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Abstract

This paper is devoted to the study of derivative hedging in incomplete markets when frictions are
considered. We extend the general local risk minimisation approach introduced in [1] to account for
liquidity costs, and derive the corresponding optimal strategies in both the discrete- and continuous-time
settings. We examplify our method in the case of stochastic volatility and/or jump-di�usion models.

Introduction

The optimal hedging of derivatives in uncomplete markets is a subject of the utmost importance from a
application-driven point of view, as well as an introduction to a host of many challenging mathematical
problems. Originating in the pioneering work of [9], the local risk minimization method has been identi�ed
as one of the most intuitive and practical way of de�ning realistic hedging strategies and related option prices.
In the original approach developped in [9], the local risk was de�ned as the second moment of the incremental
cost between two consecutive re-hedging periods. In a recent work [1], this approach was revisited so as to
extend it to general, convex local risk functionals, and the corresponding optimality conditions were derived
in the discrete- and continuous-time settings. This article is devoted to the task of extending our previous
results to the realistically important case of transaction costs. More precisely, and contrarily to one of the
early and important contributions in that direction, see [14], we do not introduce a bid-ask spread, as this
would lead to in�nite costs in the continuous limit, but rather, consider as in [5] a supply curve corresponding
to the existence of �nite liquidity at a given price. Such a paradigm is especially well-suited to the situation
of a trader hedging a large book or trading in an illiquid market. It also connects with recent researches
on orderbook modelling and market impact, when the supply curve is seen as a smoothed-out version of a
stochastic orderbook pro�le.
The main result of this paper is twofold : on one hand, in a discrete-time setting, the optimality system is fully
characterized, and admits a natural interpretation in terms of a non-linear martingale transform orthogonal
to the martingale part of a modi�ed price process. Then, extensions to a continuous-time setting are
considered, for which only the case of It	o processes can be understood in full generality. For processes having
discontinuous paths, pseudo-optimality can be considered, but the connection with the original minimization
problem is an open question.
The paper is organized as follows: Section 1 presents, in the discrete-time case, the basic de�nitions of the
cost of a strategy and its associated risk. Section 2 contains the optimality and pseudo-optimality conditions
in discrete time, and provide an interpretation of the optimal strategy in terms of a non-linear martingale
transform orthogonal to the cost-adjusted price process (the supply price). In Section 3, we extend those
results to the continuous-time setting, while Section 4 and 5 are respectively devoted to applications to
stochastic volatility and jump-di�usion models.
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1 Liquidity costs and risk process

1.1 Cost process

In this section, we investigate the discrete time setting, studying the existence and uniqueness of solutions
to the minimization problem. The market will classically be represented, see e.g. [9][1], by a multi-period
model where the risky asset is a strictly positive semimartingale Sk, (k = 0, · · · , T ) on some probabil-
ity space (Ω,F , P ). Let Fk denote the σ−�eld of events which are observable up to and including time
k. We assume that Sk is adapted and square-integrable and that the conditional variance of its returns
E
(
(Sk+1 − Sk)2|Fk

)
−E (Sk+1 − Sk|Fk)

2
is strictly positive P -almost surely. In order to simplify the expo-

sition, the risk-free rate is supposed to be deterministic and therefore, using discounted stock prices, one can
assume that it is zero.
The task of interest is that of hedging a contingent claim associated to a square-integrable random variable
H ∈ L2(P ) of the following form H = δHST + βH , δH and βH being FT−measurable random variables.
We thus consider a general trading strategy Φ represented by two stochastic processes δk, (k = 0, · · · , T )
and βk, (k = 0, · · · , T ), both adapted to Fk and in L2(P ). δk is the amount of stock held during the kth

period = [tk, tk+1), and has to be �xed at the beginning of that period. That is to say, δk is Fk−measurable
(k = 0, · · · , T ), and likewise for βk, the amount held in the cash account during the kth period.
The theoretical value of the portfolio at time k is its value right after applying the strategy and is given by

Vk = δkSk + βk, k = 1, · · · , T.

We admit only strategies such that each Vk is square-integrable and which replicate the contingent claim H,
i.e. we require VT = H, which for instance is the case upon choosing δT = δHT and βT = βHT .
Denote by ∆Ck the incremental cost of applying strategy Φ at time tk, k > 0. In the presence of liquidity
costs on the stock, ∆Ck is given by

∆Ck(Φ) = L ((δk − δk−1), Sk, tk) + (βk − βk−1) ∀k ∈ {k = 1, · · · , T}

where the function L measures the costs of adjusting the stock part, thereby accounting for the liquidity
e�ect, namely:

- If (δk−δk−1) > 0, meaning that the strategy requires to buy stock, it might not necessarily be possible
at the theoretical price Sk but rather, at a higher price, so that the bigger the quantity to acquire, the
greater the marginal costs.

