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Abstract

We develop a �nancial market model with heterogeneous interact-
ing agents: market makers adjust prices with respect to excess demand,
chartists believe in the persistence of bull and bear markets and funda-
mentalists bet on mean reversion. Moreover, speculators trade asym-
metrically in over- and undervalued markets and while some of them
determine the size of their orders via linear trading rules others always
trade the same amount of assets. The dynamics of our model is driven
by a one-dimensional discontinuous map. Despite the simplicity of our
model, analytical, graphical and numerical analysis reveals a surprisingly
rich set of interesting dynamical behaviors.
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1 Introduction

Spectacular �nancial market bubbles have repeatedly been observed in
the past, often followed by equally stunning crashes. In some cases, these
events even had an impact on the real economy, triggering deeper reces-
sions, for instance. Moreover, the volatility in �nancial markets may
be regarded as excessively high in the sense that prices �uctuate more
strongly than warranted by the underlying fundamentals. Also extreme
price changes, which make up a large part of �nancial market risk, occur
quite frequently. Detailed empirical accounts on these intriguing phe-
nomena are provided by Sornette (2003), Shiller (2005, 2008) and Lux
(2009b).
Obviously, it is important to understand what drives the dynamics

of �nancial markets. Bouchaud et al. (2009) present signi�cant em-
pirical evidence showing that asset prices mainly adjust with respect
to the markets�order imbalances which, of course, originate from the
transactions of its market participants. Fortunately, we at least have
some empirical evidence on how agents determine their speculative or-
ders. As can be seen from empirical studies involving questionnaires
(summarized by Menko¤ and Taylor 2007), market participants rely on
both technical and fundamental trading rules to determine the course of
the market. Technical analysis is a trading method that seeks to identify
trading signals from past price movements (Murphy 1999). As a result,
technicians - also called chartists - may have a destabilizing e¤ect on
the dynamics of �nancial markets. Fundamental analysis presumes that
prices will mean-revert toward fundamental values (Graham and Dodd
1951), generally inducing some kind of market stability. Similar insights
are obtained in laboratory experiments in which human subjects trade in
a controlled �nancial market environment (Smith et al. 1988, Hommes
et al. 2005).
But how exactly do markets with a diverse ecology of interacting

technical and fundamental traders function? Models with heteroge-
neous agents take exactly this issue into account. For recent surveys
of this burgeoning �eld of research, see Chiarella et al. (2009), Hommes
and Wagener (2009), Lux (2009a) and Westerho¤ (2009), among oth-
ers. While some stochastic versions of these models aim at matching the
stylized facts of �nancial markets �several interesting contributions are
presented in LeBaron (2006), Lux (2009b) and Chen et al. (2009)1 �
other studies focus on deterministic setups to improve our basic knowl-
edge of what drives prices in �nancial markets.

1For speci�c examples see Gaunersdorfer and Hommes (2007), He and Li (2008),
Franke (2009) and Franke and Westerho¤ (2009).
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Let us brie�y outline a few of these frameworks in order to appreciate
the insights made in this exciting �eld of research �and to clarify the
extent to which our model di¤ers from previous works in this �eld.

� One interesting �nding is due to Day and Huang (1990), who show
that endogenous price dynamics may be triggered by nonlinear
trading rules. In their model, chartists apply a linear trading rule,
and their orders destabilize the market close to the fundamen-
tal value. The trading behavior of fundamentalists is nonlinear.
The more the price deviates from the fundamental value, the more
aggressive they become. Eventually, orders placed by fundamen-
talists exceed orders placed by chartists, and prices are pushed
back towards fundamental values. However, close to the funda-
mental value, chartists again dominate the market and the process
repeats itself, albeit in an intricate, unpredictable way. Related
models featuring nonlinear technical trading rules have been elab-
orated by Chiarella (1992), Chiarella et al. (2002), and others.

� Another interesting insight is that when agents switch between
technical and fundamental analysis, a similar dynamic behavior
can emerge. Let us suppose the market is dominated by destabi-
lizing chartists. In this case, it is likely that prices disconnect from
fundamentals. However, when fundamental analysis becomes more
popular, a period of price stability, together with a convergence to-
wards fundamental values, may set in. Brock and Hommes (1998)
develop a model in which agents switch between trading rules with
respect to their past performance and thus display some kind of
learning behavior. In Kirman (1991), agents have social interac-
tions that may lead to swings of opinion. In Lux (1998), traders
compare the performance of trading rules but are also subject to
herding behavior.

� A third natural mechanism of endogenous dynamics is based on
market interactions. Let us assume a situation in which technical
traders can switch between several �nancial markets. A market
may temporarily become unstable if it attracts numerous chartists
from other markets. However, when chartists leave the market
again �e.g. when other markets appear to be more pro�table �
a period of convergence sets in. Models along these lines have
been proposed by Westerho¤ (2004), Chiarella et al. (2005) and
Westerho¤ and Dieci (2006).

The contribution our paper makes is as follows: we develop a novel
�nancial market model with �ve di¤erent types of agents. Technical
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traders believe in the persistence of bull and bear markets. For instance,
these traders optimistically buy assets in a bull market. In contrast, fun-
damental traders expect prices to return towards fundamental values. In
a situation where the market is overvalued (i.e. in a bull market), fun-
damentalists submit selling orders. Although these two building blocks
are standard in the literature, we generalize them in our paper. First,
speculators react asymmetrically in bull and bear markets. Here is an
example: fundamentalists may trade more (less) aggressively when an
asset is overvalued by 10 percent than when it is undervalued by 10
percent2. Second, some speculators determine the size of their orders
using linear trading rules. However, other speculators simply keep the
size of their orders constant (always trading the same amount of assets)
and only determine the direction of trade with their pertinent trading
philosophy. Hence, there are two types of technical and two types of
fundamental traders. Finally, a market maker, the �fth type of agent,
adjusts prices with respect to excess demand in the usual way.
Interestingly, our simple setup constitutes a one-dimensional discon-

tinuous dynamical system which is su¢ cient to generate a very rich set
of dynamical phenomena, including, for instance, irregular �uctuations
between bull and bear market regimes, as observed in real markets and
�rst modeled by Day and Huang (1990), yet in a di¤erent model envi-
ronment. This does not, however, imply that the established and sophis-
ticated mechanisms mentioned above do not play an important role in
explaining the dynamics of �nancial markets. It does, however, demon-
strate that at least part of the dynamics of �nancial markets may be due
to rather simple deterministic mechanisms. In addition, our paper shows
the relevance of discontinuous maps to the analysis of �nancial market
dynamics, a rather new �eld of applied mathematics that has not yet
yielded many results. Nevertheless, note that there are already several
interesting economic models that feature piecewise-smooth or discon-
tinuous maps, for example, the pioneering works by Day (1982, 1994),
Day and Shafer (1987), Day and Pianigiani (1991), which have also been
used recently in Metcaf (2008), Böhm and Kaas (2000). It is also worth
mentioning the works by Hommes (1991, 1995) and Hommes and Nusse
(1991, 1995). Discontinuous models are furthermore discussed in Puu
and Sushko (2002) and Tramontana et al. (2009a,b,c).
The bifurcations occurring in a piecewise-smooth system may be

quite di¤erent from those occurring in a smooth one. In fact, in the
case of a piecewise-linear system (as in our model) the existing bifur-

