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Abstract

I study the properties of optimal long-term contracts in an environment in which the agent�s

type evolves stochastically over time. The model stylizes a buyer-seller relationship but the

results apply quite naturally to many contractual situations including regulation and optimal

income-taxation. I �rst show, through a simple discrete example, that distortions need not

vanish over time and need not be monotonic in the shock to the buyer�s valuation. These

results are in contrast to those obtained in the literature that assumes a Markov process with

a binary state space� e.g. Battaglini, 2005. I then show that the study of the dynamics of the

optimal mechanism can be signi�cantly simpli�ed by assuming the shocks are independent over

time. When the sets of possible types in any two adjacent periods satisfy a certain overlapping

condition (which is always satis�ed with a continuum of types) and some additional regularity

conditions hold, then the optimal mechanism is the same irrespective of whether the shocks are

the buyer�s private information or are observed also by the seller. These conditions are satis�ed,

for example, in the case of an AR(1) process, a Brownian motion, but also when shocks have a

multiplicative e¤ect as it is often the case in �nancial applications. Furthermore, the distortions

in the optimal quantities are independent of the distributions of the shocks and, when the buyer�s

payo¤ is additively separable, they are also independent of whether the shocks are transitory or

permanent. Finally, I show that assuming the shocks are independent not only does it greatly

simplify the analysis, it is actually without loss of generality.
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1 Introduction

Long-term contracting plays an important role in a variety of situations including trade, employ-

ment, regulation, taxation, and �nancial contracting. Most long-term relationships take place in

a �changing world�that is in an environment that evolves (stochastically) over time: the value a

buyer attaches to a good or a service, the production cost incurred by a seller, the productivity of

a worker, the return to a �nancial project, the parties�outside options, are all likely to change over

time in response to shocks to the environment. These changes are often anticipated at the mo-

ment of contracting, albeit not necessarily jointly observed by the parties. By implication, optimal

long-term contracts must be �exible to accommodate such changes and be designed in a way that

provides the parties with incentives to share the information they gradually learn over time.

Understanding the properties of optimal long-term contracts is important both from a positive

and a normative viewpoint. Unfortunately, the characterization of optimal long-term contracts

for stochastic environments can be tedious which possibly explains why the literature on optimal

dynamic contracts is relatively thin and most of the existing results established only for special

cases.

The purpose of this paper is to suggest a convenient way of describing the evolution of the

environment which facilitates the characterization of optimal long-term contracts. I then use such a

characterization to address the following questions: What are the dynamics of the optimal decisions,

such as the supply of quantity/quality over time? When do distortions vanish in the long-run?

Under what conditions does it matter whether the �shocks�(i.e. the changes to the environment)

are privately observed instead of being jointly observed by the parties? When is the nature of the

shocks (i.e. whether they are transitory or permanent) irrelevant for the dynamics of the optimal

decisions?

The model I consider stylizes a dynamic buyer-seller relationship. However, the techniques and

the results apply more generally to many other environments, including the applications mentioned

above.

In the �rst part of the paper, I use a simple example to argue that the results obtained in

the literature that assumes a Markov process with a binary state space� e.g. Battaglini, 2005

and Battaglini and Coate, 2007� need not extend to more general stochastic processes, such as a

Brownian motion, or an AR(1) process. In particular, I show that distortions need not vanish in

the long-run, can be larger in the future than in the present and need not be monotonic in the

shocks to the buyer�s valuation.

In the second part of the paper, I then consider environments in which the shocks are independent

over time (but where types are correlated!). Assuming independent shocks greatly simpli�es the

analysis.



I �rst consider the case where the buyer�s valuation (his type) follows a continuous process and

then the case of �nitely many types. In both cases, the approach I follow to characterize the optimal

mechanism is the following. First, I derive necessary conditions for incentive-compatibility that are

the analog in a dynamic setting of the familiar envelope conditions for static environments. Next, I

de�ne a relaxed program that consists of maximizing the seller�s intertemporal expected payo¤under

the sole constraints that the mechanism satisfy the necessary conditions for incentive-compatibility.

Thanks to the assumption of independent shocks, the solution to the relaxed program is extremely

simple and illuminative. Letting �1 denote the buyer�s type in period one, �t = (�2; :::; �t) the vector

of shocks experienced by the buyer up to period t; and vt(�1; �t) the buyer�s period-t valuation,

the dynamics of distortions in the optimal mechanism are governed entirely by the dynamics of

@vt(�1; �
t)=@�1; i.e. by the sensitivity of future valuations to the buyer�s initial type. In particular,

the dynamics of distortions are completely independent of the distributions of the shocks: For

example, when the agent�s valuation follows a random walk (or, in continuos time, a Brownian

motion), then �t = vt(�1; �t) = �1 + �2 + � � �+ �t, in which case distortions are constant over time
and depend only on the hazard rate of the distribution of the buyer�s �rst-period valuation. In

contrast, in the case of an AR(1) process, �t = vt(�1; �t) = at�t�1+ �t in which case distortions are

governed by the dynamics of
Q
at. If at = a for all t with a 2 (0; 1); then distortions eventually

vanish over time, as predicted by Battaglini�s model. More generally, however, distortions need

not be monotonic neither in time nor in the magnitude of the shocks and need not vanish in the

long-run.

I also show that, when the optimal mechanism solves the relaxed program, then it has the

following properties: (i) the quantity schedules (as well as the players�payo¤s) coincide with the

ones the seller would o¤er if the shocks were jointly observed by both parties; (ii) the seller may

�nd it optimal to exclude a buyer for a few periods and then serve him again once his virtual

valuation has su¢ ciently improved; (iii) high-valuation buyers may receive smaller quantities than

low-valuation ones, as a function of how their valuations evolved over time; (iv) it is never optimal

for the seller to transfer the ownership of the production technology to the buyer. Once again all

these properties are in contrast to those that one obtains in a model with a binary type space.

Because the aforementioned properties refer to the solution to the relaxed program, it is im-

portant to understand under what conditions the latter coincides with the optimal mechanism. In

other words, when are the necessary conditions also su¢ cient? In static environments the answer

is know to rest upon the combination of two properties: the fact that the allocations are monotonic

in the agent�s type and the fact that the agent�s preferences satisfy the single-crossing property.

Unfortunately, in a dynamic setting, these properties alone do not guarantee that the solution to

the relaxed program is indeed incentive-compatible.
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The su¢ cient conditions I identify are the analog of those in Eso and Szentes (2007) adapted

to the multi-period-multi-decision setting considered here. These conditions are based on the

following two properties. That the process is Markov and that the quantity schedules satisfy a

strong monotonicity condition. This condition requires that, holding constant the evolution of the

buyer�s type up to period t� 1 and the value of the buyer�s valuation from period t+ 1 to period

s � t + 1; the quantity supplied in period s be monotonic in the shock (equivalently, the buyer�s
type) in period t:

Following essentially the same reverse-engineering as in Eso and Szentes (2007), I then show

how one can back up the primitive conditions for the underlying stochastic process that guarantee

that the solution to the relaxed program satis�es the strong monotonicity property. The advantage

of describing the evolution of the state (i.e. the buyer�s type) through a sequence of indepen-

dent innovations (as opposed to a sequence of conditional distributions, as it is standard in the

literature� e.g. Baron and Besanko, 1984, Courty and Li, 2000) stems also from the possibility of

identifying such su¢ cient conditions.

Next, I consider stochastic processes with �nitely-many types. In this case, the aforementioned

properties (Markov + strong monotonicity) do not su¢ ce for the optimal mechanism to coincide

with the solution to the relaxed program. If, however, in addition to these properties, a certain

overlapping condition holds which requires that the set of possible types in any two adjacent periods

overlap enough, then the same results established for the case with a continuum of types obtain:

the optimal mechanism coincides with the one the seller would o¤er if the buyer could lie only once,

as it is the case with observable shocks.

The natural question to ask at this point is how restrictive is the assumption of independent

shocks? I show that any process in which the distribution of �t given (�1; :::; �t�1) is continuous and

strictly increasing in �t can be represented through a collection of real valued functions vt and ran-

dom variables �t such that �t = vt(�1; �
t) with (�1; �t) jointly independent. Assuming independent

shocks is thus without loss of generality in the case of a continuous process. The characterization

of the necessary conditions for incentive-compatibility and the corresponding solution to the re-

laxed program are thus general. On the other hand, the su¢ cient conditions described above also

require the process to be Markov, the functions vt(�1; �t) to be increasing in each argument, and

the quantity schedules that solve the relaxed program to be strongly monotonic. The monotonic-

ities of vt are always satis�ed under �rst-order-stochastic-dominance. Strong monotonicity of the

schedules is satis�ed when, in addition to the aforementioned properties, the distribution of the

agent�s type in period one is log-concave and the conditional distributions Ft(�t; �t�1) are such that
[@Ft(�t; �t�1)=@�t�1] = [ft(�t; �t�1)] are increasing in both �t and �t�1, a property that is satis�ed by
many continuous processes. Assuming independent shocks is thus not only convenient, but actually
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less restrictive than one may think.

The rest of the paper is organized as follows. Section 2 contains the model. Section 3 illustrates,

by means of a simple (�nite) example, why the results obtained with binary types need not extend

to more general stochastic processes. Section 4 contains all the results for independent shocks.

Finally, Section 5 discusses in what sense the assumption of independent shocks is not restrictive.

2 The environment

Consider a buyer-seller relationship that evolves over T 2 N periods. Both the buyer and the seller
are risk-neutral and have preferences represented, respectively, by

U =
TP
t=1
�t�1[�tqt � pt] and � =

TP
t=1
�t�1[pt � Ct(qt)]

where qt 2 R+ denotes the quantity received by the buyer in period t; �t the buyer�s period-t

valuation, pt the total price paid to the seller in period t, Ct(qt) the cost to produce and supply

qt; and � > 0 the common discount factor. The function Ct : R+ �! R is strictly increasing and
convex with C 0t(0) = 0 and limq!1C

0
t(q) = +1; for all t:

The evolution of the buyer�s valuation is conveniently described through a collection of functions

vt : Rt �! R such that, for any t > 1;

�t = vt(�1; �
t)

where �1 denotes the buyer�s valuation in period one while �t � (�2; :::; �t) denotes the vector of

"shocks" experienced by the buyer in the subsequent periods. Each function vt is equi-Lipschitz

continuous, strictly increasing, and twice continuously di¤erentiable, in each argument. The joint

distribution of
�
�1; �

T
�
is described by the c.d.f. 	 with support �1��2�� � ���T :With an abuse

of terminology, I will hereafter refer to �t 2 �t as the buyer�s �type�in period t; with

�t � f� 2 R : � = vt(�1; �t); (�1; �t) 2 �1 � �2 � � � � � �tg:

To simplify the description of the distortions in the optimal contracts, and without any serious loss

of generality, hereafter I assume that Ct(q) = q2=2 for all t; in which case the �rst-best schedules

are given by

qFBt (�1; �
t) = vt(�1; �

t) 8t and 8
�
�1; �

t
�

The sequence of events is the following.
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� At t = 0; the buyer privately learns �1.