- If on the contrary (δk − δk−1) < 0, meaning that the strategy now requires to sell, again it might not
necessarily be possible at the theoretical price Sk but rather, at a lower price, so that, once again, the
bigger the quantity to sell, the greater the marginal costs.

1.2 Liquidity costs

As a consequence of the �nite liquidity observed on real markets and described above, it is legitimate to
assume that L : (R,R+,R+) → R is a strictly increasing, convex function of its �rst argument satisfying
L(0, ., .) = 0. Let us make the further assumption that it is di�erentiable with respect to its �rst argument,
with ∂L

∂x (0, S, .) = S. At this stage, it is noteworthy to point out that the bid/ask spread is not taken into
account, nor is the potential market impact of a transaction. This last assumption amounts to assuming
that the period of trading is much greater than the relaxation time of the market impact function.
If there exists an adapted function g, i.e. g = g(x, t, ω) with ω ∈ Fk, such that the liquidity costs can be
written as L((δk − δk−1), Sk, tk) = (δk − δk−1)g((δk − δk−1), tk), then g is called the supply curve. We refer
to [5] for more details on the self-�nancing approach in the case of a supply curve. Here, a more general
assumption is made, namely, that there exists an increasing density function l : (R,R+,R+) → R, l ∈ C1
representing the cost of buying a marginal amount of stock. That is to say, L has the following form:

L (u, Sk, tk) =

∫ u

0

l(x, Sk, tk)dx. (1.1)
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In particular, l(0, Sk, tk) is equal to Sk in the absence of bid/ask spread. Assumption (1.1) corresponds to a
smoothing of the realistic orderbook pro�le giving the quantity available at a given price.
In order to make the extension to continuous-time more tractable whilst not narrowing the scope of the
paper, we shall further assume that the marginal costs can be written as a stationary function times the
theoretical spot price S, i.e. l(x, S, t) = l(x)St.

1.3 Local risk

The local risk is naturally de�ned, see e.g. [1], as the conditional expectation given information up to time
k of the functional associated to the risk function f , of the costs incurred at time k + 1. This reads

∆Rk(Φ) = E (f(∆Ck+1)|Fk)

or, with obvious notation,

∆Rk(Φ) = Ek (f(∆Ck+1)) .

Note that, contrarily to the case of in�nite liquidity, these assumptions on the liquidity costs together with
the convexity of the risk function f do not ensure that (x, y) 7→ f(L(x)S+ y) is a convex function. This lack
of convexity will obviously make uniqueness results di�cult to obtain.

2 Optimal and pseudo-optimal strategies

The de�ntion of an optimal strategy is now addressed. Classically, as in [9][1], such a strategy sequentially
minimizes the incremental risk process backward in time, and indeed solves the following problem

Problem (*) Given a contingent claim H, �nd an admissible strategy Φ∗ such that

∀k ∈ (0, · · · , T − 1), ∀Φ admissiblewith δk+1 = δ∗k+1 and βk+1 = β∗k+1, ∆Rk(Φ) ≥ ∆Rk(Φ∗)

Standard regularity and convexity conditions on f , L1, as well as the assumptions on Sk and βk, provide
the existence of an optimal strategy solution to the �rst-order optimality equations{

Ek (f ′ (∆Ck+1(Φ∗))) = 0
Ek (f ′ (∆Ck+1(Φ∗))L′((δk+1 − δk), Sk+1, tk+1)) = 0

or equivalently {
Ek (f ′ (∆Ck+1(Φ∗))) = 0

Ek (f ′ (∆Ck+1(Φ∗)) l (δk+1 − δk)Sk+1) = 0
(2.1)

where L′ stands for the partial derivatives of L with respect to its �rst argument.
We now prove the existence of a locally risk-minimizing strategy.

Theorem 2.1 Problem (*) has a at least one solution Φ∗ whose components δ∗ and β∗ solve the set of
equations ( (2.1)).

Proof Let h(x, y, ω) ≡ Ek (f(L((U − x), S, tk+1) + (V − y))) (ω) with U , V and S ∈ L2(P ). We �rst observe
that, thanks to the structure hypotheses on liquidity costs, for a �xed ω, h is a continuous and di�erentiable
function of (x, y) and therefore reaches its minimum at (x∗, y∗) only if (x∗, y∗) is a critical point of h, i.e.
∇h(x∗, y∗) = 0. Secondly, there holds that lim||(x,y)||→∞ h(x, y, ω) = +∞ P − a.e., so that h has a global

1We refer the reader to [1] for the detailed statement of these conditions.