2Such a modelling device is also used in Zhu et al. (2009).
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cations are either border-collision3 or contact bifurcations4, as the local
bifurcations associated with the eigenvalues are always degenerate. The
dynamic e¤ects of such bifurcations may di¤er depending on the na-
ture of the invariant sets and the global properties of the map. The
term border-collision bifurcation was used for the �rst time by Nusse
and Yorke (1992, 1995), and is now widely used in this context (i.e.
for piecewise smooth maps). These bifurcations have been studied in
recent years, mainly due to their relevant applications in engineering.
The one-dimensional piecewise linear case, continuous and discontinu-
ous, was considered by Banerjee et al. (2000), Jain and Banerjee (2003),
Avrutin and Schanz (2006, 2008), Avrutin et al. (2006) and Di Bernardo
et al. (2008).
However, this simple subject (bifurcations occurring in one-dimensional

piecewise-linear discontinuous maps) has still not been studied com-
pletely. In this paper we will be faced with some new cases that, to our
knowledge, have not yet been considered in the existing literature. This
case (called Case IV), which will be described in the last subsection of
the paper, deals with the dynamics in the case of negatives slopes in the
components and increasing jump of opposite signs (i.e. from a negative
to a positive value), for which we can give a complete characterization.
In fact, the simple (linear) components in the description of the model
allow for a full analytical study on the possible dynamics. Moreover,
particular cases that are often neglected in the literature, may some-
times become relevant, and deserve particular attention. Here we have
considered and completely described one such case: the case with slopes
both equal to +1 in the components (called Case II).
Obviously, these mathematical results go beyond the economic model

we propose in this paper, i.e. they are useful in general to characterize
the dynamics of discontinuous maps. In this paper we analyze the deter-
ministic skeletons of more elaborate stochastic versions of our approach.
Our deterministic model can already explain some stylized facts of �nan-
cial markets such as bubbles and crashes and excess volatility. However,
a better matching of the stylized facts would require the inclusion of
some kind of exogenous noise. For instance, one could add dynamic
noise to the traders�demand functions or randomize the traders�reac-
tion coe¢ cients (see Westerho¤ and Franke 2009 for an example). Of
course, such a model calibration would be most welcome since it helps

3A border-collision is classi�ed as any contact between an invariant set of a map
and the border of its region of de�nition.

4According to Fournier-Prunaret et al. (1994) and Mira et al. (1996) a contact
bifurcation occurs when two invariant sets of a di¤erent nature have a contact in one
or more points.
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us to identify relevant parameter regions. To keep the paper concise,
we stick to deterministic models and leave stochastic extensions of our
model for future work.
The remainder of our paper is organized as follows. In section 2,

we present our model, derive the dynamical system governing the evo-
lution of prices, and single out a few interesting economic scenarios for
our model. In section 3, we explore these scenarios classi�ed into four
cases. The results are given analytically in a number of theorems, while
graphical and numerical tools are used to illustrate the di¤erent cases
and show a number of simulations. The last section concludes the paper
and o¤ers interesting extensions and directions for future work.

2 A discontinuous model of a �nancial market

In this section, we develop a simple �nancial market model with �ve
types of agent: a market maker who adjusts prices with respect to order
imbalances, two types of technical traders who bet on the persistence of
bull and bear markets and two types of fundamental traders who believe
in mean reversion. There are two types of technical and fundamental
traders since some of them determine the size of their orders on the
basis of standard (conventional) linear trading rules while others always
prefer to trade a �xed amount of assets. Speculators may also react
di¤erently to situations where markets are over- or undervalued. Next,
we formalize our model, show that the dynamics are due to a simple
one-dimensional discontinuous map and de�ne a few economic scenarios
for later analysis.

2.1 Setup
Let us turn to the details of the model. A market maker mediates
transactions out of equilibrium and adjusts prices with respect to excess
demand. To be precise, the market maker quotes the log of price P for
period t+ 1 as

Pt+1 = Pt + a(D
C;1
t +DC;2

t +DF;1
t +DF;2

t ), (1)

where a is a positive price adjustment parameter. The orders placed by
the two types of technical trader are indicated by DC;1

t and DC;2
t , while

the orders placed by the two types of fundamental trader are represented
by DF;1

t and DF;2
t , respectively. Hence, prices increase if buying exceeds

selling, and vice versa. Such a price adjustment rule is used in many
models, including Beja and Goldman (1980), Day and Huang (1990)
and Farmer and Joshi (2002). Without loss of generality, we set the
scaling parameter to a = 1.
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Following Day and Huang (1990), chartists believe in the persistence
of bull and bear markets. The orders placed by the �rst type of chartists
are expressed as

DC;1
t :=

�
c1;a(Pt � F ) if Pt � F � 0
c1;b(Pt � F ) if Pt � F < 0

, (2)

where c1;a and c1;b are positive reaction parameters and F is the log of
the fundamental value. Hence, type 1 chartists submit buying (selling)
orders when prices are above (below) the fundamental value. Note that
the size of these orders may be asymmetric with respect to a bull or bear
market situation. For instance, for c1;a > c1;b this type of traders bets
more heavily in a bull market than in a bear market. Moreover, similar
formulations for the behavior of chartists have been used, for instance,
by Brock and Hommes (1998) and He and Westerho¤ (2005). Moreover,
Boswijk et al. (2007) estimate Brock and Hommes�model using yearly
S&P 500 data and �nd signi�cant evidence for such a kind of trading
behavior.
Type 2 chartists submit orders according to

DC;2
t :=

8<:
c2;a if Pt � F > 0
0 if Pt � F = 0
�c2;b if Pt � F < 0

. (3)

The order size in the bull market is given by c2;a > 0 while in the bear
market it is given by c2;b > 0. Compared to (2), type 2 chartists also
expect bull and bear markets to continue. However, the size of their
orders does not depend on the deviation from the fundamental value
but it is �xed. Also Lux (1998) considers a �nancial market model with
optimistic and pessimistic traders who always seek to buy or sell a �xed
amount of assets. Note that (3) implies that in the (special) case where
prices are equal to the fundamental value, type 2 chartists do not submit
orders.
Fundamentalists believe that prices return to their fundamental value

in the long run. The orders placed by type 1 fundamentalists are for-
malized as

DF;1
t :=

�
f 1;a(F � Pt) if F � Pt > 0
f 1;b(F � Pt) if F � Pt � 0

, (4)

where f 1;a and f 1;b are positive reaction parameters. For instance, if
prices are above the fundamental value, the market is regarded as over-
valued, causing type 1 fundamentalists to sell assets (as in Brock and
Hommes 1998 or Lux 1998). Again, also type 1 fundamentalists may
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react asymmetrically to over- and undervalued markets, i.e. f 1;a and
f 1;b may be unequal5.
Finally, the orders placed by type 2 fundamentalists amount to

DF;2
t :=

8<:
f 2;a if F � Pt > 0
0 if F � Pt = 0
�f 2;b if F � Pt < 0

. (5)

Should the market be undervalued, type 2 fundamentalists submit buy-
ing orders amounting to f 2;a > 0. Note that they become inactive in
the (special) case in which the price just mirrors its fundamental value.
Otherwise, their selling orders are given by f 2;b > 0.
Although formulations (2) to (5) are simple descriptions of the be-

havior of traders, they may be regarded as natural generalizations of the
general content of related models. Here we show that such a still simple
trading process is su¢ cient to generate interesting price dynamics.

2.2 The dynamical system
Introducing ePt = Pt � F , in (2) - (5) we obtain the following dynamical
system

ePt+1 =
8><>:
(1 + c1;a � f 1;b) ePt + c2;a � f 2;b if ePt > 0
0 if ePt = 0
(1 + c1;b � f 1;a) ePt � c2;b + f 2;a if ePt < 0 : (6)

To simplify the notation, let us furthermore de�ne the slopes as

sR = 1 + c
1;a � f 1;b, sL = 1 + c

1;b � f 1;a (7)

and the intercepts as

mR = c
2;a � f 2;b, mL = f

2;a � c2;b . (8)

We then obtain

ePt+1 = T ( ePt) =
8><>:
fR( ePt) = sR ePt +mR if ePt > 0
0 if ePt = 0
fL( ePt) = sL ePt +mL if ePt < 0 , (9)

which is a one-dimensional and, in general, discontinuous map.

5Note that fundamentalists and chartists always trade in opposite directions (the
main di¤erence between (2) and (4) lies in the �if �condition). Our chartists may
thus also be regarded as anti-fundamentalists.
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Note that in our formulation of the map, except for what is called
"Case I" below, we have that ePt = 0 is a very particular �xed point:
the map is not smooth in it, and the dynamics of points close to it are
associated with the values of the jump in this point, which is also a
discontinuity point. That is, points on its right side behave as the point
fR(0) = mR; while points on its left side behave as fL(0) = mL: Of such
a particular �xed point we may look at its stable set W S(0) (which is
necessarily a numerable set), and we shall see how its structure changes
in the di¤erent cases here analyzed. This point is also important as a
discontinuity point in the global analysis, because it behaves as a critical
point for smooth maps: as we shall see, both the values mR and mL will
be involved in the bifurcations (they assume the same role of the critical
values in the smooth cases).
Also it is worth noting that, of the four parameters we have in (9), one

may be set to 1 by rescaling the independent variable. Thus only three
parameters are really important to classify the dynamics and bifurcations
(for example, sR; sL and the ratio mR=mL): However, we prefer to keep
all four parameters as they are given, to have a suitable interpretation
in the applied context (and the reduction to three parameters in the
formulas can always be done a posteriori, if needed).

