-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Research Papers in Economics

E E D I‘l : ‘I‘ D R T p——

Der Open-Access-Publikationsserver der ZBW - Leibniz-Informationszentrum Wirtschaft
The Open Access Publication Server of the ZBW - Leibniz Information Centre for Economics

Eymann, Torsten; Streitberger, Werner; Veit, Daniel; Buss, Georg; Schnizler,
Bjorn; Neumann, Dirk

Working Paper

Theoretical and Computational Basis
for CATNETS - Annual Report Year 2

Bayreuth reports on information systems management, No. 9

Provided in cooperation with:
Universitat Bayreuth

Suggested citation: Eymann, Torsten; Streitberger, Werner; Veit, Daniel; Buss, Georg;
Schnizler, Bjorn; Neumann, Dirk (2006) : Theoretical and Computational Basis for CATNETS
- Annual Report Year 2, Bayreuth reports on information systems management, No. 9,
urn:nbn:de:bvb:703-opus-3639 , http://hdl.handle.net/10419/52640

Nutzungsbedingungen: Terms of use:

Die ZBW raumt lhnen als Nutzerin/Nutzer das unentgeltliche, The ZBW grants you, the user, the non-exclusive right to use
raumlich unbeschrankte und zeitlich auf die Dauer des Schutzrechts the selected work free of charge, territorially unrestricted and
beschrankte einfache Recht ein, das ausgewahlte Werk im Rahmen within the time limit of the term of the property rights according
der unter to the terms specified at

— http://www.econstor.eu/dspace/Nutzungsbedingungen — http://www.econstor.eu/dspace/Nutzungsbedingungen
nachzulesenden vollstandigen Nutzungsbedingungen zu By the first use of the selected work the user agrees and
vervielfaltigen, mit denen die Nutzerin/der Nutzer sich durch die declares to comply with these terms of use.

erste Nutzung einverstanden erklart.

Mitglied der

-3 B UJ Leibniz-Informationszentrum Wirtschaft
[Leibniz Information Centre for Economics Leibniz-Gemeinschaft ;

https://core.ac.uk/display/6496821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lehrstuhl ftr

[Wirtschaftsinformatik No. 9
Information Systems
Management 2006

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Daniel Veit, Georg Buss (University of Mannheim), Bjérn Schnizler, Dirk Neumann (University of
Karlsruhe), Werner Streitberger, Torsten Eymann (University of Bayreuth)

Theoretical and Computational Basis for CATNETS -
Annual Report Year 2

Die Arbeitspapiere des Lehrstuhls fir
Wirtschaftsinformatik dienen der Darstellung
vorlaufiger Ergebnisse, die i.d.R. noch fir
spatere Veroffentlichungen tberarbeitet werden.
Die Autoren sind deshalb fir kritische Hinweise

dankbar.

Alle Rechte vorbehalten. Insbesondere die der
Ubersetzung, des Nachdruckes, des Vortrags,
der Entnahme von Abbildungen und Tabellen —

auch bei nur auszugsweiser Verwertung.

Authors:

Torsten Eymann (University of Bayreuth)

Werner Streitberger (University of Bayreuth)
Daniel Veit, Georg Buss (University of Mannheim)
Bjorn Schnizler, Dirk Neumann (University of
Karlsruhe)

Managing Assistant and Contact:

Raimund Matros

Universitat Bayreuth

Lehrstuhl fur Wirtschaftsinformatik (BWL VII)
Prof. Dr. Torsten Eymann
Universitatsstrasse 30

95447 Bayreuth

Germany

Email: raimund.matros@uni-bayreuth.de

The Bayreuth Reports on Information Systems
Management comprise preliminary results
which will usually be revised for subsequent
publications. Critical comments would be

appreciated by the authors.

All rights reserved. No part of this report may

be reproduced by any means, or translated.

Information Systems and Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

ISSN 1864-9300

e | : :
M_:zg_ T _. Information Society

P Technologies

IST-FP6-003769 CATNETS
Y2 Report
WP 1: Theoretical and Computational Basis

Contractual Date of Delivery to the CEC: 31. August 2006
Actual Date of Delivery to the CEC: 30. September 2007

Author(s): Daniel Veit, Georg Buss (University of Mannheim)
Bjorn Schnizler, Dirk Neumann (University of Karlsruhe)
Werner Streitberger, Torsten Eymann (University of Bayreuth)

Workpackage: WP 1 Theoretical and Computational Basis
Est. person months: 19

Security: public

Nature: submitted version

Version: 1.0

Total number of pages: 59

Abstract:

This report covers the results of WP1 in Y2 and hence comprises mainly the results from T1.4
and T1.5.

Keywords (optional):

Decentralized Market Mechanisms, Centralized Market Mechanisms, Catallaxy, Market
Engineering, Simulator Integration, Prototype Integration

CATNETS Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the Eu-
ropean Communities as project number IST-FP6-003769. The partners in this project are: LS Wirtschaftsinformatik
(BWL VII) / University of Bayreuth (coordinator, Germany), Arquitectura de Computadors / Universitat Politecnica
de Catalunya (Spain), Information Management and Systems / University of Karlsruhe (TH) (Germany), Dipartimento
di Economia / Universita delle marche Ancona (Italy), School of Computer Science and the Welsh eScience Centre
/ University of Cardiff (United Kingdom), Automated Reasoning Systems Division / ITC-irst Trento (Italy), Chair of
Business Administration and Information Systems - E-Business and E-Government / University of Mannheim (Ger-
many).

Universitat Politecnica de Catalunya

University of Bayreuth .
LS Wirtschaftsinformatik (BWL VII) Arql'nte'c tura de Computadors
95440 Bavreuth Jordi Girona, 1-3
yreu 08034 Barcelona
Germany .
Spain

Tel: +49 921 55-2807, Fax: +49 921 55-2816
Contactperson: Torsten Eymann
E-mail: catnets@uni-bayreuth.de

Tel: +34 93 4016882, Fax: +34 93 4017055
Contactperson: Felix Freitag
E-mail: felix@ac.upc.es

University of Karlsruhe Universita delle marche Ancona

Institute for Information Management and Systems Dipartimento di Economia

Englerstr. 14 Piazzale Martelli 8

76131 Karlsruhe 60121 Ancona

Germany Italy

Tel: +49 721 608 8370, Fax: +49 721 608 8399 Tel: 39-071-220.7088 , Fax: +39-071-220.7102
Contactperson: Christof Weinhardt Contactperson: Mauro Gallegati

E-mail: weinhardt@iism.uni-karlsruhe.de E-mail: gallegati@dea.unian.it

University of Cardiff ITC-irst Trento

School of Computer Science and the Welsh eScience Centre Automated Reasoning Systems Division
University of Caradiff, Wales Via Sommarive, 18

Cardiff CF24 3AA, UK 38050 Povo - Trento

United Kingdom Italy

Tel: +44 (0)2920 875542, Fax: +44 (0)2920 874598 Tel: +39 0461 314 314, Fax: +39 0461 302 040
Contactperson: Omer F. Rana Contactperson: Floriano Zini

E-mail: o.f.rana@cs.cardiff.ac.uk E-mail: zini@itc.it

University of Mannheim

Chair of Business Administration and Information Systems
- E-Business and E-Government -

L9, 1-2

68131 Mannheim

Germany

Tel: +49 621 181 3321, Fax: +49 621 181 3310
Contactperson: Daniel Veit

E-mail: veit@uni-mannheim.de

Contents

1 Introduction 3

2 Self-Organization in Computing Systems - Putting CATNETS into a Greater

Perspective 5

2.1 Introduction to Self-Organization 5
2.2 Infrastructural Spheres of Self-Organizing Computing 6
2.3 The Open Service Infrastructure 7
2.4 About the Necessity to Create an Open SOC Policies Infrastructure 8

3 Formal Description of Mechanisms 10
3.1 Centralized mechanisms 10
3.2 The Catallaxy as an Alternative Decentralized Approach 11
3.2.1 Setup and Variables Definition 13

3.2.2 The Negotiation Strategy 14

323 GossipLearning 17

3.24 The Learning Algorithm 17

4 Bidding Issues 20
4.1 WhatDoesan AgentBid? 20
4.1.1 Notation 20

4.1.2 Valuation Generation 21

42 When Doesan AgentBid? 23
42.1 Complex Service Agent 24

422 BasicService Agent 24

4.2.3 Resource Service Agent 26

43 Summary e e e 27

5 Integration of Mechanisms into Simulator 28
5.1 Integration of the Auction Mechanisms 28
5.1.1 Implementation of the Markets 28

5.1.2 Integration into OptorSim 32

5.1.3 Results from Refinement Runs/Simulations 34

5.2 Decentralized Mechanisms (Catallaxy) 35

CONTENTS

5.2.1 Implementation of the Markets
5.2.2 Integrationinto OptorSim
5.2.3 Results from SimulationRuns

6 Integration of Catallactic mechanism into middleware
6.1 Description of the Integration of Decentralized Mechanisms into Middle-
WATE .« . o v v e e e e e e e e e e e e e e
6.1.1 Integration of the Agents Using the P2P Middleware Agent API .
6.2 Preliminary Results from Decentralized Mechanisms in Middleware Sce-

NATIOS .+ o v v e e e e e e e
7 Relations to other WPs
T.1 O WP2 .
T2 WP3 e
T3 WP4A . e e
8 Outlook

8.1 Review e
82 Contentto Y3o

Bibliography

43

43
44

49

52
52
52
53

54
54
55

56

Chapter 1

Introduction

The primary target of the CATNETS project is the quantitative comparison between the
technical and economic efficiency of market-based resource allocation mechanisms in
application layer networks such as Grids. Here, two fundamentally different approaches
are compared. A centralized — auction-based — market mechanism and a decentralized —
Catallaxy-based — market mechanism.

After the reorganization (following the Y1 review) this endeavor has been approached
in the following way:

e Workpackage 1 (Theoretical and Computational Basis): The target of this workpackage
is the definition of market mechanisms for the centralized and the decentralized case.
Therefore, software components have to be identified (T1.1), market requirements have
to be analyzed (T1.2) and an architecture for services and ALNs has to be designed
(T1.3). Finally a specification for bidding and interaction issues has to be carried out
(T1.4). A specification and analysis of the market mechanisms concludes WP1.

e Workpackage 2 (Simulation Framework): The core of this workpackage is the imple-
mentation of a simulator framework integrating both, the centralized and the decentral-
ized market mechanism. The goal is to compare the outcome of the application of both
mechanisms quantitatively.

e Workpackage 3 (Proof-of-Concept Applications): In parallel to WP2 this workpackage
focuses on the implementation of the designed decentralized market mechanisms into
a prototypical ALN-middleware software. Quantitative evaluations are carried out by
running experiments with this platform.

e Workpackage 4 (Performance Evaluation): The aim of this WP is the identification and
design of metrics in order to measure the outcome of WP2 and WP3. Here, a metrics
framework is designed in order to enable the measurement of the quality of allocation
results in using an economic scale.

CHAPTER 1. INTRODUCTION 4

e Workpackage 5 (Management): This workpackage is designed to carry out project
management and dissemination.

This report covers the results of WP1 in Y2 and hence comprises mainly the results
from T1.4 and T1.5.

The remainder of this report is structured as follows: Chapter 2 illustrates research
questions of the CATNETS project in the context of self-organizing systems and draws a
vision towards future research topics. In the following, Chapter 3 focuses on the descrip-
tion of the introduced market mechanisms. In Section 3.1 the properties of the centralized
market mechanisms, which have been defined in Y1 report [SNVT05b] are briefly de-
scribed. Section 3.2 provides a formal description of the decentralized allocation mecha-
nisms. The bidding issues, presented in Chapter 4, elaborate different scenarios connect-
ing the service and resource market. Advantages and disadvantages of these scenarios are
compared to enable a comparison of the centralized and decentralized market mechanism.
In Chapter 5 the integration of the mechanisms into the OptorSim simulator is outlined
and links to WP2 are set. Therein, preliminary simulation results are provided. The next
chapter - Chapter 6 - shows the integration of the catallactic market into the middleware
environment. Implementation details and first results from a scenario are presented there.
Chapter 7 relates Workpackage 1 to the other workpackages. Finally, Chapter 8 provides
a summary and an outlook an the work that is content in Y3.