� At t = 1; the seller o¤ers a mechanism ' = (M; �). The latter consists of a collection of

mappings

�t :M1 � � � � �Mt ! R+�R

that specify a price-quantity pair for each possible pro�le of messages mt � (m1; :::;mt) 2
M1 � � � � �Mt, withM � (M)Tt=1 and � � (�t)

T
t=1. A mechanism is thus equivalent to a

menu of long-term contracts with memory.

If the buyer refuses to participate in ', the game ends and both players obtain a payo¤ equal

to zero. If the buyer accepts to participate in '; he chooses a message m1 2 M1, receives a

quantity q1(m1), pays a transfer p1(m1); and the game moves to period 2.

� At t = 2, the buyer privately observes the shock �2. He then chooses whether to continue to
participate in ' or �walk away�from the relationship. If he walks away, the game ends and

both players�continuation payo¤s are zero. If he stays, he sends a new message m2 2 M2,

receives a new quantity q2(m1;m2), pays a transfer p2(m1;m2); and the game moves to period

3:

� � � �

� At t = T + 1 the game is over.

Remark. The game described above corresponds to an environment with one-side commitment:

the seller can perfectly commit to her long-term mechanism, but the buyer can walk away from the

relationship at any point in time.

2.1 Incentive-compatibility

Because the seller can fully commit, the Revelation Principle1 applies and, by implication, the

pro�t-maximizing mechanism can be characterized by restricting attention to direct mechanisms in

which the agent truthfully reveals his type �t at any point in time. Alternatively, one can restrict

attention to mechanisms in which the agent is asked to report his initial type �1 in period one and

the innovation �t at any subsequent period. Clearly, by virtue of the Revelation Principle, the two

approaches are equivalent. For reasons that will become clear from the subsequent exposition, I

�nd the latter approach more convenient. In what follows, I thus consider direct mechanisms

�t : �1 � �2 � � � � � �t ! R+�R
1See, among others, Gibbard (1977), Green and La¤ont (1977) and Myerson (1979).
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in which the buyer reports at each period the innovation �t instead of his type �t.
2 A direct

mechanism is incentive-compatible if, conditional on having reported truthfully in the past, the

buyer has the incentives to report truthfully in the present.3

Given the mechanism ' = (M; �), let ~Ut
�
�1; �

t; �̂1; �̂
t�1�

denote the continuation payo¤ for a

buyer whose initial type was �1, who experienced the shocks �t and who reported
�
�̂1; �̂

t�1�
in the

past. Assuming the function ~Ut solves the Bellman equation, then

~Ut

�
�1; �

t; �̂1; �̂
t�1�

= max
�̂t

n
vt(�1; �

t)qt(�̂1; �̂
t�1
; �̂t)� pt(�̂1; �̂

t�1
; �̂t)

+�E�t+1
h
~Ut+1

�
�1; �

t; �t+1; �̂1; �̂
t�1
; �̂t

�
j �1; �t

io
Now let Ut

�
�1; �

t
�
denote the buyer�s expected continuation payo¤ from period t onward when he

reported truthfully in the past and plans to report truthfully in all subsequent periods (i.e. his

equilibrium path continuation payo¤). Incentive compatibility then requires that, for any t and

any
�
�1; �

t
�
;

Ut
�
�1; �

t
�
= ~Ut

�
�1; �

t; �1; �
t�1� :

That is, a buyer who reported truthfully up to period t � 1 and who experiences a shock �t in
period t; (weakly) prefers to report truthfully from period t onward rather than lying in period t

and then choosing optimally what to report at any subsequent date.

The two-period case. As an illustration, suppose T = 2. Because there is no risk of confusion,

I then drop the subscript for the shock in period two.

First, consider the buyer�s incentives at t = 2: Let

U2 (�1; �) � v2(�1; �)q2(�1; �)� p2(�1; �) (1)

denote the buyer�s continuation payo¤ at t = 2 when he reported �1 truthfully at t = 1 and he

reports � truthfully at t = 2. Then let

~U2

�
�1; �; �̂1

�
� max

�̂

n
v2(�1; �)q2(�̂1; �̂)� p2(�̂1; �̂)

o
2Note that

�
�1; �

t
�
conveniently summarizes not only the buyer�s current valuation, �t;but the entire sequence of

past valuations, �t � (�1; :::; �t):
3One could also consider a stronger notion of incentive compatibility according to which the buyer has the incentives

to report truthfully in each period, regardless of whether he has reported truthfully in the past. Because of the
Revelation Principle, the two notions lead to the same optimal allocations. In fact, imposing incentive-compatibility
also o¤-equilibrium is just a way of describing the best action for the buyer, given any possible history. As I show
below, such a complete description is however unnecessary to establish the results.
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denote the maximal continuation payo¤ that the buyer can guarantee himself in the (sub)game

that starts at t = 2 when his true type in period one was �1, he reported �̂1; and then experienced

a shock � in period two. Incentive-compatibility at t = 2 requires that

U2 (�1; �) = ~U2 (�1; �; �1) 8 (�1; �): (2)

That is, conditional on having reported �1 truthfully in period one, the buyer �nds it optimal to

report � truthfully in period two.

Next, consider the buyer�s incentives at t = 1: Let

U(�1) � �1q1(�1)� p1(�1) + �E�fU2 (�1; �) j �1g (3)

denote the buyer�s expected payo¤ when his type is �1 and he plans to report truthfully in both

periods. Then let

~U(�1) � max
�̂1

n
�1q1(�̂1)� p1(�̂1) + �E�f ~U2

�
�1; �; �̂1

�
j �1g

o
denote the maximal payo¤ that type �1 can obtain by choosing optimally his reports in each period.

Incentive-compatibility at t = 1 then requires that

�1 2 argmax
�̂1

n
�1q1(�̂1)� p1(�̂1) + �E�f ~U2

�
�1; �; �̂1

�
j �1g

o
(4)

A mechanism is thus incentive-compatible if and only if (4) holds for any �1 and (2) holds for any

(�1; �) ; equivalently, if and only if

U(�1) = ~U(�1) 8�1: (5)

3 A simple (�nite) example

To illustrate the trade-o¤s that determine the structure of the optimal mechanism in the simplest

possible way, consider the following environment in which T = 2; �1 � f��; �g; � > 0, �� � ���� > 0,
and � � f�l; �m; �hg, with �h > �m > �l. The probability the buyer is a high type (equivalently, the
proportion of high types in the the cross section of the population) is Pr(�1 = ��) = v. Conditional

on �1, the probability of a high shock is Pr(�hj�1) = x(�1), the probability of an intermediate

shock is Pr(�mj�1) = �(�1) and the probability of a low shock is Pr(�lj�1) = 1 � �(�1) � x(�1);
with �x � x(��), �� = �(��); � � �(�) and x � x(�): For future reference, also let �� � �h � �m,
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�� � �m � �l and �� � �h � �l: Finally, without loss of generality, assume that

�2 = v2(�1; �2) = �1 + �2:

This simple environment su¢ ces to illustrate the logic of the results; as I show below, it also nests

Battaglini (2005) as a special case thus permitting us to illustrate what drives the results in his

paper and why they need not extend to more general processes.

In this environment, incentive-compatibility at t = 2 requires that

U2 (�1; �h)� U2 (�1; �m) � ��q2 (�1; �m) (6)

U2 (�1; �h)� U2 (�1; �l) � ��q2 (�1; �l) (7)

U2 (�1; �m)� U2 (�1; �l) � ��q2 (�1; �l) (8)

U2 (�1; �h)� U2 (�1; �m) � ��q2 (�1; �h) (9)

U2 (�1; �m)� U2 (�1; �l) � ��q2 (�1; �m) (10)

U2 (�1; �h)� U2 (�1; �l) � ��q2 (�1; �h) (11)

both for �1 = �� and for �1 = �: From (6)-(11) one can immediately see that a necessary con-

dition for incentive-compatibility at t = 2 is the familiar monotonicity condition according to

which q2 (�1; �) is nondecreasing in �: The following lemma further simplify the characterization of

incentive-compatibility.

Lemma 1 Take any pair of types �002 = v2(�1; �
00) and �02 = v2(�1; �

0); with �002 > �02 and suppose

that the period-2 contracts for these two types �2(�1; �
00) � (q2(�1; �

00); p2(�1; �
00)) and �2(�1; �

0) �
(q2(�1; �

0); p2(�1; �
0)); with �2(�1; �

00) 6= �2(�1; �
0), are designed in an incentive-compatible way, in

the sense that

�002q2(�1; �
00)� p2(�1; �00) � �002q2(�1; �0)� p2(�1; �0) (12)

�02q2(�1; �
0)� p2(�1; �0) � �02q2(�1; �00)� p2(�1; �00): (13)

Then,

(i) Any type �2 > �002 strictly prefers the contract �2(�1; �
00) to the contract �2(�1; �

0):

(ii) Any type �2 < �02 strictly prefers the contract �2(�1; �
0) to the contract �2(�1; �

00):

(iii) Any type �2 2 (�02; �002) strictly prefers the contract �2(�1; �0) to the contract �2(�1; �00) if
(12) binds and �2(�1; �

00) to �2(�1; �
0) if (13) binds.

Lemma 1 follows directly from the fact that the function g(�; q) � � � q satis�es the single
crossing property and thus has strictly increasing di¤erences. An immediate implication of Lemma
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1 is that, when the adjacent downstream local incentive-compatibility constraints (6) and (8) bind

(or, alternatively, when the adjacent upstream constraints (9) and (10) bind) and q2 (�1; �) is

monotonic in �, then all remaining constraints for t = 2 are satis�ed. Lemma 1 also permits us to

characterize the behavior of the buyer in period two when he misreported his type in period one.

Consider the payo¤ that �� expects from lying at t = 1 and then reporting � truthfully at t = 2.

The following is then a necessary condition for incentive-compatibility at t = 1:

U(�) � U(�) + ��q1(�) + �f�x[U2(�; �h) + ��q2(�; �h)] + �[U2(�; �m) + ��q2(�; �m)]

+ (1� �� x)[U2(�; �l) + ��q2(�; �l)]

� xU2(�; �h)� �U2(�; �m)� (1� �� x)U2(�; �l)g

(14)

Condition (14) can be conveniently rewritten as

U(�) � U(�) + ��q1(�) + �f(x� x)[U2(�; �h)� U2(�; �m)]

+ (�x+ ��� �� x)[U2(�; �m)� U2(�; �l)] + x��q2(�; �h)

+ ���q2(�; �m) + (1� �� x)��q2(�; �l)g

(15)

Now suppose that shocks are su¢ ciently �large� in the sense that �� � minf��;��g; so that
�� + �l � � + �m and �� + �m � � + �h and that the distribution of �2 given �� �rst-order-stochastic
dominates the distribution of �2, given �; i.e. x � x and x + � � x + �: Neglecting the other

incentive-compatibility constraints, it is then immediate that, to limit the rent of the high type, it

is optimal for the seller to set U(�) = 0 and to make the following downward adjacent incentive-

compatibility constraints binding

U2 (�; �h)� U2 (�; �m) � ��q2 (�; �m) (16)

U2 (�; �m)� U2 (�; �l) � ��q2 (�; �l)

Note that, what determines the expected surplus of the high type are not the values of the con-

tinuation payo¤s U2 (�; �) per se, but the "speed" at which the continuation payo¤s for the low

type changes with the shock �. Now suppose that, when searching for the optimal mechanism, the

only relevant constraints are the participation constraint for the low type at t = 1; U(�) � 0, the
incentive-compatibility constraints (16) for the low type at t = 2 and the incentive-compatibility

constraint (14) for the high type at t = 1 (any individually-rational and incentive-compatible mech-

anism must satisfy these constraints, but alone they do not necessarily guarantee that the buyer

�nds it optimal to participate and truthfully reveal his information in both periods). We then have
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the following result.

