best model for
many applications, even though the data on the monetary transfers are often unavailable.2

The paper is organized as follows. Section 2 provides a brief overview of some results from matching
2Matching with transfers is also related to models of hedonic equilibria, where typically features of the match in

addition to price are endogeneously determined (Rosen, 1974; Ekeland, Heckman and Nesheim, 2004).
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theory, discusses the role of matching estimation in empirical work and introduces and motivates the
estimator. Section 3 outlines a many-to-many matching game. Section 4 discusses the aforementioned
rank order property. Section 5 discusses estimation with the maximum score estimator and relevant
asymptotic results. Section 6 presents a Monte Carlo study about the performance of the estimator.
I focus on examples where the rank order property needed for consistency is not exactly satisfied, for
reasons I go into below. Section 7 is the empirical application to automotive suppliers and assemblers.
Having developed my approach to estimation in detail, Section 8 is the literature review.

2 Basic ideas for the case of marriage

Not all readers will be intimately familiar with matching theory. Using the simple example of one-
to-one matching or marriage, this section introduces classic results from matching theory and then
shows how identification, estimation and numerical analysis are needed to extend them. I then describe
computational problems with traditional estimators and how maximum score solves those problems.

2.1 Why marriage is a particularly simple example

Let there be a set of M men. In a duplication of notation, let M be both the set of men and the
number of men. Let the index a for a particular man also represent the vector of man a’s observable
characteristics. Let each man a be described by his schooling a1 and his wealth a2, so that the vector
a = (a1, a2). Likewise, there is a set W of W women. It is not necessarily the case that the number
of men equals the number of women. Each woman i also two characteristics, schooling i1 and wealth
i2. In a duplication of notation, i = (i1, i2). Thus, the exogenous characteristics of agents in this
matching market are X = M ∪W , a set of M +W vectors of two scalars each.

If man a and woman i marry, the output of their match is given by the production function f (a, i),
which here is a function of observable agent characteristics: the schooling of the husband and wife
and their respective wealth levels. Below, the focus on the production function will be motivated
by a model where each man has preferences for female characteristics i, each woman has preferences
for male characteristics a, and married couples can exchange transfers. The equilibrium concept of
pairwise stability says no man would strictly prefer to pay the transfer needed to marry any woman
other than his wife at an equilibrium outcome. For now, take the production function as the primitive
object of interest.

An assignment is one part (the other part is the transfers) of an outcome to a matching market.
An assignment A is a set of observed matches, say 〈a, i〉 for man a and woman i, 〈b, j〉 for man b and
woman j, and so on. If man a is single, his match is recorded as 〈a, 0〉. An assignment is feasible if
each man is married to at most one woman, each woman is married to at most one man, and men
only marry women and women only marry men. A feasible assignment is an equilibrium assignment
if the assignment is part of a pairwise stable outcome.

One-to-one, two-sided matching has three very convenient theoretical properties that do not gener-
alize to many-to-many matching. First, a pairwise stable outcome is guaranteed to exist. Second, any
pairwise stable outcome is in the core of the market: the assignment is efficient in that it maximizes the
sum of production for all matches out of the set of all feasible assignments. The decentralized pairwise
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stable outcome solves a social planner’s problem. Koopmans and Beckmann (1957) and Shapley and
Shubik (1972) show the social planner’s problem can be solved using linear programming techniques.
Third, if agent characteristics such as a and i have distributions with continuous and product sup-
ports, then the probability that two different assignments solve the social planner’s problem is zero.
Thus, the third property ensures that the equilibrium assignment is unique with probability 1.

2.2 The role of matching estimation

Take a special case of the above model where a = (a1) and i = (i1), or each man and each woman
has only a scalar characteristic, rather than a vector of two or more characteristics. Each man has a
schooling level and each woman has a schooling level. In this special model, men with higher levels of
schooling will marry women with higher levels of schooling when schooling levels are complements in
the production of a match, or

∂2f (a, i)
∂a1∂i1

> 0 ∀ a1 ∈ R, i1 ∈ R. (1)

Becker (1973) first proved the result that agents with scalar characteristics assortatively match when
their characteristics are complements. Anti-assortative matching is the opposite: men with high levels
of schooling marry women with low levels of schooling, and vice versa. Anti-assortative matching
occurs when the two scalar characteristics are substitutes. Becker used these insights in empirical
work: he analyzed whether married couples assortatively or anti-assortatively match on a variety of
pairs of characteristics.

Unfortunately, Becker’s sorting characterization that relates the sorting pattern to a high-level
property of the match production function does not apply to a model where each agent has two or more
characteristics, the case of the running example. Indeed, theorists have not analytically characterized
the sorting patterns based on broad properties of production functions for cases other than the case
of each agent having a single (scalar) characteristic. However, numerical analysis does apply to the
case when agents have two or more characteristics. Given a particular choice of the production
function f (a, i) and values for X, the characteristics of all men and all women in a matching market,
researchers can compute the socially optimal assignment, which (with probability 1) is the unique
equilibrium assignment. Likewise, comparative statics in f can be undertaken by choosing different
production functions and seeing how the assignments change. Alternatively, different values for the
market characteristics X could be chosen, and the equilibrium computed for each choice of X.

The upshot is that numerical analysis is needed to analyze the predictions of matching models. A
researcher must take a stand on the exact production function f and the exact characteristics in X in
order to make predictions. Given the need for numerical analysis, the question becomes which f and
X to pick? An obvious place to start is the X from the data and the f that is estimated from data
on X and A in real-life matching markets. This is what this paper shows how to do: estimate f using
i.i.d. observations on pairs (A,X) across many matching markets. One can look at how assignments
(matches) of men to women vary with the set of exogenous characteristics of men and women in X
and use that variation to estimate f .

As an assignment is a qualitative outcome to a market, it is helpful to keep in one’s mind an
analogy to discrete choice estimation. Consider the well-known multinomial logit model. The analog
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to an observation on a decision maker from the logit model is a matching market. The analog to a
single agent’s discrete choice from the logit model is A, the assignment in a market. The analog to the
characteristics of the products from the logit model is X, the set of male and female characteristics
in a market.

2.3 Two curses of dimensionality in the number of men and women in
simulation estimation

Let me explain the issues with combinatorics in matching markets alluded to in the introduction. Let
there be M = 3 men and W = 3 women in a marriage market, so M = W . None of the agents can be
single, for expositional simplicity only. Let the ordered pair 〈1, 2〉 refer to a marriage between man 1
and woman 2. It turns out that there are 32 = 9 possible marriages that can happen, which are

〈1, 1〉 , 〈1, 2〉 , 〈1, 3〉 , 〈2, 1〉 , 〈2, 2〉 , 〈2, 3〉 , 〈3, 1〉 , 〈3, 2〉 , 〈3, 3〉 .

Each individual can join only one marriage in an assignment of men to women for the entire market.
There are 3! = 6 possible assignments for the entire market,

{〈1, 1〉 , 〈2, 2〉 , 〈3, 3〉} , {〈1, 1〉 , 〈2, 3〉 , 〈3, 2〉} , {〈1, 2〉 , 〈2, 1〉 , 〈3, 3〉} ,

{〈1, 2〉 , 〈2, 3〉 , 〈3, 1〉} , {〈1, 3〉 , 〈2, 1〉 , 〈3, 2〉} , {〈1, 3〉 , 〈2, 2〉 , 〈3, 1〉} .

Now let there be M = 100 men and W = 100 women in a marriage market. There are 1002 = 10, 000
matches and 100! = 9.33 × 10157 market-wide assignments. The number of atoms in the universe is
much lower, at around 1079, than the number of possible assignments.

For the purposes of estimation, let the production function fβ (a, i) be specified up to a finite
vector of parameters β. One could think of estimating the matching model using a standard parametric
procedure. The method of simulated moments (MSM) is the most commonly used simulation estimator
because the estimator is consistent as the number of observations, here the number of markets, goes
to infinity, while holding the number of simulation draws constant. Recall the analogy to the logit
model for single-agent choice. To estimate the logit using simulation, one would draw error terms and
simulate the choices of each agent.

Let the set Γ collect the error terms. To be concrete, let Γ contain i.i.d. match-specific un-
observables for all feasible matches, making the total production of a match be f (a, i) + ε〈a,i〉 and
Γ =

{
ε〈a,i〉, ε〈a,k〉, . . .

}
, the set of unobserved payoffs for all M ·W error terms. Let F be the distribu-

tion of ε〈a,i〉. The natural MSM estimator for the matching model is based on the conditional moment
equalities, for a pair (A,X)

mX,A (β, F ) = EΓ;F [1 [α (X,Γ; fβ) = A]− Pr (A | X) | X] = 0.

Here α (X,Γ; fβ) is a set-valued function that returns the equilibrium assignment to a matching
market with observable agent characteristics X, simulation draws Γ, and production function fβ (·, ·).
So the function α (X,Γ; fβ) is a nested computational procedure, in one-to-one matching a linear
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programming problem, that solves the social planning problem. Evaluating α (X,Γ; fβ) once can be
time consuming if M and W are large. The moment is formed by computing the fraction of time
the nested linear program computes A to be the assignment and comparing this probability to the
empirical probability of observing assignment A when male and female characteristics are X, which
is Pr (A | X). The unknown distribution F enters the moment through the expectation EΓ;F .

Empirically, one needs to estimate the moment conditions. Say the researcher has first-stage
estimates of assignment probabilities, as in P̂r (A | X). Let the empirically implemented moments in
the MSM be

m̂X,A (β, F ) =
1
S

S∑
s=1

1 [α (X,Γs; fβ) = A]− P̂r (A | X) .

Let us evaluate the computational cost of this procedure. Here the researcher uses S simulation
draws in each moment. Each draw corresponds to a guess of Γs, the set of M · W match-specific
unobservables. The size of Γs is 10,000 in the example with M = W = 100. To evaluate the moment
condition, the researcher has to solve S linear programming problems. The computational cost of each
linear programming problem will suffer from a computational cost in the number of men and women.

A further computational cost arises from the number of moments. There is one conditional moment
for each pair (A,X). As already described, if M = W = 100, there are more values A than atoms in
the universe, for a given X. The number of moments is thus unfathomable. One could try to reduce
the computational cost by dropping some of the moments, but then the model will make less use
of the data for pairs that are dropped. Simulated maximum likelihood would eliminate the need to
choose moments, but would require more simulation draws for a low finite-sample bias.

There is also a data curse of dimensionality in forming this moment condition m̂X,A (β, F ). The
assignment probabilities Pr (A | X) need to be estimated in a first stage. This step can only be done
nonparametrically, as any functional form assumptions primitively specified on Pr (A | X) will likely
be inconsistent with the model being estimated in the second stage, as Pr (A | X) is the outcome to
an economic model. Any attempt to estimate Pr (A | X) nonparametrically using i.i.d. observations
on (A,X) across markets will result in a data curse of dimensionality, as the arguments included
in X often involve thousands of agent characteristics, and the number of possible values of A could
exceed the number of atoms in the universe. If there are 100 men and 100 women in the market
and each agent has a vector of four characteristics, this would require estimating the conditional
probability of each of 100! = 9.33 × 10157 distinct assignments, using conditioning arguments equal
to the (100 + 100) · 4 = 800 scalar agent characteristics. Nonparametrically estimating 9.33 × 10157

functions of 800 arguments each is not feasible.