3

ha
l-0

06
21

25
6,

 v
er

si
on

 2
 - 

6 
D

ec
 2

01
1



minimum P−almost surely. There remains to prove that (x∗, y∗) is Fk−measurable: let Dn = {j2−n|j ∈ Z}
be the set of dyadic rational of order n and de�ne

(xn(ω), yn(ω)) = inf{(x, y) ∈ Dn ×Dn, h(x, y, ω) ≤ h(x′, y′, ω)∀(x′, y′) ∈ Dn ×Dn}.

Since ω 7→ h(x, y, ω) is Fk−measurable, (xn, yn) is also Fk−measurable. As (xn, yn) is bounded in n P−a.e.
and h is continuous in (x, y), (x̃, ỹ) = lim infn→∞(xn, yn) is a Fk−measurable minimizer of h, satisfying
∇h(x̃, ỹ) = 0. This ends the proof of Theorem 2.1
The set of equations (2.1) can be given a natural interpretation after the introduction of the two processes

Cfk =
∑k
i=1 f

′(∆Ci) and S
S
k =

∑k
i=1 (l (∆δi)Si − l(0)Si−1) =

∑k
i=1 (l (∆δi)Si − Si−1) with initial conditions

Cf0 = 0 and SS0 = S0: (2.1 simply states that Cfk is a martingale strongly orthogonal to the martingale part
of
(
SSk
)
k
. The �rst process will be referred to as the f−costs process as in [1], while the new process SS

will be referred to as the supply price process. Following [?], this property of Cfk will be termed "pseudo-
optimality". Let us also mention that, in the case of "in�nite" liquidity l(.) = 1, the supply price process is
just the stock price S, and one recovers the results of [1].

3 Continuous time setting

Let now (Ω,F , P ) be a probability space with a �ltration (Ft)0≤t≤T satisfying the usual conditions of right-
continuity and completeness. T ∈ R∗+ denotes a �xed and �nite time horizon. Furthermore, we assume
that F0 is trivial and that FT = F . The risky asset S = (St)0≤t≤T is supposed to be a strictly positive
semimartingale

S = S0 +M +A

such that M = (Mt)0≤t≤T is a square-integrable martingale with M0 = 0, and A = (At)0≤t≤T is a con-
tinuous and adapted process of �nite variation |A| with A0 = 0. Throughout this article, we shall use a
right-continuous version of S.
The aim of this section is to de�ne and characterize the f -cost process and the supply process, so as to exend
the notions of pseudo-optimality to the continuous-time case. In order to do so, we need to introduce some
de�nitions that will extend the rather intuitive notions of the discrete-time setting to the more intricate
continuous-time models.

3.1 Trading strategies and local risk

A general trading strategy Φ is then a pair of càdlàg and adapted processes δ = (δt)0≤t≤T , β = (βt)0≤t≤T
while a contingent claim is described by a random variable H ∈ L2(P ), with H = δHST + βH , δH and βH

being FT−measurable random variables.
In order to de�ne the processes which are the basic ingredients of pseudo-optimality in continuous time, we
need to restrict the set of trading strategies to those we call H-admissible according to the

De�nition 3.1.1 A trading strategy will be called H-admissible if it meets the following requirements
δT = δH P − a.s.
βT = βH P − a.s.
δ has �nite and integrable quadratic variation
β has �nite and integrable quadratic variation
δ and β have �nite and integrable quadratic covariation.

We now recap the de�nitions (see [1]) required to extend the concept of local risk-minimization to the
continuous time framework.

4
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Small perturbations

De�nition 3.1.2 A small perturbation is a bounded admissible2 strategy φ = (β, δ) such that βT = 0 and
δT = 0.

Local risk along a partition

Given an H−admissible strategy Φ, a partition τ of [0, T ], where τ = {0 = t0, t1, · · · , tk = T} and a small
perturbation φ, one de�nes the process

rτf [Φ, φ](t, ω) =
∑

ti,ti+1∈τ

∆Rti(Φ + φ|[ti,ti+1()(ω)−∆Rti(Φ)(ω)

ti+1 − ti
1[ti,ti+1((t)

with ∆Rti(Φ) = E
(
f(∆Cti+1

)|Fti
)
and (as in the previous sections) ∆Cti+1

is the incremental cost associ-
ated to a strategy.
The concept of local risk minimization can now be speci�ed:

De�nition 3.1.3 An H−admissible strategy Φ is called locally risk-minimizing for the contingent claim H
if for every small perturbation φ and every increasing sequence of partitions (τn)n∈N tending to the identity,
there holds

lim inf
n→∞

rτn [Φ, φ] ≥ 0 P − a.e.