Lemma 2 Assume

�� � minf��;��g, �x � x and �x+ � � x+ �: (17)

Any solution to the relax program

Pr :

8<: max
�
E�1 f�1q1(�)� C(q1(�1)) + �E� [(�1 + �)q2(�1; �)� C(q2(�1; �)) j �1]� U(�1)g

subject to U (�) � 0; (15) and (16)

is such that all constraints in Pr bind and is characterized by the following quantities:

q1(�) = q
FB
1 (�);

q2(�; �) = q
FB
2 (�; �) 8�

q1(�) = maxfqFB(�)� �
1����; 0g;

q2(�; �h) = maxfqFB(�; �h)�
�

�
1��

��
x
x

�
��; 0g;

q2(�; �m) = maxfqFB(�; �m)�
�

�
1��

��
(x�x)��+���

�

�
; 0g;

q2(�; �l) = maxfqFB(�; �l)�
�

�
1��

��
(x+��x��)��+(1���x)��

1���x

�
; 0g:

The result in Lemma (2) is quite intriguing, for it suggests that, contrary to what indicated in

the literature, distortions in the contract for the low type need not decrease over time. But when

does the solution to the relaxed program actually coincide with the optimal mechanism, i.e. with

the solution to the following unrelaxed program?

P :

8>>>>>>>><>>>>>>>>:

max
�
E�1 f�1q1(�)� C(q1(�1)) + �E� [(�1 + �)q2(�1; �)� C(q2(�1; �)) j �1]� U(�1)g

subject to

U(�1) = ~U(�1) 8�1 (IC)

U (�1) � 0 8�1 (IR-1)

U2 (�1; �) � 0 8(�1; �) (IR-2)

The answer is in the following proposition.

Proposition 1 Assume Condition (17) holds. The solution to the relaxed program Pr coincides
with the solution to the unrelaxed program P if and only if the quantities q2(�; �) in Lemma (2) are
nondecreasing in �: When this is the case, the optimal mechanism has the following properties:

1. There are no distortions in the contract for the high type;

10



2. All quantities in the contract for the low type are downward distorted;

3. Distortions in period two are (weakly) higher than those in period one;

4. Distortions need not be monotonic in the magnitude of the shock �: In particular, distortions

can be higher after a favorable than an unfavorable shock to the buyer�s type.

It is useful to contrast the result in the previous proposition to the one in Battaglini (2005) for

the case �t 2 f��; �g for all t:

Proposition 2 (Battaglini) Assume �t 2 f��; �g for all t. The optimal contract has the following
properties.

(a) Generalized No Distortion at the Top: As soon as the buyer experiences a positive shock

which raises his valuation to ��; he receives �rst-best quantities thereafter.

(b) Vanishing Distortion at the Bottom: Distortions for the low type decrease over time and

vanish in the long-run.

Battaglini�s model is nested in this example by letting �� = �� = �� and then letting �x =

0 = 1��� x: The comparison between Propositions (1) and (2) uncovers interesting properties of
optimal long-term contracts. A form of Generalized No Distortion at the Top seems robust: as soon

as the buyer�s valuation reaches the maximal possible value for period t; then the seller provides

�rst-best output to the buyer thereafter. On the contrary, the Vanish Distortion at the Bottom does

not appear robust; it is sensitive to the assumption that high types cannot experience shocks that

further increase their valuations and likewise that low types cannot experience shocks that further

reduce their valuations. Such a property thus holds when the buyer�s valuation follows a Markov-1

process with a binary state space, but need not extend to more general Markov processes, as I further

discuss in the next section.4 Together these results o¤er an important message: What determines

the dynamics of distortions is the familiar trade-o¤between e¢ ciency and rent-extraction, evaluated

from period one�s perspective; not the fact that the agent�s current type is just a noisy predictor

of the agent�s future types, as suggested in the literature. Actually, this can be seen directly

from Battaglini�s model by considering the following transition probabilities: Pr(��j��) = 1 and

Pr(��j�) = � 2 (0; :5): The distortions in the contract for the low type are then constant over time,
despite the absence of perfect correlation. This result can also be seen from Proposition (1) by

letting �� = �� = ��. In this case, stochastic dominance simply requires that �x + �� > x: The

4The results that distortions need not decrease over time and need not be monotonic in the shocks extend to
environments in which shocks are "small" as compared to the initial type �1, i.e. to settings in which condition (17)
is violated.
Also note that, while in this paper I am assuming the seller can perfectly commit to her mechanism, the afore-

mentioned results extend to settings in which the seller can o¤er long-term contracts but cannot commit not to
renegotiate. Both results are available upon request.
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solution to the optimal mechanism then coincides with the one in Lemma (2) substituting �� and

�� with ��: There are no distortions in the contract for the high type, whereas the quantities in

the contract for the low type are given by

q1(�) = maxfqFB1 (�)� �
1����; 0g (18)

q2(�; �h) = maxfqFB2 (�; �h)�
�

�
1��

��
x
x

�
��; 0g

q2(�; �m) = maxfqFB2 (�; �m)�
�

�
1��

��
x+��x
�

�
��; 0g

q2(�; �l) = maxfqFB2 (�; �l)�
�

�
1��

�
��; 0g

The special case in which �t 2 f��; �g for all t is then nested with �x = 0 = 1 � � � x. In this case
there is no distortion for q2(�; �h); whereas the quantity the seller supplies in period two to a low

type whose valuation remains low is

q2(�; �m) = maxfqFB2 (�; �m)�
�

�
1��

��
�+��1
�

�
��; 0g

When � = 1; i.e. when the valuation of the high type is constant over time, q2(�; �m) = q1(�),

irrespective of �; i.e. irrespective of the level of correlation between the buyer�s valuations in the

two periods.

Another case of special interest is when the buyer�s types are correlated over time, but the shocks

to the buyer�s valuations are independent of �; i.e. when �x = x and �� = �: As one can immediately

see from Lemma (2), in this case distortions in the contract for the low type are constant over time

and do not depend on the shocks�distributions, i.e. on � and x. As I show in the next section, this

property holds more generally whenever there is enough overlap in the support of the distribution

of the agent�s type over time� a property that is always satis�ed with a continuum of types.

4 Independent shocks

From now on, consider the case in which �t is independent of both �1 and �s, for any s 6= t: A

special case of interest (for many applications) is the case in which the buyer�s valuation evolves

in continuous time following a Brownian motion (possibly with drift), but in which trade occurs

in discrete time. This case is nested in the model considered in this section. More generally, as I

show in Section 5, all continuous Markov processes can be reconducted to the class considered in

this section by appropriately specifying the distributions of the shocks and the vt functions.

In what follows, I �rst consider the case where both �1 and �t are drawn from a continuous

distribution, and then turn back to the case of �nitely-many types at the end of the section.

12



4.1 Continuum of types

Suppose that �1 is drawn from an absolutely continuous cumulative distribution function F with

log-concave density f strictly positive over �1 � [�; ��]: Next, assume that, for any t � 2;

�t = vt(�1; �
t)

with �t drawn from an absolutely continuous cumulative distribution function Gt with support

�t � [�
t
; ��t]. While for convenience I am restricting attention to environments with a compact

state space, the results extend to environments in which the supports of F and Gt coincide with

the entire real line as it is the case with Normally distributed shocks.

The functions vt are assumed to be strictly increasing and twice continuously di¤erentiable in

each argument. A special case of interest is that of a (possibly non-stationary) AR(1) process:

�t = at�t�1 + �t (19)

=
tQ
j=2

aj�1 +
tQ
j=3

aj�2 + � � �+ at�t�1 + �t

with aj 2 R+ for all j � 2: The case of independent types is then nested as aj = 0; for all j; while
the random-walk case is nested as aj = 1.

To illustrate the logic behind the characterization results, assume for a moment that T = 2 (to

save on notation, I then suppress the subscripts for v and �): The strategy I follow to characterize

the optimal mechanism is the same as in the previous section. First, I identify some necessary

conditions for incentive-compatibility; next, I maximize the seller�s expected revenue subject to

these conditions. Finally, I identify properties of the stochastic process that guarantee that these

conditions are also su¢ cient.

First, consider incentive-compatibility at t = 2. As it is standard, incentive compatibility

requires that, for any �1 2 �1 and any � 2 �;

U2(�1; �) = U2(�1; �) +

�Z
�

@v(�1; ~�)

@~�
q2(�1; ~�)d~�; (20)

with q2(�1; �) nondecreasing in �. Using the envelope theorem, we then have that incentive com-
patibility at t = 1 requires that, for any �1 2 �1;

U(�1) = U(�) +

Z �1

�

"
q1(s) + �

Z ��

�

@v(s; �)

@s
q2(s; �)dG(�)

#
ds (21)
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Abstracting from the monotonicity conditions, we then have that the seller�s relaxed problem can

be stated as follows.

Pr :

8>>>>>><>>>>>>:
max

q1(�);q2(�);U(�);U2(�)

Z ��

�
f�1q1(�1)� C(q1(�1))

+�

Z ��

�
[v(�1; �)q2(�1; �)� C(q2(�1; �))]dG(�)� U(�1)gdF (�)

s.t. (20), (21), U(�) � 0 and U2(�1; �) � 0 8(�1; �)

Integrating (21) by parts, we then have that the objective function in Pr can be rewritten as

Z ��

�
f
�
�1 � 1�F (�1)

f(�1)

�
q1(�1)� C(q1(�1)) +

+�

Z ��

�

��
v(�1; �)�

@v(�1; �)

@�1

1�F (�1)
f(�1)

�
q2(�1; �)� C(q2(�1; �))

�
dG(�)� U(�)gdF (�1):

It is then immediate that the solution to the program Pr is independent of the participation and
the incentive-compatibility constraints for t = 2 and is such that U(�) = 0 and

q1(�1) = max
n
qFB(�1)� 1�F (�1)

f(�1)
; 0
o

q2(�1; �) = max
n
qFB(�1; �)� @v(�1;�)

@�1

1�F (�1)
f(�1)

; 0
o

Turning to the general case in which T � 2 we can then rede�ne Pr to denote the relaxed program
in which the seller maximizes her period-1 expected payo¤ subject to the sole constraints that

U(�) = 0 and

U(�1) = U(�) +

Z �1

�
q1(s)ds

+

Z �1

�

(Z ��2

�
2

� � �
Z ��T

�
T

�
�
@v2(s; �2)

@s
q2(s; �2) + � � �+ �T

@vT (s; �
T )

@s
qT (s; �

T )

�
dW2

)
ds

for any �1 2 �1; where dW2 � dG2(�2)� � � � � dGT (�T ): We then have the following result.