2.4 Semiparametric estimation using maximum score

Let me now explain the simplicity of the maximum score estimator that I introduce in this paper.
Consider observing a set of M towns, each an independent matching market. Let M also refer to the
number of towns. Let the assignment Am in town or market m be a finite set of observed matches
of the form 〈a, i〉, where a is the characteristics of a particular a man and i is the characteristics of
a particular woman. Again, let fβ (a, i) be the production function, known up to a finite vector of
parameters β. Assume the researcher uses data on only matched couples. Then the maximum score
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objective function is

HM (β) =
1
M

∑
m∈M

∑
{〈a,i〉, 〈b,j〉}∈Am

1 [fβ (a, i) + fβ (b, j) > fβ (a, j) + fβ (b, i)] . (2)

The indicator functions 1 [·] are equal to 1 when the inequality in brackets is true and 0 otherwise. Each
inequality says that the total sum of deterministic production of two matches will not be increased if
the husbands exchange their wives. I will derive this inequality as an implication of pairwise stability
soon. The score of correct predictions increases by 1 when a “local production maximization” inequality
holds for a trial guess of β. The matching maximum score estimator β̂M receives the highest score of
satisfied inequalities. The fraction of satisfied inequalities is a measure of statistical fit such as R2 in
a regression. As the objective function is a step function, there will always be more than one global
maximum; finding one is sufficient for estimation.

The objective function (2) is computationally simple. Evaluation of the objective function involves
only evaluation of production functions, addition and checking of inequalities. Software is available
on my website to numerically maximize (2) and to conduct statistical inference via subsampling, as I
briefly discuss below (Santiago and Fox, 2007).3

3 Many-to-many matching games

I am the first empirical researcher to study many-to-many matching without additive separability in
an upstream firm’s payoffs across multiple downstream-firm partners. These interactions in payoffs
across partners are the key behind many empirical issues, as the empirical application to car-parts
suppliers and assemblers will illustrate.

Some theoretical results on one-to-one, two-sided matching with transferable utility have been
generalized by Kelso and Crawford (1982) for one-to-many matching, Leonard (1983) and Demange,
Gale and Sotomayor (1986) for multiple-unit auctions, as well as Sotomayor (1992), Camiña (2006)
and Jaume, Massó and Neme (2008) for many-to-many matching with additive separability in payoffs
across multiple matches. These models are applications of general equilibrium theory to games with
typically finite numbers of agents. The estimator in this paper can be extended to the cases studied
by Kovalenkov and Wooders (2003) for one-sided matching, Ostrovsky (2008) for supply chain, multi-
sided matching, and Garicano and Rossi-Hansberg (2006) for the one-sided matching of workers into
coalitions known as firms with hierarchical production.4 Overall, this paper uses the term “matching
game” to encompass a broad class of models, including some games where the original theoretical
analyses used different names.

3.1 Matching markets

Consider an example where automobile assemblers (think General Motors and Toyota) match with
automotive-parts suppliers (think Bosch and Johnson Controls). Let a ∈ D be the characteristics of
an assembler or downstream firm, where D is the set of characteristics for all downstream firms. Let

3My website is http://home.uchicago.edu/~fox .
4Lucas (1978) and Rosen (1982) are predecessors to Garicano and Rossi-Hansberg (2006).

9



i ∈ U be a supplier or upstream firm, with U the set of characteristics of all upstream firms. Let
X = D ∪ U be the set of characteristics of all firms in a market. I will assume that X is observable
in each market.

In many-to-many matching, each firm has a quota, a number of physical matches that it can have
at once. Let Q : U ∪D → N+ be the set of quotas, where pa ∈ Q is the quota of a downstream firm
a and qi ∈ Q is the quota of the upstream firm i.

Let 〈a, i〉 be a match between downstream firm or automobile assembler a and upstream firm or
car parts supplier i. If pa > 1, a downstream firm, a, say, may be part of multiple matches. As before,
〈a, 0〉 refers to an unfilled quota slot for an assembler and 〈0, i〉 refers to an unfilled quota slot for a
supplier. The space of individual matches is (U ∪ {0})× (D ∪ {0}).

A matching-market outcome is a tuple (A, T ). An assignment A, or a finite collection of matches
for all agents in the market, is an element of the power set of (U ∪ {0})×(D ∪ {0}). For any assignment
A with N matches, A = {〈a1, i1〉 , 〈a2, i2〉 , . . . , 〈aN , iN 〉}, T =

{
t〈a1,i1〉, t〈a2,i2〉, . . . , t〈aN ,iN 〉

}
is a set

of transfers for all matches in A. Each t〈a1,i1〉 ∈ R and represents a payment for a downstream firm
to an upstream firm. In a supplier market with 100 consummated relationships, A is a finite set of
100 matches and T is a finite set of 100 transfers between each of the matched firms. Altogether,
the combination of the exogenous and endogenous elements of a matching market form the tuple
(D,U,Q,A, T ).

For the purposes of semiparametric estimation, I will assume that the production function fβ (·, ·)
is known up to a finite vector of parameters, β. The object of estimation will be β. A production
function takes the characteristics of one upstream firm i and a set of n downstream firms d ⊆ D, such
that d = {a1, . . . , an} and n ≤ qi. In other words, fβ (i, d) is the production of the set d of downstream
firms in matches involving upstream firm i. Let β lie in some real space B.

While the theoretical model allows many-to-many matching, the production function fβ (i, d) in-
volves nonlinearities across only multiple matches involving the same upstream firm, not multiple
matches involving the same downstream firm a ∈ d. One could add a second production function
f2
β (a, u) that takes as arguments the characteristics of a downstream firm or assembler a and a set u
of n upstream firms u = {i1, . . . , in}. Then the production function f2

β (a, u) would capture nonlin-
earities across multiple matches involving the same assembler a. The ability to distinguish the role of
fβ (i, d) and f2

β (a, u) might involve functional form or exclusion restrictions. The nonparametric iden-
tification analysis in Fox (2009) requires f2

β (a, u) ≡ 0; I keep the assumption here for compatibility
with the identification results in the other paper.

3.2 Motivating production functions and pairwise stability

In empirical work, one typically primitively specifies the functional form fβ (·, ·). However, in economic
theory the production function can arise as the sum of payoffs involving assemblers and suppliers. For
the purposes of understanding where production functions and pairwise stability arise from, this
section provides some more primitive background.

Given an outcome (A, T ) in which supplier i is matched to the firms in the set di, the payoff of
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i ∈ U is
r1
β (i, di) +

∑
a∈di

t〈a,i〉. (3)

Here, r1
β (·, ·) is the structural revenue function for upstream firms. Likewise, r2

β (·, ·) is the structural
revenue function for downstream firms. The payoff at (A, T ) for a ∈ D for the match 〈a, i〉 ∈ A is
r2
β (a, i) − t〈a,i〉. I use the convention that the car assembler is sending positive transfers to the car
parts supplier, but the notation allows transfers to be negative. Given this notation, the production
function fβ (i, d) ≡ r1

β (i, d) +
∑
a∈d r

2
β (a, i). Note that any transfers t〈a,i〉 would cancel if one sought

to include transfers into the definition of a production function.
Because binding quotas prevent an agent from unilaterally adding a new partner without dropping

an old one, the equilibrium concept in matching games allows an agent to consider exchanging a
partner. I use the innocuous convention that suppliers pick assemblers.

Definition 1. Given an outcome (A, T ) in which supplier i is matched to the assembler firms in the
set di and assembler a is matched to the supplier firms in the set ua, the outcome (A, T ) is a pairwise
stable equilibrium when:

1. For all 〈a, i〉 ∈ A, 〈b, j〉 ∈ A, 〈b, i〉 /∈ A, and 〈a, j〉 /∈ A,

r1
β (i, di) +

∑
c∈di\{a}

t〈c,i〉 + t〈a,i〉 ≥ r1
β (i, (di\ {a}) ∪ {b}) +

∑
c∈di\{a}

t〈c,i〉 + t̃〈b,i〉, (4)

where t̃〈b,i〉 ≡ r2
β (b, i)−

(
r2
β (b, j)− t〈b,j〉

)
.

2. For all 〈a, i〉 ∈ A,

r1
β (i, di) +

∑
c∈di\{a}

t〈c,i〉 + t〈a,i〉 ≥ r1
β (i, di\ {a}) +

∑
c∈di\{a}

t〈c,i〉.

3. For all 〈a, i〉 ∈ A,
r2
β (a, i)− t〈a,i〉 ≥ 0.

4. For all 〈a, i〉 /∈ A where |di| < qi and |ua| < pa, there exists no t̃〈a,i〉 ∈ R such that

r1
β (i, di) +

∑
c∈di

t〈c,i〉 < r1
β (i, di ∪ {a}) +

∑
c∈di

t〈c,i〉 + t̃〈a,i〉

and
r2
β (a, i)− t̃〈a,i〉 ≥ 0.

Part 1 of the definition of pairwise stability says that upstream firm i prefers its current assembler a
instead of some alternative assembler b at the transfer t̃〈b,i〉 that makes assembler b switch to sourcing
the part in question from i instead of its equilibrium supplier, j. Because of transferable utility,
supplier i can always cut its price and attract b’s business; at an equilibrium, it would lower its profit
from doing so if the new business supplanted the relationship with a. Part 1 is the main component
of the definition of pairwise stability that I will focus on in this paper.
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Parts 2 and 3 deal with matched agents not profiting by unilaterally dropping a relationship
and becoming unmatched. These are individual-rationality conditions: all matches must give an
incremental positive surplus. Finally, part 4 involves two firms with free quota not wanting to form a
new match. For the most part, I will not focus on these conditions in this particular paper because
implementing them in estimation would require more types of data. Parts 2–4 compare being matched
to unmatched, and so implementing the restrictions from parts 2–4 would require data on unmatched
agents. A person being single or unmarried is often found in the data. The notion that a car-parts
supplier in an upstream–downstream market would have a free quota slot is a modeling abstraction.
It is hard to find data on quotas.

I have not imposed sufficient conditions to ensure the existence of an equilibrium. In many-to-one,
two-sided matching with complementarities across matches on the same side of the market, Hatfield
and Milgrom (2005), Pycia (2008) and Hatfield and Kojima (2008) demonstrate that preference profiles
can be found for which there is no pairwise stable outcome.5 The counterexamples mean that general
existence theorems do not exist.6

Many interesting matching empirical applications require investigating possibilities outside of the
scope of current existence theorems. I maintain the assumption that the data on an assignment
represent part of an equilibrium for the game.7

3.3 Using matches only: local production maximization

A matching-game outcome (A, T ) has two components: the assignment, sorting or matching A and the
equilibrium transfers T . I consider using data on only A. This is because researchers often lack data on
transfers, even when the agents use transfers. Car-parts suppliers and automobile assemblers exchange
money, but the transfer values are private, contractual details that are not released to researchers.