Chapter 2

Self-Organization in Computing
Systems - Putting CATNETS into a
Greater Perspective

2.1 Introduction to Self-Organization

The vision of Self-Organization in Computing Systems and Networks has gained signifi-
cant interest in the last years, and even was labeled with a popular buzzword: Autonomic
Computing [KCO03] describes a concept of self-organizing information technology, where
the functionality of the computing system is an emergent feature of the capabilities and
actions of the components. Without any centralized controller, this system is capable of
configuring, healing, organizing and protecting itself (the so-called CHOP properties). In
contrast, classical IT control involves a centralized controller instance with global knowl-
edge about the current status of the computing system, and a detailed regulation mecha-
nism to "heal’ deviations from a defined 'normal’ status. Centralized computation is said
to be not that flexible in terms of scalability and adaptability. Autonomic Computing uses
a biological paradigm as a design and control metaphor, the autonomic nervous system.
The core CHOP properties of the Autonomic Computing concept are intended to be an
electronic realization of the respective mechanisms of the human body. Self-organization
can be found in other parts of our natural environment as well, e.g. biological evolu-
tion, social group behavior, market dynamics phenomena and other complex adaptive
systems. Autonomics refers to our own human neural system, Catallaxy [ESMPO03] to
self-organizing markets in Economics, Stigmergy to coordination without communica-
tion in insect colonies. All these ideas have in common that the solution for growing
complexity both in scale and semantics is decentralized control, that is based on local
information and executed through local effects which build up to a system-wide emergent
behavior. It is not surprising that projects labeled Autonomic Computing are thus man-
ifold, coming from diverse backgrounds and academic habitats, and aiming at a variety

CHAPTER 2. PUTTING CATNETS INTO A GREATER PERSPECTIVE 6

of technological and scientific knowledge increase. This is because it is not only hoping
to solve many problems that industries are experiencing, with unreliable or increasingly
more complex environments. In addition, it brings a unique challenge to computer sci-
entists and engineers to add the concept of the system’s ’self’. Furthermore, it attracts
a diverse community from biological systems science to operating systems engineering,
who are often able to present solutions evolved from earlier work. Historically, Self-
Organizing Computing clearly builds on the distributed artificial intelligence paradigm.
Multiagent systems [Wei99] have thus gained renewed attention and a rewarding applica-
tion area. In striking similarity to the evolution of Distributed Al itself, the key motivation
aspect again lies in the increasing size and complexity of the information systems to be
controlled, and a non-negligible growth in their control costs. Again, the concept of self-
organizing computing is not new. Earlier concepts, like cybernetic [Wi1e98] or autopoietic
[Mat99] systems, failed because of technological immaturity, missing business models or
a combination thereof. It seems that technological progress now allows another, this time
more promising, look. It is yet unclear whether Autonomic Computing will survive as its
own topic in the long run. However, by stimulating creativity of researchers, recombining
existing knowledge from different fields, spurring workshops, conferences and research
proposals, Autonomic Computing is already a positive phenomenon in computing science
research.

2.2 Infrastructural Spheres of Self-Organizing Comput-
ing

To get a clearer look at the prospects and hurdles, chances and risks of Self-Organizing
Computing (SOC) the complex concept of SOC will be divided into three spheres: the
technological infrastructure, the services infrastructure and the policies infrastructure.

1. The computing technology infrastructure describes the technological progress, the
software and hardware modules and the engineering processes to build these.

2. Having the technology in place is a prerequisite for creating new products and ser-
vices which benefit from self-organizing computing. In their entirety, these new
products and services build up the services infrastructure of potential SOC busi-
nesses.

3. Businesses, however, need rules, for protecting legitimate rights and properties of
the participants.

The policies infrastructure describes a joint understanding and acceptance of rules,
norms and laws as well as agreed-on measures to regulate and enforce compliance. The
infrastructural spheres are not separate from each other. Without technology, there are no

CHAPTER 2. PUTTING CATNETS INTO A GREATER PERSPECTIVE 7

services to be invented. Without services in action, no policies are needed to restrict or al-
low their usage. In a feedback loop, the requirement to express machine-readable rules to
enforce software-based norms leads again to technological development. New concepts
and technologies will inevitably again enable innovative services and at the same time
require their regulation. Figure 2.1 shows the three infrastructural spheres schematically.
Taking technological inventions into account as an existing, constant flow of fresh ideas
and concepts of computer scientists, the research challenge will mainly lie in the real-
ization of the services and the policies infrastructure. The following paragraphs describe
selected research questions of these infrastructures in more detail.

Technology

Figure 2.1: Infrastructural Spheres for Self-Organizing Computing

2.3 The Open Service Infrastructure

Most SOC environments are thought to be closed worlds, in which system elements pro-
vide resources benevolently. This is true for the usual scientific environments, e.g. Open
Grid networks - the benefits for the users are counted in participating in scientific progress,
and the promise of eventual reciprocity. In business environments, benevolent coopera-
tion can be enforced - autonomous decision-making only allowed as far as it does not
interfere with the business goals of the company. However, Autonomic Computing is not
a concept to be confined within organizational borders. If we take visions of comput-
ing infrastructures serious, we will soon witness computing infrastructures comparable

CHAPTER 2. PUTTING CATNETS INTO A GREATER PERSPECTIVE 8

to the super-national electricity grid (Grid Computing) or energy, water and other util-
ities grids (Utility Computing) [Car04]. These ubiquitous infrastructures are open and
non-discriminating with regard to users wanting to join - anybody can participate in such
an infrastructure. A small glimpse into the future might be the current trend *Web 2.0°,
which recombines infrastructure software elements to create new services. Practically,
demand and supply of new and existing services will define a services market. Markets
have the advantage to collect existing resource supply and thus, usually, to achieve evenly
utilization by leveling heterogeneous user behavior. Like other utilities, the services to
be traded on those markets in huge numbers, are of simple nature. They are distinguish-
able by service quality characteristics, but convertible otherwise. This means that, given
equal characteristics, competition will take place by signaling lower prices than the com-
petition. However, the economic models underlying those markets are yet to be found.
That includes the definition of the measure of utility, guiding the behavior of participants.
Also methods which enable the transfer of goods and values (electronic money) have to
be developed. Without such markets, SOC will stay yet another model for running cluster
computing environments.

2.4 About the Necessity to Create an Open SOC Policies
Infrastructure

For open ’utility computing’ autonomic environments, we will soon encounter the de-
mand for a policy infrastructure, like those in our non-electronic, physical society. Phys-
ical communities or networks frequently show very specific, only partly legally binding
agreements and rules. Those policies define the resource-wise contributions of the net-
work participants, the share of the utility gain, dealing with conflicts and mechanisms
to enforce cooperative behavior of the participants. Self-organization requires all this,
as the participants individually (autonomously) follow their pre-set goals. As computing
systems always belong to humans (or businesses run by humans), human goals are those
which ultimately define the course of the computational participants. SOC, by definition,
is not a topic for synchronized, targeted and on-the-spot network management. It needs
mechanisms to make risks calculable and process efficiently - without, the system as a
whole will become incapable of action. For managing the individual, autonomous pro-
cesses in the system one needs to find, enforce and monitor common rules, norms and
institutions. Without those, we will face not intended consequences, non-innovation and
resistance to application of that technology. Yet, the guarding policies are not fixed. With
changing environment and changing system goals, even the policies need to adapt. This
creates a meta-problem: the definition of policies for adaption of policies. Figure 2.2
shows a framework of elements to achieve spontaneous order. The circle begins with the
software designers of the original system creating and defining an element’s behavior. By
way of a cultural evolution, rules of acceptable behavior get refined and give way to the
next version of system inhabitants, who will be released in the information system and

CHAPTER 2. PUTTING CATNETS INTO A GREATER PERSPECTIVE 9

shape it to their needs. The final open question is, whether the spontaneous order provides
"acceptable behavior’ of the system - in principle, spontaneous order has no conscience
and knows no guilt.

Policies Infrastructure

(Rules of Acceptable Behaviour)
adapts restricts
allows
Cultural Autonomic
Evolution Action
Configuring] Healing
1 leads to leads to? l
Software ©)aiilyirlye) Protecting
Design
l leads to
influences influence?
Spontaneous Order

Figure 2.2: Regulatory Framework for Self-Organizing Computing

Acceptable
System
Behaviour?

It is, however, possible to disrupt the self-coordination through targeted violation of
the ’regulatory framework’. The automated pursuit of the individual goals alone does not
produce an acceptable behavior of the entire system, e.g. in terms of robustness, con-
trollability and the adherence of security criteria for the individual participant. Whether
these perceptions can be generalized and used for the design of decentralized information
systems (or information systems in a decentralized environment) and lead to more effi-
cient paradigms for the implementation of computers, needs future research efforts. The
question remains open, which the most effective framework to achieve spontaneous order
is. The necessary regulation framework required can ex ante only be specified as trial and
error. In this context, trust in, and generating trust through, Autonomic Computing are
the main requirements for acceptability.

Chapter 3

Formal Description of Mechanisms

There are several competing approaches to how resource allocation is carried out. In this
chapter, two of those are provided. The first mechanisms (Section 3.1) uses a centralized
component in order to compute an allocation in ALNs. The second (Section 3.2) uses a
decentralized approach in order to allocate demand and supply in such networks.

3.1 Centralized mechanisms

In the CATNETS scenario a two-tiered market architecture is considered (compare Fig-
ure 3.1).

As described and motivated in Y1 report [SNV105b] in detail, we use a double auc-
tion market in order to carry out allocations in the service market. Due to the nature
of the problem that has been analyzed in the first year of the project, a multi-attribute
combinatorial exchange mechanism has been suggested for implementing the resource
market. The mechanism is based on a centralized allocation between computational sup-
ply and demand. Supply and demand are expressed in terms of several attributes under
consideration of different quality levels for each attribute.

The fundamental version of the mechanism is content of the Y1 deliverable
[SNV*05b]. An extended version of the mechanism including robustness tests and stand-
alone simulations has been published in [SNVWO06].

The efforts concerning the centralized market mechanisms in CATNETS in Y2 have
been focused on the implementation and integration into the simulator as well as the
discussion and identification of measurable parameters to connect the metrics framework
with the quantitative output of the simulation runs.

10

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 11

. Complex ‘5 { Ressource |
| Service | " Basic | Service |

| Complex |
i Service |

Service { Ressource |
i Service

! Complex
| Service | N /

Service Market Resource Market

Figure 3.1: CATNETS Scenario: Service Market and Resource Market (Figure from Y1
Report)

3.2 The Catallaxy as an Alternative Decentralized Ap-
proach

Having defined a formal model for using a centralized economic allocation mechanism in
a Grid network, this section describes an alternative, decentralized approach. The decen-
tralized mechanism introduced here, implements the selection decision in the requesting
client itself. Related realizations of decentralized approaches are found in P2P Networks,
where Gnutella [AHOO] is a typical example.

An optimization of network performance is out of the scope of the clients behavior; in
contrast, the selfish conduct of each peer leads to performance and congestion problems
in the P2P network, which are principally hard to solve [AHO0O0]. Gnutella uses a flooding
algorithm for service discovery (see Figure 3.2).

P2P algorithms are thus giving no guarantees whether a service is available at all.
Furthermore their use of bandwidth is highly inefficient, as they were in 2004 responsible
for approximately 56% of all network traffic measured by ISPs and 20% of the back-
bone traffic, counting only the search requests [AG04]. Innovative P2P approaches like
Chord, Pastry or CAN avoid this message abundance by introducing an overlay structure
[REHT01].

In decentralized matchmaking models, agents communicate directly with each other,
decide on their own, and do not take the system state into account. In the Edgeworth

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 12

Discovery Messages with

Time-to-live Stamp (TTL)
s -~ Service Provision

TTL: 6

TTL: 5
-—
@ TTL 6

TTL: 6
TTL: 7,

@ TTL: 7 @

Figure 3.2: Decentralized Service Discovery

TTL: 7

process [Var94], economic subjects trade bilaterally with each other only if their utility is
supposed to increase after the barter. In that case, the sum of all utilities increases after
each successful barter; the final state is Pareto-optimal and has maximum system utility.