2.3 Economic scenarios
Note that all eight reaction parameters of (2)-(5) are positive. Hence,
the four model parameters given in (7) and (8) can take any values. A
full analytical treatment of model (9) is beyond the scope of the current
paper. Instead, we next single out four economic scenarios which we will
then investigate in detail in section 3. The �rst two scenarios are rather
special cases whereas the other two scenarios are more general.
We obtain a �rst (special) case, called Case I, if we omit type 2

traders. Setting mR = c2;a � f 2;b = 0 and mL = f 2;a � c2;b = 0, the
model turns into the continuous map

(Case I) ePt+1 = (fR( ePt) = sR ePt if ePt � 0
fL( ePt) = sL ePt if ePt � 0 : (10)

While the dynamic properties of (10) are trivial, a brief systematic sum-
mary of this case may be helpful in understanding the other cases.
Excluding type 1 traders, i.e. �xing sR = 1 + c1;a � f 1;b = 1 and

sL = 1 + c
1;b � f 1;a = 1, the model in (9) is simpli�ed to

(Case II) ePt+1 =
8><>:
fR( ePt) = ePt +mR if ePt > 0
0 if ePt = 0
fL( ePt) = ePt +mL if ePt < 0 : (11)
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We call this special situation Case II. As we shall see in the next section,
the dynamics are only relevant if mL > 0 and mR < 0, i.e. type 2
fundamentalists are more aggressive than type 2 chartists. Obviously,
the opposite case, that is a dominance of type 2 chartists over type 2
fundamentalists, leads directly to an explosion of the model dynamics.
Two further interesting special cases, yet not analyzed in this paper,

include models where there are either only chartists or only fundamen-
talists. It is immediately seen that the dynamics always explodes if there
are only type 1 and type 2 chartists, which is also consistent with ba-
sic economic intuition6. However, the case in which there are only type
1 and type 2 fundamentalists is more complicated7. At least for some
parameter constellation a model with two di¤erent types of fundamen-
talists can generate complex endogenous dynamics. Note that pairing
destabilizing chartists with destabilizing fundamentalists does not nec-
essarily lead to unbounded dynamics. In this sense, also �destabilizing�
chartist can contribute to �nancial market stability.
Case III is more general and assumes existence of all possible trader

types. For map (9) we consider restrictions sR > 1, sL > 1, mR < 0
and mL > 0, which corresponds to a situation in which type 1 chartists
dominate type 1 fundamentalists but type 2 chartists are dominated by
type 2 fundamentalists. Dynamically, only chaotic behavior can occur
(a similar situation was considered in the paper by Tramontana et al.
(2009c)).
Finally, in Case IV we consider the parameter space that is generic in

the negative slopes: sR < 0, sL < 0 and increasing jump, from mL < 0
to mR > 0. In economic terms, this means that type 1 fundamentalists
trade (much) more forcefully than type 1 chartists. The term �(much)
more forcefully�re�ects the fact that f 1;b�c1;a > 1 and f 1;a�c1;b > 1. In
addition, type 2 fundamentalists are less aggressive than type 2 chartists.
The study of such a dynamic system, which is new, is fully described
in our paper. We shall see a rich variety of possible behaviors: bistabil-
ity of equilibria, or convergence to equilibria coexisting with explosive
trajectories, or bounded and chaotic dynamics.

6This case requires that f1;a = f1;b = 0. The slopes of the map are both positive:
sR = 1 + c

1;a > 0 and sL = 1 + c1;b > 0. The o¤sets are such that: mR = c
2;a > 0

and mL = �c2;b < 0.
7This case requires that c1;a = c1;b = 0. The slopes of the map are: sR =

1 � f1;b < 1 and sL = 1 � f1;a < 1. The o¤sets are one negative and one positive:
mR = �f2;b < 0 and mL = f

2;a > 0.
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3 The dynamics of the model

In this section, we explore the four economic scenarios singled out in
the previous section. Due to the simple structure of our model, several
results are analytical and, as already stated in the previous sections,
the analyses of Cases II and IV are the most innovative ones. The use
of graphical and numerical tools will help us to present the results and
simulate possible trajectories of the applied model.

3.1 Case I
In this section we describe the dynamics in the particular case in which

mL = mR = 0

so that the model reduces to the continuous map given in (10), where
the two slopes sR and sL can have any sign. Obviously, the only �xed
point of the map is point ePt = 0; and the trajectories either converge
to this point or diverge. The complete description of all possible cases
is summarized in the following �gure, where, depending on the sign and
modulus of the slopes, we have di¤erent dynamic behaviors.

Fig. 1 Qualitative shape of the map for mR = mL = 0 depending on
parameters (sR; sL): "c." stands for convergence while "div." indicates

divergence.

It is clear that when both slopes are in modulus less than one, the
origin is an attracting �xed point (the regions marked by "c." in Fig.
1), while di¤erent dynamics may occur in other parts of the parameter
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space (sR; sL): From Fig. 1 we can see that divergent dynamics can
occur in some cases only (the regions marked by "div." in Fig. 1),
while in two regions, characterized by (sR > 1; 0 < sL < 1) and by
(0 < sR < 1; sL > 1), we have convergence on one side and divergence
on the other. The arc of the curve in the lower-left part of the graph is the
curve of equation sRsL = 1: In the two regions crossed by this curve the
dynamic behavior (convergence or divergence) depends on the product
of the slopes. The results are summarized in the following Theorem,
proof of which is given in the Appendix.

Theorem 1. Let mR = mL = 0 in map (9). Then:
- if jsR;Lj < 1; or 0 < sR < 1 and sL < �1; or 0 < sL < 1 and

sR < �1; all trajectories are convergent to eP = 0;
- if jsR;Lj > 1; or sR > 1 and �1 < sL < 0; or sL > 1 and

�1 < sR < 0; all trajectories are divergent;
- if sR > 1 and 0 < sL < 1; any eP > 0 has a divergent trajectory

while any eP < 0 is convergent to eP = 0;
- if sL > 1 and �1 < sR < 0;any eP < 0 has a divergent trajectory

while any eP > 0 is convergent to eP = 0;
- if sR;L < 0; for sRsL < 1 all trajectories are convergent to eP = 0,

while for sRsL > 1 all trajectories are divergent;
- if sL = 1 (resp. sR = 1) all points eP < 0 (resp. eP > 0) are �xed;
- if sL = �1 and jsRj < 1 (resp. jsRj > 1) all points are convergent

to eP = 0 (resp. divergent);
- if sR = �1 and jsLj < 1 (resp. jsLj > 1) all points are convergent

to eP = 0 (resp. divergent);
- if sL = sR = �1 all points are periodic of period 2;
- if sL = 0 (resp. sR = 0) all points eP < 0 (resp. eP > 0) are mapped

into the �xed point eP = 0:
Of course, neither a globally repelling nor attracting �xed point is a

compelling description of the dynamics of �nancial markets. However,
this brief investigation helps us to understand the more complicated
cases discussed next. However, we add that Westerho¤ and Franke
(2009) proposed a similar model containing only type 1 chartists and
type 1 fundamentalists that is able to match some important stylized
facts of �nancial markets surprisingly well. Due to intrinsic multiplica-
tive noise in their model, the dynamics �uctuates stochastically between
periods of monotonic convergence and monotonic divergence, and thus
price time series resemble random walks and returns display no signif-
icant autocorrelation. In other words, even simple models such as our
map (10) may be useful in understanding the dynamics of �nancial mar-
kets.
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3.2 Case II
In this section we describe the dynamics in the particular case in which

sL = sR = +1

so that the model reduces to the discontinuous map given in (11).