Proposition 3 The solution to the relaxed program is given by the schedules

q1(�1) = max
n
qFB(�1)� 1�F (�1)

f(�1)
; 0
o

(22)

qt(�1; �
t) = max

n
qFB(�1; �

t)� @vt(�1;�
t)

@�1

1�F (�1)
f(�1)

; 0
o
; t � 2:

I will come back in a moment to the conditions that guarantee that the solution to the relaxed
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program coincides with the optimal mechanism. For the moment, suppose this is the case. The

optimal mechanism then has the following properties.

Corollary 1 Assume the optimal mechanism coincides with the solution to the relaxed program.

Then,

(i) the quantity schedules (as well as the players�payo¤s) coincide with the ones the seller would

o¤er if the shocks were jointly observed instead of being the buyer�s private information;

(ii) distortions may either increase or decrease over time, depending on the dynamics of the

sensitivity of the buyer�s future valuations to his initial type;

(iii) distortions are independent of the shocks�distributions;

(iv) the seller may �nd it optimal to exclude a buyer for a few periods and then serve him again

once his valuation has su¢ ciently improved;

(v) starting from t = 2; a high-valuation buyer may receive a smaller quantity than a low-

valuation buyer;

(vi) unless vs(�1; �s) is independent of �1 for all s � t; or �1 = ��, it is never optimal for the

seller to transfer the ownership of the production technology to the buyer.

Provided the optimal mechanism coincides with the solution to the relaxed program, then

whether the agent possesses private information about the shocks or not is irrelevant for the dy-

namics of the optimal quantities as well as for expected payo¤s. The only possible e¤ect of the

buyer�s private information about the shocks is on the dynamics of prices. In fact, as standard

with quasi-linear payo¤s, while the expected transfers are uniquely determined, their dynamics are

not. In particular, while with public shocks the seller can always ask the buyer to pay everything

up-front in period one, when the shocks are the buyer�s private information, it is key for truthful

information revelation to have the buyer pay also in subsequent periods.5

Next, consider parts (ii)-(iii). To better appreciate these parts, consider the case in which �t

follows an AR(1) process, as in (19). In this case,

qt(�1; �
t) = max

�
qFB(�1; �

t)�
tQ
s=2

as
1�F (�1)
f(�1)

; 0

�
: (23)

Whether distortions decrease or increase over time then depends on how the buyer�s initial type �1

impacts his future valuations. If as < 1 for all s; then distortions decrease over time. If however,

as = 1 for all s; as in the random walk case, or when �t follows a Brownian motion (possibly with

drift), then distortions remain constant over time. In this case the optimal mechanism is very

5One may think that the result in part (i) is a direct implication of the fact that the shocks are independent of
the buyer�s initial type. As shown below, this is not correct. Also note that the result relies on the fact that the
supports of the buyer�s valuations over any two adjacent periods exhibit enough overlapping (in a sense that will be
made clear below). This is always the case with the continuum, but not necessarily with �nitely-many types.
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simple. It�s a menu of long-term contracts according to which in each period the seller provides

the buyer a quantity equal to the �rst-best, net of a distortion that depends only on the buyer�s

�rst-period type. More generally, distortions may also be a¤ected by the shocks that the buyer

experiences over time, but are independent of the shocks�distributions.

Finally, consider parts (iv)-(vi). That the seller may �nd it optimal to exclude the buyer for

certain periods is an immediate implications of the fact that the buyer�s virtual valuation

vt(�1; �
t)� @vt(�1;�

t)
@�1

1�F (�1)
f(�1)

can become negative for a few periods and then turn positive again after a sequence of favorable

shocks. Similarly, that a high-valuation buyer may receive a lower quantity than a low-valuation

buyer is a direct consequence of the fact that the optimal mechanism exhibits memory : the quantity

that the buyer receives at any point in time is a function not only of the buyer�s current valuation

but also of how his valuation evolved over time.6 Finally, that it is essentially never optimal to

transfer the ownership of the production technology to the buyer is a consequence of the fact that

distortions do not disappear over time. Unless the buyer�s type in period one is the highest, or

unless after a certain point in time valuations become independent of the buyer�s initial type,

then it is optimal for the seller to maintain distortions throughout the entire relationship. This

immediately precludes the possibility of transferring ownership of the production technology to the

buyer, for in that case the buyer implements the �rst best thereafter.

I now turn to the conditions that guarantee that the optimal schedules coincide with those that

solve the relaxed program. First consider the following enlargement of the message space. For any

t � 2; let �
t
and �t be recursively de�ned by

vt(��1; �2; :::; �t�1; �
t
) = min�t and vt(�1; �

1
; :::; �

t�1
; �t) = max�t:

Then let
~�t = [�

t
; �t]

This enlargement of the message space is redundant when Supp[Gt] is unbounded; when instead

it is bounded, it is a simple trick that permits us to describe in a convenient way the buyer�s

behavior o¤ equilibrium. In fact, note that ~�t is constructed so that the buyer can reveal his true

valuation in period t, for any possible history of past reports (i.e. even after misreporting the shocks

experienced in the past). Clearly in equilibrium, the only messages that the buyer will send are

6That the optimal contract exhibits memory is a property that holds true also in models with a binary type space.
However,in those models high-valuation buyers always receive at least as much quantity as low valuation ones.
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those that belong to the intervals �t � Supp[Gt]:
Now suppose the following condition holds (all subsequent conditions are meant to hold over

the extended state space �� ~�1 � � � � � ~�T :)

Condition 1 (Markov property) For any t, any s > t, and any
�
�t+1; :::; �s

�
,

vs(�1; �
t; �t+1; :::; �s) = vs(

~�1; ~�
t
; �t+1; :::; �s)

for any pair of histories
�
�1; �

t
�
and (~�1; ~�

t
) such that vt(�1; �t) = vt(~�1; ~�

t
):

Together with the assumption of independent shocks, this condition implies that the buyer�s

valuation follows a Markov process: for any t and any history of valuations ht � (�1; :::; �t); the

distribution of (�t+1; �t+2; :::; �T ) given ht depends only on �t.

Next, consider the following property.

Condition 2 (Strong monotonicity) The quantity schedules qt(�) are nondecreasing in each ar-
gument and satisfy the property that, for any t � 2; any s � t+ 1, any (�t+2; :::; �s); and any pair
(�1; �

t�1; �t; �t+1) and (�1; �
t�1; ~�t; ~�t+1) such that vt+1(�1; �

t�1; �t; �t+1) = vt+1(�1; �
t�1; ~�t; ~�t+1),

7

qs(�1; �
t�1; �t; �t+1; �t+2; :::; �s) � (resp. �) qs(�1; �t�1; ~�t; ~�t+1; �t+2; :::; �s)

if and only if �t � ~�t (resp. �t � ~�t); similarly, for any (�1; �2) and (~�1; ~�2) such that v2(�1; �2) =
v2(~�1; ~�2) and for any (�3; :::; �s), qs(�1; �2; :::; �s) � (resp. �) qs(~�1; ~�2; �3; :::; �s) if and only if
�1 � ~�1 (resp. �1 � ~�1).

Together with the Markov property, this condition guarantees that, holding constant the buyer�s

valuation from period one to period t� 1 and from period t+1 to period s, the quantity the seller

provides in period s is higher the higher the shock (and hence the buyer�s valuation) in period t:

In other words, an unfavorable shock in period t followed by a favorable one in period t + 1 leads

to smaller future quantities than a favorable shock in period t followed by an unfavorable one in

period t+ 1 that result in the same period t+ 1 valuation.

Note that the schedules that solve the relaxed program always satisfy the monotonicity prop-

erties of Condition (2) when the agent�s valuation follows an AR(1) process� as de�ned in (19).

By implication, these conditions are also satis�ed when the agent�s valuation evolves in continuous

time following a Brownian motion. Furthermore, these conditions are also satis�ed for example in

7 If t = 2; drop �t�1 from all expressions. Similarly, if s = t+ 1; then drop (�t+2; :::; �s):
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the case of multiplicative shocks,8 i.e. when

vt(�1; �
t) = �1 � �2 � � � � � �t (24)

with Supp[Gs] � R+, for any s: In this case, the schedules that solve the relaxed program are

qt(�1; �
t) = max

n
(�2 � � � � � �t)

h
�1 � 1�F (�1)

f(�1)

i
; 0
o
:

We then have the following result.

Proposition 4 Suppose the buyer�s valuation follows a Markov process and that the schedules of

Proposition 3 satisfy the strong monotonicity properties of Condition (2). Then in any optimal

mechanism the quantity schedules coincide with those in Proposition 3.

The proof of Proposition 4 in the Appendix is in two steps. First, I show how starting from

t = T and proceeding backward one can construct recursively a pro�le of transfers that have the

following property: if the buyer reported truthfully up to period t�1 he prefers reporting truthfully
from period t onward rather than lying in period t and then reporting truthfully thereafter. In each

period, these transfers are uniquely determined by the quantity schedules up to a scalar that can be

set optimally to guarantee participation. The second step then shows how incentive compatibility

can be established recursively, again starting from t = T: Using the trick of the enlarged message

space, the best the buyer can do after lying in period t by reporting a shock �̂t 6= �t is to lie again
in period t+ 1 by reporting a shock �̂

�
t+1 = �̂

�
t+1(�1; �

t�1; �t; �̂t; �t+1) implicitly de�ned by

vt+1(�1; �
t�1; �̂t; �

�
t+1) = vt+1(�1; �

t�1; �t; �t+1)

and then reporting truthfully from period t+2 onward. This property is an immediate consequence

of the fact that the buyer�s valuation follows a Markov process and of the fact that (by recursive

construction) the mechanism is incentive compatible (on the equilibrium path) from period t + 1

onward. Because the buyer�s (equilibrium) continuation payo¤s are increasing in the present and

future level of trade, we then have that, when the quantity schedules satisfy the monotonicity

properties of Condition (2), the surplus the seller leaves to the buyer when the latter can lie

only once is large enough to discourage him from lying also when he can misrepresent his private

information multiple times.

The next proposition (which is technical and with little economics) identi�es properties of the

8The case of multiplicative shocks seems particularly appropriate in the contest of borrower-lender relationships,
in which case the shocks represent variations in the return to invested capital.
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stochastic process that guarantee that indeed the schedules of Proposition 3 satisfy the monotonicity

properties of Condition (2).

Proposition 5 Suppose that, in addition to the Markov property, the buyer�s valuations satisfy the

following conditions.

(i) vt(�1; �t) are concave in �1 and
@2vt(�1;�

t)
@�1@�s

� 0 for any (�1; �t); s � t.
(ii) For any t � 3, any s � t and any (�1; �t; �t+1; :::; �s)

@2vs(�1; �
t; �t+1; :::; �s)

@�1@�t�1

@vt(�1; �
t)

@�t
�
@2vs(�1; �

t; �t+1; :::; �s)

@�1@�t

@vt(�1; �
t)

@�t�1
;

Similarly, for t = 2 and any (�1; �2; :::; �s); s � 2;

@2vs(�1; �2; :::; �s)

@�21

@v2(�1; �2)

@�2
� @2vs(�1; �2; :::; �s)

@�1@�2

@v2(�1; �
t)

@�1
:

Then the quantity schedules of Proposition 3 satisfy the monotonicity properties of Condition

(2).