A theoretical fundament how the concepts of dynamic market processes, heteroge-
neous agents and choice under incomplete information are linked, can be found in Neo-
Austrian Economics, in particular in Friedrich August von Hayeks Catallaxy concept
[HBKCS89]. Catallaxy describes a state of spontaneous order, which comes into exis-
tence by the community members communicating (bartering) with each other and thus
achieving a community goal that no single user has planned for.

The implementation of Catallaxy, described in this paper, uses efforts from both agent
technology and economics, notably agent-based computational economics [Tes97]. Au-
tonomous software agents negotiate with each other using an alternating offers proto-
col [Ros94] and adapt their negotiation strategies using feedback learning algorithms
(evolutionary algorithms, numerical optimization e.g. Nelder/Meads simplex method
[PTO2], hybrid methods e.g. Brenners VID model [Bre02]). Ongoing communica-
tion by using price signaling leads to constant adaptation of the system as a whole and
propagates changes in the scarcity of resources throughout the system. The resulting
patterns are comparable to those witnessed in human market negotiation experiments
[KRO5][Pru81][Smi62].

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 13

3.2.1 Setup and Variables Definition

While the notation for buyers, sellers and goods is the same as the one used in the central-
ized case, we need to add definitions for the decision-making process (the strategy) of the
agents. The negotiation strategy described here is based on the AVALANCHE strategy
[ESPI98][EymO01]. The strategy consists of 5 basic parameters, which define the individual
behavior (genotype) of each agent.

For every tradable good there are two types of agents, buyers and sellers. Let agent &
be a buyer and agent v a seller of a tradable good.

Let 7, be the number of negotiations that agent k has started and ¢, the number of
negotiations that agent v has started.

A genotype defines the behavior of the agents in the negotiation strategy. Let the
genotype of agent x for * = k, v during his negotiation 7, be

G € [0;1)°

with

Gi* = (Gf:l’ T Gf«:5)7— = (af:v S?a tf:: bi* ’ wi*>T
where
at acquisitiveness
s satisfaction
tis priceStep
bl priceNext
wi weightMemory.

Acquisitiveness defines the probability of sticking with the last offer made, and not
to make an unilateral concession in the following negotiation step. The value interval is
between 0 and 1, and will be challenged by a stochastic probe in every negotiation step.
A value of 0.7 means a probability of 70% that the agent will not make a concession —
a highly competitive strategy. An agent with acquisitiveness value 1.0 will never change
his price and an agent with acquisitiveness value 0.0 will always make an unilateral con-
cession. If the probe succeeds, a buyer agent will rise his offer, a seller agent will lower
his price.

The exact change of the bid value is defined by the concession level (priceStep). The
concession level is represented by a percentage of the difference between the initial start-
ing prices. A value of priceStep = 0.25 means a computation of the concession level as
1/4 of the first stated difference. If both opponents are homogenously negotiating and
always concede, they meet each other on the half way in the third negotiation round under
the assumption of no negotiation abortion.

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 14

Obviously, with an acquisitiveness level set high, and a priceStep set low enough, the
opponents might never reach an agreement. The satisfaction parameter determines if an
agent will drop out from an ongoing negotiation. The more steps the negotiation takes, or
the more excessive the partner’s offers are, the sooner the negotiation will be discontinued.
Effectively, this parameter creates time pressure. Like for acquisitiveness, it does this by
doing a stochastic probe against a set value between 0 and 1. A satisfaction value of 0.75
means, that the agent has a chance of 75% to continue the negotiation process. An agent
with satisfaction = 0.0 will abort all negotiation at once and an agent with satisfaction =
1.0 will never abort.

The last piece of the strategy is an expression of selfishness. Behind each successful
negotiation lies a future opportunity for gaining more of the utility share, by negotiating
harder. priceNext thus modifies the starting bid. A successful seller will increase his offer
price, a successful bidder will start with a lower bid next time.

For a viable strategy, the participants will have a close eye on what others deem to
be the market price. If not, they risk being tagged as “excessive” and their bids will
fail the satisfaction probe. They thus weigh current price information and historic price
information in a specified ratio weightMemory, balancing short-time price fluctuation and
longer-term opportunities.

At the beginning of the simulation the genes Gifj forx = k,vand j € {1,...,5} are
distributed according to the probabilities:

Thereby, the constants m; and §; for j € {1,...,5} are defined so that [m; — 6;;m; +
0;] € [0;1].

Additionally, each agent * has the following variables:

M the market price, which is estimated by
agent * during his negotiation i,.

Pix the price of the the last successful
negotiation 1, 2, . .. i, of agent x.

(O the last offer, which the negotiation opponent

has made in negotiation number ¢, the agent *
before the negotiation ended.

pix the number of stored plumages of agent
direct after his negotiation ..

3.2.2 The Negotiation Strategy

When agent £ and agent v negotiate, agent k is the buyer and agent v the seller. The se-
quence (P;)jen, C [0, co[constitutes the offer in chronological order. The buyer always

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 15

makes the first offer. This means, all offers
b, Vm € INg
originate from the buyer and the offers
Psiq Vm € INg

come from the seller, where

is the negotiation round.

At the beginning of a negotiation the buyer £ determines his initial price & and his
maximum price K:

K=M}(1-b), K=M
The seller v determines his starting price V' and his minimum price V:
V=M (1+b), V=M

The buyer starts with the first bid:
F=K

e First Case: K >V
Then v offers also
P =K

and the negotiation will be closed successfully to the price P;.

e Second Case: K <V
Then v offers his initial price

pP=V.
Both agents now determine their steps 47+ for price concessions:

S = (V- K) -t for *=kFk,v

In the subsequent negotiation rounds, let A;, Ay, Az, ... and 51, .55, 53, ... be stochastic
independent random variables with the following binomial distributions:

_ 1 with probability a;f

A = { 0 with probability 1 — a}* Vm e N
_ 1 with probability a’

Asmyr = { 0 with probability 1 — aiu Vm € N
1 with probability s*

- ' IN

o { 0 with probability 1 — s} Vm e
Somi1 = { (f; with probability s’ e N

with probability 1 — s’

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 16

e Offer number 2m; it is the buyer’s k turn:

If S, = 0 and P > Po(nu—1)—1 With m # 1, then the buyer £ cancels the negotia-
tion. This means, O} = Ps,,_1 and Ol = Py(p_1) .

Otherwise, the buyer k£ makes the following offer:

. , 1—Aom
B, = <min {K, (Pz(m—l) + 5;’“)7 P2m71}> ’

A2m
<P2(m—1))

e Bid number 2m + 1; it is the seller’s v turn:

If Sppy1 = O and P, < Po(;—1), then the seller v cancels the negotiation. That means,
Of}” = Pgm and O]Zk = PZ(m—1)+1 .

Otherwise the seller v makes the following offer:

. 5 Azt
Popi1 = (mln {K, (P2(m71)+1 — o), PQm}) :

1-Aomt1
<P2(m—1)>

The negotiation ends if either one of the agents cancels the negotiation or the negotiation
ends successfully with
Pj =P J+1

fora j € IN. In this case, it holds O} = P; = O,

With the end of a successful negotiation to the price P; the negotiation compute their
estimated profit

I = M;* —P; respectively Iy = Py — M’ .

Additionally, both agents update after every negotiation their estimated market price
using A _ _ A A
M = i O + (1= w) - M

respectively ' ' 4 ' '
MPH = w . OF + (1 —w?) - M .

This last step is independent of the success of a negotiation.

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 17

3.2.3 Gossip Learning

The learning concept used in this simulation is derived from so-called gossip learning.
This means that the agents learn from received information about other transactions in the
market. This information may not be accurate or complete, but serves as an indication
about the gross direction of the market. In our implementation, this gossip information is
created and broadcast by a successful agent, in analogy to issuing an ad-hoc information
in stock market periodicals.

Let n be an agent and ¢4, . . ., g4 the tradable goods. The agent n has finished his ne-
gotiation i,, successfully with an estimated profit of IT%» (g) for the good g € {g1, ..., g4}
A learning step according to the learning algorithm (see subsection 3.2.4) is performed
by agent n last time at the end of his negotiation j;. This means

If agent n with the negotiation numbers
jn+1ajn+277ln
has successfully completed at least 10 negotiations for every good, he sends a Plumage
(G Fy)

to all other agents of his type. Then, his updated fitness is Fi», which is computed as
follows:

(a) Forevery good g; € {g1, ..., g4} the next profit value II(g;) is determined: Let

Iy (g5), - - - ho(gy)

be the estimated profits of the last 10 successful negotiations of agent n for the good
g;. Then, the fitness is

Fy(g) = 1—10(111(9]») +oeet Hm(gj)) :

(b) The updated fitness F'~ finally is

1

Fy = g(ﬂ(m) +F H(Qd)) :

3.2.4 The Learning Algorithm

It is assumed that the agents show a cooperative behavior. This means, the agents report
truthfully their learning information.

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 18

After having received some gossip information message, the agent may modify his
own strategy. The comparison of the own results with those of the strategy received
may show, that the other strategy superior to the own. In this case, the agent will try
to cross both strategies to gain competitive advantage. In practice, out of a list of re-
ceived genotype/performance-tuples, the agent will choose the best performing external
genotype, and then mix, cross and mutate with his own genotype.

Let be n an arbitrary agent at the end of his negotiation 7,, and let be pi» the number of
plumages, the agent n has stored directly after his negotiation ¢,,. The last learning step
was performed by agent n after his negotiation jj. Let be e» the number of negotiations,
an agent n of the negotiation numbers

JntLignt+2,.. 0

has successfully finished.

Let be

p=1.
If ' ‘
py<p or ey < 10

applies for agent n after his negotiation ¢,,, no learning step will be performed. This
means, his genotype will not change:

Gin+1 — Gin .
Hence, if
pr>p and em > 10
applies, the agent n performs a learning step. The genotype of agent n changes as follows:

First, the stored plumage of agent n with the highest fitness is selected. Let be
Gf = (Gﬁl, ceey Gf75)7 = (af, S, tf, bf, wf)T

the related genotype. Second, a crossover is performed. In doing so, a new genotype
C:‘i{b“ is created, which contains a random mixture of genes of the genotypes G and
Gs. This process follows a mutation step third: Using the genotype @f{b“ and changing
its genes slightly will result in the genotype G+,

3.2.4.1 Crossover

Let be (', . .., Cj stochastic independent random variables with the following binomial
distribution:

Vjied{l,...,5}

co— 1 with probability 0,5
I 0 with probability 0,5

CHAPTER 3. FORMAL DESCRIPTION OF MECHANISMS 19

Then it is imperative

Gl = (1-C)) -G +C;-Gyy Yjiefl,...,5}).

3.2.4.2 Mutation

Letbe M, ..., M5, Xy, ..., X5 stochastic independent random variables with the follow-
ing distributions:

M.

J

= e e ¥ € L)

0 with probability 0,05
X; ~ N(0,1) Vjied{l,...,5}

That means, X, isVj € {1,...,5} standard normal distributed.
Then, it holds

Gyt = max {O min { G+

Mj-((l—lox mod(1)) ; 1} } Vie{l,... 5}

Chapter 4

Bidding Issues

The purpose of this chapter is to clarify what and when an agent bids in the CATNETS
scenario. What denotes the valuation and the reservation prices of agents, i.e. the
maximal price which an agent is willing to pay for a service (resp. the minimum price an
agent has for selling a service). When denotes the timing of bids, i.e. which event induces
an agent to bid for a service. Both cases are different in the centralized and decentralized
scenario. As such, it is important to find concepts that are applicable for both scenarios
and, thus, make the results comparable.

The chapter is structured as follows: Section 4.1 outlines the valuation generation
of an agent, i.e. the procedure that determines the value of an agent’s bid. Section 4.2
describes the timing of the agent’s bids, i.e. when does an agent bid for a service. Finally,
Section 4.3 summarizes the chapter.