3.2 The f−costs process
Given a general trading strategy Φ, its f−cost process Ct(Φ) 3 is de�ned as the limit, whenever it exists, of

ln∑
k=1

f ′(L(δτ
n
k − δτ

n
k−1 , Sτ

n
k ) + βτ

n
k − βτ

n
k−1),

where convergence takes place in ucp topology, for any sequences Pn of Riemann partitions of [0, T ] of length
ln (XT stands for the process stopped at T ).

Below is a result showing that the f−cost process of an H−admissible strategy is well de�ned.

Proposition 3.1 The f−cost process of an H−admissible strategy Φ is well-de�ned and is given by the
formula

Ct(Φ) =

f ′′(0)
(
Vt − V0 −

∫ t
0+
δs−dSs + 1

2 l
′(0)

∫ t
0+
Ss−d[δ, δ]cs

)
+ f(3)(0)

2

(
[β, β]ct + 2

∫ t
0+
Ss−d[β, δ]cs +

∫ t
0+
S2
s−d[δ, δ]ct

)
+
∑

0<s≤t f
′(∆βs + L(∆δs, Ss))− f ′′(0)(∆βs + ∆δsSs) (3.1)

with notation [X,Y ]c standing for the continuous part of the (càdlàg) quadratic covariation process.

Proof The proof relies on exactly the same ingredients as in Theorem 2 of [1], where the case without transac-
tion costs is thoroughly studied along the lines of the proof of It	o formula's proof for general semimartingales
in e.g. [16]. The only (minor) di�erence lies in the use of Taylor's theorem, which we apply to f ′(L(x)S+ y)
rather than f ′(S) .

2Admissible means that it satis�es the same regularity requirements as an H−admissible strategy without the equality
constraints on the terminal conditions.

3The superscript f is dropped as the cost function is �xed once and for all and no confusion can occur.
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Corollary 3.2 The f−cost process of an H−admissible strategy Φ can also be expressed in terms of the
portfolio value V

Ct(Φ) =

f ′′(0)
(
Vt − V0 −

∫ t
0+
δs−dSs

)
+f ′′(0)l′(0)

(
1
2

∫ t
0+
Ss−d[δ, δ]cs

)
+ f(3)(0)

2

(
[V, V ]ct − 2

∫ t
0+
δs−d[V, S]cs +

∫ t
0+
δ2s−d[S, S]ct

)
+
∑

0<s≤t f
′(∆Vs − δs−∆Ss + L(∆δs, Ss)−∆δsSs)

−
∑

0<s≤t f
′′(0)(∆Vs − δs−∆Ss). (3.2)

Proof A straightforward application of the properties of quadratic variations, when viewing β as a function
of V in formula (3.1).

Compared to the case of in�nite liquidity, the additional term in the expression of Ct(Φ) f ′′(0)l′(0)
(

1
2

∫ t
0+
Ss−d[δ, δ]cs

)
,

and it is non-decreasing given the convexity of both f and L.

3.3 The supply price process

Exactly as in the previous paragraph, for an H−admissible trading strategy Φ, one can de�ne the supply
price process SSt (Φ) as the limit in ucp topology, whenever it exists, of

ln∑
k=1

(
l(δτ

n
k − δτ

n
k−1)Sτ

n
k − Sτ

n
k−1

)
for any sequences Pn of Riemann partitions of [0, T ] of length ln. Given an H−admissible strategy Φ, the
existence of the associated supply price is ensured by the following result.

Proposition 3.3 The supply price process SS of an H−admissible strategy Φ is well-de�ned and given by
the formula

SSt (Φ) = St + l′(0)
(
δtSt − δ0S0 −

∫ t
0+
δs−dSs

)
+ 1

2 l
′′(0)

∫ t
0+
Ss−d[δ, δ]cs

+
∑

0<s≤t (l((∆δs)− 1)Ss − l′(0)∆δsSs) . (3.3)

Proof The proof follows the same lines as that of Proposition 3.1 and is omitted.

4 Application to stochastic volatility models

Of great interest is the particularization of the general concepts previously de�ned to some speci�c asset
dynamics. In this section, the case of stochastic volatility is considered. In order to derive an explicit formula
for the f−cost and supply price processes, and completely characterize pseudo-optimal strategies, we then
let (S,σ) be a solution of the following set of SDE's

dSt = µtdt+ σtdW
1
t (4.1)

dσt = γtdt+ ΣtdW
2
t (4.2)

where (W 1,W 2) is a two-dimensional Wiener process under P with correlation ρ, i.e. d < W 1,W 2 >t= ρdt.
Under appropriate conditions hold for the functions µt, γt and Σt, see e.g. [?], (4.1, 4.2) admits a unique
strong continuous solution with St > 0 and σt > 0. We will from now on assume that such conditions
hold true and restrict our study to a Markovian framework, thereby looking for the optimal strategy Φ as a
smooth function of the state variables

δt = δ(t, St, σt)

Vt = V (t, St, σt).