Fig. 2 Qualitative shape of the map for sL = sR = 1. In cases (a) and (b)
two lines are drawn on the right to show that it is irrelevant whether

mL > mR or mL < mR:

The shape of the map, depending on all possible cases of the sign of
mL and mR; is illustrated in Fig. 2. It can immediately be seen from
the �gure that the trajectories are divergent, with the exception of the
situation shown in Fig. 2(d). Thus we are led, in this section, to describe
the dynamics in this particular case assuming mL > 0 and mR < 0. One
preliminary remark is that no �xed point eP 6= 0 exists, and I = [mR;mL]
is an invariant absorbing interval (here absorbing means that any initial
condition, i.c. henceforth, outside I has a trajectory which is mapped
in I in a �nite number of iterations).
Note that the stable set W S(0) of eP = 0 consists of only this point

in the case of Fig. 2(c), while it includes a numerable set of points
in the other cases: we have W S(0) = f�kmL; k � 0g in the case of
Fig. 2(a), W S(0) = f�kmR; k � 0g in the case of Fig. 2(b), and
W S(0) = f � kmL; �kmR; k � 1; and related preimagesg in the case
of Fig. 2(d).
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Let us explore the dynamics for mL > 0 and mR < 0. As the slopes
of the two components are both equal to +1 we cannot have states which
are "attracting", but neither repelling nor divergent. In fact, all of the
points in I not belonging toW S(0) have a similar fate: either they are all
periodic of the same period or they all have quasiperiodic trajectories,
which are limited inside the interval forever, albeit without a chaotic
behavior. The reason for the non-existence of chaos is that there is no
sensitivity with respect to the initial conditions: points starting close
together will have trajectories similarly close to each other for any iter-
ation. The distinguishing role for periodic or quasiperiodic trajectories
in I is simply the ratio between the two values: mL=mR being rational
or irrational, respectively. This result, and the exact computation of the
period, is stated in the following Theorem, the proof of which is given
in the Appendix.
Theorem 2. Let sR = sL = 1 in map (9). Then the trajectory of

any eP =2 W S(0) is divergent, with the exception of the case mR < 0 and
mL > 0 at which I = [mR;mL] is an invariant absorbing interval. All
points in InW S(0) are either periodic or quasiperiodic with trajectories
dense in I. All points outside I have a trajectory entering I in a �nite
number of iterations. De�ne � = mL

�mR
. Then:

- if � is rational let mL

�mR
= n

k
; where n and k are integers with no

common divisors, all the orbits in InW S(0) have period (n + k), where
k is the number of periodic points on the L side and n is the number of
periodic points on the R side;
- if � is irrational, all orbits in InW S(0) are quasiperiodic.
Thus considering the non-divergent region in the parameter plane

(mR;mL) we �nd that it is �lled with straight lines mL = ��mR (see
Fig. 3). Also, for each line there is a corresponding (in the phase space)
absorbing interval I �lled with periodic orbits when � is rational, or
quasiperiodic orbits when � is irrational.

Fig. 3 Qualitative behavior of the map in phase space (mR;mL) for
sR = sL = 1: If slope � of a line is rational (resp. irrational), the dynamics
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are periodic (resp. quasiperiodic).

A number of examples are given in Fig. 4 (always for the case mL > 0
and mR < 0). Fig. 4(a) is obtained using F = 0; a = 1; c1;a = c1;b = 0;
c2;a = c2;b = 0:2; f 1;a = f 1;b = 0 and f 2;a = f 2;b = 0:3. We have
mL = 0:1 and mR = �0:1, so mL

�mR
= 1

1
, and we have a 2�cycle with

one point on the left and one point on the right. If we increase the
value of f 2;a to 0:4, mL becomes equal to 0:2 and mL

�mR
= 2

1
. This is

the case shown in Fig. 4(b) where we have a 3-cycle with one point
on the left and two points on the right. Fig. 4(c) shows the case with
f 2;a = 0:41, which implies that mL

�mR
= 21

10
; the cycle is characterized

by period 31 with 10 periodic points located on the left and 21 on the
right. Note that Fig. 4(c) depicts very interesting price dynamics. The
repeated and consistent up trend price swings are due to the interactions
between the fundamentalists and chartists, and in particular due to the
�overreaction�of fundamentalists8. Finally, Fig. 4(d) shows a case in
which � is irrational. In this case, f 2;a =

p
2=3 and the orbits are

quasiperiodic.

8However, we observe qualitatively similar price dynamics for, e.g., f2;a= 0.3 and
f2;b= 0.29, i.e. we can also hold f2;a constant and decrease f2;b. We thank an
anonymous referee for pointing this out to us.
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Fig. 4 Examples of periodic and quasi-periodic trajectories. A cycle of
period 2 in (a), of period 3 in (b) and of period 31 in (c). An aperiodic
trajectory is shown in (d). Parameter f 2;a is increased from 0.3 to 0.4 to
0.41 and to

p
2=3. The remaining parameters are constant and given in

Section 3.2.

From an economic point of view, it is clearly obvious here that even an
extremely simple �nancial market model such as ours is able to gener-
ate endogenous asset price dynamics. In the current setting, chartists
and fundamentalists always seek to trade constant amounts of assets,
a regime which is incompatible with �xed point dynamics. This obser-
vation may further help us to understand why �nancial markets are so
(excessively) volatile.

3.3 Case III
Let us consider the general case (9), where both slopes sR and sL are
positive and larger than 1, that is: c1;a � f 1;b > 0 and c1;b � f 1;a > 0;
while mR = c2;a � f 2;b < 0 and mL = f 2;a � c2;b > 0 (the qualitative
shape of the map is shown in Fig. 5).
In this case, no stable cycle can exist because, given a cycle of period
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k with l points in the L side and the remaining k�l points on the R side,
the eigenvalue (or slope) of the k�cycle is given by S = sLlsRk�l > 1.
This proves that when bounded dynamics are possible, the trajectories
can only be chaotic. In fact, contrary to what occurs in Case II, here
the slopes are such that the existing cycles are all repelling and the
Lyapunov exponent, computed in aperiodic trajectories, is necessarily
positive. Also we recall that in piecewise linear maps chaotic attractors
are always of so-called robust chaos, as we shall see below.
The restrictions considered in this case also imply that two (locally

unstable) �xed points with eP 6= 0 always exist: a negative valued �xed
point and a positive one, given by

eP �� = mL

1� sL
=

�mL

(sL � 1)
< 0 ; eP �+ = mR

1� sR
=

jmRj
(sR � 1)

> 0: (12)

Fig. 5 Set of parameters: F = 0; a = 1; c1;a = c1;b = 0:5; c2;a = c2;b = 0:2;
f 1;a = f 1;b = 0 and f 2;a = f 2;b = 0:3.

The existence of such unstable �xed points implies that any i.c. (re-
member that i.c. stands for initial condition) lower than eP �� has a tra-
jectory which is divergent towards �1; while any i.c. higher than eP �+
has a trajectory which is divergent towards +1: It follows that bounded
dynamics can only occur inside interval ] eP ��; eP �+[, and a necessary and
su¢ cient condition to have bounded trajectories is the following:eP �� < mR and eP �+ > mL: (13)

Condition (13), which may be rewritten as a function of the parameters
as follows:

mL

1� sL
< mR < mL(1� sR)
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or:
mR(1� sL) < mL <

mR

1� sR
;

also states that the interval I = [mR;mL] is invariant (any point in I
has a trajectory which stays in I forever) and absorbing: it attracts the
trajectory of all i.c. that are above eP �� and below eP �+: In fact, such i.c.
have a trajectory which enters interval I in a �nite number of steps (the
number of steps depends on the two slopes and on width of I). Thus the
basin of attraction of this absorbing interval is given by B(I) =] eP ��; eP �+[.
In the example shown in Fig. 5(a), the sequence of prices can switch
between bull and bear regions without a �xed number of times for which
it remains in a particular region (see the time series plot in Fig. 5(b)).
The dynamics of prices inside I is chaotic. In�nitely many cycles ex-

