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Abstract

These notes examine the problem of how to extend envelope theorems to infinite-horizon

dynamic mechanism design settings, with an application to the design of "bandit auctions."



1 The environment

To facilitate the exposition, we follow the same notation as in Pavan, Segal, and Toikka (2009)

(hereafter PST. While the environment considered here features a single agent, the results easily

extend to settings with multiple agents under the additional assumptions of independence of types

across agents and quasilinearity in payoffs discussed in Section 4 in PST (see also the application

to the design of profit-maximizing-auctions for experience goods in the next section).

Set-up. Time is discrete and indexed by t = 1, 2, . . . , T with T ∈ N ∪ {+∞}. In each period t
there is a contractible decision yt ∈ Yt, whose outcome is observed by the agent. (In the application
considered in the next section we apply the model to a more general setup with multiple agents

where yt is the part of the decision taken in period t that is observed by the agent.) Each Yt is

assumed to be a measurable space with the sigma-algebra left implicit. The set of all possible

histories of feasible decisions is denoted by Y ⊂
∏T
τ=1 Yτ , with y denoting a generic element of Y.
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Likewise, the set of all feasible period-t histories of decisions is denoted by Y t ⊂
∏T
τ=1 Yτ .

Before the period-t decision is taken, the agent receives some private information θt ∈ Θt ⊂ R.
We implicitly endow the set Θt with the Borel sigma-algebra. We refer to θt as the agent’s current

type. The set of all possible type histories at period t is then denoted by Θt ≡
∏t
τ=1 Θτ . An element

θ of Θ ≡
∏T
τ=1 Θτ is referred to as the agent’s type. For any sequence θ and a fixed δ, we then let

‖θ‖δ ≡ sup
t
δt |θt| .

where δ ∈ R++ in case T <∞ while δ ∈ (0, 1) for T =∞.
The distribution of the current type θt may depend on the entire history of types and decisions

(θt−1, yt−1) ∈ Θt−1 × Y t−1. In particular, we assume that the distribution of θt is governed by a

history-dependent probability measure (“kernel”) Ft
(
·|θt−1, yt−1

)
on Θt such that Ft (A|·) : Θt−1×

Y t−1 → R is measurable for all measurable sets A ⊂ Θt.2 We denote the collection of kernels by

F ≡
〈
Ft : Θt−1 × Y t−1 → ∆(Θt)

〉T
t=1

,

where for any measurable set A, ∆(A) denotes the set of probability measures on A. We abuse

notation by using Ft(·|θt−1, yt−1) to also denote the cumulative distribution function (c.d.f.) cor-

responding to the measure Ft(θt−1, yt−1). Throughout, we assume that for all t, Θt = (θt, θt) ⊂ R
for some −∞ ≤ θt ≤ θt ≤ +∞.

Finally, let B(Θ) ≡ {θ ∈ Θ : ‖θ‖δ < +∞} the set of types whose norm is finite. We will assume

1By convention, all products of measurable spaces encountered in the text are endowed with the product sigma-
algebra.

2Throughout, we adopt the convention that for any set A, A0 ≡ {∅}.
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that, given the stochastic process that corresponds to the kernels F, for any mechanism and any

strategy of the agent in the mechanism, θ ∈ B(Θ) with probability one. With an abuse of notation,

we then simply let B(Θ) = Θ.

The agent is a von Neumann-Morgenstern decision maker whose preferences over lotteries over

Θ× Y are represented by the expectation of a (measurable) Bernoulli utility function

U : Θ× Y → R.

Although some form of time separability of U is typically assumed in applications, this is not needed

for our results. What is essential is only that the agent’s preferences be time consistent, which is

captured by the assumption that the agent is an expected-utility maximizer, with a Bermoulli

utility function that is constant over time.

An often encountered special case in applications is one where private information evolves in a

Markovian fashion, and where the agent’s payoff is Markovian in the following sense.

Definition 1 The environment is Markov if

M1 for all t, and all (θt−1, yt−1) ∈ Θt−1 × Y t−1, Ft(·|θt−1, yt−1) does not depend on θt−2, and

M2 there exists functions
〈
At : Θt × Y t → R++

〉T−1

t=1
and

〈
Bt : Θt × Y t → R

〉T
t=1

such that for all

(θ, y) ∈ Θ× Y ,

U (θ, y) =
T∑
t=1

(
t−1∏
τ=1

Aτ (θτ , y
τ )

)
Bt
(
θt, y

t
)
.

Condition (1) guarantees that the stochastic process governing the evolution of the agent’s type

is Markov, while Condition (2) ensures that in any given period t, after observing history
(
θt, yt−1

)
,

the agent’s von Neumann-Morgenstern preferences over lotteries over future types and decisions

depend on the type history θt only through the current type θt. In particular, it encompasses the

case of additive-separable preferences (At
(
θt, y

t
)

= 1 for all t) as well as the case of multiplicative-

separable preferences (Bt
(
θt, y

t
)

= 0 for all t < T ).

Mechanisms. A mechanism in the above environment assigns a set of possible messages to

the agent in each period. The agent sends a message from this set and the mechanism responds

with a (possibly randomized) decision that may depend on the entire history of messages sent up

to period t, and on past decisions. By the Revelation Principle (Myerson, 86), for any standard

solution concept, any distribution on Θ× Y that can be induced as an equilibrium outcome in any

“indirect mechanism”can also be induced as an equilibrium outcome of a “direct mechanism” in

which the agent is asked to report the current type in each period, and where, in equilibrium, he
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finds it optimal to report truthfully.3

Let mt ∈ Θt denote the agent’s period-t message, and let mt ≡ (m1, . . .mt).

A direct mechanism is a collection

Ω ≡
〈
Ωt : Θt × Y t−1 → ∆(Yt)

〉T
t=1

such that for all t, and all measurable A ⊂ Yt, Ωt(A|·) : Θt × Y t−1 → [0, 1] is measurable. The

notation Ωt(A|mt, yt−1) stands for the probability that the mechanism generates yt ∈ A ⊂ Yt given
history (mt, yt−1) ∈ Θt × Y t−1.

Given a direct mechanism Ω, and a history (θt−1,mt−1, yt−1) ∈ Θt−1×Θt−1×Y t−1, the following

sequence of events takes place in each period t:

1. The agent privately observes his current type θt ∈ Θt drawn according to Ft
(
·|θt−1, yt−1

)
.

2. The agent sends a message mt ∈ Θt.

3. The mechanism selects a decision yt ∈ Yt according to Ωt(·|mt, yt−1).

A (pure) strategy for the agent in a direct mechanism is a collection of measurable functions

σ ≡
〈
σt : Θt ×Θt−1 × Y t−1 → Θt

〉T
t=1

.

A strategy σ is truthful if for all t and all ((θt−1, θt),m
t−1, yt−1) ∈ Θt ×Θt−1 × Y t−1,

σt((θ
t−1, θt),m

t−1, yt−1) = θt.

This definition identifies a unique strategy; such a strategy has the property that the agent reports

his current type truthfully after any history, including non-truthful ones. Note that we are not

claiming here that it is without loss of generality to restrict attention to mechanisms with the

property that the truthful strategy (as defined above) is optimal at all histories. As explained

above, what the Revelation Principle guarantees is only that it is without loss of generality to

restrict attention to mechanisms where the agent finds it optimal to report truthfully conditional

on having reported truthfully in the past; this is equivalent to requiring that the truthful strategy

be optimal at all truthful histories.

In order to describe expected payoffs, it is convenient to develop some more notation. First we

define histories. For all t = 0, 1, . . ., let

Ht ≡
(
Θt ×Θt−1 × Y t−1

)
∪
(
Θt ×Θt × Y t−1

)
∪
(
Θt ×Θt × Y t

)
,

3With a single agent, “in equilibrium”means conditional on having reported truthfully in the past.
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where by convention H0 = {∅}, and H1 = Θ1 ∪ (Θ1 ×Θ1)∪ (Θ1 ×Θ1 × Y1). Then Ht is the set of

all histories terminating within period t, and, accordingly, any h ∈ Ht is referred to as a period-t

history. We let

H ≡
T⋃
t=0

Ht

denote the set of all histories. A history (θs,mt, yu) ∈ H is a successor to history (θ̂
j
, m̂k, ŷl) ∈ H

if (1) (s, t, u) ≥ (j, k, l), and (2) (θj ,mk, yl) = (θ̂
j
, m̂k, ŷl). A history h = (θs,mt, yu) ∈ H is a

truthful history if θt = mt.

Fix a direct mechanism Ω, a strategy σ, and a history h ∈ H. Let µ[Ω, σ]|h denote the (unique)
probability measure on Θ×Θ× Y– the product space of types, messages, and decisions– induced
by assuming that following history h in mechanism Ω, the agent follows strategy σ in the future.

More precisely, let h = (θs,mt, yu). Then µ[Ω, σ]|h assigns probability one to (θ̃, m̃, ỹ) such that

(θ̃
s
, m̃t, ỹu) = (θs,mt, yu). Its behavior on Θ×Θ×Y is otherwise induced by the stochastic process

that starts in period s with history h, and whose transitions are determined by the strategy σ, the

mechanism Ω, and the kernels F . If h is the null history we then simply write µ[Ω, σ]. We also

adopt the convention of omitting σ from the arguments of µ when σ is the truthful strategy. Thus

µ[Ω] is the ex-ante measure induced by truthtelling while µ[Ω]|h is the measure induced by the
truthful strategy following history h.

Given this notation, we write the agent’s expected payoff when following history h he plays

according to strategy σ in the future as Eµ[Ω,σ]|h[U(θ̃, ỹ)].4 Now, given a direct mechanism Ω, let

the agent’s value function V Ω : H → R be a mapping such that for all histories h ∈ H,

V Ω(h) = sup
σ
Eµ[Ω,σ]|h[U(θ̃, ỹ)].

Incentive compatibility at a generic history h is then defined as follows.

Definition 2 Let h ∈ H. A direct mechanism Ω is incentive compatible at history h (IC at h) if

Eµ[Ω]|h[U(θ̃, ỹ)] = V Ω(h).

In words, Ω is IC at h if truthful reporting in the future maximizes the agent’s expected payoff

following history h. This definition is flexible in that it allows us to generate different notions of IC

as special cases by requiring IC at all histories in a particular subset. For example, ex-ante IC is

equivalent to requiring IC only at the null history. Or in a static model (i.e., if T = 1), the standard

definition of interim incentive compatibility obtains by requiring Ω to be IC at all histories where
4Throughout we use “tildes” to denote random variables with the same symbol without the tilde corresponding

to a particular realization.
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the agent knows only his type. In a dynamic model a natural alternative is to require that if the

agent has been truthful in the past, he finds it optimal to continue to report truthfully. This is

obtained by requiring Ω to be IC at all truthful histories.