6
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4.1 PDE formulation

In order to derive a set of PDE's satis�ed by pseudo-optimal strategies, one �rst has to rewrite the cost
process as a function of the di�usion parameters and the strategy. A straightforward calculation using (3.2)
yields

Ct(Φ) =

∫ t

0

[
f ′′(0)

(
∂V

∂u
+
∂V

∂S
µu +

∂V

∂σ
γu +

1

2

∂2V

∂S2
σ2
u +

1

2

∂2V

∂σ2
Σ2
u +

∂2V

∂S∂σ
ρσuΣu − δuµu

)
+ f ′′(0)l′(0)Su

2

((
∂δ
∂S

)2
σ2
u +

(
∂δ
∂σ

)2
Σ2
u + 2 ∂δ∂S

∂δ
∂σρσuΣu

)
+ f(3)(0)

2

((
∂V
∂S

)2
σ2
u +

(
∂V
∂σ

)2
Σ2
u + 2∂V∂S

∂V
∂σ ρσuΣu

)
− f (3)(0)δu

(
∂V
∂S σ

2
u + ∂V

∂σ ρσuΣu
)

+ f(3)(0)
2 δ2uσ

2
u

]
du

+

∫ t

0

f ′′(0)

(
∂V

∂S
− δu

)
σudW

1
u +

∫ t

0

f ′′(0)
∂V

∂σ
ΣudW

2
u .

Likewise, using 3.3), there holds for the supply price process

SSt (Φ) = St + l′(0)

(
δtSt − δ0S0 −

∫ t

0

δuµudu−
∫ t

0

δuσudW
1
u

)
+ 1

2 l
′′(0)

∫ t

0

((
∂δ

∂S

)2

σ2
u +

(
∂δ

∂σ

)2

Σ2
u + 2

∂δ

∂S

∂δ

∂σ
ρσuΣu

)
du.

Now, applying to the strategy Φ the �rst pseudo-optimality criterion, i.e. that C must be a martingale
under the measure P , we �nd a �rst fully non-linear PDE satis�ed by the strategy (V, δ)

f ′′(0)

(
∂V

∂u
+
∂V

∂S
µu +

∂V

∂σ
γu +

1

2

∂2V

∂S2
σ2
u +

1

2

∂2V

∂σ2
Σ2
u +

∂2V

∂S∂σ
ρσuΣu − δuµu

)
+f ′′(0)l′(0)

Su
2

((
∂δ

∂S

)2

σ2
u +

(
∂δ

∂σ

)2

Σ2
u + 2

∂δ

∂S

∂δ

∂σ
ρσuΣu

)

+
f (3)(0)

2

((
∂V

∂S

)2

σ2
u +

(
∂V

∂σ

)2

Σ2
u + 2

∂V

∂S

∂V

∂σ
ρσuΣu

)

−f (3)(0)δu

(
∂V

∂S
σ2
u +

∂V

∂σ
ρσuΣu

)
+
f (3)(0)

2
δ2uσ

2
u = 0.

with terminal condition corresponding VT = δHST + βH .
In order to apply the second pseudo-optimality criterion, i.e. that the martingale C must be orthogonal to
the martingale part of the supply price process SS , we �rst identify the martingale part of the latter

SSt (Φ)− E
(
SSt (Φ)

)
=

∫ t

0

(
1 + l′(0)S

∂δ

∂S

)
σudW

1
u +

∫ t

0

l′(0)S
∂δ

∂σ
ΣudW

2
u ,

so that the second PDE satis�ed by (V, δ) is(
∂V

∂S
− δ
)(

1 + l′(0)S
∂δ

∂S

)
σ2 +

∂V

∂σ

(
1 + l′(0)S

∂δ

∂S

)
ρσΣ +(

∂V

∂S
− δ
)
∂δ

∂σ
l′(0)SρσΣ +

∂V

∂σ

∂δ

∂σ
l′(0)SΣ2 = 0.