ist because equations T k( eP ) = eP have di¤erent solutions for any integer
k, but all k�cycles are unstable (as remarked above) and the attracting
set of the map inside the invariant interval I is given by some n�cyclical
chaotic intervals (with n � 1), bounded by the images of the disconti-
nuity point. What may change in this regime is the number of chaotic
components, via homoclinic bifurcations of repelling cycles outside the
chaotic intervals, occurring due to the merging of the images of the dis-
continuity point with such unstable cycles. A detailed description of the
bifurcations involving chaotic intervals can be found in Avrutin et al.
(2006, 2008a,b, 2009). When the slopes are large enough, the dynamics
become chaotic in the whole interval I = [mR;mL] (i.e. n = 1, and we
have one chaotic interval). In general, when n�cyclical chaotic intervals
exist, the dynamics of map T n in one invariant segment is topologically
conjugated with that of the shift map (that is, equivalently, with that
of the tent map), and it is purely chaotic: the periodic points are dense
in the n�cyclical chaotic intervals, as well as the aperiodic trajectories,
and an absolutely continuous invariant measure exists. This is a classi-
cal case of pure chaos in intervals of the phase space, and also occurring
in an interval of values for each parameter. This is an important prop-
erty in the applied context, which is often missed. It is well known that
this "pure chaos" also exists in smooth models (we may think of several
cases modelled, for example, with the logistic map, and cyclical chaotic
intervals), but often it cannot occur for an interval of parameter val-
ues. Di¤erently, in piecewise-linear models with a chaotic attractor, it
is persistent as a function of the parameters, at least in some interval
for each parameter, and this property is often called robust chaos. An
example is shown in the one-dimensional bifurcation diagram of Fig. 6
(the parameters are the same as in Fig. 5, while f 2;b varies between 0:2
and 0:42): We remark that f 2;b is a component of mL, which decreases
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up to the �nal bifurcation causing the divergence:

Fig. 6 Bifurcation diagram obtained with the following set of parameters:
F = 0; a = 1; c1;a = c1;b = 0:5; c2;a = c2;b = 0:2; f 1;a = f 1;b = 0 and

f 2;a = 0:3. f 2;b varies between 0:2 and 0:42.

The �nal bifurcation occurring when eP �� = mR or eP �+ = mL is a contact
bifurcation, leading to the disappearance of the attractor. The contact
occurs due to the merging of one extremum of the invariant absorbing
interval I = [mR;mL] with one unstable �xed point, which is on the
boundary of its basin of attraction B(I) =] eP ��; eP �+[. This also corre-
sponds to the homoclinic bifurcation of the unstable �xed point involved
in the contact. After such a bifurcation, all trajectories are divergent,
with the exception of the unstable cycles which persist (unstable) in I
(because equations T k( eP ) = eP have di¤erent solutions for any integer
k), that is the points belonging to their stable sets and their limit points.
This set of points which persists bounded in I is an invariant Cantor set
�, and the restriction of map T to � is chaotic, as rigorously proved in
the Appendix. Hence we have proved the following

Theorem 3. Let sR > 1; sL > 1; mR < 0; mL > 0 in map
(9). Then
i) for mL

1�sL < mR < mL(1 � sR) chaotic dynamics occur in chaotic
intervals belonging to the invariant absorbing interval I = [mR;mL] with
basin B(I) =] eP ��; eP �+[;
ii) for mL

1�sL = mR or mR = mL(1� sR) �xed point eP �� or eP �+ respec-
tively (involved in the contact) becomes homoclinic;
iii) for mL

1�sL > mR or mR > mL(1 � sR) almost all trajectories are
divergent, i.e. except for the points of a chaotic repellor � (a Cantor set
of points of zero Lebesque measure in I).

We remark that the number of steps spent by a chaotic trajectory
in the bull region or bear region before switching to the other regime
is unpredictable, although rough estimates may be associated with the
width of the chaotic interval and, especially, to the width of the positive
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parameter mL or that of the negative one mR: For example, when the
parameters are such that mL (resp. mR) is quite close to 0, while the
other is further from 0, the chaotic states spend more iterations in the
L (resp. R) region.

Fig. 7 Set of parameters: a) F = 0; a = 1; c1;a = 0:5; c1;b = 0:202;
c2;a = c2;b = 0:2; f 1;a = f 1;b = 0; f 2;a = 0:22 and f 2;b = 0:3. b) F = 0;
a = 1; c1;a = 0:196; c1;b = 0:5; c2;a = 0:28; c2;b = 0:2; f 1;a = f 1;b = 0 and

f 2;a = f 2;b = 0:3.

Two examples are shown in Fig. 7. Fig. 7(a) is obtained starting from
the set of parameters of Fig. 5. Parameter f 2;a is then decreased to yield
a lower value of mL and c1;b is decreased to change the slope of the left
line and have bounded trajectories, using c1;b = 0:202 and f 2;a = 0:22;
while in Fig. 7(b) (always starting from the set of parameters of Fig.
5) we have increased c2;a (c2;a = 0:28) and decreased c1;a (c1;a = 0:196)
yielding bounded trajectories with mR close to 0.
We also notice that in this Case III, the stable set W S(0) always in-

clude in�nitely many preimages which are accumulating on the two other
unstable �xed points (given by the points �mL=sL and �mR=sR which
are the rank-1 preimages, and their further preimages of any rank), and
when the discontinuity point belongs to the invariant chaotic intervals,
then also in�nitely many preimages of eP = 0 are dense in the chaotic
set. This means that however close to any point of the invariant chaotic
set we can �nd points which ultimately will end up into eP = 0; but
maybe with a long and chaotic transient.
In contrast to Case II, in which periodic or quasiperiodic motion

may emerge due to speculators who always seek to trade �xed amounts
of assets, Case III with all four types of speculator is able to produce
irregular dynamics, even though the traders� transactions still follow
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quite simple rules. However, note that once a market has entered a bull
(bear) area, prices always decrease (increase) until they revert to a bear
(bull) area. As we will see in the next section, the dynamics of our
model may become more complicated in the sense that prices may move
erratically upwards or downwards within a bull or a bear market.

3.4 Case IV
We now analyze the general case (9) where both slopes sR and sL are
negative, that is: f 1;b � c1;a > 1 and f 1;a � c1;b > 1; while mR =
(c2;a � f 2;b) > 0 and mL = (f 2;a � c2;b) < 0 (the qualitative shape of
the map is shown in Fig. 8(a)).
As in the previous case, also the present one is characterized by

the existence of two �xed points eP 6= 0 as in (13): one on the left
( eP �� = mL

1�sL < 0) and one on the right (
eP �+ = mR

1�sR > 0). Depending on
the local stability of these �xed points (which clearly in�uences global
behaviors), we can subdivide Case IV into three subcases: IV-A when
both are stable (�1 < sR;L < 0); IV-B when one is stable and the other
one unstable (sR < �1 and �1 < sL < 0 or sL < �1 and �1 < sR < 0);
IV-C when both are unstable (sR;L < �1). Let us �rst point out a few
properties to be used later.
Property 1. Any point eP in the interval [mL;mR] has two distinct

rank-1 preimages, one on the R side: f�1R ( eP ), and one on the L side:
f�1L (

eP ); given by
f�1R (

eP ) = eP �mR

sR
> 0 ; f�1L (

eP ) = eP �mL

sL
< 0; (14)

while any point eP > mR has only one rank-1 preimage: f�1L ( eP ) < 0 and,
similarly, any point eP < mL has only one rank-1 preimage: f�1R ( eP ) > 0.
Several properties of map T in this subcase can be deduced from the

properties of the second iterate T 2. It is a map with three discontinuity
points, one in the origin and the other two in the rank-1 preimages of
the origin: f�1L (0) = �mL

sL
< 0 and f�1R (0) = �mR

sR
> 0 (the qualitative

shape is shown in Fig. 8(b)). T 2 consists of four branches, two of them
have slopes s2R and s

2
L, while the two external branches have the same

slope sLsR: The jump in the origin has extrema fL(mL) = mL(1 + sL)
and fR(mR) = mR(1 + sR); the jump in the other two discontinuity
points is the same, with extrema mR > 0 from the left and mL < 0 from
the right. As for sLsR � 1, the second iterate of map T 2 cannot have
intersections with the diagonal di¤erent to the two existing �xed points.
Then we immediately have the following:
Property 2. A single 2�cycle of T with periodic points x1 < 0 and
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x2 > 0 can exist (unstable) i¤ sLsR > 1 and the cycle satisfying fL(x1) =
x2 and fR(x2) = x1 is given by

x1 = �
sRmL +mR

sLsR � 1
< eP �� ; x2 = �

sLmR +mL

sLsR � 1
> eP �+ (15)