Transitory shocks. I now turn to the case in which the shocks �t have no persistent e¤ect

on the buyer�s valuation. In this case, Condition (1) is violated� these processes are clearly not

Markov. Nevertheless, essentially the same conditions that guarantee that the optimal mechanism

coincides with the solution to the relaxed program in the case of a Markov process guarantee that

the same holds true in the case of a stochastic process with transitory shocks.

Proposition 6 Suppose there exist functions zt : R2 �! R such that vt(�1; �t) = zt(�1; �t), for any
(�1; �

t) and any t:

(i) Assume the schedules of Proposition 3 are nondecreasing and, for any pair
�
�1; �

t
�
and

(~�1; ~�
t
) such that vt(�1; �t) = vt(~�1; ~�

t
),

qt(�1; �
t) � (resp. �) qt(~�1; ~�

t
) if and only if �1 � ~�1 (resp. �1 � ~�1):

Then in any optimal mechanism the quantity schedules coincide with those in Proposition 3.

(ii) Assume Condition (i) in Proposition 5 holds and, for any t � 2;

@2vt(�1; �
t)

@�21

@vt(�1; �
t)

@�t
� @2vt(�1; �

t)

@�1@�t

@vt(�1; �
t)

@�1
:

Then the quantity schedules of Proposition 3 satisfy the monotonicity properties of part (i) of

this proposition.
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An example of a stochastic process with transitory shocks that satis�es the conditions in the

preceding proposition is the following:

vt
�
�1; �

t
�
= ��1 + (1� �)�t

with � 2 (0; 1) and Supp[Gt] = Supp[F ] for all t: This is a stochastic process in which the set of
possible types is stationary over time, i.e. �t = �1 for all t but which violates the Markov property.

The dynamics of distortions is then extremely simple and given by

d1(�1) � qFB1 (�1)� q1(�1) = 1�F (�1)
f(�1)

while for any t � 2

dt(�1; �2; :::; �t) � qFBt (�1; �2; :::; �t)� qt(�1; �2; :::; �t) = �1�F (�1)f(�1)

Holding constant the buyer�s valuation, distortions thus exhibit a downward discontinuity from

period one to period two and are constant thereafter.

This example together with the random walk version of (19) thus suggests a possible explana-

tion of what drives the results in Battaglini�s two-type model. The property that distortions in the

optimal contract vanish over time appears to be a consequence of the combination of two assump-

tions: that the buyer�s valuation follows a Markov process and that the set of possible valuations is

bounded and stationary over time. If the buyer�s valuations follow a Markov process but the set of

possible valuations is either unbounded or it changes over time, as in the random walk case, then

distortions need not vanish. Likewise, if the set of possible valuations is bounded and stationary

over time, but valuations do not follow a Markov process, as in the last example, then again there

is no reason to expect distortions to disappear in the long-run.

The following observation is then an immediate implication of the preceding results.

Corollary 2 Consider the following two processes:

(a) vt(�1; �t) = at�t�1 + �t =
tQ
j=2

aj�1 +
tQ
j=3

aj�2 + � � �+ at�t�1 + �t

(b) vt(�1; �t) =
tQ
j=2

aj�1 + �t

for some (aj)Tj=1 2 RT+: The dynamics of distortions in any optimal mechanism are the same for

(a) and (b).
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What di¤erentiates the two processes in Corollary 2 is only the persistence of the shocks. Such

a distinction, however, need not be relevant for the dynamics of distortions. The result holds more

generally for any pair of processes for which the optimal mechanism coincides with the solution

to the relaxed program and for which the dynamics of the sensitivity @vt(�1; �t)=@�1 of future

valuations to the buyer�s initial type is the same.

4.2 Finitely-many types

Consider now the same model with independent shocks examined above, but assume that in each

period there are �nitely many types. Continue to denote by F (�1) the c.d.f. of the buyer�s �rst

period type but now let f(�1) denote the corresponding probability distribution function instead

of the density. Without loss, then order the buyer�s �rst-period types so that �11 < �
2
1 < � � � < �N1

and, for any n; let ��n � �n+11 � �n1 with ��N � 0: Then for any t � 2 let

��nvt(�
n
1 ; �

t) � vt(�n+11 ; �t)� vt(�n1 ; �t)

with again ��N vt(�
n
1 ; �

t) � 0:
The support of the shocks�distributions Gt is now a �nite set �t: As in the previous section,

let ~�t denote the extended message space de�ned recursively by

~�t = f~�t 2 R s.t. vt(�1; ~�
t�1
; ~�t) = �t for some �t 2 �t and (�1; ~�

t�1
) 2 �t � ~�t�1t g:

As in the previous section, these extended message spaces simply permit the buyer to reveal his

type in period t after having lied in the past:

Now suppose the seller can observe the shocks (but not the buyer�s initial type �1). Then

consider the relaxed program in which the seller maximizes her expected payo¤ subject to the sole

constraints that each type �1 must �nd it optimal to participate in the seller�s mechanism in period

one (but not necessarily thereafter) and truthfully reveal his type. Call this relaxed program Pr:
We then have the following result.

Lemma 3 Suppose the schedules

q1(�
n
1 ) = max

n
qFB(�n1 )���n

�
1�F (�n1 )
f(�n1 )

�
; 0
o

qt(�
n
1 ; �

t) = max
n
qFB(�n1 ; �

t)���nvt(�n1 ; �t)
�
1�F (�n1 )
f(�n1 )

�
; 0
o
; t � 2

are increasing in each argument. Then they solve the relaxed program Pr.

Now suppose the supports of the buyer�s valuations overlap enough in the sense de�ned by the
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following condition.

Condition 3 (Overlapping supports) Let �t and �
0
t be any two adjacent shocks for period t � 2;

with �t < �
0
t. Then for any pair of adjacent shocks �t+1 and �

0
t+1 with �t+1 > �

0
t+1and any s � t+1

vs(�1; �
t�1; �t; �t+1; �t+2; :::; �s) = vs(�1; �

t�1; �0t; �
0
t+1; �t+2; :::; �s); 8 (�1; �t�1; �t+2; :::; �s)

Similarly, for any pair of adjacent period-1 types �1 and �01, with �1 < �
0
1, and any pair of adjacent

shocks �2 and �
0
2 with �2 > �02; vs(�1; �2; �3:::; �s) = v2(�

0
1; �

0
2; �3; :::; �s) for any s � 2 and any

(�3; :::; �s) :

When the overlapping condition holds, the result in Proposition 4 that the optimal schedules

coincide with those that the seller would o¤er when the shocks are jointly observed continues to

hold.

Proposition 7 Suppose the buyer�s valuation follows a �nite Markov process with independent

shocks and that the overlapping support condition holds. Assume the schedules in Lemma 3, ex-

tended over the enlarged state space �� ~�T , satisfy the strong monotonicity properties of Condi-
tion 2. Then in any optimal mechanism the quantity schedules coincide with those in Lemma 3

and each player obtains the same expected payo¤ as when the shocks to the buyer�s valuation are

jointly observed.

An example of a stochastic process that satis�es the conditions in Proposition 7 is the process

considered in Section 3: vt(�1; �t) = �1 +
Pt
s=2 �s, with �1 = f�; ��g, �t = f�h; �m; �lg, �h = +��;

�m = 0; �l = ���; Pr(�1 = ��) = v, Pr(�t = �h) = x and Pr(�t = �m) = �, for all t: In this case,
the optimal schedules are

qt(�1; �
t) =

8<: qFB(�1; �
t) if �1 = ��

max
n
qFB(�1; �

t)� v
1�v��; 0

o
if �1 = �

In this example distortions in the contract for the low type are constant over time and have the

familiar structure dt(�; �t) = v��=(1� v) for all t:
This example also illustrates the role of the overlapping condition. For simplicity, assume T = 2.

To induce the buyer to reveal truthfully the shock �2, the seller can make all downward adjacent

incentive-compatibility constraints for period two binding. This accounts to choosing prices p2(�1; �)

such that

U2 (�1; �h)� U2 (�1; �m) = ��q2 (�1; �m) (25)

U2 (�1; �m)� U2 (�1; �l) = ��q2 (�1; �l) (26)
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for both �1 = � and �1 = ��. Lemma 1, then implies that a high type who mimics the low type in

period one and then experiences a shock �h strictly prefers to report the shock truthfully in period

two than lying, whereas he is indi¤erent between reporting the true shock or one just below it when

the shock he experiences is either �m or �l: This in turn implies that, when the transfers for period

two satisfy (25) and (26), the expected surplus the seller must leave to the high type in period one

is

U(��) = U(�) + ��q1(�) + ��E� [q2(�; �)]

This is exactly the same surplus the seller would give to the high type when shocks are jointly

observed.

Now suppose instead that the shocks �h; �m and �l are such that �� � �h � �m < �� and

�� � �m � �l < �� (with �� = �� +��): From Lemma 1, we have that, when the high type lies

in period one, then in period two, irrespective of the true shock �; he strictly prefers to report �h
than either �m or �l. By implication, the expected surplus the seller must leave to the high type in

period one must be at least

U(�) + ��q1(�) + E� [U2 (�; �h)� U2 (�; �) + (�� + � � �h) q2(�; �h)]

which is strictly higher than the surplus U(�)+��q1(�)+��E� [q2(�; �)] that the seller must leave
to the high type when shocks are jointly observed. There is then no reason to expect the schedules

of Lemma 3 to be optimal any more. In fact, one can show that the best the seller can do in this

example is to o¤er the following quantities to the low type9 (assuming q2(�; �) are monotonic in �

which is always the case for v low enough)

q1(�) = maxfqFB(�)� �
1����; 0g (27)

q2(�; �h) = maxfqFB(�; �h)�
�

�
1��

��
�������(1���x)��

x

�
; 0g

q2(�; �m) = maxfqFB(�; �m)�
�

�
1��

� �
1�x
�

�
��; 0g

q2(�; �l) = maxfqFB(�; �l)�
�

�
1��

�
��; 0g:

In contrast to the case of overlapping types, the distortions in the contract for the low-type now

depend on the details of the shock distribution (i.e. on the probabilities x and �): However, as in

the case of large shocks, it remains true that distortions need not vanish over time and need not

be monotonic in the size of the shock to the buyer�s valuation.

9The proof is available upon request.
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5 Foundations for independent shocks

The results in the previous section have been established assuming the shocks to the buyer�s valu-

ation are independent. I now show that this assumption is actually less restrictive than it appears.

The results in this section follow from arguments similar to those used to establish Lemmas 1 and 2

in Eso and Szentes (2007): the subsequent propositions extend their results to an arbitrary number

of periods and an arbitrary number of decisions.

Proposition 8 Suppose for any t and any (�1; :::; �t�1); the distribution of �t given (�1; :::; �t�1)

is continuous and strictly increasing in �t: Then there exist a collection of real-valued functions

vt : Rt �! R and a collection of random variables �t such that, for any t � 2; the process can be
described by

�t = vt(�1; �
t)

with (�1; �T ) jointly independent.