I will exploit the transferable-utility structure of the game to derive an inequality that involves A
but not T . Consider the inequality that states that upstream firm j does not want to exchange its
matched assembler b for a new assembler partner a:

r1
β (j, dj) +

∑
c∈dj\{b}

t〈c,j〉 + t〈b,j〉 ≥ r1
β (j, (dj\ {b}) ∪ {a}) +

∑
c∈di\{b}

t〈c,j〉 + t̃〈a,j〉, (5)

where t̃〈a,j〉 ≡ r2
β (a, j) −

(
r2
β (a, i)− t〈a,i〉

)
. Substituting in t̃〈b,i〉 and t̃〈a,j〉, adding (4) and (5),

5Pycia (2007) has both existence and nonexistence results for matching markets without endogenous prices (Gale
and Shapley, 1962).

6The fact that a pairwise stable equilibrium does not exist does not mean a decentralized matching market will
unravel. Kovalenkov and Wooders (2003) and others study relaxed equilibrium concepts where it is easier to show
existence, such as, for example, imposing a switching cost to deviate from the proposed assignment.

7In the non-nested-with-matching literature on estimating normal-form Nash games, Ciliberto and Tamer (2009)
throw out a particular realization of the error term’s contribution to the likelihood if no pure-strategy equilibrium
exists. Bajari, Hong and Ryan (2009) compute all equilibria including mixed-strategy equilibria, as a mixed-strategy
equilibrium is guaranteed to exist in a normal-form Nash game. In matching, there is no notion of a mixed-strategy
equilibrium, as quotas are binding for every realization of the game. In a mixed strategy, players’ actions are random,
so a woman in a marriage market with quota 1 could find herself married to two men because of a random realization
in a mixed-strategy equilibrium.
More technically, Nash’s existence theorem relies on a fixed-point argument requiring continuous strategies, like mixed

strategies. Existence theorems in matching games rely on Tarski’s fixed-point theorem, which uses monotonic operators
and hence requires structure on preferences to ensure this monotonicity.
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canceling the transfers t〈a,i〉, t〈b,j〉,
∑
c∈dj\{b} t〈c,j〉 and

∑
c∈di\{a} t〈c,i〉 that now are the same on both

sides of the inequality, and substituting in the definition of production function gives

fβ (i, di) + fβ (j, dj) ≥ fβ (i, (di\ {a}) ∪ {b}) + fβ (j, (dj\ {b}) ∪ {a}) . (6)

Given two sets of downstream firms di and dj that may or may not be related to an assignment
A, I call a strict (> instead of ≥) version of this inequality a local production maximization
inequality: “local” because only exchanges of one downstream firm per upstream firm are considered,
and “production maximization” because the implication of pairwise stability says that the total output
from two matches must exceed the output from two matches formed from an exchange of partners. The
local production maximization inequality is the key inequality that will form the basis for estimation.

The local production maximization inequality suggests that interactions between the characteristics
of agents in production functions drive the equilibrium pattern of sorting in a market. As the same
set of firms appears on both sides of the inequality, terms that do not involve interactions between the
characteristics of firms difference out. In a one-to-one matching game, if fβ (i, a) = β′1i+ β′2a, then a
local production maximization inequality is

β′1i+ β′2a+ β′1j + β′2b > β′1i+ β′2b+ β′1j + β′2a, (7)

or 0 ≥ 0, so the definition has no empirical content. Theoretically, the uninteracted characteristics
are valued equally by all potential partner firms and are priced out in equilibrium.8

Fox (2009) shows that exchanges of downstream firm partner each between three or more upstream
firms can provide additional sets of valid local production maximization inequalities. Fox uses those
extra inequalities in some nonparametric identification theorems. As the extra inequalities will often
not be needed for some common functional form choices for fβ (i, d), for conciseness I will not discuss
the extra inequalities here. Note that inequalities based on exchanges of two or more downstream
firms per upstream firm are not motivated by the definition of pairwise stability. Pairwise stability
implies local production maximization inequalities based on exchanges of only one downstream firm
per upstream firm. This paper does not consider adding inequalities from stronger solution concepts,
such as the core. Fox explores nonparametric identification using only inequalities from pairwise
stability.

4 The rank order property

The previous section does not discuss econometric unobservables. Let us ponder a model where
the production of each set d of downstream firms matched to a supplier i is fβ (i, d) +

∑
a∈d ε〈a,i〉,

with each ε〈a,i〉 being having some common distribution F , which lies in some space of distributions
F . The assignment probability function Pr (A | X; β, F ) is a property of the matching game and

8For some policy questions, the cancellation of characteristics that are not interactions between the characteristics of
multiple firms is an empirical advantage. Many datasets lack data on all important characteristics of firms. If some of
these characteristics affect the production of all matches equally, the characteristics difference out and do not affect the
assignment of upstream to downstream firms. If the policy questions of interest are not functions of these unobserved
characteristics, then differencing them out leads to empirical robustness to missing data problems.
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the distribution of errors F . The assignment probability function integrates out the unobservables,
conditioning on the observables, and gives the probability of observing assignment A as part of the
pairwise stable outcome (A, T ) to a market with observables X. The assignment probability function
also involves equilibrium assignment selection rules for matching games with multiple equilibrium
assignments as well as the distribution of the unobserved quotas Q conditional on the observed firm
characteristics in X, if quotas are unobserved. Fox (2009) contains many more details on these
complications and how they affect the rank order property.

The discussion in Section 2.3 showed that a straightforward simulation estimator will be compu-
tationally infeasible in many empirical applications. This paper proposes a maximum score estimator
that is computationally feasible. The assumption that is needed for the consistency of maximum score
and for the nonparametric identification theorems in Fox (2009) is called the rank order property. The
rank order property is

Assumption 1. Let A1 be a feasible assignment for a market with characteristics X. Let

A2 = (A1\ {〈a, i〉 , 〈b, j〉}) ∪ {〈a, j〉 , 〈b, i〉}

be another feasible assignment, where {〈a, i〉 , 〈b, j〉} ⊆ A1. Let di be the assemblers matched to supplier
i at the assignment A1. Let F ∈ F be any distribution of the error terms and let β ∈ B be any valid
value of the parameters in the production function.

Assume that

fβ (i, di) + fβ (j, dj) > fβ (i, (di\ {a}) ∪ {b}) + fβ (j, (dj\ {b}) ∪ {a}) (8)

if and only if
Pr (A1 | X; β, F ) > Pr (A2 | X; β, F ) .

The rank order property states that if a local production maximization equality is satisfied when
the error terms are ignored, the probability of observing the market-wide assignment A1 where the
deterministic matching game (ε〈a,i〉 ≡ 0) may satisfy pairwise stability is greater than the probability
of observing the market-wide assignment A2 where the deterministic matching game is known not to
satisfy pairwise stability. Given X, neither A1 or A2 may be a stable assignment to the matching
model without error terms. But A1 might dominate A2 in the deterministic model in that at least
two firms in A2, say a and j, would prefer to match with each other instead of their assigned partners,
leading to A1. In a model with error terms, both A1 and A2 could be pairwise stable assignments to
some realizations of the unobserved components in the matching model. The assumption says that
A1 will be more likely to be a pairwise stable assignment to some realized model than A2.

Again, Fox (2009) has an in-depth discussion of the rank order property and its validity. The rank
order property does not hold, exactly, if the output to a match is fβ (i, d) +

∑
a∈d ε〈a,i〉 and each ε〈a,i〉

is i.i.d. However, Fox includes simulation evidence that the rank order property is often not seriously
violated when the output to a match is fβ (i, d) +

∑
a∈d ε〈a,i〉 and each ε〈a,i〉 is i.i.d. Further, if the

unobservables occur at the assignment A level (each εA is i.i.d. or exchangeable), then Fox shows that
the rank order property holds, exactly.
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This paper uses the rank order property because its leads to a computationally tractable estimator
while simulation estimators, which are explicit about how the errors enter production, do not. Further,
the rank order property allows the discussion of nonparametric identification in Fox (2009). Perhaps
the most practical way of judging the usefulness of the estimator when the true output of a match
is indeed fβ (i, d) +

∑
a∈d ε〈a,i〉 is to perform a Monte Carlo study of the estimator’s finite sample

performance under this misspecification (the rank order property is not satisfied). Section 6 presents
such a Monte Carlo experiment.

5 The maximum score estimator

I now discuss how maximum score can form the basis for a practical estimator. The maximum
score estimator avoids a computational curse of dimensionality by eliminating all nested calculations.
Further, all inequalities do not need to be included with probability 1 to maintain the consistency
of the estimator. It avoids a data curse of dimensionality by avoiding the need to estimate the very
high-dimensional Pr (A | X) nonparametrically. Maximum score estimation was introduced by Manski
(1975, 1985) for the single-agent model.

I assume the researcher has access to i.i.d. observations on distinct matching markets (Am, Xm),
for m = 1, . . . ,M . The number of observations is M , the number of markets. Each observation on
a large matching market will contain much more information than an observation on, say, an agent
making a binary choice. Still, the asymptotics will be in the number of markets. Fox and Bajari
(2009) consider the case of asymptotics in the number of agents in a single matching market.

5.1 The matching maximum score estimator

There are a variety of inequalities that could be included for each market. Given Am and Xm, let Im
be the inequalities that the econometrician includes for market m. An inequality in Im is indexed by
the matches {〈a, i〉 , 〈b, j〉} ⊆ Am on the left side. The maximum score estimator is any parameter
vector β̂M that maximizes

HM (β) =
1
M

∑
m∈M

∑
{〈a,i〉,〈b,j〉}∈Im

1 [fβ (i, di) + fβ (j, dj) > fβ (i, (di\ {a}) ∪ {b}) + fβ (j, (dj\ {b}) ∪ {a})] .

(9)
Evaluating HM (β) is computationally simple: there is no nested equilibrium computation to a match-
ing game, as say Pakes (1986) and Rust (1987) proposed for dynamic programming problems. Another
key idea behind the computational simplicity of maximum score estimation is that there are no error
terms ε〈a,i〉 in (9), even though the estimator may perform well if the data are generated from a model
with such errors. Not all inequalities will be satisfied, even at the maximizer β̂M and even at the
probability limit of the objective function.9

Manski and Thompson (1986) and Pinkse (1993) present optimization algorithms for the maxi-
mum score objective function where the parameters enter linearly into the payoff function. In the

9This distinguishes maximum score from a moment-inequality approach (Pakes, Porter, Ho and Ishii, 2006).
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empirical application, I numerically maximize the maximum score objective function using the global
optimization routine known as differential optimization (Storn and Price, 1997).

5.2 Choosing inequalities

The set of inequalities Im included in estimation for marketm does not need to include all theoretically
valid inequalities. If all inequalities were included, the estimator would suffer from a computational
curse of dimensionality in the number of firms in a matching market, as the number of valid inequalities
grows rapidly with the size of the market. Luckily, inequalities only need to be included with some
positive probability for the estimator to be consistent.10 This means researchers can sample from
the set of theoretically valid inequalities. Let N (A,X) be this set of theoretically valid local pro-
duction maximization inequalities of the form {〈a, i〉 , 〈b, j〉}, given assignment A and observable firm
characteristics X. Let I ({〈a, i〉 , 〈b, j〉} | X) be the probability, conditional on X, that a researcher
includes an inequality when {〈a, i〉 , 〈b, j〉} ∈ N (A,X). Hence, I ({〈a, j〉 , 〈b, i〉} | X) is the probability
of sampling {〈a, j〉 , 〈b, i〉} when {〈a, j〉 , 〈b, i〉} ∈ N (A2, X), for some other assignment A2.