Since when sLsR > 1 and the unstable 2-cycle exists the second iter-
ate T 2 increases in the two unstable �xed points x1 and x2; it follows that
points above x1 are mapped above it and points below x2 are mapped
below it, so that interval J = [x1; x2] may be an invariant interval from
which the trajectories cannot escape. This occurs when all the jumps
are between the points of the 2-cycle. Noticing that fL(mL) = x2 i¤
mL = x1 (and similarly fR(mR) = x1 i¤ mR = x2), we can state the
following:
Property 3. Let sLsR > 1: Then J = [x1; x2] is an invariant interval

i¤mR < x2 and mL > x1 or, equivalently, i¤

mR < �
sLmR +mL

sLsR � 1
and mL > �

sRmL +mR

sLsR � 1
: (16)

Subcase IV-A: Both �xed points stable.
A �rst result of this subcase (�1 < sR;L < 0) is that no divergent

trajectories can exist. A second result is that we have a coexistence of
two locally stable �xed points. Thus, starting from any i.c., the system
will converge to either eP �� or eP �+. The basins of attraction of the two
�xed points are made up of the union of alternating intervals. To show
this, let us consider the immediate basin of each point and its preimages
of any rank. The immediate basin of the �xed point eP �+ is given by
interval ]0; f�1R (0)[=]0;

�mR

sR
[, and the trajectory of any i.c. in this interval

converges to the stable �xed point on the right, without any negative
value. Similarly, the immediate basin of the �xed point on the left is
given by interval ]f�1L (0); 0[=]

�mL

sL
; 0[. Then the global basins are made

up of these intervals and all their preimages of any rank. Formally:

B( eP �+) = [n�0T�n(]0; �mR

sR
[) ; B( eP ��) = [n�0T�n(]�mL

sL
; 0[) (17)

Note that the intervals belonging to the global basins of attraction are
bounded (as for the immediate basins) by the preimages of the origin
of any rank, that is: the stable set of the origin W S(0) is exactly the
frontier of the two di¤erent basins, and (from Property 1 given above)
the intervals are alternating on the real line.
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Fig. 8. Shape of map T in (a) and of the second iterate T 2 in (b).

As an example, Fig. 8(a) shows the basins of attraction of the �xed
points for the following set of parameters: F = 0; a = 1; c1;a = c1;b = 0:5;
c2;a = c2;b = 0:2; f 2;a = f 2;b = 0:07; f 1;a = 1:92; f 1;b = 2:36.
The dynamics changes from case IV-A to case IV-B when the slope

of one branch is decreased and crosses the value �1. This is a local
bifurcation for the �xed point involved and, due to the linear component,
is not a classical �ip bifurcation. That is, when �xed points eP �+ and eP ��
become unstable it is not true that a stable 2-cycle will be created after
the bifurcation. For this reason, we call it a degenerate �ip bifurcation
and, as we shall see, the result of such a degenerate �ip bifurcation is
not unique, and depends on the global behavior of the map (i.e. it also
depends on the value of the other slope). Starting from parameters in
the situation of stability for both �xed points, let us assume that sR =
�1 is attained. Then at this bifurcation value the immediate basin of
�xed point eP �+; that is interval ]0; f�1R (0)[=]0; �mR

sR
[=]0;mR[, is �lled with

stable (but not attracting) cycles of period 2 (in fact T 2(x) = f 2R(x) = x
in this interval), and all points of the previous global basin of eP �+ are
mapped into one such 2-cycle. After the bifurcation, when sR < �1;
only one �xed point is left. We can reason in the same way if sL = �1
occurs �rst. Now let us consider the dynamics in this second regime for
the slopes.

Subcase IV-B: Only one �xed point stable.
To �x the reasoning, let us assume the subcase in which sR < �1 and

�1 < sL < 0 (as the other case in which sL < �1 and �1 < sR < 0 can
be obtained immediately by exchanging L and R in all that follows and
some related obvious changes). Clearly, this situation di¤ers from the
previous subcase in that we have a unique stable �xed point. As long
as the second iterate of the map (map T 2) has only such cycles, that
is, from Property 2, as long as sLsR < 1; the unique stable �xed pointeP �� is almost globally attracting, as it attracts all the points di¤erent to
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unstable �xed point eP �+ , eP = 0 and the points which are mapped into
them (constituting the stable sets W S( eP �+) and W S(0)). Two numerical
examples are shown in Fig. 9.

Fig. 9 (a) is obtained using F = 0; a = 1; c1;a = c1;b = 0:5;
c2;a = c2;b = 0:2; f 2;a = f 2;b = 0:07; f 1;a = 2:225; f 1;b = 2:9: (b) di¤ers

from Fig. 9(a) for f 1;a = 2:9 and f 1;b = 2:204.

See also the qualitative picture in Fig. 10(a). The dynamics change
when sLsR > 1 and the unstable 2-cycle exists, with periodic points
fx1; x2g : Then all the i.c. eP < x1 and eP > x2 have divergent trajec-
tories, so that basin B(1) certainly includes set ] � 1; x1[[]x2;+1[;
while basin B( eP ��) belongs to the interval J = [x1; x2] and is given in
(17): by the immediate basin ]f�1L (0); 0[=]

�mL

sL
; 0[ and then by all its

preimages B( eP ��) = [n�0T�n(]�mL

sL
; 0[); and notice that now the frontier

of B( eP ��) belongs to the stable set of the origin W S(0) (and is not equal
toW S(0) because this stable set also includes other points: �mR=sR and
its preimages of any rank).
Moreover, as long as J is invariant (see Property 3) then the closure of

the basin is the whole interval bounded by the 2-cycle: C l(B( eP ��)) = J .
That is, basin B( eP ��) is given by the points of J after having eliminated
the unstable cycles included therein and the related stable sets. In Fig.
10(b) we show the shape of map T and its second iterate T 2. It is clear
that of the four branches in the second iterate T 2, only one (correspond-
ing to the immediate basin of eP ��) has a stable slope (between �1 and
0), while from sLsR > 1 it follows that all other slopes are higher than
1: A similar pattern occurs for all solutions of equation T k( eP ) = eP for
any k: all branches of the k-th iterate T k are in modulus higher that 1,
except for the branch corresponding to the immediate basin of eP ��. Thus
besides the unstable 2-cycle, all possible k-cycles are unstable. In fact,
the following property (proof of which is given in the Appendix) holds:
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Fig. 10 Qualitative shape of map T in subcase IV-B, with
mL = �1; mR = 1; �1 < sL = �0:8 < 0 and sR < �1: Then in (a)
sR = �1:1 (sLsR < 1): In (b) sR = �3; sLsR > 1 and I is invariant. In
(c) sR = �4; sLsR > 1 and I is not invariant. An enlargement of the region
of (c) containing the homoclinic trajectory of the 2-cycle is presented in (d).

Property 4. Let sLsR > 1: Then all the k-cycles are unstable.

A contact bifurcation (between the basin of divergent trajectories
and basin B( eP ��)) occurs when Property 3 no longer holds, and in this
case, being fL(mL) = mL(1 + sL) < 0, bifurcation fL(mL) = x2 can
never occur. Thus the only possibility is via bifurcation mR = x2: Then,
for mR > x2 (i.e. mR > � sLmR+mL

sLsR�1 ) the points belonging to the interval
]x2;mR] have divergent trajectories, and from Property 1 this interval
has two distinct rank-1 preimages, which also belong to the basin of
divergent trajectories, and in turn a sequence of in�nitely many preim-
ages. That is, for mR > x2 basins B( eP ��) = [n�0T�n(]�mL

sL
; 0[) and

B(1) =] �1; x1[[]x2;+1[[n�0T�n(]x2;mR]) inside J consist of both
in�nitely many intervals which are intermingled in a complex way (see
Fig. 10(c)). In fact, the preimages of any rank accumulate on the un-
stable periodic points existing there inside, which belong to a chaotic
repellor �; which also includes the stable set W S(0): That is, the fron-
tier separating the two basins B( eP ��) and B(1) is an invariant Cantor
set � of zero measure, on which the restriction of the mat T is chaotic.
The existence of chaotic dynamics is proven by fact that bifurcation
mR = x2 also corresponds to the homoclinic bifurcation of the 2-cycle.
In fact, for the second iterate of map T 2, x2 is an unstable �xed point,
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and an homoclinic trajectory can be obtained taking the �rst preimage
on its left and then in�nitely many preimages on the right converging
to x2 (such a homoclinic trajectory is shown in the enlargement of Fig.
10(c)), thus the proof is identical to that of Theorem 3(iii) given in the
Appendix.