Assuming independent shocks is thus truly without loss of generality in the case of a continuous

process. The approach indicated in the previous section to represent the necessary conditions for

incentive-compatibility (and the corresponding solution to the relaxed program) are thus quite

general. On the other hand, the su¢ cient conditions of Proposition 4 require that, in the case of a

Markov process, the functions vt be increasing in each argument. The next proposition shows that

this is equivalent to assuming �rst-order-stochastic-dominance.

Proposition 9 (i) Assume the buyer�s valuation follows a Markov process and that the conditional

distribution function of �t given �t�1 is continuous, strictly increasing in �t and strictly decreasing

in �t�1: Then the corresponding functions vt are strictly increasing in each argument.

(ii) Assume the process for �t satis�es the conditions in part (i) in this proposition. Then any

pair of collections (vt; �t)
T
t=2 and (~vt; ~�t)

T
t=2 that represent the same process is such that

@vt(�1; �
t)

@�1
=
@~vt(�1; ~�

t
)

@�1

for any (�1; �t) and (�1; ~�
t
) for which vs(�1; �s) = ~vs(�1; ~�

s
) for any s � t.

Part (i) is self-explanatory. Part (ii) establishes that, although the representation of a stochastic

process by means of a collection of independent innovations is not unique, any representation of the

same Markov process leads to the same solution to the relaxed program. Using the aforementioned

results, the su¢ cient conditions of Proposition 5� which guarantee that the solution to the relaxed

program coincides with the optimal mechanism� can then be translated in terms of conditional

distributions.
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Proposition 10 Assume the buyer�s valuation follows a Markov process and, for any t � 2; let

Ft(�t; �t�1) denote the conditional distribution of �t given �t�1 with ft(�t; �t�1) denoting the corre-
sponding density. Suppose the functions Ft satisfy the properties of part (i) in Proposition 9 and
that, in addition,

[@Ft(�t; �t�1)=@�t�1] = [ft(�t; �t�1)]

are well-de�ned, and increasing in both �t and �t�1. Then the corresponding functions vt satisfy

the conditions of Proposition 5.

Similarly, one can show that the results in Proposition 6 for the case of transitory shocks

extend more generally to any stochastic process that satis�es the property that the conditional

distribution of �t given (�1; :::; �t�1) is strictly increasing in �t, decreasing in �1, and is independent

of (�2; :::; �t�1):

The results in the previous section for the case of independent shocks thus apply to a quite rich

class of continuous stochastic processes.

6 Appendix

Proof of Lemma 1. Because �2(�1; �
00) and �2(�1; �

0) are incentive-compatible, there exists a

tari¤ T2 : R+ ! R such that T2(q2(�1; �00)) = p2(�1; �00); T2(q2(�1; �0)) = p2(�1; �0) and T2(q2) = +1
for any q2 6= q2(�1; �

0); q2(�1; �
00): Furthermore, necessarily q2(�1; �0) < q2(�1; �

00): The result then

follows directly from Topkis�Monotonicity Theorem using the fact that the function g(�2; q2) � �2q2
satis�es the increasing di¤erence property.

Proof of Proposition 1. I prove the result by showing that, whenever the quantities q2(�; �)

characterized in Lemma 2 are nondecreasing in �; there exists a pro�le of transfers that along with

the quantities of Lemma 2 satis�es all the constraints in P:
Start with t = 2: Take any pro�le of transfers p2(�; �) such that U2 (�; �l) � 0 for � = ��; �; (16)
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are saturated and

U2
�
��; �h

�
� U2

�
��; �m

�
= ��q2 (�; �h) (28)

U2
�
��; �m

�
� U2

�
��; �l

�
= ��q2 (�; �m)

The constraints (IR-2) are then trivially satis�ed. The monotonicity of q2(�; �) in � along with

Lemma 1 then guarantee that the mechanism is incentive-compatible at t = 2 i.e. that U2 (�; �) =
~U2 (�; �; �) for any (�; �):

Next, consider the agent�s incentives at t = 1: First consider a type �� who reports � at t = 1:

The fact that the constraints (16) bind together with Condition (17) and Lemma 1 implies that

the best �� can do at t = 2 after lying at t = 1 is to report the shock � truthfully. Constraint (15)

then guarantees that �� obtains his maximal intertemporal payo¤ by reporting truthfully in both

periods, i.e. that (IC) is satis�ed for ��.

Now consider the incentives of a low type. The fact that constraints (28) bind together with

Condition (17) and Lemma 1 imply that the best � can do at t = 2 after lying at t = 1 is to report

the shock � truthfully. The following is then a su¢ cient condition for (IC) to be satis�ed for �:

U(�) � U(�)���q1(�)� �fxU2(�; �h) + �U2(�; �m) + (1� �� x)U2(�; �l)g

+ �fx[U2(�; �h)���q2(�; �h)] + �[U2(�; �m)���q2(�; �m)]

+ (1� �� x)[U2(�; �l)���q2(�; �l)]g

(29)

The right hand side in (29) is the payo¤ that � obtains by reporting �� at t = 1 and then truthfully

announcing the shock � at t = 2. Condition (29) can be conveniently rewritten as

U(�) � U(�) + ��q1(�) + �f(x� x)[U2(�; �h)� U2(�; �m)]

+ (�x+ ��� �� x)[U2(�; �m)� U2(�; �l)] + x��q2(�; �h)

+ ���q2(�; �m) + (1� �� x)��q2(�; �l)g

(30)

The fact that (15), (16) and (28) are saturated together with Condition (17) and the fact that

q2(�; �) � q2(��; �) for all � then implies that (30) is satis�ed. I conclude that (IC) is also satis�ed
for �: Finally, that (IR-1) is satis�ed for �� follows immediately from (15) and the fact that U(�) = 0:

Proof of Proposition 4. I want to show that there exists a mechanism that implements the

allocations of Proposition 3 and gives each player the same expected payo¤ as the solution to the

relaxed program. I prove the result in two steps. Step 1 constructs the mechanism. Step 2 then

proves that, when the quantity schedules satisfy the strong monotonicity properties of Condition
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(2), a buyer who reported truthfully up to period t� 1; (weakly) prefers to report truthfully from
period t onward rather than lying in period t and then choosing optimally what to report in any

subsequent period.

Step 1. Consider the following mechanism. For each t, the quantity schedules qt(�1; �t) are

as in Proposition 3, de�ned over the enlarged state space �1 � ~�T . The transfer schedules are

constructed as follows. Start from t = T . Given the schedules qT (�), take any pro�le of transfers
pT (�) such that, for any (�1; �T�1; �T );

pT (�1; �
T�1; �T ) = vT (�1; �

T�1; �T )qT (�1; �
T�1; �T )� UT (�1; �T�1; �T )

with

UT (�1; �
T�1; �T ) = UT (�1; �

T�1; �
T
) +

�TZ
�
t

@vT (�1; �
T�1; ~�T )

@~�T
qT (�1; �

T�1; ~�T )d~�T (31)

for an arbitrary scalar UT (�1; �T�1; �
T
) � 0: Proceeding backward, starting from T�1, then consider

an arbitrary t < T . Holding constant the transfers constructed for periods t+ 1 onward, take any

pro�le of transfers pt(�) such that

pt(�1; �
t�1; �t) = vt(�1; �

t�1; �t)qt(�1; �
t�1; �t)� Ut(�1; �t�1; �t)

where Ut(�1; �t�1; �
t
) is an arbitrary non-negative scalar whereas, for any �t > �

t
;

Ut(�1; �
t�1; �t) = Ut(�1; �

t�1; �
t
) +

Z �t

�
t

(
@vt(�1; �

t�1; ~�t)

@~�t
qt(�1; �

t�1; ~�t) (32)

+

Z �t+1

�
t+1

� � �
Z �T

�
T

[�
@vt+1(�1; �

t�1; ~�t; �t+1)

@~�t
qt+1(�1; �

t�1; ~�t; �t+1)

+ � � �

+�T�t
@vT (�1; �

t�1; ~�t; �t+1; :::; �T )

@~�t
qT (�1; �

t�1; ~�t; �t+1; :::; �T )]dWt

)
d~�t

where dWt � dGt+1(�+1)� � � � � dGT (�T ):
Step 2. I now want to show that the mechanism constructed in Step 1 guarantees that, a buyer

who reported truthfully up to period t � 1; (weakly) prefers to report truthfully from period t

onwards rather than lying in period t and then choosing optimally what to report at any subsequent

date. I establish the result by backward induction.

Start from t = T: Because the schedules qT (�) are nondecreasing in ~�T ; standard results in static
mechanism design� e.g. Myerson (1981) and Fudenberg and Tirole (1991)� imply that, a buyer
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who reported (�1; �T�1) in the past and whose period-T valuation is vT (�1; �T�1; �T ) prefers to

report �T than reporting any other �
0
T ; for any �T ; �

0
T 2 ~�T : The fact that the buyer�s valuation

follows a Markov process then also implies, a buyer who reported (�1; �T�1) in the past and who

experiences a shock �T in period T �nds it optimal to report the shock �T truthfully when the

true shocks he experienced in the past are (~�1; ~�
T�1

); for any (~�1; ~�
T�1

) such that vT�1(~�1; ~�
T�1

) =

vT�1(�1; �
T�1): That a buyer who reported

�
�1; �

T�1� in the past and whose period-T valuation is
vT (�1; �

T�1; �T ) �nds it optimal to participate in period T follows from (31) along with the fact

that UT (�1; �T�1; �
T
) � 0:

Now take any t < T and suppose the result established for period T holds more generally for

any s > t. If the buyer reported truthfully in the past and reports truthfully in period t, then he

best he can do is to report truthfully also at any subsequent period, in which case his expected

payo¤ is Ut(�1; �t�1; �t): If instead he reports �̂t 6= �t in period t; he obtains

vt(�1; �
t�1; �t)qt(�1; �

t�1; �̂t)� pt(�1; �t�1; �̂t)

in period t and then his maximal continuation payo¤ starting from period t+ 1 is

~Ut+1

�
�1; �

t�1; �t; �t+1; �1; �
t�1; �̂t

�
:

Incentive compatibility then requires that, for any
�
�1; �

t�1; �t
�
and any �̂t 6= �t;

Ut(�1; �
t�1; �t) � Ût(�1; �t�1; �t; �1; �t�1; �̂t) (33)

where

Ût(�1; �
t�1; �t; �1; �

t�1; �̂t) � vt(�1; �
t�1; �t)qt(�1; �

t�1; �̂t)� pt(�1; �t�1; �̂t)

+�

Z ��t+1

�
t+1

~Ut+1

�
�1; �

t�1; �t; �t+1; �1; �
t�1; �̂t

�
dGt+1(�t+1)

Now note that

Ût(�1; �
t�1; �t; �1; �

t�1; �̂t)

= Ut(�1; �
t�1; �̂t) + [vt(�1; �

t�1; �t)� vt(�1; �t�1; �̂t)]qt(�1; �t�1; �̂t)

+�

Z ��t+1

�
t+1

n
~Ut+1

�
�1; �

t�1; �t; �t+1; �1; �
t�1; �̂t

�
� Ut+1

�
�1; �

t�1; �̂t; �t+1

�o
dGt+1(�t+1):