The Principle of Optimality then implies that if Ω is IC at h, then for µ[Ω]|h-almost all successors
h′ to h, Ω is IC at h′. In particular, if Ω is ex-ante IC , then truthtelling is also sequentially optimal

at truthful future histories h with probability one, and the agent’s equilibrium payoff at such

histories is given by V Ω(h) with probability one. We will sometimes find it convenient to focus on

such histories, and they are the only ones that matter for ex-ante expectations.

2 Independent-Shock Representations

We now propose a way of characterizing the agent’s payoff in an incentive-compatible mechanism

based on the idea that the information the agent receives over time can be conveniently described as

a function of “shocks”that are serially independent. This approach complements the one illustrated

in the Pavan, Segal and Toikka (2009) in two ways: first, it permits us to accommodate the case

where T = +∞; second, even when restricted to the case T < +∞, it permits us to identify a
different set of assumptions on the primitive environment that guarantee that the agent’s payoff in

any incentive-compatible mechanism satisfies a certain envelope condition.

We start by defining what we mean when we say that a process admits an independent-shock

representation. Next, we define in what sense this representation is “strategically equivalent” to

the original one and hence can be used to characterize incentive-compatible mechanisms. We then

proceed by showing how the formula for the (derivative of the) agent’s payoff function simplifies

when the agent is asked to report the shocks instead of his types and identify conditions on the

agent’s reduced-form payoff (i.e., his payoff expressed as a function of the shocks) that validate

this formula. Finally, we conclude by showing that any stochastic process admits a particular

independent-shock representation which we use to identify conditions for the primitive environment

that guarantee that in the corresponding independent-shock representation the agent’s reduced-

form payoff is “well-behaved” in the sense that it satisfies an envelope formula analogous to the

one derived in static settings. While these conditions differ from the ones identified in PST using

a backward-induction approach, the formula for the derivative of the agent’s payoff reduces to the

one in PST when expressed in terms of the primitive representation.

Definition 3 Fix T ∈ N ∪ {+∞} and let ε̃ ≡ (ε̃t)
T
t=1 denote a collection of random variables

with support E ≡ ×Tt=1Et ⊂ RT and distribution G(·; y) and z ≡
〈
zt : E t × Y t−1 → Θt

〉T
t=1

denote a

collection of measurable functions of these variables and of the decisions y. We say that (G, z),where

G ≡ 〈G(·; y) : y ∈ Y 〉 , is an independent-shock (IS) representation for the stochastic process that

5



corresponds to the kernels F ≡
〈
Ft : Θt−1 × Y t−1 → ∆ (Θt)

〉T
t=1

if

(i) for each t, each yt−1 ∈ Y t−1, there exists a probability measure Gt(·; yt−1) on Et such that,
for any y G(·; y) = ×Tt=1Gt(·; yt−1); and

(ii) for any t, εt−1 ∈ E t−1 and yt−1 ∈ Y t−1, the distribution of zt(ε̃t; yt−1) given yt−1 and ε̃t−1 =

εt−1 is the same as the distribution of θt given yt−1 and θt−1 = zt−1(εt−1; yt−2) ≡ (zτ (ετ ; yτ−1))t−1
τ=1.

Together, conditions (i) and (ii) say that, for any y, one can think of the agent’s primitive

information θ as being generated by the independent “shocks” ε̃.

Example 1 Assume that θt evolves according to an AR(k) process whose kernels are independent

of past decisions:

θt =

k∑
j=1

φjθt−j + εt,

where θt = 0 for any t ≤ 0, φj ∈ R for any j = 1, ..., k, and εt is the realization of the random

variable ε̃t distributed according to some c.d.f. Gt with strictly positive density over R, independent
from all ε̃s, s 6= t. In this example, the functions zt do not depend on y and are given by

z1(ε1) = ε1

z2(ε2) = φ1ε1 + ε2

z3(ε3) = φ1(φ1ε1 + ε2) + φ2ε1 + ε3 = (φ2
1 + φ2)ε1 + φ1ε2 + ε3

...

zt(ε
t) =

∑t
j=1

 ∑
M∈N, l∈NM+1:j=l0<...<lM=t

M∏
m=1

φlm−lm−1

 εj .
Suppose now that the agent’s information θ is generated by the independent shocks ε and let

z : E × Y → Θ denote the function defined by

z(ε; y) ≡ (zτ (ετ ; yτ−1))Tτ=1.

Assume further that the agent observes not only θ but also the shocks ε. The agent’s payoff can

then be expressed in terms of the shocks ε and the decisions y by the function Û : E × Y → R
defined by

Û(ε, y) ≡ U(z(ε; y), y). (1)

Next, consider a (randomized direct) mechanism

Ω̂ ≡
〈

Ω̂t : E t × Y t−1 → ∆(Yt)
〉T
t=1

,

6



in which the agent reports the shocks ε instead of his primitive payoff-relevant information θ.

For any t any yt−1 ∈ Y t−1, then let Ĝt(·|zt(ε̃t; yt−1)) denote any regular conditional probability

distribution for the random vector ε̃t given the sigma-algebra Σ(zt(ε̃t; yt−1)) generated by the

random vector zt(ε̃t; yt−1).5

The primitive representation (U,F ) is equivalent to the representation (Û , G, Z) in the following

sense.

Lemma 1 (a) Given any ex-ante IC mechanism Ω for the primitive representation (U,F ), there

exists an ex-ante IC mechanism Ω̂ for the corresponding independent-shock representation (Û , G, z)

such that, for any t, any measurable set A ⊆ Yt, and any (θt, yt−1),∫
Ω̂t(A|εt, yt−1)dĜt(εt|zt(εt; yt−1) = θt) = Ωt(A|θt, yt−1). (2)

(b) Given any ex-ante IC mechanism Ω̂ for the independent-shock representation (Û , G, z), there

exists an ex-ante IC mechanism Ω for the primitive representation (U,F ) such that, for any t, any

measurable set A ⊆ Yt, and any (θt, yt−1), (2) holds.

Hence any outcome (i.e., any joint distribution over Θ × Y ) that can be sustained by having
the agent report the payoff-relevant information θ can also be sustained by having him report the

shocks ε, and vice versa. Note that Part (a) follows directly from the fact that if the mechanism Ω

is ex-ante IC, then the mechanism Ω̂ defined by

Ω̂t(·|εt, yt−1) = Ωt(·|zt(εt; yt−1), yt−1) ∀(εt, yt−1) (3)

is also ex-ante IC. This mechanism de facto uses the same information as Ω, in the sense that it

depends on ε only through z(ε; y). Part (b) is also trivially satisfied. It suffi ces to construct Ω from

Ω̂ using the transformation defined in (2). To see that if Ω̂ is ex-ante IC, so is Ω, it suffi ces to note

that (i) payoffs depend on the shocks ε only thought z(ε; y), (ii) Ω induces the same distribution

over Θ × Y as Ω̂, and (iii) any distribution over Θ × Y that the agent can induce given Ω could

also have been induced given Ω̂.

2.1 Necessary conditions for Incentive Compatibility

Suppose now that the primitive environment (U,F ) admits an independent-shock representation

(Û , G, z) – we will show below that this is always the case. One can then use this representation

as an instrument to characterize the properties of incentive-compatible mechanisms. In particular,

as mentioned above, one can treat the shocks as the agent’s private information and then express
5Such a regular conditional probability distribution here exists since εt ∈ Rt.
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the (dynamics of the) agent’s equilibrium payoff in terms of the (derivative of the) value function

with respect to the shocks. To this aim, let

Ĥ ≡
{

(εs,mt, yu) ∈ Es × E t × Y u with T ≥ s ≥ t ≥ u ≥ s− 1
}

denote the set of all possible histories in the extensive form corresponding to the mechanism Ω̂ for

the IS representation. For any ĥ ∈ Ĥ, then let µ̂[Ω̂]|ĥ denote the (unique) probability measure over
E ×E ×Y induced by assuming that, following the history ĥ in the mechanism Ω̂, the agent reports

truthfully at any subsequent information set. Finally, let V̂ Ω̂(ĥ) denote the agent’s value function

in Ω̂ evaluated at history ĥ. We then have the following result.

Proposition 1 Fix t and suppose that Et = (εt, εt) ⊂ R for some −∞ ≤ εt ≤ εt ≤ +∞. In
addition, suppose that there exists At ∈ R+ such that, for any (ε−t, y) ∈ E−t × Y,6 the function
Û((·, ε−t), y) : Et → R is At-Lipschitz continuous and differentiable in εt. Then after any history
ĥt−1 = (εt−1, ε̂t−1, yt−1),the value function V̂ Ω̂(εt, ĥ

t−1) is Lipschitz continuous in εt.

Furthermore,at any period-t history (εt, ĥ
t−1) at which the mechanism Ω̂ is IC and the value func-

tion is differentiable in εt,

∂V̂ Ω̂(εt, ĥ
t−1)

∂εt
= Eµ̂[Ω̂]|εt,ĥt−1

[
∂Û(ε̃, ỹ)

∂εt

]
.

The proof of this result is quite simple and follows from arguments similar to those that establish

the envelope theorem in a static setting.

Condition (1) provides a convenient representation of how the agent’s payoff must vary with

the agent’s private information in an IC mechanism. In certain applications (e.g. the AR(k)

example described above), working directly with the reduced-form payoff Û may facilitate the

characterization of the properties of optimal mechanisms. For the result in Proposition 1 to be

useful, it is however important to understand what properties of the payoff function U and of

the functions z corresponding to the kernels F of the primitive representation guarantee that the

agent’s reduced-form payoff Û is equi-Lipschitz continuous and differentiable in εt. This is what

we address next.7 We start with an example which we believe is prominent in applications.

6Throughout, the notation E−t stands for E−t ≡ ×τ 6=tEτ .
7When T = +∞, the properties of Frechet differentiability and equi-Lipschitz continuity are always meant to

apply with respect to the ‖·‖δ norm. When, instead, T is finite, the specification of the norm is irrelevant, for all
norms are equivalent.
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Assumption 1 There exists a collection of functions u ≡
〈
ut : Θt × Y t → R

〉T
t=1

and a collection of

scalars B ≡ (Bt)
T
t=1 with Bt ∈ R+ for all t and

∑T
t=1Bt < +∞ such that: (i) for any (θ, y) ∈ Θ×Y ,

U(θ, y) =
T∑
t=1

ut(θ
t, yt) (5)

and (ii) for any t any yt ∈ Y t, ut(·, yt) is Bt-Lipschitz continuous and differentiable.