Subcase IV-C: Chaos (sR;L < �1).
Qualitative changes from the subcase IV-B described above can ap-

pear only if the remaining stable �xed point also undergoes a degenerate
�ip bifurcation. In this case, at the bifurcation value we still have the
immediate basin �lled with stable (but not attracting) 2-cycles, while
after the bifurcation the dynamical result depends on the global prop-
erties, since it depends on both values of the two slopes. For exam-
ple, if we decrease sL starting from a situation in which the closure is
C l(B( eP ��)) = J = [x1; x2] (as in Fig. 10(b)) (that is when sLsR > 1
occurs as long as mR < x2 and mL > x1), we have bounded chaotic
intervals. While if we decrease sL starting from a situation in which
B( eP ��) and B(1) both exist inside J = [x1; x2] (as in Fig. 10(c)) (that
is when sLsR > 1 and either mR > x2 or mL < x1), then the result
is that the generic trajectory is divergent, and the set of points which
persists bounded is an invariant Cantor set � of zero measure, and the
restriction of the mat T to � is chaotic.
Now all existing cycles are necessarily unstable, since both slopes are

less than �1. So when the dynamics are bounded in the absorbing inter-
val J (from Property 3 as long as mR < x2 and mL > x1), we are faced
with a chaotic regime. The reasoning is quite similar to that performed
in the previous subsection (Case III), referred to the second iterate T 2 of
the map. None of the trajectories can escape from the invariant interval
J = [x1; x2]; in�nitely many cycles exist, all unstable, and the Lyapunov
exponent is necessarily positive. Thus the attractor is a set of n�cyclical
chaotic intervals (n � 1), and what may change is the number n of com-
ponents. As is well known, and as already mentioned in Case III, in
piecewise-linear chaotic maps the chaotic intervals are bounded by the
images of the critical point, which in our case are the jump at the discon-
tinuity point: fR(0) = mR and fL(0) = mL. And the bifurcations that
cause the transition from the di¤erent situations are either border col-
lision bifurcations or homoclinic bifurcations of repelling cycles outside
the chaotic intervals, occurring due to the merging of the images of mR

and mL with the unstable cycles. In particular, the homoclinic bifurca-
tion of �xed point eP �� can only occur when fR(mR) = eP ��; that is, when
mR(1 + sR) =

mL

1�sL . Similarly, the homoclinic bifurcation of �xed pointeP �+ can only occur when fL(mL) = eP �+; that is, when mL(1+sL) =
mR

1�sR :
Clearly the existence of bounded chaotic intervals (pure chaos which
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persist for intervals in the parameter values) is destroyed at the contact
bifurcation of the chaotic intervals with the boundary of the invariant
region J = [x1; x2]; which occurs when either mR = x2 or mL = x1 (after
which, from Property 3, J = [x1; x2] is no longer invariant). As already
mentioned above (in subcase IV-B), this situation corresponds to the
homoclinic bifurcation of the 2-cycle, after which the generic trajectory
will be divergent, except for a chaotic repellor �: In the enlargement of
Fig. 10(c) we show a homoclinic trajectory of the 2-cycle when the �nal
contact bifurcation occurs due to mR = x2. Similarly, we can construct
homoclinic trajectories in the case that fL(mL) = x2, i.e. mL = x1. An
examples is given in Fig. 11.

Fig. 11. Maps T and T 2 at the following values of the parameters:
sL = �2:8; mL = �1; sR = �1:2; mR = 1:

We have proved the following
Theorem 4. Let sR < 0; sL < 0; mR > 0; mL < 0 in the map

(9). Then
i) the two stable �xed points eP �� and eP �+ coexist for �1 < sR;L < 0 ;

their basins (given in (17)) are alternating intervals separated by the the
stable set of the origin W S(0);
ii) only one stable �xed point exists, almost globally attracting (except

for the unstable �xed points and their preimages) for sR < �1 and �1 <
sL < 0; or sL < �1 and �1 < sR < 0; and sLsR < 1;
iii) for sR < �1 and �1 < sL < 0; or sL < �1 and �1 < sR < 0;

sLsR > 1, mR < x2 and mL > x1; only one stable �xed point exists, and
C l(B( eP �)) = J = [x1; x2];
iv) for sR < �1 and �1 < sL < 0 or sL < �1 and �1 < sR < 0;

sLsR > 1; and mR > x2 or mL < x1; only one stable �xed point exists,
and inside J = [x1; x2]; its basin B( eP �) is separated from B(1) through
a chaotic frontier �;
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v) for sR;L < �1, mR < x2 and mL > x1, the attractor in J = [x1; x2]
consists of n�cyclical chaotic intervals with n � 1; the homoclinic bi-
furcation of the �xed points characterizing the merging of chaotic inter-
vals occurs when fR(mR) = eP �� (i.e. mR(1 + sR) =

mL

1�sL ) and when

fL(mL) = eP �+ (i.e. mL(1 + sL) =
mR

1�sR );
vi) for sR;L < �1 and mR > x2 or mL < x1; no attractor exists:

almost all of the trajectories are divergent, except for a chaotic repellor
� belonging to J = [x1; x2]

Fig. 12 The set of parameters used is F = 0; a = 1; c1;a = c1;b = 0:5;
c2;a = c2;b = 0:2; f 2;a = f 2;b = 0:07; f 1;b = 2:9. The bifurcation parameter
f 1;a takes the values 2.55 (panel a), 2.72 (panel b) and 3.05 (panel c),
corresponding to slopes sL = �1; 05, sL = �1:22 and sL = �1:55,

respectively.

As an example, let us consider the case represented in Fig. 12, ob-
tained by keeping the following set of parameters �xed: F = 0; a = 1;
c1;a = c1;b = 0:5; c2;a = c2;b = 0:2; f 2;a = f 2;b = 0:07; f 1;b = 2:9 and
letting parameter f 1;a vary. Immediately after the degenerate �ip bi-
furcation of the �xed point eP �� (which becomes unstable) a three-bands
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chaotic attractor arises, shown in Fig. 12(a) ( f 1;a = 2:55). Increasing
the value of the parameter, the chaotic bands turn into two (Fig. 12(b),
f 1;a = 2:72) and then only one (Fig. 12(c), f 1;a = 3:05). The scenarios
shown in Fig. 12, when we decrease the slope of one branch, keeping the
other slope �xed at a value lower than �1; are cyclical chaotic intervals
bounded by mL; mR; and their iterates. The transition from a quali-
tative case to the other occurs via a global bifurcation, the homoclinic
bifurcation of one unstable �xed point, and this transition can be seen
in the bifurcation diagram of Fig. 13. As slope sL is decreased, we can
see the homoclinic bifurcations changing the number of chaotic bands.
At f 1;a = 2:5 the slope is sL = �1 and �xed point eP �� becomes unstable.
There are three chaotic bands, until two of them merge in correspon-
dence to the homoclinic bifurcation of eP �� (f 1;a = h� ' 2:62). When
the homoclinic bifurcation of eP �+ occurs (at f 1;a = h+), the two bands
merge into a unique chaotic interval [mL;mR], up to a value after which
fL(mL) > mR and the chaotic interval is given by [mL; fL(mL)] up to the
�nal contact bifurcation, occurring when fL(mL) merges with point x2
of the unstable 2-cycle, after which the generic trajectory is divergent.

Fig. 13 One-dimensional bifurcation diagram for parameter f 1;a.

The time series plots of Fig. 12 show that passing from three to two and
�nally to only one chaotic band, switching between bull and bear price
values becomes increasingly unpredictable.
Hence, this scenario is not only able to generate endogenous price

�uctuations and thus replicates the phenomenon of excess volatility ob-
served in many �nancial markets. It can also produce (persistent) pe-
riods of over- and undervaluation. Such boom-bust cycles are also a
typical and recurrent phenomenon witnessed in many �nancial markets.
From a policy perspective it is obviously quite important to understand
what drives such dynamics. Highly volatile and distorted prices imply
considerable market risks and are thus surely not bene�cial for the wel-
fare of an economy. We would like to stress that our paper reveals that
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such dynamics may be caused by (even one-dimensional) discontinuous
maps, which should clearly illustrate their relevance9. Moreover, such
discontinuous maps may originate from the behavior of boundedly ratio-
nal agents who follow simple, yet plausible and empirically observable
trading rules.