4.1 What Does an Agent Bid?

The following section describes what an agent bids, i.e. the valuation and reservation
prices. For this, a generic function is developed that is applicable for both, the centralized
and the decentralized case. The concept is applied for buyers and sellers in both markets,
i.e. in the service market and in the resource market.

4.1.1 Notation

Before the valuation generator is introduced, the general notation as denoted in table 4.1
is presented.

The transaction object g denotes the service for that a valuation is to be generated.

20

CHAPTER 4. BIDDING ISSUES 21

Transaction object g
Valuation in period 7 | V*
Market price M
Weight market price | 3
Weighted Average | wav®
Weighted Memory | w’

Table 4.1: Notation for the valuation generation

For instance, this could be a PDF creator in the service market. For each service, an agent
has a valuation V? (resp. reservation price) in each period i. This valuation denotes the
maximum price, an agent is willing to bid for this particular service.

The valuation generation is influenced by external factors such as the market price.
In case such a market price exists for a transaction object in period i, it is denoted by
M. For the centralized case, market prices may not exists in each period. In these cases,
an approximated market price is used. The effect a market price has on the valuation
generation is denoted by (. The lower this value is, the lesser the importance of old
market prices.

Finally, the weighted average wav® and the weighted memory w* denote noise param-
eters.

4.1.2 Valuation Generation

Based upon the notation as introduced in the previous section, the valuation for a service
¢ in time period ¢ + 1 is calculated as follows:

Vit (g) = BM'(g) + (1 — Bwav'(g) + VX + Z (4.1)

The valuation for the next period depends on the market price of the current period,
the weighted average of former valuations, and some statistical noise. The weight of the
market price and the weighted average depends on the static value 5 € {0, 1} which is
predefined and fixed. From an implementation point-of-view, the variable (3 should be
definable via an external configuration file.

It is to note, that the statistical noise functions are only applied in the centralized
case. These functions are responsible for inserting exogenous factors (e.g. different
dynamics, density scenarios) in the centralized simulation. In the decentralized case, this
noise is generated by a genetic algorithm. However, this genetic algorithm will not be

CHAPTER 4. BIDDING ISSUES 22

applied to the centralized auctioneer, as it is a special algorithm for the decentralized
case: The algorithm (decentralized learning strategy) serves for information propagation
in CATNETS. However, we do not need this propagation in the centralized case, because
the auctioneer spreads all relevant information out of a central point. The challenge is,
however, to define noise functions that generate “similar” values as in the decentralized
case.

The calculation of the weighted average and the statistical noise are discussed in the
following.

4.1.2.1 Calculating Weighted Average

The weighted average for a service g in period i is calculated as follows:

wav'(g) = w'V'+ (1 —wwav' "' (g) (4.2)
wav'H(g) = w VT + (1 —w T Hwav3(g) (4.3)
- ... (4.4)

wav'(g) = w VT 4+ (1 —w) wav I (g) (4.5)

The value will be re-calculated after each transaction session, i.e. after each round.

The function is recursive and its depth is limited by the factor j. The required old
valuations V' are stored in a ring-array with j places, where j has to be definable via an
external configuration file. The difference between the centralized and decentralized case
is, that j may be different in both cases. This is reasoned by the fact, that more valuations
are generated in the decentralized case than in the centralized case. For instance, in the
centralized case only one valuation is generated per transaction session (one-shot auction).
In the decentralized case, however, multiple valuations (at most 3) may be generated
during one transaction session. In order to respect this difference, j should be smaller
in the centralized case than in the decentralized one. For instance, this value could be

j centralized — j decentralized/ 10.

4.1.2.2 Statistical Noise

Statistical noise is required to add externalities to the valuation generation. In practice,
these externalities could be some information or news distributed to the agent. For
instance, this could be an external information that a large computer center is out of
order for several weeks. Furthermore, this noise is required to avoid “deadlocks” of the
simulation, i.e. situations in which all prices converge to a specific point.

CHAPTER 4. BIDDING ISSUES 23

For the CATNETS valuation generation, the following noise functions are applied:
X,Y,and Z.

~ | 1 with probability of p = 0.5

V= { 0 with probability of p = 0.5 (4.6)

Y is a simple binary variable which determines whether the value computed by X* will
be used or not. It is drawn from a uniform distribution. The value) in the centralized
case is comparable to the crossover operator in the decentralized case.

The value X is drawn from a normal distribution, i.e.

X ~ N(a,b), (4.7)

where « is the mean of the distribution and b is the standard deviation. In addition, a
scaling factor will be required, if the distribution is X ~ N(0,1). X in the centralized
case is comparable to the priceNext operator in the decentralized case.

Finally, the value Z is also drawn from a normal distribution, i.e.

Z ~N(e,d), (4.8)

where c is the mean and d its standard deviation. Similar to X', we may apply a scaling
factor. Z in the centralized case is comparable to the mutation operator in the decentral-
ized case. It has to be small enough to avoid high price jumps (see decentralized case with
p=0.05).

4.2 When Does an Agent Bid?

The value of an agent’s bid can be calculated by means of the defined valuation generator.
In the next step, we have to define the timing of the agent’s bid, i.e. we have to define
events when an agent bids in the centralized and decentralized case.

In the following, the timing concepts are outlined for each type of market participant:
for the Complex Service Agent, the Basic Service Agent, and the Resource Service Agent.
Furthermore, it is distinguished between the centralized and the decentralized case.

CHAPTER 4. BIDDING ISSUES 24

4.2.1 Complex Service Agent

The Complex Service Agent bids on the service market, whenever it receives a request
from an application. This request is triggered and, as a result, exogenously given. The
actions of the agent in the centralized and decentralized case are as follows:

Centralized: The agent submits a bid to the auctioneer.

Decentralized: The agent starts to distribute a call-for-proposal (CFP).

4.2.2 Basic Service Agent

For the basic service agent, we identified three alternatives (strategies) that can be
applied to the timing of bids. It is to note, that the strategies encompass the basic ser-
vice agent’s role of a seller in the service market and that of a buyer in the resource market.

In the following, these strategies and their applicability for CATNETS are discussed.

4.2.2.1 Strategy A

The first strategy for the basic service agent is defined as follows (see Figure 4.1):

Centralized: In case a basic service has free capacity', it starts to get some new resources
on the resource market (1). For this, it bids on the resource market until all required
resources for the basic service are purchased (2). Afterwards, it submits an offer to
the service market (3).

Decentralized: In case a basic service has free capacity, it starts to get some new re-
sources on the resource market (1). For this, it bids on the resource market (i.e., it
distributes CFP’s) until all required resources are purchased (2). After that, it waits
until it gets a CFP on the service market (3).

The problem of this strategy is, that all required resources on the resource market
have to be locked until an agreement on the service market is reached (4). In the current
CATNETS system, this is not realizable, as no time attributes are included.

4.2.2.2 Strategy B

The second strategy for the basic service agent is defined as follows (see Figure 4.2):

'This value will be measured by the simulator.

CHAPTER 4. BIDDING ISSUES

! Complex |
Service

| Complex |
Service

| Complex |
Service |

| Ressource |
Service |

| Ressource |

Service

| Ressource |
i Service

Service Market Resource Market

Service Provider

Service Consumer
Resource Consumer

Resource Provider
Figure 4.1: Bidding Strategy A

Centralized: The basic service agent bids, whenever it has free capacity on the service
market (1). If an agreement is reached (2), it tries to get the resources on the re-
source market (3)(4). For this, it has only one shot, i.e. one bid. If something fails
on the resource market, the agreement on the service market will be rejected.

Decentralized: The basic service agent replies to a CFP on the service market (1)(2),
whenever it has free capacity. After that, it starts negotiations on the resource mar-

ket (3)(4). If something fails on the resource market, the agreement on the service
market will be rejected.

This strategy is applicable for the centralized and decentralized case.

4.2.2.3 Strategy C
The third strategy for the basic service agent is defined as follows (see Figure 4.3):

Centralized: The basic service agent takes a look into the order book of the service
market (1). In case, a request is submitted to the order book, the basic service agent
tries to get resources for that on the resource market (2)(3). If resources are traded,
it submits a corresponding order to the service market (4).

Decentralized: If the agent receives a CFP on the service market (1), it replies only if it
has corresponding agreements on the resource market (2)(3). After that, it continues

CHAPTER 4. BIDDING ISSUES

! Complex |
Service |

| Complex |
Service |

| Complex |
! Service |

| Ressource |
Service |

| Ressource |

Service

{ Ressource |
i Service

Service Market Resource Market

Service Provider

Resource Provider
Resource Consumer

Service Consumer
Figure 4.2: Bidding Strategy B

the negotiations on the service market (4), although the agent is not sure if it gets
selected (is successful) on the service market.

The problem of this strategy is the very high probability of rejecting a lot of agree-
ments. Furthermore, this alternative is hard to realize in the centralized case.

4.2.2.4 Summary

Due to the aforementioned drawbacks of strategy A and strategy C, we selected strategy
B for CATNETS.

4.2.3 Resource Service Agent
Finally, for the resource service agent, the strategy is defined as follows:

Centralized: The resource service agent bids whenever it has free capacity. It submits a
bundle order containing all its available (and free) resources. But the auctioneer is
able to split bundles if that raises the overall welfare.

Decentralized: The resource service agent replies to a CFP, if it has free capacity. It
offers its maximum free capacity (replies a message containing all resources con-
tained in the bundle, that are available at the resource agent’s site). For instance,

CHAPTER 4. BIDDING ISSUES

! Complex |
i Service |

| Complex |
! Service |

Service Market

27

| Ressource |
Service |

| Ressource |

Resource Market

! Service |

| Ressource |
i Service

Service Provider
Resource Consumer

Service Consumer Resource Provider

Figure 4.3: Bidding Strategy C

having a request for the bundle { A, B, C'} and a resource agent with the available
resources { A, C, D}, the agent would reply { A, C'} to the CFP. From an implemen-
tation point-of-view, this will be realized by means of buckets for each resource
combination. It is assumed that the value of a resource bundle is higher than the
sum of values of the single resources it is composed of. So the valuation of the bun-
dle { A, B, C'} would be higher than the sum of valuations of the resources { A},{ B}
and {C'}.

4.3 Summary

This section outlines bidding issues in the CATNETS scenario. A valuation generator is
introduced that can be applied for buyers and sellers in both markets in order to determine
values for their bids. The challenge of such a generator is to define a concept that is
applicable for the centralized and the decentralized case and that leads to comparable

outcomes.

Chapter 5

Integration of Mechanisms into
Simulator

Subject to this chapter is the technical integration of the centralized and decentralized
mechanisms into the simulator. Here, a string interaction with WP2 will be carried out in
order to avoid overlaps in documentations.

5.1 Integration of the Auction Mechanisms

The objective of this section is to describe the implementation of the auction mecha-
nisms (Section 5.1.1), their integration into OptorSim (Section 5.1.2), and to give a brief
overview of the results obtained from preliminary simulation runs (Section 5.1.3).

5.1.1 Implementation of the Markets

In the following, the implementation of the service market and the resource market is
described. Both market mechanisms are implemented as independent software services
which allows us to integrate them into other systems easily. Beside the integration into
OptorSim, this flexibility allows us to integrate the markets into the prototype in the future
such as proposed in [CJSF06].

5.1.1.1 Service Market

As outlined in the last deliverable [SNVT05a], a double auction is applied to the service
market. In a double auction market [Fri91], a large number of participants trade a
common object and can submit bids (buy orders) and asks (sell orders). Trading in
double auctions is organized by means of order books, each for a set of homogeneous

28

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 29

goods. In the CATNETS scenario there will be n different order books, each for one of
the n different services.

Figure 5.1 depicts the high level architecture of the service market for CATNETS
[SNV*05a]. Complex service agents can submit buy orders to the order books; basic
service agents can submit sell orders. Each set of homogeneous services (e.g. PDF
creator services) is traded in a single order book.

Complex
Service
Agent

[
Buy-Orders Sell-Orders Buy-Orders || Sell-Orders
[...] [...] [] [...] [...]
Orderbook 1 Orderbook n

Service Market

Figure 5.1: The service market including several double auction order books.