With a finite horizon, part (i) is trivially satisfied and Assumption 1 is equivalent to assuming

that the function U(θ, y) is equi-Lipschitz and differentiable (as a multi-variate function) in θ.With

an infinite horizon, assuming that U admits the additive representation of (5) is clearly not without

loss of generality. However, such a representation is quite standard in applications. Note that, in

an infinite-horizon setting, the condition on the summability of the Lipschitz constants is satisfied

for example when for any t ≥ 1, ut(θ
t, yt) = ρt−1u(θt, yt) with u(·, yt) K—Lipschitz continuous and

differentiable and ρ ∈ (0, 1). We then have the following result.

Proposition 2 Suppose that assumption 1 holds. Fix t and suppose that Et = (εt, εt) ⊂ R for

some −∞ ≤ εt ≤ εt ≤ +∞. In addition, assume that, for any τ ≥ t, there exists a Ct,τ ∈ R+ such

that (a) for all (ετ−t, y
τ−1) ∈ Eτ−t × Y τ−1,8 the function zτ ((·, ετ−t); yτ−1) : Et → Θt is Ct,τ -Lipschitz

continuous and differentiable, and (b)
∑T

τ=tCt,τ < +∞. Then, for any (ε−t, y) ∈ E−t × Y, the

function Û((·, ε−t), y) : Et → R is At−Lipschitz continuous and differentiable and its derivative is
given by

∂Û(ε, y)

∂εt
=

T∑
s=t

T∑
τ=s

∂uτ (zτ (ετ ; yτ−1), yτ )

∂θs

∂zs(ε
s; ys−1)

∂εt
.

One can verify that the conditions on the functions zt assumed in the proposition are satisfied

for example when θt evolves according to an AR(1) process with coeffi cient of linear dependence

|φ1| < 1.

The result in the previous proposition can be generalized as follows.

Assumption 2 The function U(·, y) : Θ → R is K−Lipschitz continuous and (Frechet) differen-
tiable in θ.

Proposition 3 Fix t and suppose that, in addition to assumption 2, Et = (εt, εt) ⊂ R for some

−∞ ≤ εt ≤ εt ≤ +∞ and that there exists a scalar Qt ∈ R+ such that, for any (ε−t, y) ∈ E−t × Y ,
the function z(·, ε−t; y) : Et → Θ is Qt−Lipschitz continuous and (Frechet) differentiable in εt. Then

8By Eτ−t we mean Eτ−t ≡ ×j∈N\{t},j≤τEτ .
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there exists an At ∈ R+ such that, for any (ε−t, y) ∈ E−t× Y, the function Û((·, ε−t), y) : Et → R is
At−Lipschitz continuous and differentiable and its derivative is given by

∂Û(ε, y)

∂εt
=

T∑
s=t

∂U(z(ε; y), y)

∂θs

∂zs(ε
s; ys−1)

∂εt
.

The proof for this proposition follows directly from the chain rule of Frechet differentiability. As

mentioned above, when T is finite, then Frechet differentiability reduces to standard multivariate

differentiability. In this case, a suffi cient condition for z(·, ε−t; y) : Et → Θ to be differentiable and

equi-Lipschitz continuous is that each zs((·, εs−t); ys−1) : Et → Θs is differentiable and equi-Lipschitz

continuous in εt, t < s.

Comparing Proposition 3 to Proposition 2, it is immediate that the only difference between

the two emerges when T = ∞. While Proposition 3 does not require U to take the additive

form of Assumption 1, it requires to check Frechet differentiability and equi-Lipschitz continuity

of U(·, y) : Θ → R and z(·, ε−t; y) : Et → Θ. Proposition 2, on the other hand, presumes that

preferences admit the additive form of Assumption 1, but then requires to check differentiability

and equi-Lipschitz continuity of the single component functions zτ ((·, ετ−t); yτ−1) : Et → Θt as

opposed to Frechet diifferentiability and equi-Lipschitz continuity of the entire infinite-dimensional

mapping z(·, ε−t; y) : Et → Θ. The two propositions thus complement each other.

2.2 The canonical IS representation

While the results in the previous section apply to any IS representation, at this point one may

wonder which processes F admit an IS representation and which ones admit an IS representation

for which the corresponding z function satisfies the properties of Propositions 2 and 3. We address

each of these questions in turn.

First, we show that any process admits a particular independent-shock representation, which

henceforth we refer to as the canonical representation. This representation is derived from the

kernels F as follows. Let ε̃ denote a (possibly infinitely dimensional) vector of independent random

variables, each uniformly distributed over (0, 1), independently from any other. Next, for any t,

any ε ∈ (0, 1), any (θt−1, yt−1), let

F−1
t (ε|θt−1, yt−1) ≡ inf{θt : Ft(θt|θt−1, yt−1) ≥ ε}

denote the generalized inverse of the kernel Ft. Now let z : E ×Y −→ Θ be the mapping recursively

defined by

zt(ε
t; yt−1) ≡ F−1

t (εt | F−1
1 (ε1), F−1

2 (ε2 | F−1
1 (ε1), y1), ..., yt−1) ∀t (6)

10



Applying the probability integral transform theorem recursively, one can then show that, given any

yt−1 ∈ Y t−1 and any εt−1 ∈ (0, 1)t−1, the distribution of zt(ε̃t; yt−1) given yt−1 and ε̃t−1 = εt−1 is

the same as the distribution of θt given yt−1 and θt−1 = (F−1
1 (ε1), F−1

2 (ε2 | F−1
1 (ε1), y1), ..., yt−1).

Hence, any process admits an independent-shock representation in which, for any t and yt−1,

Gt(·; yt−1) is simply the uniform distribution over (0, 1) and where the functions zt : E t×Y t−1 → Θt

are the ones defined in (6).

Using the canonical representation, one can then identify conditions on the kernels F that

guarantee that the corresponding z function, as defined in (6), satisfies either the properties of

Proposition 2, or those of Proposition 3. We start with the following two preliminary conditions.

Assumption 3 For any t ≥ 1, any (θt−1, yt−1) ∈ Θt−1 × Y t−1, the function F−1
t (·|θt−1, yt−1) is

differentiable.

Assumption 4 For any t ≥ 2, any ε ∈ (0, 1) any yt−1 ∈ Y t−1, the function F−1
t (ε|·, yt−1) is

differentiable.

Together, these conditions guarantee differentiability of the components of the z function.

Lemma 2 Let (z,G) be the canonical IS representation for the process corresponding to the ker-

nels F. Assume that assumptions 3 and 4 hold. For any t ≥ 1 and any τ ≥ t, the function

zτ ((·, ετ−t); yτ−1) : Et → Θτ defined by (6) is differentiable with derivative

∂zτ ((εt, ε
τ
−t); y

τ−1)

∂εt
= Îtt (ε

t, yt−1)Ĵτt (ετ , yτ−1), (7)

where Ĵ tt (ε
t, yt−1) ≡ 1 and

Ĵτt (ετ , yτ−1) ≡
∑

K∈N, l∈NK+1:
t=l0<...<lK=τ

K∏
k=1

Î lklk−1
for τ > t,

with

Îtt (ε
t, yt−1) ≡ ∂F−1

t (εt | F−1
1 (ε1), F−1

2 (ε2 | F−1
1 (ε1), y1), ..., yt−1)

∂εt

and

Îml (εm, ym−1) ≡ ∂F−1
m (εm | F−1

1 (ε1), F−1
2 (ε2 | F−1

1 (ε1), y1), ..., ym−1)

∂θl
, m > l.

The proof follows again directly from the chain rule of differentiability. To apply the result in

Proposition 2 one then simply needs to guarantee that, in addition to be differentiable, the (inverse

of the) kernels be equi-Lipschitz continuous with appropriate bounds. Using the preceding lemma,

this in turn can be guaranteed by assuming that the following hold.
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Assumption 5 For any t ≥ 1, there exists aMt ∈ R+ such that, for any (θt−1, yt−1) ∈ Θt−1×Y t−1,

the function F−1
t (·|θt−1, yt−1) is Mt—Lipschitz continuous.

Assumption 6 For any t, τ , τ > t, there exists a kτt ∈ R+ such that, (a)
∣∣∣Ĵτt (ετ , yτ−1)

∣∣∣ ≤ kτt for

any (ετ , yτ−1), and (b) for any t ≥ 1,
∑T

τ=t+1 k
τ
t < +∞.

It is easy to see that assumption 6 holds for example when, for any t, τ , τ > t, the function

F−1
τ (ε | (θτ−1

−t , ·), yτ−1) is N τ
t —equi-Lipschitz continuous in θt, and

T∑
τ=t+1

 ∑
K∈N, l∈NK+1:
t=l0<...<lK=τ

K∏
k=1

N lk
lk−1

 < +∞ for any t ≥ 1. (8)

This condition is easily satisfied when T is finite. When T =∞, it is satisfied for example when θ
follows an AR(k) process with coeffi cients

∣∣φj∣∣ < 1, j = 1, ..., k. We then have the following result.

Proposition 4 Suppose that assumptions 1, 3, 4, 5, and 6, hold. Fix the history ĥt−1 ≡ (εt−1, ε̂t−1, yt−1).

The value function V Ω̂(εt, ĥ
t−1) is Lipschitz continuous in εt.

Furthermore, at any εt at which V Ω̂(εt, ĥ
t−1) is differentiable and Ω̂ is IC at (εt, ĥ

t−1),

∂V Ω̂(εt, ĥ
t−1)

∂εt
= Îtt (ε

t, yt−1)

{
Eµ̂[Ω̂]|εt,ĥt−1

[
T∑
τ=t

Ĵτt (ε̃τ , ỹτ−1)
∂U(zT (ε̃T ; ỹT−1), ỹT )

∂θτ

]}
.

Next, consider the result in Proposition 3. To apply this proposition one needs that the function

z(·, ε−t; y) : Et → Θ be equi-Lipschitz continuous and Frechet differentiable in εt. These proper-

ties can in turn be guaranteed by assuming that, in addition to conditions 3, 4, 5, the following

conditions hold.

Assumption 7 For any t any (ε−t, θ
t−1, y) ∈ E−t×Θt−1×Y, the function W t((·, ε−t), (θt−1, ·), y) :

(0, 1)×Θt
+ → Θ defined by W t

s(ε, θ, y) = θs for all s ≤ t− 1 and

W t
s(ε, θ, y) = F−1

s (εs|θs−1, ys−1) ∀s ≥ t

is Frechet differentiable, where Θt
+ ≡

∏T
s=t Θs.