4 Conclusion

What drives the dynamics of �nancial markets? Since prices adjust with
respect to demand and supply, a number of interesting models have been
proposed in the recent past, which explicitly studied how agents deter-
mine their speculative investment positions. These papers have a strong
empirical foundation since their main building blocks are supported by
questionnaire and laboratory evidence according to which speculators
rely on both technical and fundamental analysis to predict the direc-
tions of future market movements. We contribute to this research �eld
by developing a novel �nancial market model with four di¤erent types
of technical and fundamental traders. In particular, we take into ac-
count that traders may react asymmetrically to bull and bear market
situations and that they may either formulate their orders on the basis
of linear trading rules or simply prefer to trade �xed amounts of assets.
From an economic point of view, our main results may be summarized
as follows:

� In (special) Case I we only assume the existence of type 1 chartists
and type 1 fundamentalists. As a result, the price dynamics either
converges towards the fundamental value or it explodes.

� (Special) Case II highlights the particular role of type 2 traders.
We have here an example of an extremely simple �nancial market
model with heterogeneous traders which is nevertheless able to
generate periodic or quasi-periodic price dynamics, at least for
a subset of the parameter space, and thus reveals one potential
engine of excess volatility.

� In Case III type 1 and type 2 chartists and type 1 and type 2
fundamentalists are active. However, type 1 chartists dominate
type 1 fundamentalists and type 2 fundamentalists dominate type 2
chartists. Compared to (special) Case II, bounded price dynamics
now is always chaotic.

9Note also that the �rst bifurcation in �gure 13 is quite interesting from an eco-
nomic point of view. Even a tiny shift in one of the behavioral parameters of our
model may yield a switch from �xed point dynamics to �uctuations with a strong
amplitude.
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� Finally, in Case IV we explore parameter constellations in which
type 1 fundamentalists (strongly) dominate type 1 chartist and
type 2 chartist dominate type 2 fundamentalists. Also this setup
has the potential to generate chaotic price dynamics (but, for in-
stance, also coexisting locally stable �xed points). Interestingly, we
now observe intricate bull and bear market dynamics: asset prices
may circle in the bull market for some time but then the market
crashes and is characterized by temporary bear market �uctua-
tions. Such erratic bull and bear market dynamics have �rst been
studied by Day and Huang (1990), yet within a di¤erent model
environment.

We would like to stress that our setup, i.e. the assumed set of trading
rules, are quite natural extensions of what has been explored so far. In
this sense, we add a new view to the literature which will hopefully
help us to penetrate the complicated dynamics of �nancial markets even
further. Let us �nally point out a few avenues for future research. First,
it would be interesting to explore a model in which the trading rules
do not only take current prices into account. For instance, a technical
trading rule in which orders depend on the most recent observed price
trend can be assumed. Then the model would result in a two-dimensional
discontinuous dynamical system. Second, the focus could be placed on
more general trading rules which determine orders on the basis of a
linear function but where the absolute size of the orders is also bounded.
Finally, one may try to calibrate such models so that they are able to
mimic certain stylized facts of �nancial markets. One way may be to add
random shocks to the model, and we refer interest readers to a related
paper by Westerho¤ and Franke (2009). Another way may be to add
(many) more rules to the market, as in Farmer and Joshi (2002).

Appendix
Proof of Theorem 1.
Due to the linearity of the map on both sides, when sR > 1 all

trajectories on the R side are divergent to +1; while trajectories on
the L side for sL > 1 are divergent to �1; for 0 < sL < 1 they are
convergent to ePt = 0; for sR < 0 they are mapped on the right and then
diverge to +1: When 0 < sR < 1, all trajectories on the R side are
convergent to ePt = 0; while the trajectories on the L side for sL > 1
are divergent to �1; for 0 < sL < 1 they are convergent to ePt = 0;
for sR < 0 they are mapped in the right side and then convergent toePt = 0: When sR < 0, any point on the R side is mapped on the L side
in one iteration and for sL > 1 all trajectories are divergent to �1; for
0 < sL < 1 all trajectories are convergent to ePt = 0 from the L side; for
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sL < 0 the trajectories are convergent to ePt = 0 with oscillations as long
as sRsL < 1 (the second iterate of the map has a stable �xed point);
otherwise all the trajectories diverge with oscillations. The particular
cases in which the slopes amount to 0 or �1 are immediate. �
Proof of Theorem 2.
Looking for (n+1)�periodic orbits with one point on the L side and

n on the R side, we have to consider the �xed points of the iterated map

fnR � fL( ePt) = ePt +mL + nmR:

When we have 1mL+nmR = 0, fnR � fL( ePt) = ePt, and inside I all points
are periodic of period n + 1, in which case the points outside I become
periodic in a �nite number of steps (also called eventually periodic or
preperiodic). In general, given a periodic orbit with k distinct points on
the L side and n distinct points on the R side, we have

fn+k( ePt) = fnR � fkL( ePt) = ePt + kmL + nmR:

Thus all of the points are of period (n + k) inside I (and eventually
periodic outside I) when kmL+nmR = 0; or, equivalently mL = �n

k
mR:

So we have to consider the rational numbers ,

mL

�mR

=
n

k
;

where n � 1 and k � 1 are integers. This means that if mL = ��mR,
where � = mL

�mR
= n

k
is rational, all orbits in I are periodic, while if

mL = ��mR, where � is irrational all orbits in I are quasiperiodic. Thus
considering mL = ��mR; the absorbing interval I is �lled with periodic
orbits when � is rational or quasiperiodic orbits when � is irrational.
Moreover, when � is rational, de�ning � = mL

�mR
= n

k
, where n and k are

both positive integers with no common divisors, all orbits have period
(n+ k), where k is the number of periodic points on the L side and n is
the number of periodic points on the R side. �
Proof of Theorem 3.
What is left to prove is point (iii) of the Theorem. Let us consider

the contact bifurcation that occurs when mL = eP �+(= mR

1�sR ) and that
leads to a homoclinic �xed point after the bifurcation (the reasoning is
similar in the other case). Then the existence of homoclinic orbits to
the �xed point is enough for the existence of chaos on some invariant
Cantor set �. There are several proofs of this. Here we propose a simple
proof. Let us consider a neighborhood U of eP �+ for mL >

mR

1�sR . By
using the two inverses f�1R (z) =

z�mR

sR
, which gives points on the R
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side, and f�1L (z) =
z�mL

sL
, which gives points on the L side, consider its

two distinct rank-1 preimage: f�1R (U) and f
�1
L (U) are on opposite sides

with respect to the origin, and thus disjoint. Then let us consider their
successive preimages using the f�1R for N iterations, as long as (f�1R )

N�
f�1L (U) � U: Then de�ne U1 = (f�1R )N� f�1L (U) and U0 = (f�1R )N+1(U),
which are clearly disjoint and inside U . Thus, by construction, we have
that TN+1(U1) covers (includes) U0 [ U1 and TN+1(U0) covers U0 [ U1:
This is enough to state that inside U there exist an invariant Cantor
set � on which map TN+1 is conjugated with the shift map, on which it
is chaotic, and thus also T is chaotic (see, e.g. Devaney, 1986, Gardini
1994, Gardini et al. 2009). �
Proof of Property 4.
The statement is obvious if sL < �1 and sR < �1. Thus we are only

interested in case (a) �1 < sL < 0 and sR < �1 or (b) �1 < sR < 0
and sL < �1. Let us �x the reasoning in case (a). The other case is
similar with obvious changes. If �1 < sL < 0, �xed point eP �� is stable,
and its immediate basin of attraction is given by the interval ]f�1L (0); 0[.
It follows that all existing k-cycles, which must belong to the interval
J = [x1; x2], must also have periodic points in the interval ]x1; f�1L (0)[,
and thus such a periodic point in the L region is mapped by T in the R
region. This means that the sequence of symbols associated with a k-
cycle is necessarily constituted by letters such as (LR):::R:::(LR):::R:::
(i.e. two consecutive Ls cannot occur) and the related eigenvalue is
sk = (sLsR):::sR:::(sLsR):::sR:::. Thus (sLsR) > 1 and sR < �1 imply
jskj > 1. �
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