A simplified class diagram of the service market implementation is shown in fig-
ure 5.2: For each type of basic service traded in the service market, an instance of the
Orderbook class is generated. The order book provides functionality to add orders, re-
move them, and to start the outcome determination. Whenever an agent wants to submit
an order to the market, it generates an instance of the Order class and submits it to the or-
der book. The order book is also responsible for triggering the clearing process. In case,
a continuous clearing is used, the order book instantiates the A1locator CDA class;
otherwise it uses the call market as implemented in the Allocator_CallMarket
class. Both allocator classes use the matchmaker Match to find corresponding coun-
terpart orders. After the allocation and the prices are computed, an A11locat ion object
is generated for each transaction. This object points to the parties that are involved in
the transaction, i.e. it points to an order from a buyer and an order from a seller. The
allocation objects are stored in a vector and can be parsed by the simulator.

As the diagram shows, the implementation supports continuous clearing and a call
market. In a continuous clearing auction, buyers and sellers simultaneously and asyn-
chronously announce bids and offers. In case a new order enters the market, the auc-
tioneer tries to clear the market immediately. A call market is an auction with periodic
uniform clearing, e.g. the auctioneer clears the market every fives minutes. All orders

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 30

wJava Classs «lava Classs «lava Classs

e nllncatElriEallMar - (& Match - Uses (Allocator_CDA
@ getBuySideCrders ()
© allocate @ getSelSideOrders () alocats
- determines - instantiatesCDA
e — - instantiatesCall «Java Class»
@ allocation C) Urderhﬂﬂk_
- determines o marketname @ String

o stores : Order o useCD4 : boolean

o yzeCalduction : boolean

@ getSelOrder () @ addOrder ()
@ getBuyOrder () @ remove ()
@ getPrice () - referencesTo - isSubmittedTo | @ autaClearing ()

@ manualClearing ()

«lava Classm
@ Order
o regotiation © Megaotiation
o orderld : RandomGUID
o limit : double
o prdertype @ int

Figure 5.2: Class diagram of the most fundamental classes of the service market

in a period are collected in an order book and will be cleared periodically [SNVT05a].
The clearing strategy that is applied can be selected by means of a configuration file. The
evaluation runs in the next project year will give us insights, which clearing strategy is
superior.

5.1.1.2 Resource Market

For allocating services in the resource market, we apply a multi-attribute combinatorial
exchange (MACE) [SNV05a, SNVWO06]. Figure 5.3 depicts the sequence of the auction
in the CATNETS scenario. Agents (buyers and sellers) submit their bids to the auctioneer
instance. After that, the bids are transformed into an internal representation form and,
subsequently, the winners are computed (allocation). Finally, prices are computed in
consideration of the allocation. As a result of the market mechanism, the agents get
informed whether or not they are part of the allocation.

Figure 5.4 depicts some of the most basic components of the implementation as a
UML class diagram: The Market class is the central component of the implementation.
On the one hand, it is responsible for initializing all relevant classes. On the other hand,
the market class controls the process to submit orders and to compute an outcome.
Agents can submit orders to an order book, where an order consists of a price and a
Bundle, where a bundle is a collection of Good instances. After the bids are submitted
by the agents, an Out come is computed. For this, the market uses a ModelFactory
and a PricingFactory. The ModelFactory is responsible for providing a
winner determination model in order to compute an allocation. In the CATNETS

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 31

Basic
Service
Agent

Basic
Service
Agent

Bidding Winner -

| ... Pricing

Converter Determination Resource
Service

Agent

Resource
Service
Agent

Resource
Service
Agent

Resource Market

Figure 5.3: Sequence of an auction for the resource market

scenario, this model is implemented in the CatnetsResourceMarket class. The
PricingFactory provides a set of price mechanisms that can be used. In CATNETS,
the pricing schema as implemented in the KPrice class is applied. After an allocation
and corresponding prices are determined, the result is stored in the Outcome object.
This object can be queried in order to retrieve the required information such as allocation
decisions and prices for each transaction.

For implementing the resource market, we make use of the standard linear program-
ming libraries CPLEX and LPSolve. CPLEX is a commercial product and is currently
the state of the art optimization engine'. LPSolve is a free linear programming solver
that implements the branch-and-bound method for solving integer problems?. CPLEX
1s currently one of the fastest solving libraries and will be used for the evaluation of the
mechanisms. The use of LPSolve (more specifically, its license) allows us to install the
resource market implementation on every machine. As such, the development and testing
of the mechanisms can be fostered.

The behavior of the implementation can be controlled by means of configuration files.
Among others, several alternative pricing schemas are implemented, e.g. the approxi-
mated Vickrey pricing algorithm [PKEO1]. The concrete pricing mechanism can be se-
lected by means of a configuration parameter. Furthermore, the clearing interval® of the
market can be controlled by the configuration file.

ISee http://www.cplex.com/ for details.
2See http://www.geocities.com/lpsolve/ for details.
3The resource market is currently restricted to a periodical clearing.

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 32

#lava Classs «Java Classs cLmen | SJava Classs «Java Classs
(3 KPrice (3 AbstractPricing (& Market (3 Abstractsolver
I R : ¢ allocation : Outcome
@ pricing §) @ pricing) @ solve () @ solve ()
@ getRuntime ()
- provides ELIsEn aLsEn
- has)
- provides
«Java Classs «Java Classs «lava Classs «Java Classs
{3 PricingFactory (3 Outcome (3 ModelFactory {3 CatnetsResourceMarket
@ computesloc,.. @ solve ()
- knowes
«Java Class»] «Java Class»
(3 Agent - submits (& AbstractOrder
@ Agent () @ addBundleCrder () =
- containsBundle
«Java Class») «Java Classs
(% Bundle = - Ccontains {3 Good

Figure 5.4: Class diagram of the most fundamental classes of the resource market

5.1.2 Integration into OptorSim

This section briefly outlines the integration of the markets into OptorSim. For a detailed

description of how these concepts are implemented, the reader is referred to deliverable
D2.2 [CSSZ06].

In OptorSim, the auctioneers for the service market and resource market are both
realized as agents. They get instantiated by the simulator during its initialization and can
be contacted by every other agent. Agents communicate with the auctioneers in order
to submit their bids and to retrieve status information such as the last market price for
a service or the allocation decision. The communication between trading agents and
auctioneers is realized by means of messages.

Figure 5.5 shows the general interaction between trading agents and an auctioneer.
Each time, a complex service agent (CSA) wants to acquire of service, it submits a
message to its Peer-to-Peer Manager (P2P). This manager is capable of advertising and
routing messages to other agents. In case a manager receives a message from its CSA, it
forwards the message to the auctioneer (SMAA). Likewise, a basic service agent (BSA)
can also submit an offer message to its Peer-to-Peer Manager which also forwards it to
the auctioneer. On the basis of the messages, the auctioneer computes an outcome, i.e.

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 33

allocation decisions and prices. The result of this outcome (successful or unsuccessful
bid) is subsequently sent back to the agents. The figure shows the process for the service
market exemplarily; for the resource market the process is identical.

' Allocation Message m
CSP

—— P2P

Request
BSP Message m
Site 1
P2P SMAA
[...]
BSP Offer SMAA site
Message m

T—’ P2P

coP Site n Allocation Message m

Figure 5.5: Sequence of an auction for the resource market.

The central interfaces between OptorSim and the auctioneers are messages. From a
conceptual point of view, different message types are required for different actions of the
agents:

Request Message: A request message is sent, whenever an agent wants to buy a service.
For instance, a complex service agent submits such a message to the auctioneer to
bid for a basic service. The message contains information about the transaction
object (which service), the agent’s valuation price (maximum price), as well as an
ID of the agent.

Offer Message: An offer message is sent, whenever an agent wants to sell a service.
For instance, a resource service agent submits such a message when it wants to
sell its resources. In analogy to the request message, the offer message contains
information about the transaction object (which service), the agent’s reservation
price (minimum price), as as well as an ID of the agent.

Allocation Message: After the auctioneer has computed an outcome, allocation mes-
sages are sent back to each participating agent. In case the agent was successful
in the auction (i.e. it is part of the allocation), the message contains information
about the price of the service and its counterpart. For instance, if a basic service
agent retrieves a successful allocation message from the resource market auction-
eer, the message contains information about the resource service agent who will

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 34

7000
P n —e— Basic Senice
r 6000 / Provisioning Time |—|
o / —=— Complex Senice
v Provisioning Time

5000
it
s i a | BN
> 4000 X - - - S —
I m | o ~_

\ w

o e \
n 3000]
i |
n 2000 ﬁ/‘—_‘\w —*
9

1000

0

simulation run

Figure 5.6: Basic service and Complex service provisioning time

provide the resources. In case an agent was unsuccessful, the contains a negative
price (p = —1).

Delete Message: Sometimes agents need to cancel orders which they have submitted
to the auctioneer. In this case, they submit a delete message to auctioneer. This
message contains all relevant information such as the agent ID and an order ID.

Each message type is implemented for the service market and the resource market.
The implementation of the messages is described in the deliverable D2.2 in more detail
[CSSZ06].

5.1.3 Results from Refinement Runs/Simulations

For a proof-of-concept evaluation of the simulator, we have run several simulation runs
to test the integration of the auctions. In this section, we will provide some preliminary
results from these tests. The results are neither meant to be convincing nor to be
statistically evident. This work will be done in project year 3.

We have run 10 different simulation runs using a small configuration file with 3 agents
and 2 different resources (cf. WP 2). We measured a subset of the metrics defined in WP4.

Figure 5.6 depicts the average basic service and complex service provisioning time
for each simulation run. While the basic service provisioning time is approximatively
constant, the complex service provisioning time fluctuates in run 3. In this run, no
complex service was successfully allocated by the mechanism, i.e., in this run, the
reservation prices of the sellers are greater or equal to the buyers’ valuations.

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 35

3.5

—e— Complex Senice
Agent Allocation Rate

—m— Successful CS

2,5
requests
—a— Total CS requests
2

-“~0 =mo3c>
WA MDCOMm-=

simulation run

Figure 5.7: Allocation rates and Complex service requests

Figure 5.7 depicts the complex service (CS) agent allocation rate, the number of suc-
cessful CS requests, and the number of total CS requests. It is obvious that the total
number of CS requests is greater than the number of allocated ones. In order to improve
this ratio, we have to balance the valuation generation of the agents (cf. Chapter 4) as
well as the strategies of the bidding agents in project year 3.

5.2 Decentralized Mechanisms (Catallaxy)

This section briefly outlines the implementation of the decentralized markets and its inte-
gration into OptorSim. Section 5.2.1 focuses on the implementation of the decentralized
(catallactic) service and resource market. The implementation of the strategy module
and its adoption to the markets are described in detail. The integration into OptorSim,
message patterns and the introduced message types describes Section 5.2.2. Preliminary
results from simulation runs are presented in Section 5.2.3.

5.2.1 Implementation of the Markets

The implementation of the service and resource markets use the catallactic reasoner im-
plementation presented in the deliverable D1.1. Both markets use the same strategy im-
plementation for reasoning about proposals. Therefore, the objective of this section is
to describe the implementation of the service and resource market using the catallactic
reasoner.

Differences between the service and the resource market occur at the initialization of
the strategy, their interaction pattern and the integration into the simulator and prototype
environment. In the following, the focus lies on the interfaces of the strategy and its
initialization. The interaction patterns are dependent on the environment to be integrated.

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 36

Thus, they are described in their corresponding sections.

The interface of the reasoner shows figure 5.8. The implementation offers cus-
tomized reasoners for every agent type in the CATNETS scenario, which extend the
AgentSource reasoner template. The AgentSource class is an implementation of
the bilateral negotiation protocol which calls the Avalanche strategy for decision making.
Additionally, it provides access to the evolutionary learning algorithm.

From a conceptual point of view, the agent calls the reasoner with a Msg object which
contains all information according to the bidding language presented in the D1.1 deliv-
erable and some additional identification information. The strategy interprets this object
(interpretMessage) and returns a Msg object. This process separates the message
propagation from the reasoning about the content using the defined negotiation protocol.
The underlying infrastructure transports the content to its destination. The same concept
is applied in the simulator and prototype environment.