Assumption 8 For any (ε, y) ∈ E × Y,

lim
t→T

t−1∑
τ=0

δτ
∣∣∣Ĵ tt−τ (εt, yt−1)

∣∣∣ < +∞

12



Assumption 9 For any t, there exists a Kt <∞ such that, for all (ε, y) ∈ E × Y ,

sup
τ≥t

δτ−t
∣∣∣Ĵτt (ετ , yτ−1)

∣∣∣ ≤ Kt.

Assumption 7 is an assumption of equi-differentiability of the kernels F−1
s (εs|·, ys−1), s ≥ t.

Assumption 8 is a “backward-looking”analog of assumption 6; note that this condition is satisfied

for example when, for any t, τ , τ > t, the function F−1
τ (ε | (θτ−1

−t , ·), yτ−1) is N τ
t —equi-Lipschitz

continuous in θt, and

lim
t→T

t−1∑
τ=1

δτ

 ∑
K∈N, l∈NK+1:
t−τ=l0<...<lK=t

K∏
k=1

N lk
lk−1

 < +∞. (10)

Assumption 9, which is weaker than (in the sense of being implied by) assumption 6, is satisfied

for example when there exists scalars B ≥ 0 and M ≥ 0 such that (i) δ(B+M) < 1 and (ii) for all

t ≥ 1, τ > t, (ε, y) ∈ E × Y, ∣∣∣Îτt (ετ , yτ−1)
∣∣∣ ≤M τ−1−tB.

Combining the above results, leads to the following proposition.

Proposition 5 Suppose that assumptions 2, 3, 4, 5, 7, 8, and 9 hold. Then the same conclusions

as in Proposition 4 hold.

Propositions 4 and 5 thus identify a set of conditions for the primitive environment (U,F )

that guarantee that, in any IC mechanism, the agent’s expected payoff, when expressed using the

canonical IS representation, satisfies the envelope formula of (1).

Note that, when applied to a finite-horizon setting, the conditions in the two propositions

coincide; these conditions then reduce to assuming that the payoff U be differentiable and equi-

Lipschitz continuous in θ and that the (inverse of the) kernels F−1
t (ε | θt−1, yt−1) be differentiable

and equi-Lipschitz continuous both in the “quantile” ε and in the past θt−1. Comparing these

conditions to those in Proposition 1 in PST (2009) one can see that while the assumptions in that

proposition rule out, for example, an atom at θt = θ#
t that “shifts”with the past θ

t−1 (e.g., fully

persistent types), such a possibility is accommodated by the assumptions in Proposition 5 above.

On the other hand, the assumptions in Proposition 5 rule out an atom at θt = θ#
t whose measure

grows with θt−1 while such a possibility is allowed by the assumptions in Proposition 1 in PST

(2009). When applied to finite-horizon environments, the result in (4) thus provides an alternative

closed-form representation for the derivative of the value function that one can use, for example,

when the assumptions in Proposition 1 in PST (2009) are violated. The most significant advantage

of Proposition 5 however remains the fact that it also permits one to identify necessary conditions
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for IC in infinite horizon settings.

Finally note that, while the formula in (4) describes the dynamics of the value function in the

mechanism Ω̂ in which the agent reports the shocks ε instead of his payoff-relevant types θ, the same

formula also permits one to express the derivative of the value function in the original mechanism

Ω in which the agent reports θ instead of ε. To see this, it suffi ces to proceed as follows. Take any

mechanism Ω for the primitive representation (U,F ) and let Ω̂ be the corresponding mechanism

in the independent-shock representation that is obtained from Ω using (3). Because, for any y,

the agent’s payoff in Ω̂ depends on ε only through z(ε; y), we have that, for any t, yt−1 and εt the

following identity holds:

V̂ Ω̂(εt, εt−1, yt−1) = V Ω(zt(εt; yt−1), zt−1(εt−1; yt−2), yt−1). (11)

Therefore, at any point of differentiability of V̂ Ω̂ in εt,

∂V̂ Ω̂(εt, εt−1, yt−1)

∂εt
=
∂V Ω(zt(εt; yt−1), zt−1(εt−1; yt−2), yt−1)

∂θt

∂zt(ε
t; yt−1)

∂εt
. (12)

While conditions (11) and (12) hold for all independent-shock representations, when (G, z) is the

canonical IS representation of F,

∂zt(ε
t; yt−1)

∂εt
= Îtt (ε

t, yt−1).

Now suppose that the following two assumptions also hold.

Assumption 10 For all t, and all (θt−1, yt−1) ∈ Θt−1 × Y t−1, the c.d.f. Ft(·|θt−1, yt−1) is strictly

increasing on Θt.

Assumption 11 For all t and all
(
θt−1, yt−1

)
∈ Θt−1 × Y t−1, the function Ft

(
·|θt−1, yt−1

)
is

absolutely continuous with density ft
(
θt|θt−1, yt−1

)
> 0 for a.e. θt ∈ Θt.

Combining (12) with (4), it is then easy to see that, when in addition to the assumptions in

Proposition 5, assumptions 10 and 11 also hold, then Îtt (ε
t, yt−1) 6= 0 and

Îτt (ετ , yτ−1) = Iτt (θτ , yτ−1)
∣∣
θτ=zτ (ετ ;yτ−1)

and Ĵτt (ετ , yτ−1) = Jτt (θτ , yτ−1)
∣∣
θτ=zτ (ετ ;yτ−1)

where J tt (θ
t, yt−1) ≡ 1 and

Jτt (θτ , yτ−1) ≡
∑

K∈N, l∈NK+1:
t=l0<...<lK=τ

K∏
k=1

I lklk−1
(θlk , ylk−1) for τ > t,
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with

Iml (θm, ym−1) ≡ −∂Fm(θm|θm−1, ym−1)/∂θl

fm(θm|θm−1, ym−1)
for l < m.

The following is then an immediate implication of the aforementioned results.

Proposition 6 Suppose that, in addition to the assumptions in Propositions 4 (or to those in

Proposition 5), assumptions 10 and 11 hold. Then the conclusions of Proposition 2 in PST (2009)

hold. That is, if Ω is IC at the truthful history ht−1 ≡ (θt−1, θt−1, yt−1), then

V Ω(θt, h
t−1) is Lipschitz continuous in θt, and for a.e. θt,

∂V Ω(θt, h
t−1)

∂θt
= Eµ[Ω]|(θt,ht−1)

[
T∑
τ=t

Jτt (θ̃
τ
, ỹτ−1)

∂U(θ̃, ỹ)

∂θτ

]
.

(13)

Note that, while the conclusions in the two propositions are the same, the conditions in Propo-

sition 6 that validate (13) are somewhat different from those in Proposition 2 in PST (2009). To

better appreciate this, it is instructive to consider the case of a finite horizon. The key differences

between the assumptions in the two propositions are then the following. While (for generic non-

Markov settings) the backward-induction approach in PST (2009) requires the probability measures

Ft
(
·|θt−1, yt−1

)
to be continuous in θt−1 in the total variation metric, such an assumption is not

required under the IS approach in this paper. Furthermore, while the backward-induction approach

requires the (absolute value of) the derivative of the Kernels |∂Ft(θt|θt−1, yt−1)/∂θs| to be bounded
uniformly in (θt−1, yt−1) by an integrable function Bt : Θt → R+ ∪ {+∞} such an assumption is
not required under the IS approach. On the other hand, while the backward-induction approach

only requires the payoff U and each kernel Ft to be partially differentiable in each θs, the IS ap-

proach requires these functions to be totally differentiable (in θ and θt−1 respectively). The two

propositions thus complement each other by identifying different sets of assumptions that validate

the dynamic payoff formula given in (13) as a necessary condition for incentive compatibility.

3 Bandit Auctions

To illustrate how the results in the previous section can be put to work, we now consider a multi-

agent quasilinear setting where buyers refine their valuations through consumption. For an illustra-

tion of how the multi-agent setting can be mapped into a single agent setting, we refer the reader to

Section 4 in PST. The purpose of this section is to illustrate how the independent-shock approach

outlined above can help characterize the properties of optimal mechanisms in infinite-horizon set-

tings.

Setup. There is an auctioneer and N ≥ 1 bidders. In each period, t = 1, 2, . . . T , with T = +∞,
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the auctioneer has one indivisible, non-storable, object to sell. If he allocates the period-t object to

agent i, he incurs a cost ci,t ∈ R. If the object goes unassigned, the auctioneer incurs no cost, and
the object perishes. We then let Xi,t ≡ {0, 1}, Xt =

{
xt ∈

∏N
i=0Xi,t :

∑N
i=0 xi,t = 1

}
, X =

∏T
t=1Xt

and Xt
i =

∏t
t=1Xi,t denote the relevant sets of feasible allocations (Here i = 0 refers to the seller).

Each bidder i’s Bernoulli function takes the form

Ui(θ, x, p) =

∞∑
t=1

δt[θi,txi,t − pi,t],

whereas the auctioneer’s Bernoulli function takes the form

U0(θ, x, p) =
∞∑
t=1

δt

[
N∑
i=1

[pi,t − xi,tci,t]
]
,

where θi,t ∈ Θi,t and pi,t ∈ R denote, respectively, the period-t valuation and the period-t payment
for agent i, θt = (θ1,t, ..., θN,t) ∈

∏N
i=1 Θi,t and pt = (p1,t, ..., pN,t) ∈ RN a profile of valuations and

payments for period t, θ = (θt)
T
t=1 the complete state of the world, and p = (pt)

T
t=1 ∈ RNT the

payments received by the auctioneer over time.

The stochastic process governing the evolution of each θi,t is as follows. The first period valuation

θi,1 is drawn from an absolutely continuous c.d.f. Fi,1 strictly increasing over the interval Θi,1 =

(θi,1, θ̄i,1) ⊂ R with density fi,1(θi,1) > 0 if and only if θi,1 ∈ Θi,1. For any t > 1, the period-t

valuation θi,t is given by

θi,t = θi,t−1 + εi,t,

where the shock εi,t is drawn from the c.d.f. Gi,t(·|xt−1
i ). In other words,

Fi,t(θi,t|θt−1
i , xt−1

i ) = Gi,t(θi,t − θi,t−1 | xt−1
i )

Given xt−1, the shocks εt = (ε1,t, ..., εN,t) are independent across agents, i.e.

G(·|xt−1) = ×Ni=1Gi,t(·|xt−1
i )

Furthermore, for any i = 1, ..., N, given xTi , the shocks ε
T
i = (εi,1, ...εi,T ) are jointly independent,

i.e.