Assumption 2. For all {〈a, i〉 , 〈b, j〉} ∈ N (A,X) and for any feasible pair (A,X),

1. I ({〈a, i〉 , 〈b, j〉} | X) = I ({〈a, j〉 , 〈b, i〉} | X).

2. I ({〈a, i〉 , 〈b, j〉} | X) > 0.

The assumption means that the probability of including an inequality when it is valid must be
equal to the probability of including the reverse inequality when it is valid. Because all inequalities
needed for identification are included in the limit as M → ∞, sampling inequalities does not change
point identification to set identification. Note that issues such as including inequalities with only
positive probability do not arise in the previous literature on maximum score, which mainly considered
computationally tractable single-agent choice problems.

Often a researcher will not have a good idea of the boundaries in space and time of a matching
market. By defining a market conservatively, so that the market definition used in estimation is
weakly smaller than the true market, consistency will be maintained if the discarded inequalities are
not necessary for point identification. By contrast, other simulation estimators will be inconsistent if
the market is defined incorrectly.

5.3 Consistency

Some other sufficient conditions for consistency follow.

Assumption 3.

1. The production function parameters β lie in a compact set B ⊆ R|β|, |β| <∞.

2. Identification: Let β0 ∈ B and F 0 ∈ F be the true primitives that generate the data. For any
β1 6= β0, β1 ∈ B, and for any F 1 ∈ F , there exists a set of market characteristics X with positive

10This estimator will not have a normal distribution. Therefore, I will avoid discussing how the choice of inequalities
relates to statistical efficiency.
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probability and two assignments A1 and A2 such that Pr
(
A1 | X; β0, F 0

)
> Pr

(
A2 | X; β0, F 0

)
while Pr

(
A1 | X; β1, F 1

)
< Pr

(
A2 | X; β1, F 1

)
for any X ∈ X .

3. Each vector of supplier characteristics i or assembler characteristics a in X has one or more
elements with continuous support.

4. X is independently and identically distributed across markets.

Assumption 3 assumes identification rather than proving it for a given functional form choice. The
paper by Fox (2009) proves the nonparametric identification of various features of match production
functions; the identification theorems can be used to determine what parametric functional forms can
be identified using equilibrium data on who matches with whom. Also, Fox (2007) provides an easy-
to-follow consistency proof of a single-agent maximum score estimator when the single agent makes a
multinomial choice and the utility of each choice j is the linear index x′jβ.

The following theorem states that the matching maximum score estimator is consistent. The
asymptotics are in the number of independent markets.

Theorem 1. As M → ∞, any β̂M ∈ B that maximizes the matching maximum score objective
function is a consistent estimator of β0 ∈ B, the parameter vector in the data generating process.

There is a simple proof in the appendix. The proof is a straightforward application of a general
consistency theorem for extremum estimators in Newey and McFadden (1994), which generalizes the
early work of Manski (1975, 1985) on maximum score.11 The insight here is not the consistency proof,
but the general idea that maximum score can be interpreted as a necessary-conditions approach for
inequalities, at least for matching games with transfers. In terms of data requirements and compu-
tation, two practical aspects of the estimator are that Pr (A | X; β, F ) does not have to be manually
computed for each guess of β and F and Pr (A | X) does not need to be nonparametrically estimated
in a first stage. The maximum score estimator is consistent in part because of a law of large numbers,
as by the law of iterated expectations over the random variables A and X,

plimM→∞
1
M

M∑
m=1

1 [Am = A] = EX {Pr (A | X)} ,

where 1 [Am = A] equals 1 if assignment A occurs in market m.12

5.4 Inference, estimators with faster rates of convergence and set inference

Kim and Pollard (1990) show that the binary choice maximum score estimator converges at the rate
of 3
√
M (instead of the more typical

√
M) and that its limiting distribution is too complex for use

11Like the work on single-agent choice by Manski, the matching maximum score estimator does not allow the distri-
bution of unobservables, F , to be estimated. Indeed, F is not identified under the weakest assumptions needed for the
identification of β, even in single-agent choice.

12The proof shows that the true parameter vector β0 maximizes the probability limit of the objective function. Such
an argument would not work if the objective function involved minimizing the number of incorrect predictions times a
penalty term (other than the current 1s and 0s) reflecting the difference between the production levels of the matches
in the data and some counterfactual matches, when evaluated at a hypothetical β. The rank order property suggests
maximizing the number of correct inequalities, not allowing a violation in one inequality in order to minimize the degree
of a violation in another inequality.
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in inference. Abrevaya and Huang (2005) show that the bootstrap is inconsistent while Delgado,
Rodríguez-Poo and Wolf (2001) show that another resampling procedure, subsampling, is consistent.
Subsampling was developed by Politis and Romano (1994). The book Politis, Romano and Wolf
(1999) provides a detailed overview of subsampling.

An alternative to subsampling is smoothing the indicator functions in the maximum score objective
function. For the binary choice maximum score estimator, Horowitz (1992) proves that a smoothed
estimator converges at a rate close to

√
M (the exact rate depends on the smoothing parameter and

smoothness assumptions about the model) and is asymptotically normal with a variance-covariance
matrix than can be estimated and used for inference. Further, Horowitz (2002) shows the bootstrap
is consistent for his smoothed maximum score estimator.

Jun, Pinkse and Wan (2009) present a new estimator for models such as maximum score. The
estimator is a Chernozhukov and Hong (2003) Laplace type estimator (LTE), although the nonstan-
dard asymptotics give the estimator somewhat different properties. Like smoothed maximum score,
the LTE can converge at a rate close to

√
M ; inference does not require a resampling procedure such

as subsampling.
In private conversations, Manski suggests using set inference procedures for maximum score, even

if the model is perhaps point identified. Point identification in maximum score is not equivalent to to
identification at infinity (Andrews and Schafgans, 1998). Rather, point identification involves finding
firm characteristics such that

fβ0 (i, di) + fβ0 (j, dj)− fβ0 (i, (di\ {a}) ∪ {b})− fβ0 (j, (dj\ {b}) ∪ {a}) ≈

fβ1 (i, di) + fβ1 (j, dj)− fβ1 (i, (di\ {a}) ∪ {b})− fβ1 (j, (dj\ {b}) ∪ {a})

for the true parameter vector β0 and some alternative β1 6= β0. As β0 is not known to the researcher,
typically a full support condition ensures that any needed values of (i, di, j, dj) will be in the support of
the data. A failure of this assumption results in set rather than point identification. Set identification
is robust to the failure of support conditions for point identification. In a sense, set inference makes
more use of the data. Bajari, Fox and Ryan (2008) explore set inference in maximum score, motivated
by an industrial organization demand application. The matching estimation software available on my
website conducts subsampling inference both for point- and set-identified maximum score (Santiago
and Fox, 2007).

6 Monte Carlo experiments

This section presents evidence that the maximum score estimator works well in finite samples and
with i.i.d. match-specific errors. The Monte Carlo study examines games of one-to-one, two-sided
matching. Section 2 provides background on this class of games and Fox (2009) argues that the rank
order property holds only approximately under i.i.d. match-specific errors. Fox presents an alternative
sufficient condition involving a social planner’s errors, but in the Monte Carlo study I restrict attention
to the i.i.d. match-specific errors case. This section reports a Monte Carlo study for an estimator
that is not formally consistent: the rank-order property does not hold.

18



Each agent is distinguished by two characteristics, for upstream firm i, i1 and i2, and for down-
stream firm a, a1 and a2. The total output from a match of i to a is

fβ1,β2 (a, i) + ε〈a,i〉 = β1a1i1 + β2a2i2 + ε〈a,i〉.

I impose the scale normalization β1 = ±1. The sign of β1 is superconsistently estimable, so I set it
to the true value of +1 throughout the study. For each side of the market and upstream firms as an
example, [

i1

i2

]
∼ N

([
10
10

]
,

[
1 1/2

1/2 1

])
.

The high means of 10 ensure that the characteristic values are usually positive. The nonzero covariance
suggests a multivariate estimator might give different estimates than a univariate estimator. I set
β2 = 1.5, so that the second observable characteristic is more important in sorting.

In the first set of experiments, the match-specific ε〈a,i〉’s are i.i.d. with a normal distribution with
a standard deviation of either 1 or 5. In the second set of experiments, the match-specific ε〈a,i〉’s are
i.i.d. with one of two mixed normal distributions, each with two components. The first mixed normal
distribution is 0.35 ·N

(
−5, 22

)
+ 0.65 ·N

(
2, 22

)
, which has a standard deviation of 1.43. The second

distribution is 0.35 ·N
(
−5, 22

)
+ 0.65 ·N

(
2, 52

)
, which has a standard deviation of 3.33.

I sample match specific errors and solve for the optimal assignment using a linear programming
problem described in Roth and Sotomayor (1990). The linear programming formulation ensures that
all consummated matches provide non-negative surplus. Few of the agents are unmatched in the fake
data, as the means of both characteristics are high.

While not shown, I have generated scatterplots of the characteristics for matched pairs. Consider
fake data with 30 upstream and 30 downstream firms and an error standard deviation of 1. Because
β2 = 1.5 > β1 = 1, typically the matched firms will appear more assortatively matched on char-
acteristic 2 than 1. With an error standard deviation of 5, positive assortative matching on either
characteristic will be hard to visually detect in the fake data.13

Table 1 reports estimates of the bias and root mean-squared error (RMSE) of the matching max-
imum score estimates under various specifications. Consider the upper-left panel: normal errors with
a standard deviation of 1. The bias and RMSE are high for 3 downstream and 3 upstream firms (6
total) for each market and 100 markets. The bias and RMSE are larger for 10 firms on each side of
the market and only 10 markets. However, both the bias and RMSE decrease when more firms are
added to each market: the third row reports 30 firms on each side and 10 markets. The bias and
RMSE decrease further with 60 firms on each side and 10 markets. The fifth row then shows that
increasing the number of markets to 40 further reduces the bias and RMSE.

Another question is how well the estimator works in a finite sample with data on only one fairly
large matching market. The seventh row of the upper-left panel uses 100 firms on each side of the
market, but only one market. The bias and RMSE then decline in the eighth row as the number of

13For each replication, the Monte Carlo study reports the maximum provided by the optimization routine, which
is a consistent estimator under the conditions in the Monte Carlo experiment. If the maximum reported by the
optimization package tends to always be near the lower bound of the set of finite-sample maxima, it could create an
apparent downward, finite-sample bias. In practice, the range of global maxima is small.
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firms on each side increases to 200. Fox and Bajari (2009) investigate the asymptotic properties of
the estimator using data on only one large matching market.