7
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With some rearrangements, the pseudo-optimal strategy Φ is shown to solve the following coupled system
of nonlinear PDEs 

∂V
∂u + ∂V

∂S µ+ ∂V
∂σ γ + 1

2
∂2V
∂S2 σ

2 + 1
2
∂2V
∂σ2 Σ2 + ∂2V

∂S∂σρσΣ =

δµ+ α
((

∂V
∂S σ + ∂V

∂σ ρΣ− δσ
)2

+ (1− ρ2)
(
∂V
∂σ

)2
Σ2
)

+l′(0)S2

((
∂δ
∂Sσ + ∂δ

∂σρΣ
)2

+ (1− ρ2)
(
∂δ
∂σ

)2
Σ2
)

(
∂V
∂S − δ

) (
1 + l′(0)S ∂δ

∂S

)
σ2 + ∂V

∂σ

(
1 + l′(0)S ∂δ

∂S

)
ρσΣ

+
(
∂V
∂S − δ

)
∂δ
∂σ l
′(0)SρσΣ + ∂V

∂σ
∂δ
∂σ l
′(0)SΣ2 = 0

(4.3)

with terminal condition VT = δHST + βH .
A system such as (4.3) is quite challenging: one can see it as a parabolic equation coupled with a nonlinear,
stationary hyperbolic equation which can be viewed as a constraint. The study of (4.3) will be the subject
of another work.

The case of a complete market

The case of a complete market corresponds to Σ, the volatility of volatility, equal to zero. The equation for
the hedge ratio δ then reduces to (

∂V

∂S
− δ
)(

1 + l′(0)S
∂δ

∂S

)
= 0.

so that a su�cient condition is that V, δ is a solution to

δ =
∂V

∂S
(4.4)

∂V

∂u
+

1

2

∂2V

∂S2
σ2

(
1 + l′(0)S

∂2V

∂S2

)
= 0. (4.5)

Upon the generalized Black and Scholes PDE (4.5) having a solution, a property easily shown to hold when
the contingent claim has a convex payo�, equation (4.4) gives a perfect hedge. As already holds in the in�nite
liquidity case, the solution does not depend on the risk function f . In fact, the f−cost process is identically
zero, which amounts to having a self-�nancing strategy incorporating liquidity costs that perfectly replicates
the contingent claim H.

4.2 The minimization problem

Despite the fact that, in discrete time, a pseudo-optimal strategy satisfying ((2.1)) might not be optimal, in
continuous time, and when working with continuous path processes, there exists a correspondence between
the two concepts 4. As a matter of fact, we now prove that a strategy solving system of equations (4.3) is
locally risk-minimizing for the function f .
Given the smoothness of the risk function f and the liquidity costs function L, one can write a Taylor
expansion around the unperturbed strategy Φ. Given a partition τ and t ∈ [0, T ], and assuming without loss
of generality that t is one of the ti, there holds that

rτf [Φ, φ](t, ω) =
∆Rti(Φ + φ|[ti,ti+1()(ω)−∆Rti(Φ)(ω)

ti+1 − ti

=
Eti
(
f(∆Cti+1(Φ + φ|[ti,ti+1())

)
(ω)− Eti

(
f(∆Cti+1(Φ))

)
(ω)

ti+1 − ti
4We refer the reader to paragraph 3.2 of [1] for the precise de�nition of local risk-minimization in continuous time.
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Taylor's formula applied to g : (x, y) 7→ f(L(x) + y) then yields for some φ̃ ∈ []

f(∆Cti+1
(Φ + φ|[ti,ti+1())) =

f(∆Cti+1
(Φ))− βtif ′(∆Cti+1

(Φ))− δtiL′(Φ)f ′(∆Cti+1
(Φ)) +

1

2
δ2tih(φ̃)

+
1

2
(βti + δtiL′(φ̃))2g(φ̃)

where g(φ̃) = f ′′(∆Cti+1(φ̃)) and h(φ̃) = L′′(φ̃)f ′(∆Cti+1(φ̃)) with φ̃ = (β̃, δ̃) such that |β̃| ≤ β and |δ̃| ≤ δ.

Using the standing assumptions on f , namely f ′(0) = 0, f ′′(0) > 0, the remainder term δ2tih(φ̃) + (βti +

δtiL′(φ̃))2g(φ̃) will remain strictly positive in a neighborhood of ti for δti and βti small enough. Rearranging
and simplifying yields

rτf [Φ, φ](t, ω) = βti
Eti
(
f ′(∆Cti+1

(Φ))
)

(ω)

ti+1 − ti
+ δti

Eti
(
L′(Φ)f ′(∆Cti+1(Φ))

)
(ω)

ti+1 − ti
(4.6)

+
1

2

Eti
(
δ2tih(φ̃)

)
(ω)

ti+1 − ti
(4.7)

+
1

2

Eti
(

(βti + δtiL′(φ̃))2g(φ̃)
)

(ω)

ti+1 − ti
. (4.8)