Gi(·|xt−1
i ) = ×Tt=1Gi,t(·|xt−1

i )

In addition to the aforementioned properties, the family of distributions Gi,t(·|xt−1
i ) satisfies

the following conditions: (a) for any xt−1
i such that xi,t−1 = 0, Gi,t(·|xt−1

i ) is a Dirac delta at

0; (b) for any t, τ , any xt−1
i and x̂τ−1

i such that xi,t−1 = x̂i,τ−1 = 1 and
∑τ−1

s=1 x̂i,s =
∑t−1

s=1 xi,s,

16



Gi,t(·|xt−1
i ) = Gi,τ (·|x̂t−1

i ); (c) for any xt−1
i such that xi,t−1 = 1, Gi,t(·|xt−1

i ) is absolutely continuous

with density strictly positive almost everywhere on R.
The first condition says that valuations do not change in the absence of consumption. The

second condition says that, conditional upon consumption in the preceding period, the distribution

of the shock εi,t is time-homogeneous in the sense that it depends on xt−1
i only through

∑t−1
s=1 xi,s.

The last condition, which is not essential for the subsequent results, makes the analysis of IC

simpler by establishing that the support of θi,t is independent of θt−1
i . Given these properties, for

simplicity, hereafter we denote the distributions of the shocks by Gi,t(·|xi,t−1,
∑t−1

s=1 xi,s).

Remark 1 This kind of structure arises for example in a model with Normal learning. There θt is

the posterior expectation of the true underlying valuation, and the impact of the kth signal on the

posterior is the same regardless of the period in which it arrives. More generally, this specification

allows for learning by doing (or habit formation), for it does not require the mean of εt to be zero.

Summarizing, the key assumptions are the following.

1. Valuations are independent across bidders.

2. Valuations change only upon consumption.

3. The environment is Markov: payoffs are additively time-separable and, conditional on allo-

cations, the valuations follow a Markov process.

4. The valuation processes are time-homogenous: If bidder i wins the auction in period t, then

the distribution of his period t + 1 valuation depends only on his valuation in period t and

the total number of times he has won in the past.

IS representation, and Necessary IC conditions. The structure of the payoffs and of the

process for the valuations suggest using a non-canonical IS representation where the distributions of

the shocks depend on past decisions. For any i = 1, ..., N, any t ≥ 1, then let zi,t(εti, y
t
i) =

∑t
s=1 εi,s,

where for any i, any t > 1, the shock εi,t ∈ Ei,t = R are the same shocks described above. Because
the functions zi,t(εti, y

t
i) do not depend on y

t
i = (xt−1

i , pt−1
i ), we simplify notation by denoting them

by zi,t(εti), with z
t
i(ε

t
i) = (zi,s(ε

s
i ))

t
s=1. Each agent’s reduced form payoff then takes the form

Ûi(ε, x, p) = Ui(z
T
i (εTi ), x, p)

=
T∑
t=1

δt[zi,t(ε
t
i)xi,t − pi,t]

=
T∑
t=1

δt

[(
t∑

s=1

εi,s

)
xi,t − pi,t

]
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Note that the flow payoffs ûi,t(εti, xi,t) ≡ δt[
(∑t

s=1 εi,s
)
xi,t−pi,t] is clearly differentiable in εi,1 with∣∣∣∣∂ûi,t(εti, xi,t)∂εi,1

∣∣∣∣ = δtxi,t ≤ δt.

Thus, by the Lebesgue dominated convergence theorem, Ûi is differentiable in εi,1 with

∂Ûi(ε, x, p)

∂εi,1
=

T∑
t=1

∂ûi,t(ε
t
i, xi,t)

∂εi,1
=

T∑
t=1

δtxi,t.

Furthermore, Ûi is equi-Lipschitz continuous in εi,1 since, for all (ε, x, p),∣∣∣∣∣∂Ûi(ε, x, p)∂εi,1

∣∣∣∣∣ ≤
T∑
t=1

∣∣δtxi,t∣∣ ≤ 1

1− δ .

From Proposition 1, we then have that, in any ex-ante IC mechanism Ω̂, each bidder i’s value

function V̂ Ω̂
i (εi,1) is Lipschitz continuous and for a.e. εi,t,

∂V̂ Ω̂
i (εi,1)

∂εi,1
= EE

λ̂[χ̂]|εi,1

[
T∑
t=1

δtx̃i,t

]
.

Maximing virtual surplus, Gittins indices. Given a deterministic allocation rule χ̂ :=〈
χ̂t : RNt → Xt

〉∞
t=1

the virtual surplus takes the form

Eλ̂[χ̂]

[ ∞∑
t=1

δt
N∑
i=1

(
t∑

τ=1

ε̃i,τ − ci,t −
1− Fi,1(ε̃i,1)

fi,1(ε̃i,1)

)
χ̂i,t(ε̃

t)

]

where λ̂[χ̂] is the unique probability measure over E induced by the allocation rule χ̂, under
truthtelling by all agents.

At this point, it is convenient to switch back to the original representation with θ as this makes

the Markov structure more explicit. We may then write the virtual surplus as

Eλ[χ]

[ ∞∑
t=1

δt
N∑
i=1

(
θ̃i,t − ci,t −

1− Fi,1(θ̃i,1)

fi,1(θ̃i,1)

)
χi,t(θ̃

t
)

]

Once again, the notation λ [χ] stands for the unique probability measure over E induced by the
allocation rule χ̂, under truthtelling by all agents.
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Now, given θ1, we have a standard (N+1)-armed bandit problem (i.e., N bidders plus a safe arm

with payoff 0 which corresponds to not selling) where the objective function is given by the above

virtual surplus. If the auctioneer were to maximize social surplus instead of profits the objective

function in the bandit problem would be

Eλ[χ]

[ ∞∑
t=1

δt
N∑
i=1

(
θ̃i,t − ci,t

)
χi,t(θ̃

t
)

]
.

The Gittins index for the safe arm is identically zero in both programs. The Gittins index for arm

i > 0 in the profit maximization problem at time 1 given θi,1 is by definition

γi,1(θi,1) := max
τ
E

∑τ
t=1 δ

t
(
θ̃i,t − ci,t − 1−Fi,1(θi,1)

f1(θi,1)

)
∑τ

t=1 δ
t | θi,1

 ,
where τ is a stopping time (i.e., it is not just a scalar, but a policy rule that conditions on history),

and the expectation is taken conditional on the first type being θi,1 and the object being allocated

to bidder i in each period until the stopping time τ . We have

γi,1(θi,1) = max
τ
E

∑τ
t=1 δ

t
(
θ̃i,t − ci,t − 1−Fi,1(θi,1)

f1(θi,1)

)
∑τ

t=1 δ
t | θi,1


= max

τ
E

∑τ
t=1 δ

t
(
θ̃i,t − ci,t

)
∑τ

t=1 δ
t | θi,1

− 1− Fi,1(θi,1)

fi,1(θi,1)

= γEi,1(θi,1)− 1− Fi,1(θi,1)

fi,1(θi,1)
,

where γEi,1(θi,1) is the corresponding Gittins index in the effi cient program. We can similarly

calculate (and relate) the Gittins indices in an arbitrary period t following any bidder i history

(i.e., any sequence of allocations to bidder i and a corresponding sequence of types θti). We have

γi,t(θi,1, θi,t,Σ
t−1
u=1xi,u) = max

τ
E

∑τ
s=t δ

s−t
(
θ̃i,s − ci,s

)
∑τ

s=1 δ
s−t | θi,t,Σt−1

u=1xi,u

− 1− Fi,1(θi,1)

f1(θi,1)

= γEi,t(θi,t,Σ
t−1
u=1xi,u)− 1− Fi,1(θi,1)

f1(θi,1)
.

(Again the expectation is conditional on the optimal stopping policy τ .) Given the Markov structure

the indices do not directly depend on θt−1
i,−1 (γ

E
i,t doesn’t depend on θi,1 either), and depend on x

t−1
i

only through the sum of its terms. It is well-known that a Gittins index policy is an optimal policy
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in a multi-armed bandit problem of the above form. This immediately implies the following result.

Proposition 7 Let χ∗ be the allocation rule such that for all i, t, θt, and xt−1,

χ∗i,t(θ
t, xt−1) = 1 ⇒ i ∈ arg max

j∈{0,...,N}
γj,t(θj,1, θj,t,Σ

t−1
τ=1xj,τ ).

Then χ∗ maximizes dynamic virtual surplus.

Obviously social surplus is also maximized by using an index policy.

Incentive compatibility. The effi cient policy can be implemented for example with the Team

Mechanism. Consider then the profit maximizing policy.

Proposition 8 Assume that first period hazard rates are nondecreasing. Then the allocation rule

of Proposition 7 is sustained under an optimal mechanism.

The proof in the Appendix proceeds as follows. First we show that, because at any t ≥ 2, χ∗ is

effi cient given the period-1 reports θ1 (with the seller’s adjusted cost of serving bidder i in period

t set equal to ci,t− 1−Fi,1(θi,1)
f1(θi,1) ), there always exist a system of payments that induce each bidder to

report truthfully from period two onwards, at any period-t history, t ≥ 2, irrespective of whether

the history is truthful or not. Next, we use the fact χ∗ is weakly monotone to show that there

exists a payment scheme p∗ that, in addition to the property described above, it also induces the

bidders to report truthfully in period 1. Lastly, we verify that under the mechanism Ω∗ = [χ, p∗]

each bidder finds it optimal to participate and each type θi,1 obtains a payoff equal to the outside

option. That the mechanism Ω∗ is optimal then follows from the same arguments that establish

Proposition 5 in PST.

Appendix

Proof of Proposition 1.

Fix the history ĥt−1 = ht = (εt−1, ε̂t−1, yt−1) and for any εt,mt ∈ Et, let µ[Ω̂, σ̂]|mt, εt, ĥ
t−1

denote the (unique) measure over E × E × Y that is obtained by assuming that, after history

ht = (εt, ε̂t−1, yt−1) is reached, in period t the agent sends the message mt and then starting from

period t+ 1 onwards he follows an arbitrary strategy

σ̂ ≡
〈
σ̂t : E t × E t−1 × Y t−1 → Et

〉T
t=1

.

The key observation here is that, because of the independence of the shocks, the restriction of the

measure µ[Ω̂, σ̂]|mt, εt, ĥ
t−1 on future shocks, current and future reports, and current and future
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decisions, i.e. on Et+1 × · × ET × Et × · × ET × Yt × · × YT , does not depend on the true shock
εt.
9 Formally, let P (mt, ĥ

t−1, σ̂) denote such restriction and δεt,ĥt−1 denote the Dirac measure at

(εt, ĥ
t−1) over past and current shocks, past reports, and past decisions, i.e. over E1× ·× Et×E1×

· × Et−1 × Y1 × · × Yt−1. Then the measure µ[Ω̂, σ̂]|mt, εt, ĥ
t−1 on E × E × Y can be decomposed as

µ[Ω̂, σ̂]|mt, εt, ĥ
t−1 = δεt,ĥt−1 × P (mt, ĥ

t−1, σ̂).