Qualitatively similar changes in the bias and RMSE occur for each of the other three panels:
normal errors with a larger standard deviation (no visual sorting pattern in the data) and two forms
of the mixed normal distribution. Using a bimodal, mixed normal distribution suggests that the
estimator fulfills its semiparametric claims: it is not so sensitive to the distribution of errors in the
data generating process. In these experiments, the estimator is not very biased when there are i.i.d.
match-specific errors. This supports the use of the maximum score estimator even when it may be
formally misspecified, as when there are i.i.d. match-specific errors.14

7 Empirical application to automotive suppliers

I now present an empirical application about the matching of suppliers to assemblers in the automobile
industry. Automobile assemblers are well-known, large manufacturers, such as BMW, Ford or Honda.
Automotive suppliers are less well-known to the public, and range from large companies such as
Bosch to smaller firms that specialize in one type of car part. A car is one of the most complicated
manufacturing goods sold to individual consumers. Making a car be both high quality and inexpensive
is a technical challenge. Developing the supply chain is an important part of that challenge. More
so than in many other manufacturing industries, suppliers in the automobile industry receive a large
amount of coverage in the industry press because of their economic importance.

A matching opportunity in the automotive industry is an individual car part that is needed for
a car. Let La be the set of parts assembler a ∈ D needs suppliers for. A particular part l ∈ La in
the data is attached to a supplier, i ∈ U . Therefore a match in this industry is a triple 〈a, i, l〉. The
same supplier can supply more than one part to the same assembler: 〈a, i, l〉 and 〈a, i, h〉 represent
two different matches (car parts) between assembler a and supplier i. This is a two-sided, many-to-
many matching game between assemblers and suppliers, with the added wrinkle that a supplier can
be matched to the same assembler multiple times.15

The data group car parts into component categories, and I treat each component category as a
statistically independent matching market.16 In my data, there are 593 distinct component categories,
such as “Pedal Assembly” and “Coolant/Water Hoses.” I assume any nonlinearities between multiple
matches involving the same supplier occur only within component categories; there are no spillovers
across the different matching markets. A triplet 〈a, i, l〉 in the data then could be the front pads of
a Fiat 500 (a car) supplied by Federal-Mogul. Front pads are in the component category (matching
market) disk brakes.

The automotive-supplier empirical example is a good showcase for the strengths of the matching
estimator. The matching markets modeled here contain many more agents than the markets modeled

14Note that the misspecification is analogous to estimating a logit when the true model is probit much more than not
correcting for selection bias or omitted variable bias.

15Alternatively, this is just a standard two-sided, many-to-many matching game where the car parts are one side of
the market and the assembler of each car part is a part-specific characteristic.

16The same firm may appear in multiple component categories, and so a researcher might want to model spillovers
and hence statistical dependence in the outcomes across component categories. Pooling all component categories into
one matching market would require asymptotics in the number of agents in a single matching market, which is discussed
in Fox and Bajari (2009) but not here.
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in some other papers on estimating matching games, which are discussed in Section 8. The compu-
tational simplicity of maximum score, or some other approach that avoids repeated computations of
model outcomes, is needed here. Other than my related use of the estimator in Fox and Bajari (2009),
this is the first empirical application to a many-to-many matching market where the payoffs to a set
of matches are not additively separable across the individual matches. I focus on specialization in the
portfolio of matches for a given supplier. Finally, matched firms exchange money, but the prices of
the car parts are not in publicly available data. The matching estimator does not require data on the
transfers, even though they are present in the economic model being estimated.

7.1 Where is specialization the most important?

I focus on upstream firms or suppliers. This section examines to what extent suppliers benefit from spe-
cialization. My production function specification says suppliers may specialize in four areas: parts (in
the same component category) for an individual car, parts for cars from a particular brand (Chevrolet,
Audi), parts for cars from a particular parent company or assembler (General Motors, Volkswagen) and
parts for cars for brands with headquarters on a particular continent. Given my data, I group brands
into three continents: Asia (Japan and Korea), Europe, and North America.17 The management liter-
ature has suggested that supplier specialization may be a key driver of assembler performance (Dyer,
1996, 1997).18 Here I focus on how specialization can affect the production from a set of car-part
relationships centered around a single supplier.19

In a slight extension of the notation from the earlier part of the paper, let d be a collection of car
parts (a, l), where a is the assembler and l is the car part, in market (component category) m. The
production function for upstream firm i is

fβ (i, d) = βCont.x
Continent (d) + βPGx

ParentGroup (d) + βBrandx
Brand (d) + βCarx

Car (d) . (10)

The parameters βCont., βPG, βBrand and βCar are estimable parameters. The latter three are real
numbers; βCont. = ±1, as qualitative data like matches cannot identify the scale of production. The
match-specific characteristic xParentGroup (d) is the Herfindahl-Hirschman Index (HHI) of specialization
at the parent group for that supplier. For example, if the supplier produced car parts for only the
three American parent groups, the HHI for parent groups would be

xParentGroup (d) =
(

# Chrysler parts in d
# total parts in d

)2

+
(

# Ford parts in d
# total parts in d

)2

+
(

# GM parts in d
# total parts in d

)2

.

17As stated, grouping at the continent-of-headquarters level occurs by the brand and not the parent company. So Opel
is grouped into the European continent even though it has been a subsidiary of General Motors since the 1930s. Some
brands have headquarters in one continent but produce cars in other continents as well. The continent-specialization
measure focuses on the continent where the brand has its headquarters.

18Novak and Wernerfelt (2007) study co-production of parts by the same supplier for the same car model. They use
data on only eight cars and do not discuss the relative specialization at higher levels of organization, such as brand,
parent group and headquarters continent.

19A few suppliers are owned by assemblers. I ignore this vertical-integration decision in my analysis, in part because
I lack data on supplier ownership and in part because vertical integration is just an extreme version of specialization,
the focus of my investigation. If a supplier sends car parts to only one assembler, that data are recorded and used
as endogenous matching outcomes. Vertical integration in automobile manufacturing has been studied previously
(Monteverde and Teece, 1982; Novak and Eppinger, 2001; Novak and Stern, 2008, 2009).
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More generally,

xParentGroup (d) =
∑

a∈DPG

(∣∣LPG
a ∩ d

∣∣
|d|

)2

,

where |d| is the number of parts in d, DPG is the set of parent groups, LPG
a is the set of car parts

for parent group a, and
∣∣LPG
a ∩ d

∣∣ is the number of car parts a sources from i, for this component
category. This HHI measure will be computed for both the matches seen in the data and for the
counterfactual matches in local production maximization inequalities.

The other three characteristics are similar HHI measures. By construction, two parts for the same
car also have the same brand, parent group and continent. Two car parts for cars from the same
brand are automatically in the same parent group and the brand only has one headquarters, so the
parts are from a brand with a headquarters in the same continent as well. Two cars from the same
parent group are not necessarily from the same continent, as the Ford-owned brand Mercury is from
North America while the Ford-owned brand Volvo is from Europe.

It should be clear that the four match-specific characteristics in (10) are highly correlated. Just
as univariate linear least squares applied to each covariate separately produces different slope coeffi-
cients than multivariate linear least squares when the covariates are correlated, a univariate matching
theoretic analysis (such as Becker (1973)) on each characteristic separately will be inadequate here.
A univariate analysis of say βPGx

ParentGroup (d) would just amount to saying that βPG > 0 when each
supplier does more business with certain parent groups than others. In principle, even this conclusion
about the sign of βPG could be wrong if the correlation with the other three characteristics is not
considered in estimation. What is even more interesting in this empirical application is to measure
the relative importance of each of the four types of specialization: at which level do the returns to
specialization occur? This requires formal statistical analysis to estimate βCont., βPG, βBrand and
βCar.

The data come from SupplierBusiness, an analyst firm. There are 1252 suppliers, 14 parent
companies, 52 car brands, 392 car models, and 52,492 car parts divided into 593 distinct matching
markets, which again are combinations of component categories and continents of assembly of the car.
While the data cover different model years, for simplicity I ignore the time dimension and treat each
market as clearing simultaneously.20 The data also lack complete coverage of all car models. The
coverage is best in Europe followed by North America; Asia is the worst. I disregard cars manufactured
in Asia during estimation, although Asian brands assembled in Europe and and North America are
a major focus below. Again, cars assembled in Europe and North America are treated as separate
matching markets, although that could be weakened if a particular economic question required it.21

I use the maximum score estimator, (9), to compute point estimates, and subsampling to pro-
20Car models are refreshed around once every five years. A dynamic matching model would be a different paper.
21I do not have any data on the suppliers, other than their portfolio of car parts. Geographic location of a supplier’s

plant would likely be a good predictor of which assembler and assembler plants the supplier provides parts for. However,
geographic location is to a large degree an endogenous matching outcome. Supplier plants are often built to service
particular assembly plants. With just-in-time production at many assembly sites, supplier factories are built short
distances away so parts can be produced and shipped to the assembly site within hours, in many cases. The production
function returns to specialization from a supplier’s viewpoint thus encapsulate the cost savings from needing to build
only one supplier factory for a particular assembler factory.

22



duce confidence intervals. I use local-production-maximization inequalities with the left and right
side matches being of the form {〈a, i, l〉 , 〈b, j, h〉} and {〈b, i, l〉 , 〈a, j, h〉}. I include two suppliers per
inequality, and they exchange one car part each.22 These exchanges produce more than enough
inequalities for parametric estimation. For matching markets with large numbers of car parts, this
scheme’s combinatorics will produce a computationally intractable number of inequalities. I randomly
sample 2000 inequalities for the large matching markets. All theoretically valid inequalities with two
different suppliers are sampled with an equal probability, which satisfies Assumption 2.

Table 2 presents point estimates and subsampled confidence intervals for the four HHI special-
ization measures.23 We see that all four estimates are positive, meaning as expected specialization
on these dimensions increases match production. Sample statistics for the four measures (taken by
weighting each supplier, rather than each car part, once) are also listed in order to help explore the
economic magnitudes of the point estimates. The production function parameters show that a given
level of specialization at the parent-group level is 5.7 times more important in production than the
same level of specialization at the continent-of-brand-headquarters level. Most specialization benefits
occur within firm boundaries rather than across them. At the same time, the standard deviation of
parent-group-specialization HHI, from each supplier’s viewpoint, is 0.303, meaning the variation in
parent-group specialization across suppliers is high. A naive researcher might be inclined to inter-
pret this dispersion as evidence parent-group specialization is unimportant. This would be wrong:
the maximum score estimator accounts for the fact that more available matching opportunities occur
across firm boundaries rather than within them. An estimate of a structural parameter such as the
coefficient on parent group tells us the importance of parent group in the production from a set of
supplier relationships.

Table 2 also shows that specialization at the brand and model levels is even more important than
specialization at the parent-group level, although the brand and parent-group confidence intervals sub-
stantially overlap. The high point estimate of 91.2 for model specialization is, qualitatively, logical:
car models of even the same brand may be built in separate plants and some benefits from special-

22The local production maximization inequalities used in estimation keep the number of car parts produced by each
supplier the same. With strong returns to specialization, it may be more efficient to have fewer but individually larger
suppliers. The optimality of supplier size is not imposed as part of the estimator. Not imposing the optimality of
supplier size might be an advantage, as other concerns such as capacity constraints and antitrust rules could limit
supplier size.