Thanks to the pathwise conitnuity of It	o processes, there holds

lim
ti+1→ti

Eti
(
f ′(∆Cti+1

(Φ))
)

(ω)

ti+1 − ti
= Λ (f ′ ◦∆C)ti

lim
ti+1→ti

Eti
(
L′(Φ)f ′(∆Cti+1(Φ))

)
(ω)

ti+1 − ti
= Λ (L′ · f ′ ◦∆C)ti

and

lim
ti+1→ti

Eti
(
h(φ̃)

)
(ω)

ti+1 − ti
= Λhti

lim
ti+1→ti

Eti
(
g(φ̃)

)
(ω)

ti+1 − ti
= Λgti

lim
ti+1→ti

Eti
(
L′g(φ̃)

)
(ω)

ti+1 − ti
= Λ (L′ · g)ti

lim
ti+1→ti

Eti
(
L′2g(φ̃)

)
(ω)

ti+1 − ti
= Λ

(
L′2 · g

)
ti

where Λ is the in�nitesimal generator associated with the di�usion:

Λh =
∂h

∂S
µ+

∂h

∂σ
γ +

1

2

∂2h

∂S2
σ2 +

1

2

∂2h

∂σ2
Σ2 +

∂2h

∂S∂σ
ρσΣ.

Finally, one obtains that the process rτf in (4.6) is given by

rτf [φ,∆](t, ω) = βtΛ (f ′ ◦∆C)t + δtΛ (L′ · f ′ ◦∆C)t (4.9)

+ 1
2

(
β2
tΛgt + 2βtδtΛ (L′ · g)t + δ2tΛ

(
L′2 · g + h

)
t

)
. (4.10)
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Upon setting the �rst component δ of the perturbation equal to zero (that is, we perturb only β), a �rst
condition for a strategy φ to be locally risk-minimizing is derived:

βtΛ (f ′ ◦∆C)t +
1

2
β2
tΛgt ≥ 0 P − a.e. ∀βt.

Hence, there holds Λ (f ′ ◦∆C)t = 0. Similarly, upon setting now β = 0, the following second condition for
the strategy φ follows:

δtΛ (L′ · f ′ ◦∆C)t +
1

2
δ2tΛ

(
L′2 · g + h

)
t
≥ 0 P − a.e. ∀δt.

As a consequence, Λ (L′ · f ′ ◦∆C)t = 0, and one can easily workout the equivalence below{
Λ (f ′ ◦∆C)t = 0,

Λ (L′ · f ′ ◦∆C)t = 0

⇔



f ′′(0)
(
∂V
∂u + ∂V

∂S µu + ∂V
∂σ γu + 1

2
∂2V
∂S2 σ

2
u + 1

2
∂2V
∂σ2 Σ2

u + ∂2V
∂S∂σρσuΣu − δuµu

)
+f ′′(0)l′(0)Su

2

((
∂δ
∂S

)2
σ2
u +

(
∂δ
∂σ

)2
Σ2
u + 2 ∂δ∂S

∂δ
∂σρσuΣu

)
+ f(3)(0)

2

((
∂V
∂S

)2
σ2
u +

(
∂V
∂σ

)2
Σ2
u + 2∂V∂S

∂V
∂σ ρσuΣu

)
−f (3)(0)δu

(
∂V
∂S σ

2
u + ∂V

∂σ ρσuΣu
)

+ f(3)(0)
2 δ2uσ

2
u = 0,(

∂V
∂S − δ

) (
1 + l′(0)S ∂δ

∂S

)
σ2 + ∂V

∂σ

(
1 + l′(0)S ∂δ

∂S

)
ρσΣ

+
(
∂V
∂S − δ

)
∂δ
∂σ l
′(0)SρσΣ + ∂V

∂σ
∂δ
∂σ l
′(0)SΣ2 = 0.

As claimed in the beginning of this section, one can see that the optimal strategies with respect to local
risk-minimization are the same as the pseudo-optimal strategies. This result is similar to that obtained in
[1] in the case of "in�nite" liquidity, the only requirement being that the in�nitesimal generator is a local
operator.