The relevant attributes of the Msg class are in detail:

MessageType: The type of the negotiation message specifies the communicative act
referred to the negotiation protocol. In the bilateral negotiation protocol of the
catallactic reasoner the following values are used: cfp (call-for-proposal), accept,
reject, proposal.

ConversationID: The identifier of the negotiation is an unique number generated for
each new request during the creation of new cfp message. The values are random
generated UUIDs of the Java built-in UUID generator.

DocumentType: This parameter signals the catallactic reasoner the type of price to
reason about. A BID refers to the proposal type to be generated by a seller and an
ASK relates to a buyer offer.

ItemID: This is the identifier of the traded good. In the current implementation, this
could be any kind of text. In OptorSim, services usually are identified using their
type (cs or bs for complex service or basic service) followed by a number. The
bundles on the resource market are identified using a sequence of their single items.
For example, ”cpu;mem;hdd” refers to a bundle of the three single bundle items
cpu, memory (mem) and hard disk space (hdd).

Price: This is the current price of the traded good. On the service market, it is the price
for a basic service instance; on the resource market it is the price for a resource
bundle. In the current implementation, there is a predefined price for every re-
source bundle combination. The agent has a preference for trading certain resource
bundles.

Market: The market parameter is used to assign the message to a market. In the CAT-
NETS scenario, the values are: SERVICEMARKET, RESOURCEMARKET

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR

C

a

«Java Class»
(3 AgentSource

CLASS_NAME : String

strategy : IPricing

> budget : double

N N N N N

AgentSource ()
getStrategy ()
interpretMessage ()
setPrice ()
setGenotype ()
decreaseBudget ()
increaseBudget ()
interpretCfp ()
interpretProposal ()
interpretAccept ()
interpretReject ()

«use»

(o [I o o N o I N N o o o s (Y s

«Java Class»

(® Msg
serialVersionUID : long
messageType : int
documentType : int
itemID : String
price : double
budget : double
basicServices : BasicServiceData
verdict : int
msg_plumage : Plumage
hopCounter : int
basicService : BasicServiceData
market : String
smMessage : Object
reqMessage : Object

CEHEERR

postRejectanceMethod ()

© postAcceptanceMethod ()

» checkRestrictions ()

» increasePriceDistribution ()
© decreasePriceDistribution () «use»

@ learn ()
W interpretPlumage ()

«use»

«Java Class»
(9 ComplexServiceReasoner

@ ComplexServiceReasoner ()
© postRejectanceMethod ()

© postAcceptanceMethod ()
B execute ()

«use»

«Java Class»
(9 CatallacticReasoner

® createCfp ()

@ createResourceCfp ()
checkRestrictions (/)

© postAcceptanceMethod ()

© postRejectanceMethod ()

«Java Class»
(9 BasicServiceReasoner

@ BasicServiceReasoner ()
@ BasicServiceReasoner ()
© postRejectanceMethod ()
< postAcceptanceMethod ()
B executeServiceMarket ()
M executeResourceMarket ()

«use»

«Java Class»
(9 ResourceReasoner

@ ResourceReasoner ()
postRejectanceMethod ()
postAcceptanceMethod ()

B execute ()

Figure 5.8: The interface of the catallactic reasoner.

37

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 38

Verdict: This is the verdict on bid set by the strategy. It relates to the result of the
catallactic reasoner. Valid values are: accept, reject, proposal

Plumage: The plumage parameter represents a container for learning information. This
container includes the fitness information and the genotype values of other agents
which traded the same good.

The market agents use the described message object to decide the next operation.
This operation is dependent on the message type of the market agent and its role in the
market. Its general bidding behavior forming the two market is described in section 4.2.
The implementation of the agents follows this description. The next section presents the
initialization of strategy for the two markets in the CATNETS scenario.

initialization of the strategy for the service and resource market: The initialization
of the reasoner splits into two areas: The first area is the initialization of the items and
their initial price ranges, the second area is the initialization of the strategy behavior with
a genotype. The parameters are:

Item Identifier (itemID): The product identifier to be traded. Both, the seller and the
buyer have to initialize their starting price range specifying an minimum and max-
imum price. On the resource market, the product identifiers of all possible bundle
combinations have to be initialized. This means for a bundle with 3 items, 7 item
identifiers and their corresponding price ranges have to be initialized.

Initial price range (minPrice, maxPrice): The initial minimum and maximum
price a buyer respectively a seller is willing to pay. The price range changes as
described in formal description of the strategy (methods: increasePriceDistribu-
tion/decreasePriceDistribution).

Behavior of the strategy: The five parameters of the genotype (satisfaction,
acquisitiveness, priceNext, priceStep and weightMemory) must
also be initialised at the instantiation of the strategy. It is possible to initialize the
strategy by using a random distribution or a pre-defined value set. The second
option can be used to start simulation runs with a specific strategy. The behavior
parameters change after every negotiation using the evolutionary learning algorithm
(mutation and crossover operation).

Both markets are implemented as easy-to-use software modules providing an interface
and its own configuration files. The same module is used in the OptorSim simulator and
the middleware prototype.

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 39

5.2.2 Integration into OptorSim

This section briefly outlines the integration of the markets into OptorSim. For detailed

description of how these concepts are implemented, the reader is referred to deliverable
D2.2.

In OptorSim, the agents negotiate using a bilateral negotiation protocol. This negoti-
ation protocol shows figure 5.9. The agents on both markets exchange their bids with the

same bargaining protocol. They submit iterative proposals until they reach the end of the
negotiation signaling an accept or reject.

Buyer: Seller:

1: Call For Proposal

1.1: Propose

1.2: Accept

1.3: Reject

1.1: Propose
1.2: Accept

1.3: Reject

Figure 5.9: The bilateral negotiation protocol.

The communication between the trading agents is realized by means of messages.

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 40

Each time, a complex service agent wants to acquire of a basic service, it broadcasts a
call-for-proposal message to other agents using its local Peer-to-Peer Mediator (see figure
5.10). This mediator provides access to the peer-to-peer infrastructure and is capable of
routing messages to other agents. In case, a Peer-to-Peer Mediator receives a message, it
forwards the message to its local agents. The call-for-proposal message is sent to local
and remote basic service agents which are able to provide the service. They answer the
call-for-proposal message by returning a proposal message to the sender. More commu-
nicative acts of the bargaining protocol are exchanged using point-to-point communica-
tion between the trading partners until they reach an agreement or cancel the negotiation.

CSIP BSP
5 P2P | | oo pPo2p ——*
NN

BSP

Site 1] | Site 2
cspP BSP

P2P | |__d [=%7) =3 —
BSP 4—'

Site 4 Site 3

Figure 5.10: The broadcast of a Call-For-Proposal message using the OptorSim infras-
tructure.

After the end of a negotiation, the trading agents broadcast their own learning in-
formation to any other agent, which trades the same good, first. In a second step, they
evaluate the collected plumages to adapt their own behavior. Messages for the learning
process are implemented in OptorSim.

A complete list of all implemented messages for the catallactic mechanism realiz-
ing the discovery, the bilateral bargaining protocol, learning and synchronization of the
markets presents deliverable D2.2.

5.2.3 Results from Simulation Runs

For a proof-of-concept evaluation of the simulator, this section presents preliminary re-
sults. The results are neither meant to be convincing nor to be statistically evident. Simu-
lating large scenarios is the main effort of year three.

For the simulations, the rudiment scenario of Section 5.1.3 is used. The metrics ne-
gotiation time and allocation rate for two different behavior settings (genotypes) of the
trading agents. The genotypes are:

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR 41

Genotype 1: This genotype setting shows a strong cooperative behavior of the agents on
the service market and on the resource market. On both market, the same genotype
is used. The parameters are set to: acquisitiveness = 0.2, priceStep =
0.6, priceNext =0.5, satisfaction=0.9, weightMemory =0.5.

Genotype 2: For the second genotype the same parameter setting as on the service mar-
ket was applied. The genotype on the resource market exhibits a more profit ori-
ented behavior. The trading partner are not willing to make frequent concessions.
The genotype is on the resource market: acquisitiveness=0.5,priceStep
=0.1, priceNext =0.5, satisfaction=10.9, weightMemory = 0.5.

Figure 5.11 and Figure 5.12 present the results for 10 simulation runs and both geno-
type settings. 50 requests per simulation run are submitted. The allocation rate clearly
decreases for the second genotype, whereas the negotiation time stays quite the same for
different genotypes. This is obvious: A more profit oriented behavior will lead to more
negotiations rounds which let increase the influence of the time pressure represented by
the satisfaction parameter. Using the same satisfaction value in both cases,
the allocation rate declines.

2160 +

oo |\ [N A

a

| 2100

| \/ / \/

ot 2080

cl 2060 —e— Genotype 2
am

t e —m— Genotype 1
i 2040 = A

o

n

2020

2000

1980

1960

1 2 3 4 5 6 7 8 9 10

simulation run

Figure 5.11: Negotiation times for 10 simulations runs and two different genotypes.

CHAPTER 5. INTEGRATION OF MECHANISMS INTO SIMULATOR

S5O —~0 N0 ——Q
M~ =

1 2 3 4 5 6
simulation run

10

—e— Genotype 2
—=— Genotype 1

Figure 5.12: Allocation rates for 10 simulation runs and two different genotypes.

42

Chapter 6

Integration of Catallactic mechanism
into middleware

The decentralized bargaining strategy is implemented in the middleware enabling the
analysis of the strategy behavior in a real prototype environment. This chapter focuses
on the integration of the Catallactic approach into the middleware. For the implemen-
tation of the core strategy algorithm, the reader is referred to deliverable D1.1. In this
chapter, the interface of the strategy implementation, the software agents developed for
the middleware, their interfaces and configuration files are described.

Section 6.1 present an in-depth introduction to the middleware environment used for
the software agent development. This includes interfaces and configuration issues of the
middleware developed in WP 3 and the most important parts of internal agent structure
and its configuration. Additionally, this sections contains the specification of external
interfaces for customized plug-ins enabling a flexible adaptation to different service types
and resource bundles.

Section 6.2 presents preliminary results of one implemented scenario created together
with WP 3. Interaction patterns of the prototype environment with the bargaining strat-
egy integration in the middleware are examined. The results of the integration testing
constitute further optimization issues of the strategy in year 3.

6.1 Description of the Integration of Decentralized
Mechanisms into Middleware

The objective of this section is to describe the integration process. This comprehends a
detailed look at the software agent API provided by the middleware and the structure of
the developed agents including the integration of the catallactic strategy.

A general overview of the agents in the middleware shows figure 6.1. The agents are

43

CHAPTER 6. INTEGRATION OF CATALLACTIC MECHANISM INTO MIDDLEWARE44

used to perform the negotiations of services and resource bundles. Fulfilling their tasks,
they use information from external components like the name of the service they sell or
the current availability of resources from local resource managers.

Client
Service
Request Response Provider 1
2 Service
Application Provider n
Service “\\100 e Grld service Service Grid resource
NP description instantiation status
request Se .-~ P

Local

Access L. . Service 1
Point /o, Negotiation "\ Register Negotiation / ResSources
: Agent . Agent }

Catallactic Middleware

Figure 6.1: Overview of the catallactic middleware and their agents for negotiation

They receive a demand from an application using the Service Access Point as a medi-
ator and deliver back the contracted service, which is immediately invoked and consumes
the allocated resources.

6.1.1 Integration of the Agents Using the P2P Middleware Agent API

In the following, the implementation of the service market and the resource market is
described using the P2P middleware agent API. Realizing these two markets of the CAT-
NETS scenario, three different agent types have to be implemented: a complex service
agent, a basic service agent and a resource agent. Every agent implementation extends the
P2P agent API. Figure 6.2 shows the class diagram of the implemented agent templates.
The API provides basic messaging capabilities for the agent communication like sender
and receiver methods for point-to-point communication and group-casts. It is possible to
schedule time-based events and to report the measured metrics. This functionality is used
for the integration of the Catallactic strategy. Detailed information of all methods can be
found in the documentation of the source code and in the deliverable of WP 3.

Beside the three agent types of the CATNETS scenario, a catallactic agent type is
introduced, providing basic functionality for all three agent types:

Item group: This variable defines the group the agent belongs to. The item group is set
at the initialisation of the agent. It relates to the items the agent is able to buy. The
item group parameter is the filter for the broadcasts of the underlying p2p network.