23I estimate βCont. by optimizing the maximum score objective function over the other parameters, first fixing
βCont. = +1 and then fixing βCont. = −1. I then take the set of estimates corresponding to the maximum of the two
objective function values as the final set of estimates. The estimate of a parameter that can take only two values is
superconsistent, so I do not report a confidence interval. The point estimate was always βCont. = +1 (specialization raises
production) in initial specifications with smaller numbers of inequalities. In later specifications with more inequalities,
I only fix βCont. = +1 in order to reduce the computational time by half.
I use the numerical optimization routine differential evolution, in Mathematica. For differential evolution, I use

a population of 200 points and a scaling factor of 0.5. The numerical optimization is run five times with different
initial populations of 200 points. I take the point estimates corresponding to the maximum reported objective function
value over the five runs. For inference, I use subsample sizes equal to 1/4 of the matching markets. Unfortunately,
the literature on subsampling has not produced data dependent guidelines for choosing the subsample size. I use 100
replications (fake artificial datasets) in subsampling. Following the asymptotic theory, I sample from the 593 distinct
matching markets (component categories and continents of final assembly).

To give readers an idea about computational time, constructing the inequalities and producing the estimates in
Table 2 took 13.6 hours on a single core of a late 2007 vintage desktop computer. The five estimation runs took 2.1
of those hours and the 100 subsampling replications took 8.2 hours. The remainder of the time was spent in data
processing. Computational time is approximately linear in the number of inequalities. Using at most 200 inequalities
per market, instead of 2000, reduces the total computational time to 1.0 hours, roughly corresponding to a speed level
of 2000/200 = 10 times compared to the previous level of 13.6 hours.
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ization may occur from saving on the need to have multiple supplier plants for each model. Also, the
technological compatibility of car parts occurs mainly at the model level. Notice how the standard
deviation of the HHI-specialization measure is about the same (around 0.3) for the parent-group,
brand and model measures, and how the mean HHI declines from parent group to brand to model.
Again, naive researchers might use the means to conclude that specialization at the model level is
less important or use the standard deviations to conclude that specialization at all three levels are
equally important. The structural estimates of the match production function give statistically con-
sistent estimates of the relative importance of the types of specialization in the production functions
for supplier relationships.24

7.2 Do suppliers to Asian assemblers have an edge among non-Asian as-
semblers?

The magazine Consumer Reports and other sources routinely record that brands with headquarters
in Asia (Japan, Korea) have higher quality automobiles than brands with headquarters in Europe
or North America.25 Toyota is often rated one of the highest quality brands. The parts supplied to
Toyota must be of high quality in order for Toyota to produce quality cars. Liker and Wu (2000)
document that suppliers to Japanese-owned brands in the US produce fewer parts requiring reworking
or scrapping, for example. Because of this emphasis on quality, the suppliers to Toyota undergo a
rigorous screening and training program, the Supplier Development Program, before producing a large
volume of car parts for Toyota (Langfield-Smith and Greenwood, 1998). Indeed, there is a hierarchy
of suppliers, with more trusted Toyota suppliers being allowed to supply more car parts (Kamath and
Liker, 1994; Liker and Wu, 2000).

It is possible that being able to supply a higher-quality assembler such as Toyota coincides with
a competitive edge for the supplier, allowing them to win business from non-Asian assemblers as
well. There are two plausible reasons that a competitive edge might exist. First, Toyota’s Supplier
Development Program and similar programs at other manufacturers might upgrade the quality of the
participating suppliers. This causal quality upgrade from supplying Toyota would allow the suppliers
to better compete for business from other assemblers as well, because all assemblers value quality
to some degree. Alternatively, there could be a selection story: only a priori high-quality suppliers
are allowed to supply high-quality assemblers. In the data, supplying Toyota is just a proxy for
being a high-quality firm. I cannot use cross-sectional matching data to answer whether supplying
high-quality assemblers causally upgrades the quality of suppliers or whether the Asian assemblers
just select high-quality suppliers. Rather, I seek to learn if there is any competitive edge at all: are
suppliers to Asian assemblers more likely to sell parts to non-Asian assemblers?26

24There are 532,939 inequalities in the 593 distinct matching markets. Of those, 400,891 or 75.3% are satisfied at
the reported point estimates. The fraction of satisfied inequalities is a measure of statistical fit. In the maximum score
objective function, an inequality is satisfied if the left side exceeds the right side by 0.0001. This small perturbation to
the sum of productions on the right side ensures that inequalities such as 0 > 0 will not be counted as being satisfied
because of some numerical-approximation error for zero, resulting in, say, 2.0× 10−15 > 1.0× 10−15.

25Many brands with headquarters in Asia manufacture cars in Europe and North America.
26In the non-causal interpretation, one should not use the production function to explore counterfactuals where

xSupplierToAsian (d) changes because the equilibrium set of downstream partners in d changes. In this interpretation,
xSupplierToAsian (d) is just a marker for supplier quality that cannot be changed. One parallel for the non-causal
interpretation is the best-linear-predictor interpretation for linear regression. The best linear predictor summarizes

24



To my knowledge, no previous empirical paper has directly investigated whether matching with
one type of partner increases (even if non-causally) the chance of matching with a different type of
partner. To investigate the presence of this competitive edge, I generalize the production function for
supplier i in (10) to be

fβ (i, d) = βCont.x
Continent (d) + βPGx

ParentGroup (d) + βBrandx
Brand (d) + βCarx

Car (d) +

βAsianCont.x
Continent (d)xSupplierToAsian (dmi ) , (11)

where dmi is the set of downstream firms matched to supplier i in market m. The new term

xContinent (d)xSupplierToAsian (dmi )

is an interaction between the specialization HHI at the continent level and a measure of supplying
Asian assemblers, which I describe below. The total benefit of specialization at the continent level is(
βCont. + βAsianCont.x

SupplierToAsian (dmi )
)
·xContinent (d). If the coefficient βAsianCont. on the interaction

term is negative, this means that suppliers selling more car parts to brands with headquarters in Asia
tend to benefit less from specialization at the continent level. The potential estimate βAsianCont. < 0
is compatible with the suppliers to Asian assemblers having a competitive edge and being able to win
business from non-Asian suppliers.

I wish to use measures for xSupplierToAsian (dmi ) that do not impose any mechanical relation-
ship between xSupplierToAsian (dmi ) and the previous HHI-specialization measures. In other words,
xSupplierToAsian (dmi ) should not be a measure of specialization from the supplier’s viewpoint. I use two
different Asian-supplier measures. The first is just an indicator variable equal to 1 when dmi contains
at least one match with a Asian brand. This represents the supplier being able to meet the quality
thresholds of Asian assemblers. The second measure is a measure of the market share of the supplier in
the “market” (not a formal matching market) for car parts for Asian assemblers. The second measure
is

xSupplierToAsian,2 (dmi ) =
# Asian assembler parts in dmi and marketm

total # Asian assembler parts all suppliers inm
,

where again dmi is a set of car parts for supplier i in a component-category market m with equilibrium
assignment Am. xSupplierToAsian,2 (dmi ) is not a measure of whether a supplier is specialized; it is a mea-
sure of the fraction of the available Asian contracts the supplier has. I treat each xSupplierToAsian (dmi )
measure as an unchanging characteristic of supplier i in market m in a local production maximiza-
tion inequality. I do not recompute the measure for the counterfactual exchange of partners on the
right side of the inequalities, like I do for the HHI measures. Section 7.3 explores the alternative
specification, where xSupplierToAsian (d) is recomputed with counterfactual matches d.

Table 3 produces estimates of a supplier’s competitive edge, βAsianCont.. There are two sets of
estimates corresponding to the two measures of being a supplier to Asian assemblers. Look at the
first set of estimates, which uses the indicator variable equal to 1 if a supplier has any Asian contracts.
The first four rows represent the point estimates of the HHI specialization measures. Compared to

factual patterns in the data, just like the non-causal interpretation of production functions summarizes facts about
sorting patterns.
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Table 2, the lower point estimates for the non-normalized specialization parameters coincide with the
normalized parameter, here βCont., being relatively more important.27 For suppliers that do not supply
Asian assemblers, the return to specialization at the continental level is relatively more important than
in the model without the Asian interaction. The coefficient on the interaction with the Asian dummy
(supplying any car part to a brand with an Asian headquarters) is -1.09. For firms supplying at least
one car part to an Asian assembler, the effect of specialization at the continental level is +1− 1.09, or
in economic magnitude, approximately 0. This is a large effect: suppliers that can meet the quality
standards of Asian assemblers can equally compete for business from assemblers with headquarters in
Asia, Europe and North America.

Table 3 lists a separate set of point estimates for the market-share measure of being an Asian
supplier. The point estimate for βAsianCont. is -5.30. In the data, the mean across suppliers of
xSupplierToAsian,2 (dmi ) is 0.111 and its standard deviation is 0.204. This implies that a one-standard-
deviation increase in the Asian market share lowers the gains from continental specialization by
−5.30 · 0.204 = −1.08, which compares closely to the coefficient of -1.09 in the specification with the
Asian dummy. The interpretation is similar to the specification with the dummy, except for the fact
that the point estimates on the other three HHI specialization measures have about doubled. This
means that the relative importance of specialization at the continental level is lower for all firms than
in the specification with the dummy.

Combined, the point estimates in Table 3 are consistent with a story where suppliers to brands
with headquarters in Asia have a competitive edge. It may be that matching with an Asian assembler
gives a supplier a quality upgrade and thus the power to win more business from other assemblers. Or
it may be the case that the Asian assemblers select the suppliers with a priori high quality. Regardless,
this example shows the usefulness of the matching estimator in determining the relative importance
of the characteristics that affect the production from a match. A lot can be learned about structural
parameters just by looking at the sorting patterns of supplier-assembler relationships as an equilibrium
outcome to a matching game.

7.3 Recomputing the Asian indicator in inequalities

Previously, I did not recompute the measure of being a supplier to Asian assemblers on the right
side of the inequalities. This section explores specifications that do recompute the Asian supplier
measure for counterfactual sets of matches. I also explore why the point estimates differ between the
specifications where the measure of being a supplier to Asian assemblers is not and is recomputed.