By implication,

Eµ[Ω̂,σ̂]|mt,εt,ĥt−1
[
Û(ε̃, ỹ)

]
= EP (mt,ĥt−1,σ̂)

[
Û(εt, ε̃t+1, .., ε̃T , y

t−1, ỹt, .., ỹT )
]
.

Now, because for any (ε−t, y) ∈ E−t × Y the function Û(·, ε−t, y) is At-Lipschitz continuous, we

have that, for any εt, ε′t ∈ Et any (ε−t, y) ∈ E−t × Y,∣∣∣∣∣ Û((εt, ε−t), y)− Û((ε′t, ε−t), y)

εt − ε′t

∣∣∣∣∣ ≤ At.
On the other hand, because P (mt, ĥ

t−1, σ̂) is a probability measure, EP (mt,ĥt−1,σ̂) [At] = At. Hence

by the Lebesgue dominated convergence theorem,

lim
ε′t→εt

EP (mt,ĥt−1,σ̂)
[
Û(εt−1, εt, ε̃t+1, ., ε̃T , y

t−1, ỹt, ., ỹT )
]
−EP (mt,ĥt−1,σ̂)

[
Û(εt−1, ε′t, ε̃t+1, ., ε̃T , y

t−1, ỹt, ., ỹT )
]

εt − ε′t

= lim
ε′t→εt

EP (mt,ĥt−1,σ̂))

[
Û(εt−1, εt, ε̃t+1, ., ε̃T , y

t−1, ỹt, .., ỹT )− Û(εt−1, ε′t, ε̃t+1, ., ε̃T , y
t−1, ỹt, ., ỹT )

εt − ε′t

]

= EP (mt,ĥt−1,σ̂)

[
lim
ε′t→εt

Û(εt−1, εt, ε̃t+1, ., ε̃T , y
t−1, ỹt, ., ỹT )− Û(εt−1, ε′t, ε̃t+1, ., ε̃T , y

t−1, ỹt, ., ỹT )

εt − ε′t

]

= EP (mt,ĥt−1,σ̂)

[
∂Û(εt−1, εt, ε̃t+1, ., ε̃T , y

t−1, ỹt, ., ỹT )

∂εt

]
∈ [−At, At],

which implies that, for any plan of action σ̂, the expected payoff Eµ[Ω̂,σ̂]|mt,·,ĥt−1
[
Û(ε̃, ỹ)

]
is At-

Lipschitz continuous and differentiable in εt. The result then follows from essentially the same

arguments that establish Theorem 2 in Milgrom and Segal (2002):10 the value function V̂ Ω̂(·, ĥt−1)

9To be precise, it also does not depend on the true shocks experienced prior to period t; that is, it depends on the
history (εt, ĥt−1) = (εt, ε̂t−1, yt−1) only through the reported shocks ε̂t−1 and the past decisions yt−1.
10Theorem 2 in Milgrom and Segal (2002) establishes only that the value function is absolutely continuous; this

is because that theorem assumes that the payoff is differentiable with an integrable bound instead of differentiable
and equi-Lipschitz continuous. It is however immediate to see that the same arguments that establish Theorem 2 in
Milgrom and Segal also establish that the value function is equi-Lipschitz continuous under the stronger assumptions
considered here.
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is Lipschitz continuous in εt and at any history (εt, ĥ
t−1) at which Ω̂ is IC and V̂ Ω̂(·, ĥt−1) is

differentiable
∂V̂ Ω̂(εt, ĥ

t−1)

∂εt
= Eµ̂[Ω̂]|εt,ĥt−1

[
∂Û(ε̃, ỹ)

∂εt

]

where µ̂[Ω̂]|εt, ĥt−1 is the measure over E × E × Y induced by assuming that, starting from period

t the agent follows a truthful strategy at all current and future information sets.

Proof of Proposition 2. For any t and any (εt, yt) ∈ E t × Y t, let

ût(ε
t, yt) ≡ ut(zt(εt; yt−1), yt),

so that, under assumption 1,

Û(ε, y) ≡ U(z(ε; y), y) =
T∑
t=1

ût(ε
t, yt).

The result follows from combining the following two lemmas below.

Lemma 3 Fix t. Suppose that, for any τ ≥ t, there exists a Dt,τ ∈ R+ such that (a) for all

(ετ−t, y
τ ) ∈ Eτ−t×Y τ , the function ûτ (·, ετ−t, yτ ) is Dt,τ -Lipschitz and differentiable, and (b)

∑T
τ=tDt,τ <

+∞. Then there exists an At ∈ R+ such that, for any (ε−t, y) ∈ E−t×Y, the function Û((·, ε−t), y)

is At-Lipschitz continuous and differentiable with

∂Û((εt, ε−t), y)

∂εt
=

T∑
τ=t

∂ûτ (ετ , yτ )

∂εt
.

Proof of the Lemma. Under the assumptions of the Lemma we have that

lim
ε′t→εt

Û((εt, ε−t, y)− Û((ε′t, ε−t), y)

εt − ε′t
= lim

ε′t→εt

T∑
τ=t

ûτ ((εt, ε
τ
−t), y

τ )− ûτ ((ε′t, ε
τ
−t), y

τ )

εt − ε′t

=

T∑
τ=t

lim
ε′t→εt

ûτ ((εt, ε
τ
−t), y

τ )− ûτ ((ε′t, ε
τ
−t), y

τ )

εt − ε′t

=

T∑
τ=t

∂ûτ ((εt, ε
τ
−t), y

τ )

∂εt

where the second equality is by the Lebesgue dominated convergence theorem, since, for any
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(ε−t, y) ∈ E−t × Y, any εt, ε′t ∈ Et,

T∑
τ=t

∣∣∣∣ ûτ ((εt, ε
τ
−t), y

τ )− ûτ ((ε′t, ε
τ
−t), y

τ )

εt − ε′t

∣∣∣∣ ≤ T∑
τ=t

Dt,τ < +∞.

�

Lemma 4 Suppose the assumptions in Proposition 2 hold. Then for all τ ≥ t there exists Dt,τ ∈ R+

such that (a) for all (ετ−t, y
τ ) ∈ Eτ−t × Y τ , ûτ ((·, ετ−t), yτ ) : Et → R is Dt,τ -Lipschitz continuous and

differentiable with

∂ûτ ((εt, ε
τ
−t), y

τ )

∂εt
=

τ∑
l=t

∂uτ (zτ (ετ , yτ−1), yτ )

∂θl

∂zl(ε
l, yl−1)

∂εt
,

and (b)
∑T

τ=tDt,τ < +∞.

Proof of the Lemma. Fix (ετ−t, y
τ ) ∈ Eτ−t×Y τ and let zτ ((·, ετ−t); yτ−1) : Et → Rτ denote the

vector-valued function defined by

zτ ((εt, ε
τ
−t); y

τ−1) =
(
zs(ε

s; ys−1)
)τ
s=1
∀εt ∈ Et

Because each component function zs is differentiable in εt so is zτ ((·, ετ−t); yτ−1). The function

ûτ ((·, ετ−t), yτ ) : Et → R defined by

ûτ ((εt, ε
τ
−t), y

τ ) ≡ uτ (zτ ((εt, ε
τ
−t); y

τ−1), yτ ) ∀εt ∈ Et

is thus the composition of two differentiable functions and hence, by the chain rule, it is itself

differentiable and its derivative satisfies the formula in the statement of the lemma. Furthermore,∣∣∣∣∂ûτ ((εt, ε
τ
−t), y

τ )

∂εt

∣∣∣∣ ≤ τ∑
l=t

∣∣∣∣∂uτ (zτ (ετ , yτ−1), yτ )

∂θl

∣∣∣∣ ∣∣∣∣∂zl(εl, yl−1)

∂εt

∣∣∣∣
≤ Bτ

τ∑
l=t

Ct,l.

Thus ûτ ((·, ετ−t), yτ ) is Lipschitz continuous with constant Dt,τ = Bτ
∑τ

l=tCt,l. Finally we have

T∑
τ=t

Dt,τ =

T∑
τ=t

(
Bτ

τ∑
l=t

Ct,l

)
≤

T∑
τ=t

(
Bτ

T∑
l=t

Ct,l

)

=

(
T∑
l=t

Ct,l

)
T∑
τ=t

Bτ < +∞.
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Proof of Proposition 4. The proof consists in showing that assumptions ??, ??, 3, 4, 5, and

6 imply that the mapping z satisfies the properties of Proposition 2. Once this is established, the

result follows from Proposition 2.

Part (1). Using Lemma 2, for any t ≥ 1 any (εt, yt−1) ∈ E t × Y t−1,∣∣∣∣∂zt(εt; yt−1)

∂εt

∣∣∣∣ =
∣∣∣Îtt (εt, yt−1)

∣∣∣ ≤Mt (15)

(where the inequality follows from assumption 5). Furthermore, for any τ ≥ t ≥ 1 any (ετ , yτ−1) ∈
Eτ × Y τ−1, ∣∣∣∣∂zτ (ετ ; yτ−1)

∂εt

∣∣∣∣ =
∣∣∣Îtt (εt, yt−1)Jτt (ετ , yτ−1)

∣∣∣ ≤Mtk
τ
t (16)

(where the inequality follows from assumptions 5 and 6).

The function zτ ((·, ετ−t); yτ−1) : Et → Θτ is thus Ct,τ -Lipschitz continuous with constant Ct,τ

equal to the RHS of (15) if τ = t and to the RHS of (16) if τ > t. That
∑T

τ=tCt,τ < +∞ follows

directly by assumption 6.

Proof of Proposition 5. The proof shows that under the assumptions in the proposition the

mapping z satisfies the properties of Proposition 3. Once this is established, the result then follows

from Proposition 3.

For simplicity, we prove the result here for t = 1. Similar arguments establish the result for any

arbitrary t > 1. Part (1) establishes (Frechet) differentiability of z(·, ε−1; y) : E1 → Θ. Part (2)

establishes equi-Lipschitz continuity.

Part (1): Differentiability. Frechet differentiability of z(·, ε−1; y) : E1 → Θ is established

using the implicit function theorem (IFT) for Banach spaces. We simplify notation by treating z

as a function of ε1 only. That is, fix (ε−1, y) and drop it and let ε := ε1. Furthermore, to simplify

the derivation, assume that E1 = R. It is immediate to see that the formula in (4) can be obtained
from the results below by multiplying everything by Î1

1 (ε1) = dF−1
1 (ε1)/dε1.