CHAPTER 6. INTEGRATION OF CATALLACTIC MECHANISM INTO MIDDLEWAREA45

«Java Class»

(3 P2pAgent
GROUPCAST SERVICE : String
REGISTER LISTENER SERVICE : String
arguments : Arguments
results : Arguments
agent : Agent
taskMgr : TaskManager
p2pAgentRef : P2pAgentReference
status : AgentStatus
context : AgentContext
groupCastRef : AccessPointReference
P2pAgent ()
initialize (')
run ()
terminate ()
handleConnection ()
getHostingAgent () «Java Class»
getStatus () «Java Class» (3 ResourceAgent
dispatchMessage () (@ CatallacticAgent o CLASS NAME : String
getBooleanArgument () CLASS NAME : String o rr ; ResourceReasoner
getDoubleArgument (') itemGroup : String @ ResourceAgent ()
getIntArgument () executionState : int execute ()
getLongArgument () sendMessage () handleMessage ()
getObjectArgument () broadcastMessage () handleGroupCast ()
getStringArgument (') messageTypeToString () checkResources ()
@ isArgumentsEmpty () getCurrentTime () handleEvent ()

o0 @@ @0

L - I =

oo
o

o & 4

= |

OO O D O

@ setIntgResult () execute () ® handleNextCfp ()

& setlLongResult ()

< setDoubleResult ()

@ setBooleanResult () «Java Class» «Java Class»

& setStringResult () (= ComplexServiceAgent () BasicServiceAgent

@ setObjectResult () o CLASS NAME : String o CLASS NAME : String

@ send () o discoveryTimeout : long o bstorb : ResourceBundleMapping
< reply () o accept : Metric o bsrSm : BasicServiceReasoner
© forward () o request : Metric o bsrRm : BasicServiceReasoner
< joinGroup () o csr : ComplexServiceReasoner o discoveryTimeout : long

@ groupCast () @ ComplexServiceAgent () @ BasicServiceAgent ()

@ groupCast () @ execute () B doConfirm ()

< createAgent () < handleMessage () i doCancel ()

@ getAgentName () © handleGroupCast () @ execute ()

@ startTransaction () < handleEvent () < handleMessage ()

@ getTransactionld () # handleDemand () i handleSmMessage ()
logDebug () i handleNextCfp () i handleRmMessage ()
logInfo () B handleNextDemand () < handleGroupCast ()
logWarning () B interpretConfirm () < handleEvent ()
logError () i interpretCancel () i handleNextCfp ()
log ()

reportMetric ()
reportMetric ()
reportMetric ()
done ()

done ()

< error ()

@ scheduleEvent ()
@ getAgentRefence ()
execute ()
handleMessage ()
handleGroupCast ()
handleEvent ()

Figure 6.2: The P2P agents of the middleware

CHAPTER 6. INTEGRATION OF CATALLACTIC MECHANISM INTO MIDDLEWARE46

Therefore, every agent has to join a group enabling him to receive call for proposal
broadcasts and learning information from other agents which belong to the same
item group.

Execution state: The execution state of an agent indicates its current status during the
processing of incoming messages. An agent is not able to perform parallel nego-
tiations as this will reduce complexity of the system. The current implementation
uses 4 execution states: IDLE, WAITING-FOR-PROPOSALS, BARGAINING and
LEARNING. Agent implementations with a buyer role (complex service and basic
service) have the states and transition shown in figure 6.3 whereas agent imple-
mentations of a seller role (basic service and resource) act like depicted in picture
6.4.

After the initialisation of the agent, a buyer agent is in state IDLE waiting for a
new demand or call for proposal messages. These are stored in their corresponding
input queues and sequentially broadcasted to possible negotiation partners speci-
fied by the item group parameter. Also a corresponding discovery timeout event
is scheduled. The buyer agent is now in the state WAITING-FOR-PROPOSALS
where he collects proposal messages from seller agents. After reaching the timeout,
the proposals are ranked and the cheapest offer is selected for further negotiation,
using the bilateral bargaining protocol. Any other proposals are rejected. If the ne-
gotiation ended successfully, the agent changes its state to LEARNING processing
any plumage messages of the plumage queue. Now, the agent handles the stored
demand or call for proposal messages.

WAITING_FOR_PROPOSALS
#|| Broadcast cfp
¥) Collect proposals
|| Discovery timeout reached

IDLE
#|| Bilateral bargaining ended and no open cfps or demands
“) Wait for broadcast messages
|#| Broadcast received

& LEARNING &2 BARGAINING
7| Accept message received #|| Proposal selected
¥) Learn plumages %) Do bilateral bargaining
|#| Plumage queue empty || Accept or reject message received

Figure 6.3: Execution state of a buyer agent

The states of a seller implementation are similar to the states of a buyer implemen-

CHAPTER 6. INTEGRATION OF CATALLACTIC MECHANISM INTO MIDDLEWARE47

tation described above. The buyer implementation reacts to call-for-proposal mes-
sages and answers them. The WAITING-FOR-PROPOSALS state is not needed
here.

&2 IDLE (&2 BARGAINING
#|| Bilateral bargaining ended and no cfp in input queue
<) Wait for cfp messages

|#| Cfp message received

#l| Cfp in input queue
) Do bilateral bargaining
|#| Accept or reject message received

3 LEARNING

|#| Accept message received
%) Learn plumages
#| Plumage queue empty

Figure 6.4: Execution state of a seller agent

Send message: This method replies a sender in a point-to-point communication. The
recipient gets this messages through his handleMessage method of the P2pAgent
class.

Broadcast message: The method broadcasts call-for-proposal and learning messages
to the specified receiver group. The recipient gets this message through his
handleGroupCast method.

An example messaging scenario shows figure 6.5. The Catallactic Access Point (CAP)
broadcasts the received demand to the a complex service agent, which is able to handle
this demand. The complex service agent notifies the basic service agents using a group
cast. Both, the basic service agent and the complex service agent negotiate the price of
the service using a bilateral negotiation protocol and making decision about the proposals
with the avalanche reasoner classes. There, every middleware agent type has its related
reasoner entity enabling customized strategy behavior. The middleware agents use the
interpretMessage method of the strategy with the message content object to start
the decision making process. The method returns the new content for the specified recip-
ient. A confirm or cancel message signals the complex service if the resource negotiation
was successful.

The negotiation on the resource market follows bidding strategy B (see section 4.2)
synchronizing the two markets. First the agents negotiate on the service market and sec-
ond, after a successful negotiation on the service market, the negotiation on the resource
market takes place. At this point the middleware implementation differs from the sim-
ulator implementation. An external interface of the basic service implementation gives

CHAPTER 6. INTEGRATION OF CATALLACTIC MECHANISM INTO MIDDLEWAREA48

CatallacticAccessPoint: ComplexServiceAgent: ComplexServiceReasoner: BasicServiceAgent: BasicServiceReasoner:

1; broadcastMessage
1.1: handleGroupCast

1.4:-handleDemand
1.1.1.1: createServiceCfp

«return»
1.1.1.2: createServiceCfp

1.1.1.3: broadcastMessage

1.1.1.3.1: handleGroupCast

1.1.1.3.1.1: interpretMessage

«return»
1.1.1.3.1.2: interpretMessage

1.1.1.3.1.3.1: handleMessage 1.1 1.3 sendMessage

1.1.1,3:1.3.1.1: handleEvent

1/1.1.3.1.3.1.1.1: interpretMessage

«return»
1.%:1.3.1.3.1.2: interpretMessage

1.1.1.3.1.3.1/3: sendMessage
1.1.1.3.1.3.1.3.1: handleMessage

1.1.1.3:1.3.1.3.1.1: interpretMesssage

«return»
1.1.113:1.3.1.3.1.2: interpretMesssage

1.1.1.3.1.3:1.3.1.3: sendMessage
1.1.1.3.1.3.1.3.1.3\1: handleMessage

1.1.1.3.1.3.1.2,1.311.1: interpretConfirm

«return»
1.1.1.3.1.3.1:3:1:3.1.2: interpretConfirm

1.1.1.3.1.3.1:3.1.3.1.3: sendMessage
1.1.1.3.1.3.1.3.1.3.1.3.1: handleMessage

Figure 6.5: An example messaging sequence for a service market negotiation

CHAPTER 6. INTEGRATION OF CATALLACTIC MECHANISM INTO MIDDLEWARE49

the possibility to plug-in an external mapping table for the creation of a call-for-proposal
message on the resource market (see figure 6.6). The amount a asked resources can dif-
fer for different basic service requests depends on attributes like the amount of data to
be analyzed. Also the resource agents use an interface to external local resource man-
agers determining the available resources to sell (see figure 6.6). It is assumed that each
resource has its dedicated local resource manager. If an resource agent is able to sell
a bundle of three resource items, three plug-ins for local resource managers have to be
defined at the initialisation phase of the agent.

«Java Interface» «Java Interface»
3 ResourceBundleMapping 9 ResourceProvider
@ getResourceBundle () @ getCapacity ()

@ getResourceType ()
@ getStatus ()

@ getUtilisation ()

@ getFreeCapacity ()

Figure 6.6: External interfaces of the middleware agents

The following section shows an implemented scenario with the middleware agents,
which the prototype application uses for allocation of complex services. With this sce-
nario, first results are presented.

6.2 Preliminary Results from Decentralized Mechanisms
in Middleware Scenarios

The agents are integrated in the middleware as described in the previous section. For
functional tests, a small scenario with few agents was created. Due to technical complex-
ity, the integration in the prototype scenario using a real Grid system was postponed to the
beginning of year three. Therefore, this section provides an insight about the functional
test scenario.

For the scenario, several dummy agents simulating the local resource managers and
the demands of the application prototype act as placeholders for the real environment.
The focus of the tests lies on the correct behavior of the messaging of the agents, which
is a complex part in the decentralized market mechanism. No deadlocks should appear in
the distributed system.

The setup of the scenario looks as shown in figure 6.7. One application dummy agent
submits requests in a loop to one complex service agent. Two basic service agents and
two resource agents are available for fulfilling of the application demands.

The application demand contains a request for one basic service. A basic service uses
the resource mapping model to create a request for a resource bundle on the resource mar-

CHAPTER 6. INTEGRATION OF CATALLACTIC MECHANISM INTO MIDDLEWARES0

Application Resource Mapping

Agen:[‘ Moidel LRM

Basic Service || Resource
Agent Agent

LRM

A 4

Complex Service
Agent

LRM
Basic Service| | Resource <

Agent | | Agent
§

Resource Mapping

Model

LRM

Figure 6.7: Simple test scenario for the middleware agents

ket. The request has to be delivered by one of the resources or both of them depending on
their free capacity. Local resource manager dummies deliver the current status of the re-
source for allocation. They decrease the available resources after a successful negotiation
and increase their available resources after an execution timeout occurs. The execution
timeout was set to a fixed number.

In this scenario, two metrics are measured: the allocation rate (Figure 6.9) and the
negotiation time (Figure 6.8). Two runs were executed with 20 requests per test run. The
genotype was set to acquisitiveness =0.2, satisfaction=0.9, priceStep
=0.6, priceNext = 0.5, and weightMemory = 0.5.

Using this genotype, the agents tend to make concessions (acquisitiveness =
0.2) at a high rate. Additionally, the concession level is set to 60% of the trading range
(priceStep). This leads to fast agreements.

The allocation rate in the first run was 90% and in the second run 85%. Comparing
both diagrams, it seems that the outcome of an allocation does not influence the negotia-
tion time.

Most time during the negotiation was spent waiting for the discovery timeout. The
discovery timeout in the setting was set to 4000ms, 2000ms on the service market and
2000ms on the resource market. Blinding out the discovery time, the bilateral negotiation
lasts between 800ms and 220m:s.

For better conclusion about these results, more tests have to be conducted. At the
current state, a more detailed analysis is not possible. This will be a major issue in year
3.