In the previous production function specification, xSupplierToAsian (dmi ) is a function of only the
actual assignment, Am and hence dmi , and is not recomputed when d changes on the right side of the

27With the interaction term included in (11), the normalized specialization measure is more precisely the
HHI for continent specialization for those suppliers with zero parts supplied to assemblers with headquarters in
Asia, xSupplierToAsian

`
dmi
´

= 0. Suppliers with no Asian contracts have a 0 value for the interaction term,
xContinent (d)xSupplierToAsian

`
dmi
´
. 48% of supplier / matching market combinations do not supply any assembler

brand with its headquarters in Asia.
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inequality. Table 4 reports estimates of the matching model using the production function

fβ (i, d) = βCont.x
Continent (d) + βPGx

ParentGroup (d) + βBrandx
Brand (d) + βCarx

Car (d) +

βAsianCont.x
Continent (d)xSupplierToAsian (d) ,

where now xSupplierToAsian (d) is recomputed each time d ⊆ D changes. When I do allow the Asian
supplier measure to be recomputed, the coefficient βAsianCont. is zero in terms of its economic magni-
tude, for both the dummy and market share measures of being an Asian supplier. In Table 3, the point
estimates for the Asian supplier measures were -1.09 for the indicator and -5.30 for the continuous
market share measure. Compared to these, the point estimates of -0.0519 and -0.0356 in Table 4 are
economically small and have confidence regions that lead to the rejection of null hypotheses of large
in absolute value, negative coefficients for βAsianCont..28

I spent some time investigating why the point estimates for βAsianCont. varied across so much
across Tables 3 and 4. Here I focus on the specification with the indicator variable measure of being a
supplier to an Asian assembler. A local production maximization inequality used in estimation looks
like

fβ (i, dmi ) + fβ
(
j, dmj

)
> fβ (i, (dmi \ {a}) ∪ {b}) + fβ

(
j,
(
dmj \ {b}

)
∪ {a}

)
,

for the matches of car parts and suppliers 〈a, i〉 and 〈b, j〉. On the left side are actual matches from
the data; the counterfactual matches are on the right. The indicator variable xSupplierToAsian (d) is
either 0 or 1 for each of the four matches, so the values of xSupplierToAsian (d) for an inequality can
be written as, for example, {1, 1} → {1, 0}.29 This notation means that, in the data, both upstream
firms i and j supply at least one Asian assembler each. After the exchange of partners, one of i
and j does not serve an Asian assembler any more. Incidentally, this can only occur if one of i and j
produces only one Asian car part in component category m, in the data. By contrast, the specification
without recomputing the Asian dummy would be {1, 1} → {1, 1}, as a firm’s Asian supplier status is
a fixed firm characteristic. The two main types of possibilities for an inequality with some change in
xSupplierToAsian (d) are {1, 1} → {1, 0} and {1, 0} → {1, 1}. The case {1, 0} → {1, 1} occurs when a
supplier with two or more Asian-assembler car parts exchanges one of those car parts with a supplier
that supplies, in the data, no car parts to Asian assemblers.

Through some exploratory empirical work, I found that exchanges of the form {1, 1} → {1, 0}
were driving the differences in the point estimates.30 To confirm this, I created an artificial set of
inequalities equal to the inequalities used in Table 4, except that 10,358 inequalities (out of the 532,939
total inequalities) of the form {1, 1} → {1, 0} were replaced by the corresponding inequalities from
Table 3, where the Asian indicator is not recomputed.31 The estimates are in Table 5. We can see

28The confidence regions for the coefficient on the HHI specialization measure at the model level for the Asian dummy
specification do not include the point estimate for βCar. This can occur with subsampling, the method used for inference
here.

29The notation uses sets instead of tuples because the order of the production functions is not recorded.
30I changed each of several types of inequalities from their Table 4 forms back to their Table 3 forms, and evaluated

the objective function at the main text Table 3 estimates. I then looked at the number of satisfied inequalities (a
measure of statistical fit), and found that the {1, 1} → {1, 0} inequalities were the most instrumental in increasing the
statistical fit.

31My goal was to find the minimum set of inequalities that could change and restore the point estimates of Table
3. There were 10,603 inequalities of the form {1, 1} → {1, 0} in the dataset behind Table 4. I modified only 10,358
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that the point estimates for the HHI specialization measures are in between those in Table 3 and Table
4. Further, the point estimate for βAsianCont. on the interaction xContinent (Cu)xSupplierToAsian (Cu),
the key variable being altered, is -1.03, similar to the value of -1.09 in Table 3.

The exercise in Table 5 confirms the proposition that inequalities where two suppliers exchange car
parts and one supplier ceases to be an Asian supplier drive the drop in the estimate of βAsianCont. from
-1.09 in Table 3 to -0.000641 in Table 4. I will now take a speculative stab at offering an economic
story to explain the point estimates. When xSupplierToAsian (dmi ) is not recomputed for counterfactual
matches, the inequalities answer the questions discussed in Section 7.2: do suppliers to Asian brands
have some competitive edge with non-Asian assemblers? When xSupplierToAsian (d) is recomputed
for counterfactual d’s, in addition the inequalities ask why more suppliers are not supplying Asian
assemblers if there is some competitive advantage from doing so? The tendency would be for the terms
{1, 1} in the key inequalities {1, 1} → {1, 0} to be given a positive weight βAsianCont., which counteracts
the -1.09 coefficient for βAsianCont. found in the Table 3. In Table 4, the model deals with these two
opposing forces by setting the coefficient on βAsianCont. to be near zero. The inequalities in Table 3
are easier to understand and interpret because the estimate for the parameter βAsianCont. reflects a
fixed firm-specific characteristic xSupplierToAsian (dmi ) that represents only one economic phenomenon,
the competitive edge of suppliers to Asian brands.32

8 Literature comparisons

There are other, more parametric, matching estimators for both matching games where money can
be exchanged (like in this paper) and matching games where money is not used. I review these two
literatures separately.

8.1 Other estimators for matching games with transfers

Dagsvik (2000), Choo and Siow (2006) and Weiss (2007) introduce logit matching models one-to-one
(marriage), two-sided matching games with transferable utility.33 These estimators are computation-
ally simple because they exploit the mathematics behind the aggregate-data, multinomial-choice logit
model (McFadden, 1973; Berry, 1994). However, these estimators have not been expanded to the case

inequalities. When evaluated at the point estimates from Table 3 (except for βAsianCont.), 5992 of the 10,358 inequalities
in question switch from providing a lower bound for βAsianCont. (as in βAsianCont. > z) to providing an upper bound
for βAsianCont. (as in βAsianCont. < z). The remaining 4366 of the inequalities keep a lower bound for βAsianCont.,
even after the switch. The value of the lower bound z does change. I did not modify the 245 other inequalities of the
form {1, 1} → {1, 0} where some other sort of change in whether an inequality provided a lower or upper bound for
βAsianCont. occurred, when the inequalities are evaluated at the point estimates from Table 3.

32More mechanically, when the interaction term is xContinent (d)xSupplierToAsian
`
dmi
´
, the only variation in this

term between the left and right sides of a local production maximization inequality comes from changes in the HHI
specialization measure, xContinent (d), from one car part being exchanged. For a company that supplies several car
parts in this matching market, xContinent (d) and hence the interaction change by a relatively small amount. When
xSupplierToAsian (d) is recomputed for counterfactual downstream firm partners d, then firms that supply only one or
two car parts to Asian assemblers have a relatively large change in xSupplierToAsian (d) and hence in the interaction
xContinent (d)xSupplierToAsian (d). It is unsurprising that the Table 3 specification with relatively small changes in the
interaction has a correspondingly large (in absolute value) estimate of βAsianCont. compared to the estimate for the
Table 4 specification with relatively large changes in the interaction.

33Dagsvik (2000) actually analyzes a more general model of matching in contract space; transferable utility is a special
case.
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of many-to-many matching.
There is a subtler distinction between my matching model and the logit-based matching models

that focuses on the timing of when equilibrium transfers t〈a,i〉 are computed, and what the timing
implies about the models’ abilities to give positive probability to any feasible assignment: Pr (A | X) >
0 for any feasible A. Focus on Choo and Siow (2006). In their paper, the data generating process is
not the same is in the current paper: for each value of unobservables, a physically feasible assignment
is not formed. Rather, men and women are divided into a finite number of classes. Each man has
error terms for women of a certain class, but not each woman individually. Likewise, each woman has
error terms for each male type. Then prices are set to equate the supply and demand of men and
women for each type of marriage. Therefore, this model is deterministic at the aggregate level: the
i.i.d. logit shocks average out because an infinite number of each type of man and each type of woman
are assumed to exist. In effect, each agent plays the equivalent of a mixed strategy from a Nash game,
where the randomness across matching partners is governed by the parametric logit distribution.

This type of model may be appropriate to apply to the US marriage market, where there are a large
number of agents and a coarse set of demographics to distinguish them. However, the model will not
be compatible with typical assignment data if applied to a dataset with a smaller number of men and
women. Say there are only two men, a and b, and two women, i and j, in the market. Prices are set
before the logit shocks are realized and after that the two men make unilateral decisions to marry the
two women. If Pr (〈a, i〉) is the probability a marries i at the equilibrium prices, Pr (〈a, i〉) ·Pr (〈b, i〉)
is the probability that both men marry woman i. A woman cannot marry two men in most countries,
so this prediction of the model will be counterfactual and the model will be rejected by the data.
By contrast, the data generation process in this paper has the error terms enter a social planner’s
(linear programming) problem that ensures, for every realization of the errors for all agents, that the
resulting assignment is physically feasible.34

8.2 Estimators for games without transfers

Recently, Boyd, Lankford, Loeb and Wyckoff (2003), Sørensen (2007), and Gordon and Knight (2009)
estimate Gale and Shapley (1962) matching games, which do not use transfers as part of the equilib-
rium concept.35 Whether a researcher should estimate a game with or without endogenous transfers
depends on the market in question. Games with endogenous transfers often give different equilibrium
predictions than games without transfers. Their empirical applications study many-to-many match-
ing, but all the papers rule out preferences over sets of partners; rather utilities are defined over only
singleton matches.36

34A related distinction between the two models lies in how prices are formed. In Choo and Siow (2006), prices are
only functions of the discrete type of one’s marriage partner. Prices are formed before the logit shocks are realized.
By contrast, in this paper a full matching game is solved for each realization of the error terms. In this model, the
distinction between error terms ε〈a,i〉 and the characteristics in X is only whether the exogenous variable in question is
recorded in the data or not. Equilibrium monetary transfers given by the model, even if not recorded in the data, will
be a function of the error terms ε〈a,i〉 for all potential matches 〈a, i〉.

35Hitsch, Hortaçsu and Ariely (2009) use data on both desired and rejected matches to estimate preferences without
using an equilibrium model. They then find that a calibrated model’s prediction fits observed matching behavior.
Echenique (2008) examines testable restrictions on the lattice of equilibrium assignments of the Gale and Shapley
(1962) model.

36A similar assumption for matching games with transfers would be that production functions are additively separable
across multiple matches: fβ (i, {a, b}) = fβ (i, {a}) + fβ (i, {b}). This would rule out the study of spectrum auctions in
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The main drawback of these approaches is computational. For a given value of parameters, these
approaches use simulation to evaluate a likelihood or moments-based objective function. In Boyd et
al. and Gordon and Knight, a nested equilibrium computation produces the model’s prediction for
the data for each draw of the error terms from some parametric distribution. Sørensen treats the
unobservables as nuisance parameters and samples them from a parametric likelihood that enforces
sufficient conditions for the data to be the equilibrium to a matching game.

Several simplifications must be imposed that the current paper weakens in the class of games
with transfers. First, a researcher must take a stand on all model components needed to compute an
equilibrium. For example, quotas, the number of matches a firm can make, are typically unobserved.
Boyd et al. and Sørensen assume that a firm can make only as many matches as are observed in the
data. By contrast, a necessary conditions approach does not force one to consider inequalities that
raise the number of matches, which preserves consistency without violating unobserved quotas.