For any t > 1, also let

ft(θ
t−1) := F−1

t (εt|θt−1, yt−1),

where εt and yt−1 are fixed and hence dropped. Notice that, given (ft)t≥2, z : R → Θ is defined
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implicitly as the solution to the system:

ε− θ1 = 0

f2(θ1)− θ2 = 0

...

ft(θ
t−1)− θt = 0

...

Equivalently,

ε− z1(ε) = 0

f2(z1(ε))− z2(ε) = 0

...

ft(z
t−1(ε))− zt(ε) = 0

...

Motivated by this observation we endow R × Θ with the norm ‖h‖R×Θ = supt δ
t |ht|, where t =

0, 1, 2, . . . with h0 ∈ R and h−0 ∈ Θ. (That is, ‖·‖R×Θ is just like the norm ‖·‖δ except that t starts
from 0 rather than 1.) This turns R×Θ into a Banach space (recall that ‖θ‖δ <∞ for all θ ∈ Θ).

Also note that while the results here assume that E1 = R and that Θ = R∞δ where R∞δ is the set of

all real sequences x ∈ R∞ such that ‖x‖δ < ∞, all the subsequent results extend to the case that
E1 $ R and that Θ $ R∞δ ).

We then define T : R×Θ→ Θ by

T (ε, θ) =



ε− θ1

f2(θ1)− θ2

...

ft(θ
t−1)− θt
...


.

So z is now implicitly defined as the unique solution to

T (ε, z(ε)) = 0.

By the IFT for Banach spaces if
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(1) T (ε′, z(ε′)) = 0 all ε′ ∈ R;
(2) T is Frechet differentiable;

(3) θ 7→ DT (ε, z(ε))(0, θ) is a Banach space isomorphism from Θ onto Θ,

then z is Frechet differentiable in a neighborhood of ε (Above the bounded linear operator

DT (ε, z(ε)) is the derivative of T at (ε, z (ε)).)

Condition 1 is true by construction. As for 2 and 3, define f1 : R → Θ1 by setting f1(ε) = ε.

Let f = (f1, f2, . . .) : R×Θ→ Θ. We then have

T (ε, θ) = f(ε, θ)− θ.

Throughout we adopt the convention of indexing an element x of R×Θ starting from zero so that

x = (x0, x1, . . .) with x0 ∈ R and x−0 ∈ Θ.

Simply writing out the definitions we have the following preliminary observation.

Lemma 5 Let f be Frechet differentiable at (ε, θ). Assume that each ft : Θt−1 → R, t ≥ 2, is

differentiable. Then the derivative of f at (ε, θ) is the bounded linear operator Df(ε, θ) : R×Θ→ Θ

defined by

Df(ε, θ)α =



α0

∇f2(θ1) · α1
−0

...

∇ft(θt−1) · αt−1
−0

...


where, for each t ≥ 1, ∇ft(θt−1) denotes the gradient of ft at θt−1.

Proof. Proof of the Lemma. The proof is standard and hence omitted.

Note that the assumption that f is Frechet differentiable is guaranteed by Assumption 7, while

that each ft : Θt−1 → R, t ≥ 2, is differentiable is guaranteed by Assumption 4. We then have the

following result.

Lemma 6 Assume that f is Frechet differentiable at (ε, θ). Then T is Frechet differentiable at

(ε, θ), and its derivative at (ε, θ) is the bounded linear operator DT (ε, θ) : R×Θ→ Θ defined by

DT (ε, θ)h = Df(ε, θ)h− h−0.

Proof. Proof of the Lemma. Note first that T maps from a Banach space into a Banach space.
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Since T (ε, θ) = f(ε, θ)− θ, the obvious candidate for its Frechet derivative is

DT (ε, θ)h = Df(ε, θ)h− h−0,

which is clearly linear. In order to show that DT (ε, θ) is a bounded operator, note that for all

h ∈ R×Θ,

‖DT (ε, θ)h‖δ ≤ ‖Df(ε, θ)h‖δ + ‖h−0‖δ
≤ B ‖h‖R×Θ + ‖h‖R×Θ

= (1 +B) ‖h‖R×Θ

< +∞

since B < +∞ and h ∈ Θ, which implies that ‖h‖R×Θ < +∞. The existence of the constant B
follows from the fact that the Frechet derivative of f is by definition a bounded operator. It remains

to show that DT (ε, θ) is the derivative of T at (ε, θ). We have

0 ≤ lim
h→0

‖T ((ε, θ) + h)− T (ε, θ)−DT (ε, θ)h‖δ
‖h‖R×Θ

= lim
h→0

‖f((ε, θ) + h)− θ − h−0 − f(ε, θ) + θ −Df(ε, θ)h+ h−0‖δ
‖h‖R×Θ

= lim
h→0

‖f((ε, θ) + h)− f(ε, θ)−Df(ε, θ)h‖δ
‖h‖R×Θ

= 0,

where the last equality follows by the assumed Frechet differentiability of f . �
We now turn to Condition (3). Let Ĵ ts denote the (inverse) impulse response functions, as

defined in the main text and note that, with the notation used in this proof, for any τ < t,

∂ft(z
t−1(ε))

∂θτ
:=

∂F−1
t (εt|zt−1(ε), yt−1)

∂θτ
= Îtτ ((ε, εt−1), yt−1).

Because (ε−1, y) is fixed, we then let Îtτ (ε) := Îtτ ((ε, εt−1), yt−1) and

Ĵ tτ (ε) =
∑

K∈N, l∈NK+1:
t=l0<···<lK=τ

K∏
k=1

Î lklk−1
(ε).

with Ĵ tt (ε) ≡ 1. We then have the following result.
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Lemma 7 Let f be Frechet differentiable. Fix ε ∈ R. If

lim
t→T

t−1∑
τ=0

δτ
∣∣∣Ĵ tt−τ (ε)

∣∣∣ <∞,
then θ 7→ DT (ε, z(ε))(0, θ) is a Banach space isomorphism from Θ onto Θ.

Proof. Proof of the Lemma. Fix ε and then drop it from all Î and Ĵ functions. By Lemma

6, T is Frechet differentiable at (ε, z(ε)) with derivative DT (ε, z(ε))α. We show first that θ 7→
DT (ε, z(ε))(0, θ) is onto. Fix u ∈ Θ. By Lemmas 5 and 6 we have

DT (ε, z(ε))(0, θ) = Df(ε, z(ε))(0, θ)− θ =



0− θ1

Î2
1θ1 − θ2

...∑t−1
s=1 Î

t
sθs − θt
...


.

Hence to find the preimage of u, we define θ recursively by

θ1 = −u1, (17)

θt = −ut +
t−1∑
s=1

Îtsθs for t > 1.

It remains to show that if u ∈ Θ, that is, if ‖u‖δ < ∞, then θ so constructed has ‖θ‖δ < ∞, and
hence θ ∈ Θ. We first use the above recursion to show by induction on t that

θt = −
t∑
l=1

Ĵ tl ul.

For t = 1 this is clearly true. Suppose it holds for all τ < t. We have

θt = −ut +

t−1∑
k=1

Îtkθk = −Ĵ ttut −
t−1∑
k=1

Îtk

k∑
l=1

Ĵkl ul = −
t∑

k=1

Ĵ tkuk,

which establishes the claim. Hence for all t,

δt |θt| ≤
t∑

k=1

δt−k
∣∣∣Ĵ tk∣∣∣ δk |uk| ≤ t−1∑

τ=0

δτ
∣∣∣Ĵ tt−τ ∣∣∣ ‖u‖δ ,
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implying that

‖θ‖δ ≤ ‖u‖δ sup
t

t−1∑
τ=0

δτ
∣∣∣Ĵ tt−τ ∣∣∣ .

We claim that if limt→∞
∑t−1

τ=0 δ
τ
∣∣∣Ĵ tt−τ ∣∣∣ < ∞, then supt

∑t−1
τ=0 δ

τ
∣∣∣Ĵ tt−τ ∣∣∣ < ∞ and the right-hand

side is finite. This can be seen as follows. Since f is Frechet differentiable, Df(ε, z(ε)) is a bounded

operator. Thus there exists B <∞ such that for all α ∈ R×Θ, all t ≥ 2,

B ‖α‖R×Θ ≥ ‖Df(ε, z(ε))α‖δ ≥ δ
t

∣∣∣∣∣
t−1∑
s=1

Îtsαs

∣∣∣∣∣ .
Now choose α such that ∃!τ ≥ 2 : ατ = 1 and αs = 0 for s 6= τ . Then the above inequality implies

that for all t > τ , ∣∣∣Îtτ ∣∣∣ ≤ Bδτ−t <∞.
By implication

∣∣∣Ĵ tτ ∣∣∣ <∞ for all t and all τ ≤ t. Thus for all t the sum
∑t−1

τ=0 δ
τ
∣∣∣Ĵ tt−τ ∣∣∣ is finite. Hence

the sup can be infinite only if it is approached as t→∞. But the limit is finite by Assumption 9.
We finish the proof by showing that θ 7→ DT (ε, z(ε))(0, θ) is an isomorphism. Recall that every

one-to-one bounded linear operator from a Banach space onto a Banach space is an isomorphism

(see, e.g., Corollary 1.6.6. in Megginson’s "An Introduction to Banach Space Theory"). Above

it was shown that θ 7→ DT (ε, z(ε))(0, θ) is onto, and it is obviously bounded. Hence it suffi ces

to show that θ 7→ DT (ε, z(ε))(0, θ) is one-to-one. Let θ, θ′ be such that DT (ε, z(ε))(0, θ) =

DT (ε, z(ε))(0, θ′). By inspection of the first line in the formula for DT (ε, z(ε))(0, θ) above, we

have θ1 = θ′1. But then the second line gives θ2 = θ′2, and so on. Thus θ = θ′ and hence

θ 7→ DT (ε, z(ε))(0, θ) is one-to-one as desired. �
The property in Lemma 7 that limt→T

∑t−1
τ=0 δ

τ
∣∣∣Ĵ tt−τ (ε)

∣∣∣ <∞ is guaranteed by Assumption 8.

Lemmas 5-7 together with the IFT thus establish Frechet differentiability of z(·, ε−1; y) : E1 → Θ.

Part (2): Lipschitz continuity. Next we address Lipschitz continuity of z. Let Ĵ1 :=

(Ĵ1
1 , Ĵ

2
1 , . . . , Ĵ

t
1, . . .). (Recall that Ĵ

1
1 ≡ 1.)

Lemma 8 Let ε ∈ R. Under the assumptions in the Proposition, the Frechet derivative of z at ε,
z′(ε) : R→ Θ, is given by

z′(ε)α = Ĵ1(ε)α.