CHAPTER 6. INTEGRATION OF CATALLACTIC MECHANISM INTO MIDDLEWARES1

4900

4800 H

4700

4600

4500 -
——Run 1
—=— Run 2

4400

M3 — e+

4300

4200

50— —~0WQ M35

4100

4000

3900

1723456 7 8 91011121314 1516 171819 20
requests

Figure 6.8: Negotiation time for two test runs

1,2

M Run 1
H Run 2

53 O —~0DNQ0O ——w
M~ =

123456 7 8 910111213 14 1516 17 18 19 20
requests

Figure 6.9: Allocation rate for two test runs

Chapter 7

Relations to other WPs

71 WP2

The objective of WP2 is to provide a simulator for ALNs. Our relations to WP2 are as
follows:

e The centralized auctions and the decentralized bargaining strategies are integrated into
the simulator. This includes a depth collaboration concerning the simulation model
and the message system. Together with WP2, we developed the software patterns and
components that are required to simulate market based ALNS.

7.2 WP3

The objective of WP3 is to have a proof-of-concept application that is used to demonstrate
the ideas being developed, among others, in WP1. The relations to WP3 are as follows:

e The decentralized bargaining strategy is implemented in the middleware enabling the
analysis of the strategy behavior in a real prototype environment. Scenarios for using
the strategy were developed together with WP3. These scenarios describe interaction
pattern of the prototype environment with the bargaining strategy integration in the
middleware.

e The centralized cases (auctions) are not implemented in the prototype. We profit, how-
ever, from the knowledge provided by WP3: We see what can be realized in a price-
based resource allocation mechanism, what is conceptually required for a successful
application of markets in ALN’s, and we learn which theoretical concepts are not im-
plementable from an application point-of-view. For instance, we have designed a mar-
ket language (i.e. how agents formulate their bids) by means of WS-Agreement to
ensure compatibility with the prototype and common GGF standards.

52

CHAPTER 7. RELATIONS TO OTHER WPS 53

73 WP4

The goal of WP4 is to evaluate the performance of the Catallactic approach by means of
a simulator (see deliverable year 2 of WP2) and a prototype (see deliverable year 2 of
WP3). The relations to WP4 are as follows:

e The identification and formalization of relevant metrics to compare centralized and
decentralized market mechanisms.

e Collaboration with the development of the performance measuring framework, due
to the fact that some of the measured metrics are taken at the economic agent level.
Reporting of measured data to the performance measuring framework.

Chapter 8

Outlook

In this chapter the achievements from workpackage 1 during Y2 of the project are sum-
marized and an outlook on the work that will be content to the next 12 months is given.
Section 8.1 focuses on the work that has been performed in the last 12 months. A brief
review is given on how this relates to the first project year. In Section 8.2 an outlook on
the work that will be performed in year 3 is given — also under consideration of the DOW.

8.1 Review

As described in the introduction, the main contribution of the CATNETS project is the
comparison of centralized and decentralized economic allocation mechanisms for re-
sources in Grids and application layer networks (ALNs). In order to achieve this, the
project has been divided into five workpackages. The content of the individual workpack-
age as well as the division and integration of those has been elaborated on in Chapter 1
and Chapter 7.

In this report, the line of work carried out in the second project year (month 13 to
month 24) is described. Thereby, Chapter 3 focuses on the formal description of the
centralized and decentralized mechanisms. The centralized mechanisms, which also have
been content to year 1 report, are briefly discussed and an in depth presentation of the
decentralized mechanisms as well as the learning algorithms and negotiation strategies
is given. The notion of two different markets — a resource and a service market — is
introduced. Both markets are interconnected via a intermediaries.

After this, Chapter 4 clarifies when and what a participant in resource and service
markets bids. The definitions provided here are substantial for the design of both (i) the
implementation of the mechanisms in the simulator as well as (ii) the integration of the
decentralized mechanisms into the middleware.

In Chapter 5 the integration of the centralized and decentralized mechanisms into

54

CHAPTER 8. OUTLOOK 55

the OptorSim simulator framework is described. Besides the preparatory work that is
content to the chapters before, this has been the most demanding and extensive work
that has been carried out in workpackage 1 in year 2. The challenge here is to provide
a flexible, adaptable and dynamic simulation framework that enables both, simulations
based on centralized and decentralized market setups in one scenario in order to keep
the results comparable. Additionally to the issues concerning the implementation itself,
preliminary simulation results from both, the centralized and the decentralized case are
presented. These results are, of course, some proof-of-concept outlines that simply show,
that the proposed implementations work. The task to provide measurable and statistically
relevant quantitative data and results will be content to project year 3.

Chapter 6 focuses on the description of the integration of the decentralized — Catal-
lactic — mechanisms into the Grid/ALN middleware. Next to the technical integration and
the configuration described also in workpackage 3 report, preliminary results of a created
scenario are described. The work elaborated on in this chapter constitutes the second im-
portant — and time consuming — column that has been content to workpackage 1 in project
year 2. Further refinements, specification of more detailed scenarios as well as creation
of quantitative results from the scenarios will be content to project year 3.

8.2 Contentto Y3

After the integration of the centralized and the decentralized economic mechanisms into
the simulator and the integration of the centralized mechanism into the middleware is
finished and refined the following tasks will be the main issues for workpackage 1:

o 2.3 Simulation of application layer networks and refinement: Here, the efforts in work-
package 1 will be focused on the calibration, validation and verification of the sim-
ulation model. Additional issues will be the assistance of workpackage 2 leaders in
carrying our simulations, obtaining and evaluating large-scale data from simulation
runs as well as to interpret the results derived from the applied metrics.

e 3.3 Performance measuring components for experiments: Concerning this issue, most
work is carried out in workpackage 3. However, the economic expertise in designing
and monitoring the performance evaluation both, from a technical and an economic
perspective will be our mission for year 3.

e 3.4 Distributed application to execute on economic-enhanced Grid/P2P platform and
middleware integration: In this task, the integration of middleware concepts for novel
approaches in Grid and P2P architectures will be evaluated. Besides generating sub-
stantial results, the target of workpackage 1 will be her to assist workpackage 3 lead-
ers in provisioning of a strong footprint of the work performed in CATNETS in the
Grid/SOA/P2P/Pervasive Computing communities.

CHAPTER 8. OUTLOOK 56

o 4.4 Performance analysis, comparison, evaluation: As all other participants, it will be
one of the core issues to analyze, document and compare the evaluation of the proposed
mechanisms. Workpackage 1 will contribute to this effort by assisting workpackage 4
protagonists in order to show the efficiency and effectiveness of the proposed mech-
anisms in appropriate scenarios and find channels to distribute these results into all
relevant communities.

Bibliography

[AG04]

[AHO0]

[Bre02]

[Car04]

[CISF06]

[CSSZ06]

[ESMP03]

[ESP98]

[EymO1]

Nadia Ben Azzouna and Fabrice Guillemin. Charcteristic of ip traf-
fic in commercial wide area networks. In Proceedings of the Interna-

tional Conference on Computing, Communcations and Control Technologies
(CCCT’2004), Austin, Texas (TX), August 2004.

E. Adar and B.A Huberman. Free riding on gnutella. First Monday, 5(10),
2000.

T. Brenner. A behavioural learning approach to the dynamics of prices. Com-
putational Economics, pages 67-94, 2002.

Nicholas G. Carr. Does IT Matter? Information Technology and the Corro-
sion of Competitive Advantage. Harvard Business School Press, May 2004.

P. Chacin, L. Joita, B. Schnizler, and F. Freitag. Flexible architecture for sup-
porting auctions in grids. In Proceedings of the 2nd International Workshop
On Smart Grid Technologies 2006 (SGT2006) Workshop, 2006.

Gaetano Calabrese, Bjorn Schnizler, Werner Streitberger, and Floriano Zini.
D2.2: Annual report of wp2. Catnets deliverable, ITC-irst Trento, University
of Karlsruhe, University of Bayreuth, 2006.

T. Eymann, S. Sackmann, G. Miiller, and I. Pippow. Hayek’s catallaxy:
A forward-looking concept for information systems. In Proceedings of the
American Conference on Information Systems (AMCIS), Tampa, Florida,
2003.

Torsten Eymann, Detlef Schoder, and Boris Padovan. Avalanche - an agent
based value chain coordination experiment. In Workshop on Artificial Soci-
eties and Computational Markets (ASCMA’98), pages 48—53, Minneapolis,
1998.

Torsten Eymann. Decentralized economic coordination in multi-agent sys-
tems. In Hans-Ulrich Buhl, F. Huther, and A. Reitwiesner, editors, /nfor-
mation Age Economy. Proceedings WI-2001., pages 575-588, Heidelberg,
2001. Physica Verlag.

57

BIBLIOGRAPHY 58

[Fri91]

[HBKCS9]

[KCO3]

[KR95]

[Mat99]

[PKEO1]

[Pru81]

[PT02]

[RFH'01]

[Ros94]

[Smi62]

[SNV*105a]

[SNV105b]

D. Friedman. The double auction market institution: A survey. In D. Fried-
man and J. Rust, editors, The Double Auction Market - Institutions, Theories,
and Evidence, pages 3—26. Cambridge MA, Perseus Publishing, 1991.

F.A.v. Hayek, W.W. Bartley, P.G. Klein, and B. Caldwell. The collected
works of f.a. hayek. University of Chicago Press, 1989.

Jeftrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41-50, January 2003.

J.H. Kagel and A.E. Roth. The handbook of experimental economics. Prince-
ton University Press, 1995.

Humberto R. Maturana. The organization of the living: a theory of the living
organization. Int. J. Hum.-Comput. Stud., 51(2):149-168, 1999.

David C. Parkes, Jayant Kalagnanam, and Marta Eso. Achieving budget-
balance with vickrey-based payment schemes in exchanges. In Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence,
2001.

D.G. Pruitt. Negotiation behavior. Organizational and occupational psy-
chology. New York: Academic Press, 1981.

W. H. Press and S. A. Teukolsky. Numerical Recipes in C++ - The Art of
Scientific Computing. Cambridge, MA, Cambridge University Press, 2002.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. Technical report, Berke-
ley Press, 2001.

G. Rosenschein, J. S.; Zlotkin. Rules of encounter - designing conventions
for automated negotiation among computers. MIT Press, Cambridge, 1994.

V.L. Smith. An experimental study of competitive market behavior. Journal
of Political Economy, 70:111-137, 1962.

Bjorn Schnizler, Dirk Neumann, Daniel Veit, Mauro Napoletano, Michele
Catalano, Mauro Gallegati, Michael Reinicke, Werner Streitberger, and
Torsten Eymann. f: Environmental analysis for application layer networks.
Catnets deliverable, University of Karlsruhe, Universitd delle Marche An-
cona, University of Bayreuth, 2005.

Bjorn Schnizler, Dirk Neumann, Daniel Veit, Michael Reinicke, Werner
Streitberger, Torsten Eymann, Felix Freitag, Isaac Chao, and Pablo Chacin.
Deliverable 1.1; wp 1: Theoretical and computational basis. Technical re-
port, CATNETS, 2005.

BIBLIOGRAPHY 59

[SNVWO06] Bjorn Schnizler, Dirk Neumann, Daniel Veit, and Christof Weinhardt. Trad-
ing Grid Services — A Multi-attribute Combinatorial Approach. European
Journal of Operational Research, forthcoming, 2006.

[Tes97] L. Tesfatsion. How economists can get alife. In The Economy as a Evolving
Complex System II, pages 533—-564. Arthur, W.B. and Durlauf, S. and Lane,
D.A. (Hrsg.), 1997.

[Var94] Hal R. Varian. Mikrokonomie. Oldenbourg, 1994.

[Wei99] Gerhard Weiss, editor. Multiagent systems: a modern approach to dis-
tributed artificial intelligence. MIT Press, Cambridge, MA, USA, 1999.

[Wie98] N. Wiener. The history and prehistory of cybernetics. Kybernetes, 27:29-37,
1998.

In this work the self-organising potential of the
CATNETS allocation mechanism is described to
provide a more comprehensive view on the
research done in this project. The formal
description of either the centralised and
decentralised approach is presented.
Furthermore the agents’ bidding model is
described and a comprehensive overview on how
the catallactic mechanism is incorporated into
the middleware and simulator environments is
given.

ISSN 1864-9300