Because Ut+1
�
�1; �

t�1; �̂t; �t+1

�
= ~Ut+1

�
�1; �

t�1; �̂t; �t+1; �1; �
t�1; �̂t

�
; the constraint (33) can be
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rewritten as

Ut(�1; �
t�1; �t)� Ut(�1; �t�1; �̂t) � (34)Z �t

�̂t

"
@vt(�1; �

t�1; ~�t)

@~�t
qt(�1; �

t�1; �̂t)

#
d~�t

+�

Z �t

�̂t

8<:
Z ��t+1

�
t+1

24@ ~Ut+1
�
�1; �

t�1; ~�t; �t+1; �1; �
t�1; �̂t

�
@~�t

35 dGt+1(�t+1)
9=; d~�t

where, using (32)

Ut(�1; �
t�1; �t)� Ut(�1; �t�1; �̂t) (35)

=

Z �t

�̂t

(
@vt(�1; �

t�1; ~�t)

@~�t
qt(�1; �

t�1; ~�t)

+

Z �t+1

�
t+1

� � �
Z �T

�
T

[�
@vt+1(�1; �

t�1; ~�t; �t+1)

@~�t
qt+1(�1; �

t�1; ~�t; �t+1)

+ � � �

+�T�t
@vT (�1; �

t�1; ~�t; �t+1; :::; �T )

@~�t
qT (�1; �

t�1; ~�t; �t+1; :::; �T )]dWt

)
d~�t:

Furthermore, using the envelope theorem,

@ ~Ut+1

�
�1; �

t�1; ~�t; �t+1; �1; �
t�1; �̂t

�
@~�t

=
@vt+1(�1; �

t�1; ~�t; �t+1)

@~�t
qt+1(�1; �

t�1; �̂t; �̂
�
t+1)

+�

Z ��t+2

�
t+2

@ ~Ut+2(�1; �
t�1; ~�t; �t+1; �t+2; �1; �

t�1; �̂t; �̂
�
t+1)

@~�t
dGt+2(�t+2)

where �̂
�
t+1 = �̂

�
t+1(�1; �

t�1; ~�t; �̂t; �t+1) is the buyer�s optimal report for period t+ 1: The fact that

the buyer�s valuation follows a Markov process along with the fact that the mechanism is incentive-

compatible (on the equilibrium path) from period t+1 onward, implies that the best the buyer can

do after lying in period t is to lie again in period t+ 1 by reporting a shock ��t+1 implicitly de�ned

by

vt+1(�1; �
t�1; �̂t; �

�
t+1) = vt+1(�1; �

t�1; �t; �t+1)
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and then reporting truthfully thereafter. This means that the right hand side in (34) is given by

Z �t

�̂t

(
@vt(�1; �

t�1; ~�t)

@~�t
qt(�1; �

t�1; �̂t) (36)

+

Z �t+1

�
t+1

� � �
Z �T

�
T

[�
@vt+1(�1; �

t�1; ~�t; �t+1)

@~�t
qt+1(�1; �

t�1; �̂t; �̂
�
t+1)

+�2
@vt+2(�1; �

t�1; ~�t; �t+1; �t+2)

@~�t
qt+2(�1; �

t�1; �̂t; �̂
�
t+1; �t+2)

+ � � �+

+�T�t
@vT (�1; �

t�1; ~�t; �t+1; :::; �T )

@~�t
qT (�1; �

t�1; ~�t; �̂
�
t+1; �t+2:::; �T )]dWt

)
d~�t

Combining (35) with (36), it is then immediate to see that the inequality in (34) holds whenever

the quantity schedules satisfy the strong monotonicity properties of Condition (2). Finally, that

a buyer who reported
�
�1; �

T�1� in the past and whose period-t valuation is vt(�1; �T�1; �t) �nds it
optimal to participate in period t follows from (32) together with the fact that Ut(�1; �t�1; �

t
) � 0:

Iterating up to t = 1; then proves that the mechanism constructed in step 1 is indeed incentive

compatible and it induces the buyer to participate in each period.

Proof of Proposition 5. Condition (i) in the proposition, together with the monotone hazard

rate assumption, guarantees that the quantity schedules in (22) are non-decreasing. Now take any

t � 3 and any
�
�1; �

t�2; �t�1; �t
�
and (�1; �t�2; ~�t�1; ~�t) such that

10

vt
�
�1; �

t�2; �t�1; �t
�
= vt

�
�1; �

t�2; ~�t�1; ~�t

�
(37)

Without loss, assume �t�1 � ~�t�1. The result for �t�1 > ~�t�1 follows from similar arguments.

Clearly, if

max

(
vs(�1; �

t�2; �t�1; �t; �t+1; :::; �s)�
@vs(�1; �

t�2; �t�1; �t; �t+1; :::; �s)

@�1

1�F (�1)
f(�1)

; 0

)
= 0

then necessarily

qs(�1; �
t�2; ~�t�1; ~�t; �t+1; :::; �s) � qs(�1; �t�2; �t�1; �t; �t+1; :::; �s) (38)

10 If t = 3; then drop �t�2 from all expressions.
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in which case the strong monotonicity property of Condition (2) is satis�ed. Thus assume

vs(�1; �
t�2; �t�1; �t; �t+1; :::; �s)�

@vs(�1; �
t�2; �t�1; �t; �t+1; :::; �s)

@�1

1�F (�1)
f(�1)

> 0

Condition (1) then implies that (38) is satis�ed if and only if

@vs(�1; �
t�2; ~�t�1; ~�t; �t+1; :::; �s)

@�1
�
@vs(�1; �

t�2; �t�1; �t; �t+1; :::; �s)

@�1
(39)

Now, using the Implicit Function theorem applied to (37), there exists a function ��t : �t�1 �! ~�t

such that, for any x 2 �t�1;

vt
�
�1; �

t�2; x; ��t (x
�
) = vt

�
�1; �

t�2; �t�1; �t
�

with

d��t (x)

dx
= �

@vt(�1;�t�2;x;��t (x))
@�t�1

@vt(�1;�t�2;x;��t (x))
@�t

(40)

It follows that

@vs(�1; �
t�2; ~�t�1; ~�t; �t+1; :::; �s)

@�1
=

@vs(�1; �
t�2; �t�1; �t; �t+1; :::; �s)

@�1
(41)

+

Z ~�t�1

�t�1

@2vs(�1; �
t�2; x; ��t (x); �t+1; :::; �s)

@�1@�t�1
dx

+

Z ~�t�1

�t�1

@2vs(�1; �
t�2; x; ��t (x); �t+1; :::; �s)

@�1@�t

d��t (x)

dx
dx

Substituting (40) into (41), we then have that (39) is satis�ed if condition (ii) in the proposition

holds. Similar arguments establish the result for t = 2:

Proof of Proposition 6. Consider the same mechanism constructed in Step 1 in Proposition

4. Although the Markov property is violated, the result follows from essentially the same steps

as in the proof of Proposition 4 by noting that the buyer�s value function (and hence his optimal

behavior) in any period t � 2 depend only on the buyer�s type in period one, on what he reported
in period one, and on the shock experienced in period t. The mechanism constructed in Step 1 in

Proposition 4 then guarantees that a buyer who lied in period one will lie again at any subsequent

period by reporting a shock �̂t = �̂t(�1; �2; :::; �t; �̂1; �̂2; :::; �̂t�1) de�ned by

zt(�1; �t) = zt(�̂1; �̂t)
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On the contrary, a buyer who reported truthfully in period one and who lies in period t; will report

truthfully from period t+1 thereafter. Following the same arguments as in the Proof of Proposition

4 it is then easy to see that when the schedules qt(�) of Proposition 3 satisfy the conditions of Part
(i) in the Proposition then the buyer �nds it optimal to report truthfully at any point in time.

Finally, following the same steps as in the Proof of Proposition 5 it is easy to see that when the

conditions of Part (ii) hold, the schedules qt(�) of Proposition 3 satisfy the conditions of Part (i).

Proof of Lemma 3. The result follows from two simple observations. First, to minimize the

surplus the seller leaves to the buyer, it is optimal to make the participation constraint of the lowest

type �11 and all downward adjacent incentive compatibility constraints binding. Maximizing the

seller�s expected revenue subject to these constraints gives the schedules in the lemma. Next, note

that, because the schedules are monotonic in each argument, then the same monotone-comparative

statics results used to establish Lemma 1 guarantee that all other incentive-compatibility constraints

are satis�ed. That all all types �nd it optimal to participate is immediate.

Proof of Proposition 7.

The proof is in two steps and parallels that of Proposition 4. Step 1 constructs a pro�le

of transfers that, along with the schedules of Lemma 3� extended over the enlarged state space

�� ~�T� gives the buyer the same expected payo¤ as the solution to the relaxed program (and, by

implication, the seller the same expected pro�ts). Step 2, shows that the mechanism constructed

in Step 1 has the following properties: a buyer who reported truthfully up to period t� 1 �nds it
optimal to participate in the seller�s mechanism in period t and (weakly) prefers to report truthfully

from period t onward rather than lying in period t and then choosing optimally what to report in any

subsequent period. Together, these properties guarantee that the schedules that solve the relaxed

program coincide with the optimal ones.

Step 1. Let qt(�1; �t) denote the quantity schedules of Lemma 3, extended over the enlarged state

space � � ~�T : Next, consider the following transfers� again de�ned over the enlarged state space
�� ~�t. Starting from period T and proceeding backward, the transfers pt(�1; �t) are constructed so
that, for any (�1; �t�1; �t) 2 �� ~�t, a buyer who reported (�1; �t�1) in the past and whose period-t
valuation is vt(�1; �t�1; �t) is indi¤erent between reporting truthfully from period t onward and lying

in period t by reporting a shock immediately below the true shock �t and then reporting truthfully

thereafter. That is, the transfers pt(�1; �t) are constructed so that all downward adjacent local

incentive-compatibility constraints bind. In addition, the transfers pt(�1; �t) satisfy the property

that, after any (�1; �t�1) 2 � � ~�t�1; type vt(�1; �t�1; �
t
) obtains a zero expected continuation

payo¤.
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Step 2. Now consider the buyer�s incentives in period t after he has reported truthfully in all

preceding periods. By construction, the transfers of Step 1 guarantee that the buyer is indi¤erent

between reporting truthfully from period t onward and lying in period t by reporting a shock

immediately below the true one and then reporting truthfully thereafter. I now want to show

that, when the schedules of the relaxed program of Lemma 3 satisfy the monotonicity properties

of Condition (2) and the overlapping condition holds, then the transfers of Step 1 also guarantee

that the buyer prefers to report truthfully from period t onward rather than lying in period t and

then choosing optimally what to report at any subsequent period.

First note that a buyer who reported truthfully up to period T � 1 �nds it optimal to report
truthfully also in period T: This follows directly from Lemma 1 along with the fact that all downward

adjacent incentive-compatibility constraints bind. The rest of the proof is establish by induction.

Suppose the mechanism is incentive-compatible (on the equilibrium path) from period t+1 onward.