The definition of a matching market may be unclear to the econometrician. Boyd et al. and
Sørensen limit the size of markets for computational reasons because an equilibrium to a matching
game must be calculated or enforced for every trial parameter vector and realization of the error
terms. Consistency is broken if the market is defined too narrowly. By contrast, the current paper
uses necessary conditions. A market can be defined conservatively for robustness without damaging
the validity of the necessary conditions. A researcher can use a constant number of inequalities from
each market, so there is no need to limit the size of a matching market for computational reasons.

Matching games without transfers have a lattice of multiple equilibrium assignments. Nested
solutions methods require auxiliary assumptions to resolve the multiplicity problem. Sørensen and
Gordon and Knight restrict preferences to generate a unique equilibrium. Boyd et al. impose an
auxiliary equilibrium selection rule. By contrast, Fox (2009) argues that the maximum score necessary-
conditions approach can be valid in the presence of multiple equilibrium assignments, under some
moderately strong assumptions about the equilibrium selection rule.37

9 Conclusions

This paper discusses the estimation of production functions in matching games first studied by Koop-
mans and Beckmann (1957), Shapley and Shubik (1972) and Becker (1973). These matching games
allow endogenous transfers that are additively separable in payoffs. Under a pairwise stable equi-
librium, production functions must satisfy inequalities that I call local production maximization: if
an exchange of one downstream firm per upstream firm produces a higher production level, than it
cannot be individually rational for some agent. For some simple matching games this condition is
related to social efficiency, but for general many-to-many matching games it is not.

I introduce a semiparametric estimator for matching games. The matching maximum score es-
timator has computational advantages that eliminate three aspects of a computational curse of di-
mensionality in the size of the market. First, the estimator avoids the need to nest an equilibrium
computation in the statistical objective function. Second, the maximum score estimator does not re-

Fox and Bajari (2009) and the automotive-supplier specialization empirical example in this paper.
37Further, games with transfers with an outcome in the core (say a marriage game) have unique equilibrium assign-

ments with probability 1, without resorting to preference restrictions or equilibrium selection rules.
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quire numerical integrals over match-specific error terms. Third, inequalities need to be included only
with some positive probability, which is important given that the number of necessary conditions from
pairwise stability increases rapidly with the number of agents in a matching market. Also, evaluating
the objective function involves only calculating match production levels and checking inequalities.
Numerical optimization can use global optimization routines.

There are also data advantages. The estimator uses data on only observed matches and agent
characteristics. It does not require the often unavailable data on endogenous transfers, quotas and
production levels. For example, the empirical application to automotive suppliers and assemblers is
typical in that the parties exchange transfers but those transfers are not shared with researchers. Also,
the estimator does not require any first-stage, nonparametric estimates of assignment probabilities as
a function of all exogenous characteristic data.

A Proofs

A.1 Theorem 1: Consistency

A.1.1 Constructive identification

By a law of large numbers and the law of iterated expectations, the probability limit of the maximum
score objective function is

H∞ (β) = EX

 ∑
A∈A(X)

∑
{〈a,i〉,〈b,j〉}∈N(A,X)

Pr (A | X) · I ({〈a, i〉 , 〈b, j〉} | X) ·

1 [fβ (i, di) + fβ (j, dj) > fβ (i, (di\ {a}) ∪ {b}) + fβ (j, (dj\ {b}) ∪ {a})]} ,

where A (X) is the set of feasible assignments given X and Pr (A | X) = Pr
(
A | X; β0, F 0

)
, where β0

is the true parameter vector and F 0 is the true distribution of the unobservable terms. The sets of
downstream matches di and dj are functions of the assignment A, although the notation is suppressed.

For each pair of an assignment A1 ∈ A (X) and a {〈a, i〉 , 〈b, j〉} ∈ N (A1, X) in the integrand above,
there is an assignment A2 ∈ A (X) that is A2 = (A1\ {〈a, i〉 , 〈b, j〉})∪{〈a, j〉 , 〈b, i〉}. An inequality for
A1 and {〈a, i〉 , 〈b, j〉} is mutually exclusive with a paired inequality for A2 and {〈a, j〉 , 〈b, i〉}. As ties
occur with probability 0, with probability 1 either the indicator with A1 or the indicator with A2 will
be 1, and the other 0. By Assumption 2, I ({〈a, i〉 , 〈b, j〉} | X) = I ({〈a, j〉 , 〈b, i〉} | X). The ranking
of the weights on the indicators reduces to comparing Pr

(
A1 | X; β0, F 0

)
and Pr

(
A2 | X; β0, F 0

)
.

By the rank order property, all parameters in the identified set make the inequality (of the pair) with
the highest weights satisfied and therefore globally maximize H∞ (β).

Let β1 ∈ B be some parameter vector where β1 6= β0. By Assumption 3, there exists a set
X of X with positive probability and two assignments A1 and A2 such that Pr

(
A1 | X; β0, F 0

)
>

Pr
(
A2 | X; β0, F 0

)
while Pr

(
A1 | X; β1, F 1

)
< Pr

(
A2 | X; β1, F 1

)
for any X ∈ X , for any F 1 ∈ S.

Considering all the X ∈ X , H∞
(
β1
)
< H∞

(
β0
)
because β1 causes inequalities with the lower of

Pr
(
A1 | X; β0, F 0

)
and Pr

(
A2 | X; β0, F 0

)
to enter the objective function.

31



A.1.2 Continuity of the limiting objective function and uniform convergence

Lemma 2.4 from Newey and McFadden (1994) can be used to prove continuity of H∞ (β) as well
as uniform-in-probability convergence of HM (β) to H∞ (β). Remember that the asymptotics are in
the number of markets. The conditions of Lemma 2.4 are that the data (across markets) are i.i.d.,
which can hold even if we view the number of upstream and downstream firms as random; that the
parameter space B is compact (Assumption 3), that the terms for each market are continuous with
probability 1 in β; and that the terms for each market are bounded by a function whose mean is not
infinite. While the terms for each market are not continuous in β because of the indicator functions,
they are continuous with probability 1 by Assumption 3, as each firm’s characteristic vector in X has
some elements with continuous support. The value of the objective function for a given market is
bounded by the number of inequalities, which is finite.
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Table 1: Monte Carlo results, true value β2 = 1.5

Normal errors
# Upstr. & # Markets Errors Bias RMSE
# Downstr. std. dev.

3 100 1 0.154 0.896
10 10 1 0.431 2.61
30 10 1 0.026 0.406
60 10 1 0.016 0.264
60 40 1 0.013 0.154
100 1 1 0.074 0.551
200 1 1 0.058 0.355
3 100 5 0.484 3.32
10 10 5 0.602 2.80
30 10 5 0.185 0.852
60 10 5 0.054 0.442
60 40 5 0.011 0.056
100 1 5 0.231 1.05
200 1 5 0.128 0.398

Mixed normal errors, two components, asymmetric
# Upstr. & # Markets Errors Bias RMSE
# Downstr. std. dev.

3 100 1.48 0.216 1.13
10 10 1.48 0.254 1.11
30 10 1.48 0.099 0.454
60 10 1.48 0.028 0.281
60 40 1.48 0.010 0.160
100 1 1.48 0.084 0.600
200 1 1.48 0.022 0.381
3 100 3.33 0.426 2.77
10 10 3.33 0.336 1.56
30 10 3.33 0.072 0.600
60 10 3.33 0.058 0.382
60 40 3.33 0.030 0.199
100 1 3.33 0.129 0.721
200 1 3.33 0.056 0.444

The true parameter is β2 = 1.5. The population bias is E
h
β̂2 − 1.5

i
, and the population RMSE iss

E

»“
β̂2 − 1.5

”2
–
, where 1.5 is the value of β2 used to generate the fake data.

The model is estimated 500 or 1000 times for each simulation of bias and RMSE. A fake dataset consists of the listed
number of independent markets. New observable variables X and match-specific errors of the form ε〈a,i〉 are drawn for
each market and each replication. Each market is a one-to-one, two-sided matching game. The number of upstream
firms (or men) always equals the number of downstream firms (or women). The equilibrium assignment is calculated
using a linear programming problem, as discussed in Section 2.1.

The distribution of the fixed agent types is given in the text. On the left table, the errors ε〈a,i〉 have N
`
0, σ2

´
distributions, where σ is the standard deviation listed in the table. In the top half of the right table, the errors have the
mixed normal distribution 0.35 ·N

`
−5, 22

´
+0.65 ·N

`
2, 22

´
, which has the standard deviation listed in the table. This

is a bimodal density. In the bottom half of the right table, the error distribution is 0.35 ·N
`
−5, 22

´
+ 0.65 ·N

`
2, 52

´
.

Each agent has a vector of two types. The coefficient on the product of the first types is normalized to one. The
estimate of the sign of the coefficient is superconsistent and so I do not explore its finite sample properties.

Table 2: Different types of supplier specialization: production function parameter estimates
Production function estimates Sample statistics for HHI Measures

HHI Measure Point Estimate 95% CI Mean Standard Deviation
Continent +1 Superconsistent 0.799 0.192

Parent Group 5.71 (4.06, 8.06) 0.457 0.303
Brand 8.82 (0.611, 12.4) 0.341 0.311
Model 91.2 (73.8, 130) 0.256 0.312

# Inequalities 532,939
% Satisfied 75.3
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Table 3: Supplier competitive edge from supplying Asian assemblers
HHI Measure Estimate 95% CI Estimate 95% CI
Continent +1 Superconsistent +1 Superconsistent

Parent Group 2.06 (0.751, 2.76) 5.90 (5.64, 8.50)
Brand 5.08 (3.39, 7.51) 9.41 (6.86, 13.5)
Model 40.9 (10.6, 56.7) 101 (76.0, 147)

Continent * Asian Dummy -1.09 (-1.14, -0.956)
Continent * Asian % -5.30 (-6.67, -4.56)

# Inequalities 532,939 532,939
% Satisfied 0.760 0.758

Table 4: Supplier competitive edge from supplying Asian assemblers: Supplier to Asian assembler
measure recomputed for counterfactual matches

HHI Measure Estimate 95% CI Estimate 95% CI
Continent +1 Superconsistent +1 Superconsistent

Parent Group 6.69 (6.31, 9.89) 6.35 (5.59, 9.28)
Brand 8.59 (1.28, 12.6) 9.67 (5.66, 14.1)
Model 116 (128, 172) 95.0 (87.7, 139)

Continent * Asian Dummy -0.0519 (-0.0811, 0.552)
Continent * Asian % -0.0356 (-1.55, 0.0169)

# Inequalities 532,939 532,939
% Satisfied 0.753 0.753

Table 5: Artificial inequalities: Reconciling different point estimates between Tables 3 and 4
HHI Measure Estimate 95% CI
Continent +1 Superconsistent

Parent Group 4.55 (3.79, 6.54)
Brand 6.94 (5.14, 10.5)
Model 73.1 (78.1, 105)

Continent * Asian Dummy -1.03 (-1.05, -0.947)
Continent * Asian %

# Inequalities 532,939
% Satisfied 0.761
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