5 Application to stochastic volatility/jump di�usion models

This section is devoted to a situation where non-quadratic risk de�nitely implies a di�erent hedging strategy.
The evolution of S is modelled by an SDE with stochastic volatility and Poisson jumps in the vein of the
Bates model [?]

dSt = µtdt+ σtdW
1
t + kdNt

dσt = γtdt+ ΣtdW
2
t ,

where as beforeW 1 andW 2 are Wiener processes under P and d < W 1,W 2 >t= ρdt, Nt is a Poisson process
with intensity λ, and the amplitude of the jumps k has probability distribution K. We also assume that Wt,
Nt and k are independent. Similarly to the case of stochastic volatility, standard assumptions are made to
ensure that the set of SDE has a unique strong solution.
With these assumptions, one can look for the optimal strategy Φ, in a Markovian framework, as a function
of the state variables

δt = δ(t, St, σt)

Vt = V (t, St, σt)

and derive an equation for these quantities.
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5.1 PIDE formulation

The PIDE's corresponding to respectively the portfolio value and optimal strategy follow as in Section ??
fro a rewriteing of the cost process

Ct(Φ) =
∫ t
0

(
f ′′(0)

(
∂V
∂u + ∂V

∂S µu + ∂V
∂σ γu + 1

2
∂2V
∂S2 σ

2
u + 1

2
∂2V
∂σ2 Σ2

u + ∂2V
∂S∂σρσuΣu − δuµu

)
+ f(3)(0)

2

((
∂V
∂S

)2
σ2
u +

(
∂V
∂σ

)2
Σ2
u + 2∂V∂S

∂V
∂σ ρσuΣu

)
+ l′(0)Su

2

((
∂δ
∂S

)2
σ2
u +

(
∂δ
∂σ

)2
Σ2
u + 2 ∂δ∂S

∂δ
∂σρσuΣu

)
− f (3)(0)δu−

(
∂V
∂S σ

2
u + ∂V

∂σ ρσuΣu
)

+ f(3)(0)
2 δ2uσ

2
u

)
du

+
∫ t
0
f ′′(0)

(
∂V
∂S − δu−

)
σudW

1
u

+
∫ t
0
f ′′(0)∂V∂σ ΣudW

2
u

+
∫ t
0

∫
R f
′(∆Vu − δu−∆Su + L(∆δu, Su)−∆δuSu)K(k)dkdNu

which follows from equation (3.2). Note that ∆Vu, the jump of V when there S has a jump ∆Su of size k
at time u, is equal to V (u−, Su− + k, σu−)− V (u−, Su−, σu−), and similarly for ∆δu.
Applying the �rst pseudo-optimality criterion to the strategy Φ, i.e. that C is a martingale under the
measure P , yields the PIDE satis�ed by the portfolio value V

f ′′(0)

(
∂V

∂u
+
∂V

∂S
µu +

∂V

∂σ
γu +

1

2

∂2V

∂S2
σ2
u +

1

2

∂2V

∂σ2
Σ2
u +

∂2V

∂S∂σ
ρσuΣu − δu−µu

)
+
f (3)(0)

2

((
∂V

∂S

)2

σ2
u +

(
∂V

∂σ

)2

Σ2
u + 2

∂V

∂S

∂V

∂σ
ρσuΣu

)

+
l′(0)Su

2

((
∂δ

∂S

)2

σ2
u +

(
∂δ

∂σ

)2

Σ2
u + 2

∂δ

∂S

∂V

∂σ
ρσuΣu

)

−f (3)(0)δu−

(
∂V

∂S
σ2
u +

∂V

∂σ
ρσuΣu

)
+
f (3)(0)

2
δ2u−σ

2
u

+

∫
R
f ′(∆Vu − δu−∆Su)K(k)dkλu = 0

with terminal conditions
VT = δHST + βH .

In order to apply the second pseudo-optimality criterion, i.e. that the martingale C be orthogonal to the
martingale part of the supply price process SS , we �rst identify the martingale part

SSt (Φ)− E
(
SSt (Φ)

)
=

∫ t

0

(
1 + l′(0)S

∂δ

∂S

)
σudW

1
u +

∫ t

0

l′(0)S
∂δ

∂σ
ΣudW

2
u

+
∫ t
0

∫
R ((l(∆δu)− 1)Su + k)K(k)dkdÑu

with Ñ , the compensated Poisson process of N . Therefore the second PDE satis�ed by the strategy (V, δ) is(
∂V

∂S
− δ
)(

1 + l′(0)S
∂δ

∂S

)
σ2 +

∂V

∂σ

(
1 + l′(0)S

∂δ

∂S

)
ρσΣ

+

(
∂V

∂S
− δ
)
∂δ

∂σ
l′(0)SρσΣ +

∂V

∂σ

∂δ

∂σ
l′(0)SΣ2

+

∫
R
f ′(∆Vu − δu−∆Su + L(∆δu, Su)−∆δuSu) ((l(∆δu)− 1)Su + k)K(k)dkλu = 0
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again with terminal conditions VT = δHST + βH .
Contrarily to the stochastic volatility case, the optimal strategy in the jump-di�usion model requires the
knowledge of both functions f and L on their whole domain of de�nition. Thas feature was to be expected
from the non-local character of the associated in�nitesimal generator.
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