As in the proof of Proposition 4, this implies that the best the buyer can do after reporting �̂t 6= �t
in period t is to report a shock �̂

�
t+1 = �̂

�
t+1(�1; �

t�1; �t; �t+1; �1; �
t�1; �̂t) in period t + 1 implicitly

de�ned by

vt+1(�1; �
t�1; �t; �t+1) = vt+1(�1; �

t�1; �̂t; �̂
�
t+1)

and then reporting truthfully in all subsequent periods. The continuation payo¤ the buyer obtains

by reporting �̂t in period t is thus equal to

Ût(�1; �
t�1; �t; �1; �

t�1; �̂t) (42)

= Ut(�1; �
t�1; �̂t) +

h
vt(�1; �

t�1; �t)� vt(�1; �t�1; �̂t)
i
qt(�1; �

t�1; �̂t)

+�E�t+1
h
Ut+1(�1; �

t�1; �̂t; �̂
�
t+1(�1; �

t�1; �t; �t+1; �1; �
t�1; �̂t))� Ut+1(�1; �t�1; �̂t; �t+1)

i
On the contrary, the continuation payo¤ the buyer obtains by reporting the shock �t truthfully in

period t is Ut(�1; �t�1; �t): Now, suppose �̂t < �t and, for any �̂t � ~�t < �t, any s � t, and any

(�t+1; ::; �s), let

�vs;t(�1; �
t�1; ~�t; �t+1; ::; �s) � vs(�1; �t�1; ~�

+
t ; �t+1; ::; �s)� vt(�1; �t�1; ~�t; �t+1; ::; �s)

where ~�
+
t >

~�t denotes the (upward) shock adjacent to ~�t while ~�
�
t <

~�t denotes the (downward)
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shock adjacent to ~�t. The construction of the transfers in Step 1 then implies that

Ut(�1; �
t�1; �t) = Ut(�1; �

t�1; �̂t) +
��tP
~�t=�̂t

h
�vt;t(�1; �

t�1; ~�t)qt(�1; �
t�1; ~�t)

i
(43)

+
��tP
~�t=�̂t

�
E�t+1;:::;�T

�
TP

s=t+1
�s�t�vs;t(�1; �

t�1; ~�t; �t+1; ::; �s)qs(�1; �
t�1; ~�t; �t+1; ::; �s)

��
:

Similarly,

Ut+1(�1; �
t�1; �̂t; �̂

�
t+1)� Ut+1(�1; �t�1; �̂t; �t+1) =

�̂
��
t+1P

~�t+1=�t+1

h
�vt+1;t+1(�1; �

t�1; ~�t; ~�t+1)qt+1(�1; �
t�1; �̂t; ~�t+1)

i

+
�̂
��
t+1P

~�t+1=�t+1

�
E�t+2;:::;�T

�
TP

s=t+2
�s�t�1�vs;t+1(�1; �

t�1; �̂t; ~�t+1; �t+2; ::; �s)qs(�1; �
t�1; �̂t; ~�t+1; �t+2; ::; �s)

��

Combining (42) with (43) and using the strong monotonicity property of the quantity schedules,

we then have that, when the overlapping condition holds,

Ut(�1; �
t�1; �t) � Ût(�1; �t�1; �t; �1; �t�1; �̂t): (44)

Similar steps permit us to establish that a buyer who reported truthfully up to period t� 1 prefers
to report truthfully from period t onward rather than reporting any shock �̂t > �t in period t and

then choosing optimally what to report thereafter.

Finally, that a buyer who reported truthfully in the past �nds it optimal to participate in

the seller�s mechanism at any subsequent date follows directly from the fact that the transfers

constructed in Step 1 are such that the type vt(�1; �t�1; �
t
) obtains a zero expected continuation

payo¤.

Proof of Proposition 8. Let Ft(�t; �1; :::; �t�1) denote the conditional distribution of �t given
�1; :::; �t�1. The result is established by induction applying the probability integral transform theo-

rem (e.g. Angus, 1994).

Start with t = 2: Let �2 be the random variable de�ned by �2(�2; �1) � F2(�2; �1): By the
probability integral transform theorem, irrespective of �1; �2 is uniformly distributed over (0; 1);

which implies that �2 is independent of �1: The result for t = 2 thus holds by letting �2 � F2(�2; �1)
and �2 = v2(�1; �2) � F�12 (�2; �1):

Now, by induction, suppose the result holds for all periods s < t: I want to show that it holds

also for period t. First note that the same arguments used for t = 2 imply that there exists a
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function ut and a random variable �t such that �t = ut(�1; :::; �t�1; �t) with �t(�t; �1; :::; �t�1) �
Ft(�t; �1; :::; �t�1), ut � F�1t (�t; �1; :::; �t�1) and �t independent of �1; :::; �t�1: The fact that each

�s can be represented as vs(�1; �s), s � t� 1; then implies that there exists a function vt : Rt �! R
such that �t can be represented as

�t = vt(�1; �
t) � F�1t (�t; �1; v2(�1; �2); :::; vt�1(�1; �

t�1))

Furthermore, because for each (�1; �t�1); �t � Ft(�t; v2(�1; �2); :::; vt�1(�1; �t�1)) is uniformly dis-
tributed over (0; 1); then �t is independent of (�1; �

t�1): I conclude that (�1; �T ) are jointly inde-

pendent.

Proof of Proposition 9. Part (i). Using the same transformation as in the proof of Proposition

8 adjusted to the fact that �t follows a Markov process, we have that �t can be represented as

�t = vt(�1; �
t) � F�1t (�t; vt�1(�1; �

t�1))

with �t � Ft(�t; vt�1(�1; �t�1)):
The fact that Ft(�t; �t�1) is continuous and strictly increasing in �t and strictly decreasing in

�t�1 then implies that F�1t is strictly increasing in both �t and vt�1(�1; �
t�1). When t = 2; this

immediately implies that v2(�1; �2) is increasing in both arguments. The result for any t > 2 then

follows by induction.

Part (ii). I now want to show that, if the process for �t satis�es the conditions in part (i) in

the proposition, then any pair of collections (vt; �t)
T
t=2 and (~vt; ~�)

T
t=2 that represent this process are

such that
@vt(�1; �

t)

@�1
=
@~vt(�1; ~�

t
)

@�1

for any (�1; �t) and (�1; ~�
t
) such that ~vs(�1; ~�

s
) = vs(�1; �

s) for any s � t. Because the process is

Markov, there exist functions (ut)
T
t=2 and (~ut)

T
t=2 such that, for any t;

vt(�1; �
t) = ut(vt�1(�1; �

t�1); �t) and ~vt(�1; ~�
t
) = ~ut(~vt�1(�1; ~�

t�1
); ~�t) (45)

with ut and ~ut strictly increasing in �t and ~�t, respectively. Now take any (�t�1; �t) and let ~�t =
~�t(�1�1; �t) be implicitly de�ned by ut(�t�1; �t) = ~ut(�t�1; ~�t): I �rst want to show that

@ut(�t�1; �t)

@�t�1
=
@~ut(�t�1; ~�t(�t�1; �t))

@�t�1
(46)
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In fact, because ut(�t�1; �t) = ~ut(�t�1; ~�t(�t�1; �t)) for any (�t�1; �t); we have that

@ut(�t�1; �t)

@�t�1
=
@~ut(�t�1; ~�t(�t�1; �t))

@�t�1
+
@~ut(�t�1; ~�t(�t�1; �t))

@~�t

@~�t(�t�1; �t)

@�t�1

I now want to show that ~�t(�t�1; �t) does not depend on �t�1: Indeed, suppose this is not the case.

Take a pair (�t�1; �0t). Then

Pr(�t � �0t) = Pr(�t � ut(�t�1; �0t) j �t�1) = Pr(�t � ~ut(�t�1; ~�t(�t�1; �0t)) j �t�1) = Pr(~�t � ~�t(�t�1; �0t)):
(47)

Now take a pair (�0t�1; �
0
t) with �

0
t�1 6= �t�1: Then

Pr(�t � �0t) = Pr(�t � ut(�0t�1; �0t) j �0t�1) = Pr(�t � ~ut(�0t�1; ~�t(�0t�1; �0t)) j �0t�1) = Pr(~�t � ~�t(�0t�1; �0t)):
(48)

Combining (47) and (48) and using the fact that the random variable ~�t does not have mass

points, we have that necessarily ~�t(�t�1; �
0
t) =

~�t(�
0
t�1; �

0
t); that is, the function ~�t(�) is independent

of �t�1 in which case (46) holds.

Now using (46) and (45); we have that

@vt(�1; �
t)

@�1
=

@ut(vt�1(�1; �
t�1); �t)

@�t�1

@ut�1(vt�2(�1; �
t�2); �t�1)

@�t�2
� � � @v2(�1; �2)

@�1

=
@~ut(~vt�1(�1; ~�

t�1
); ~�t)

@�t�1

@~ut�1(~vt�2(�1; ~�
t�2
); ~�t�1)

@�t�2
� � � @~v2(�1;

~�2)

@�1

=
@~vt(�1; ~�

t
)

@�1

for any (�1; �t) and (�1; �t) such that ~vs(�1; ~�
s
) = vs(�1; �

s) for any s � t; which proves the result.

Proof of Proposition 10. The fact that the functions Ft satisfy the properties of Propositions 8
and 9 implies that there exist twice di¤erentiable functions ut : R2 �! R such that, for any t � 2;

vt(�1; �
t) = ut(vt�1(�1; �

t�1); �t) = ut(�t�1; �t) (49)

From Lemma 2 in Eso and Szentes (2007) the condition that [@Ft(�t; �t�1)=@�t�1] = [ft(�t; �t�1)] is
increasing in �t is equivalent to the condition that

@2ut(�t�1; �t)

@�t�1@�t
� 0 8(�1; �t); t � 2: (50)
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while the condition that [@Ft(�t; �t�1)=@�t�1] = [ft(�t; �t�1)] is increasing in �t�1 is equivalent to the
condition that

@2ut(�t�1; �t)

@�2t�1

@ut(�t�1; �t)

@�t
� @2ut(�t�1; �t)

@�t�1@�t

@ut(�t�1; �t)

@�t�1
(51)

Conditions (50) and (51) along with the fact that each us is strictly increasing in each argument

then imply that
@2ut(�t�1; �t)

@�2t�1
� 0 (52)

Now, using (49), we have that

@vt(�1; �
t)

@�1
=

@ut(vt�1(�1; �
t�1); �t)

@�t�1
�
@ut�1(vt�2(�1; �

t�2); �t�1)

@�t�2
(53)

� � � � �@v2(�1; �2)
@�1

Conditions (52) and (50) along with the fact that both vs and us are strictly increasing in each

argument then implies that vt(�1; �t) is concave in �1 and that

@2vt(�1; �
t)

@�1@�s
� 0 8(�1; �t); s � t:

That is, the two conditions about the conditional distributions Ft(�t; �t�1) stated in the proposition
imply that the corresponding functions vt satisfy the properties of part (i) in Proposition 5.

Next, I want to show that the same conditions imply that the corresponding functions vs are

such that, for any t � 3, any s � t and any (�1; �t; �t+1; :::; �s)

@2vs(�1; �
t; �t+1; :::; �s)

@�1@�t�1

@vt(�1; �
t)

@�t
�
@2vs(�1; �

t; �t+1; :::; �s)

@�1@�t

@vt(�1; �
t)

@�t�1

That this is true can be seen directly from (53).
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