Proof. Proof of the Lemma. Fix ε. Since z is Frechet differentiable at ε, there exists a bounded

linear operator z′(ε) : R→ Θ such that

lim
α→0

‖z(ε+ α)− z(ε)− z′(ε)α‖δ
|α| = 0.
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We will show by induction on t that z′(ε)α = Ĵ1(ε)α. Note first that the operator α 7→ Ĵ1(ε)α is

obviously linear. It is bounded, since for all α ∈ R,

∥∥∥Ĵ1(ε)α
∥∥∥
δ

= sup
t
δt
∣∣∣Ĵ t1(ε)α

∣∣∣ ≤ |α| sup
t

t−1∑
τ=0

δτ
∣∣∣Ĵ tt−τ (ε)

∣∣∣ < +∞

where the last inequality follows from the proof in the previous lemma. Now, by induction, suppose

that, for all τ < t, zτ : R→ Θτ is differentiable at ε with z′τ (ε) = Ĵτ1 (ε). Note that for t = 2 this is

trivially true since f1(ε) is linear. Next note that zt−1 := (z1, . . . , zt−1) : R→ Θt−1 is differentiable

at ε with gradient ∇zt−1(ε) = (Ĵ1
1 (ε), . . . , Ĵ t−1

1 (ε)). Since

0 = lim
α→0

‖z(ε+ α)− z(ε)− z′(ε)α‖δ
|α| ≥ δt lim

α→0

|zt(ε+ α)− zt(ε)− z′t(ε)α|
|α| ≥ 0,

zt is differentiable at ε with derivative z′t(ε). Furthermore, ft is differentiable by Assumption 4 so

that by the chain rule

z′t(ε) = lim
α→0

|zt(ε+ α)− zt(ε)|
|α|

= lim
α→0

∣∣ft(zt−1(ε+ α))− ft(zt−1(ε))
∣∣

|α|

=
t−1∑
τ=1

∂ft(z
t−1(ε))

∂θτ
Ĵτ1 (ε)

=
t−1∑
τ=1

Îtτ (ε)Ĵτ1 (ε)

= Ĵ t1(ε),

where the last two equalities follow by the definitions of Î and Ĵ . This establishes the inductive

step and concludes the proof. �
Assumption 9 then guarantees that there exists K1 <∞ such that for all ε,∥∥∥Ĵ1(ε)

∥∥∥
δ
≤ K1.

That z is Lipschitz continuous then follows from Lemma 8 together with Proposition 2 on p. 176

of Luenberger (1969).

Proof of Proposition 6. The initial steps of the proof are in the main text. Here we simply

prove that, under the assumptions in the proposition, the formula in (4) reduces to the one in (13).

First note that, under the assumptions in the proposition, from the implicit function theorem

30



applied to the identity

F−1
s (Fs(θs|θs−1, ys−1)|θs−1, ys−1) = θs

for any θs ∈ Θs, s > t, any (θs−1, ys−1), Fs(θs|θs−1, ys−1) is differentiable in θs−1. Next note that

the implicit function theorem applied to the identity

Fs(F
−1
s (εs|θs−1, ys−1)|θs−1, ys−1) = εs

implies that, for any t < s, εs, (θs−1, ys−1),

∂F−1
s (εs | θs−1, ys)

∂θt
= −

∂Fs(θs | θs−1,ys−1)
θt

∣∣∣
θs=F

−1
s (εs | θs−1,ys−1)

fs(θs | θs−1, ys−1)
∣∣
θs=F

−1
s (εs | θs−1,ys−1)

.

It follows that

Îst (εs, ys−1) ≡ −∂F
−1
s (εs | θs−1, ys)

∂θt

∣∣∣∣
θs−1=zs−1(εs−1;ys−2)

= −∂Fs(θs | θ
s−1, ys−1)/∂θt

fs(θs | θs−1, ys−1)

∣∣∣∣
θs−1=zs−1(εs−1;ys−2)

≡ Ist (θs|θs−1, ys−1)
∣∣
θs=zs(εs;ys−1)

.

and hence that

Ĵst (εs, ys−1) = Jst (zs(εs; ys−1), ys−1).

By the definition of independent-shock representation, we then have that

∂V Ω(zt(εt; yt−1), zt−1(εt−1; yt−2), yt−1)

∂θt
=

Eµ̂[Ω̂]|ε
t,εt−1,yt−1

[
T∑
τ=t

Jτt (zτ (ε̃τ ; yτ−1), yτ−1)
∂U(zT (ε̃T ; ỹT−1), ỹT )

∂θτ

]

= Eµ[Ω]|zt(εt;yt−1),zt−1(εt−1;yt−2),yt−1

[
T∑
τ=t

Jτt (θ̃
τ
, yτ−1)

∂U(θ̃, ỹ)

∂θτ

]
,

which is the same formula as in (13).

Proof of Proposition 8. First note that, because the environment is quasilinear and Markov (in

the sense of Definition 1), whether or not a bidder finds it optimal to report truthfully at any given

private history (θti,m
t−1
i , xt−1

i , pt−1
i ) depends only on his current type θi,t, the history of messages

he sent mt
i and the number of times he consumed in the past,

∑t−1
s=1 xi,s.
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Second note that, starting from period two onwards, and irrespective of whether the period-one

announcements were truthful or not, the allocation rule χ of Proposition 7 coincides with the one

that maximizes the sum of the bidders’continuation payoffs and of the seller’s adjusted continuation

payoff, where the latter is obtained by replacing each cost ci,t with the cost

ĉi,t := ci,t −
1− Fi,1(mi,1)

f1(mi,1)
.

Furthermore, because each player’s continuation payoff (including the seller’s adjusted continuation

payoff) depends only on his own types and decisions, it is immediate to see that truthtelling at any

period-t history, t ≥ 2, can be obtained by using for example the Team Mechanism payments of

Athey and Segal:

p∗i,t
(
θt
)

= −
∑

j=0,...,N
j 6=i

uj,t
(
χ∗t(θt), θt

)
(18)

for all i = 1, ..., N, all t ≥ 2, where uj,t
(
χ∗t(θt), θt

)
= θj,tχ

∗
j,t(θ

t) if j 6= 0 and u0,t

(
χ∗t(θt), θt

)
=

−
∑N

i=1 ĉi,tχ
∗
i,t(θ

t) if j = 0.

To establish incentive compatibility at t = 1, we use the analog of the weak monotonicity result

of Proposition 8 in PST (note that, while the result there is for the case where T is finite, it is

immediate to see that the same arguments apply to the case T =∞). We start with the following
result.

Lemma 9 Let χ∗ be the allocation rule of Proposition 7. Then for all i and θi,1

Eλ[χ∗]|θi,1,mi,1

[ ∞∑
t=1

δtχ∗i,t

((
mi,1, θ̃

t
i,−1

)
, θ̃
t
−i

)]

is nondecreasing mi,1.

Proof of the Lemma. To prove the lemma, it is convenient to note that, without loss, we

can think of the valuation process of bidder i as being generated as follows. First, θi,1 is drawn

according to Fi,1. Next, a sequence ηi = (ηi,k)
∞
k=1 is drawn according to the product measure

×∞k=1Gi(·|1, k). Then we take the innovation term following the kth time i wins the object to

be ηi,k. Now, while the distribution of θ (and even that of ε) depends on mi,1 through χ, the

distribution of η = (η1, . . . , ηN ) is independent of mi,1.

Fix i, θi,1, mi,1 and m′i,1 > mi,1. We establish the result by showing, by induction on k, that

for any realizations of θ−i,1 and of η and for all k, if bidder i’s kth win comes in period t given mi,1,

then it comes at some s ≤ t given m′i,1. To this end, fix an arbitrary realizations θ−i,1 and η. Let

k = 1 and suppose to the contrary that given mi,1 bidder i’s first win comes in period t, and given

32



m′i,1 it comes in period s > t. (If bidder i never wins given mi,1, then t = +∞ and the claim is

trivially true.) Note that, since (θ1, η) is fixed, the allocations are the same in both cases in periods

1, . . . , t− 1. Hence also the other bidders’realized Gittins indices in period t are the same in both

cases. Since i wins at t, his Gittins index γi,1(mi,1) must be the highest. But given the hazard

rate assumption and the form of the process for θi,t, the index γi,1(mi,1) is nondecreasing in mi,1.

Hence i must also win at t with m′i,1, a contradiction.

Next, suppose that the claim is true for some k ≥ 1. Assume to the contrary that the k + 1th

win given mi,1 comes in period t, and given mi,1 it comes in period s > t. Note that during periods

1, . . . , t− 1 bidder i wins k times in both cases. Also, since (θ1, η) is fixed, the remaining t− 1− k
wins go to the same bidders in both cases. In particular, since the Gittins index only depends

on the first message, the most recent valuation, and the number of times the bidder has won the

object, it must be that the other bidders’period-t Gittins indices are the same in both cases. Now,

since (θi,1, ηi) is fixed, bidder i’s realized period t valuation θi,t is the same in both cases since in

each case he won k times prior to period t. Thus we know that his period-t Gittins indices in the

two cases satisfy

γi,t(m
′
i,1, θi,t, k) = max

τ
E

∑τ
s=t δ

s−t
(
θ̃i,s − ci,s

)
∑τ

s=t δ
s−t | θi,t, k

− 1− Fi,1(m′i,1)

f1(m′i,1)

≥ max
τ
E

∑τ
s=t δ

s−t
(
θ̃i,s − ci,s

)
∑τ

s=t δ
s−t | θi,t, k

− 1− Fi,1(mi,1)

f1(mi,1)

= γi,t(m
′
i,1, θi,t, k),

where the inequality is by the hazard rate assumption. Thus, if i wins at t given mi,1, he must also

win at t given m′i,1. But this contradicts s > t.�
Now, consider the payment scheme such that p∗i,t is as in (18) for all t > 1, while for t = 1

p∗i,1 (θi,1) ≡ Eλ[χ∗]|θi,1

[ ∞∑
t=1

θ̃i,tχ
∗
i,t(θ̃

t
)−

∞∑
t=2

p∗i,t(θ̃
t
)

]
−
∫ θi,1

θi,1

D
[χ∗]
i (z, z) dz,

where

D
[χ∗]
i (z, z) ≡ Eλ[χ∗]|θi,1,mi,1

[ ∞∑
t=1

δtχi,t

((
mi,1, θ̃

t
i,−1

)
, θ̃
t
−i

)]
From the same arguments as in Proposition 8 in PST, one can then verify that, under the mechanism

Ω∗ = [χ∗, p∗], the agent finds it optimal to report truthfully at all histories and to participate in

period one. One can also check that each bidder’s expected payoff when his period-one type is the

lowest, i.e., at θi,1 = θi,1 is zero. That the mechanism Ω is optimal then follows from the same
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arguments that establish Proposition 5 in PST.
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