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Abstract

We present a real data set of claims amounts where costs related to damage are
recorded separately from those related to medical expenses. Only claims with posi-
tive costs are considered here. Two approaches to density estimation are presented:
a classical parametric and a semi-parametric method, based on transformation ker-
nel density estimation. We explore the data set with standard univariate methods.
We also propose ways to select the bandwidth and transformation parameters in the
univariate case based on Bayesian methods. We indicate how to compare the results
of alternative methods both looking at the shape of the overall density domain and
exploring the density estimates in the right tail.

1 Introduction

We study a set of bivariate positive claims data from motor insurance (property damage
and medical expenses costs). The main purpose of the analysis is to explore density
estimation procedures, first on a univariate basis and then using a bivariate framework.

Estimation of a suitable bivariate density proves to be our main focus. Fitting an
appropriate bivariate density is essential for optimal capital allocation (see, Denault,
2001; Panjer, 2002; Dhaene et al. 2003; Wang, 2002). Some authors have concentrated on
deriving explicit forms for the allocation of each line when the loss random vector follows
a certain multivariate distribution (see Valdez and Chernih, 2003, for the multivariate
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elliptical and see Vernic, 2006, for the multivariate skew-normal. Klugman et al. (2008)
provide a comprehensive reference on the estimation of univariate and bivariate claims
distribution models in insurance. McNeil et al. (2005) provide a review of financial risk
measures in the context of estimating claims distributions in non-life insurance and in
other settings.

Let us formulate the problem in a multivariate framework. We assume d different
types of losses (i.e. guarantees or lines of business). This means the total cost is the
aggregate of several type of costs. We denote by Xm the positive loss random variable for
the mth type at the end of a certain period. Then the total or aggregate loss of the claim is
X =

∑d

i=1 Xm. Let us assume that these random variables are continuous and that we are
interested in estimating the multivariate probability density function of the random vector
(X1, ..., Xd)

′, which we denote by f(x1, x2, ..., xd). A good estimate of the multivariate
density is need for many actuarial problems, for instance premium calculations. We will
denote the joint distribution function of the random vector (X1, ..., Xd)

′, F (x1, x2, ..., xd).
The domain of this multivariate random variable is R

+ × · × R
+.

Let us denote by fm(x) the probability density function of the random variable Xm

and Fm(x) is its marginal distribution function, where m = 1, ..., d.
The marginal density function and the distribution function are unknown and need

to be estimated from data. One approach to bivariate claim modelling that has been
pursued is to use copulas. Whenever a copula is employed, it is denoted by C(u1, ..., ud).
The copula corresponding to the joint distribution can be expressed as a function of
marginal distribution functions F (x1, x2, ..., xd) = C(F1(x1), ..., Fd(xd)).

In our particular case, the data set consists of a sample of claims that include two
types of losses: property damage mainly resulting from third party liability and medical
expenses that are not included in the Public Health system. Then the total claim cost
is the addition of these two components. These data were already used in Bolancé et
al. (2008) where both the bivariate skew-normal and normal distributions were fitted.
Moreover, given that real data on claim amounts are usually positive and present right
skewness, the bivariate lognormal and log-skew-normal distributions were also fitted by
Bolancé et al. (2008) and a non-parametric estimation of the joint distribution function
using a kernel density estimation method, was also proposed. The claim amounts in the
original data set were expressed in thousands of pesetas. To express these in thousands
of Euros we used the standard conversion and divided by 166,386.

Here we will start fitting univariate distributions and then we will explore the bivariate
case.

2 Data set

The claims we considered refer to motor insurance of a major insurer in Spain for accidents
that occurred in the year 2000. Data correspond to a random sample of all claims with
both costs in property damage and to medical expenses.

Bodily injury is universally covered by the National Health System. This means that
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Table 1: Univariate descriptive statistics for the positive claims data set (in 1,000 Euros
Mean Std. Dev. Skewness Kurtosis Min Max

X1 10.984 41.276 15.652 297.142 0.078 829.012
X2 1.706 5.188 8.037 82.019 0.006 71.250
X1 is the cost of property damage and X2 is the cost of medical expenses

medical costs considered here are medical expenses that are not included in the public
system such as technical aids, drugs or chiropractic-related. Those expenses have to
be paid by the insurer. No compensation for pain and suffering or loss of income are
included. Medical expenses contain medical costs related to all those who were injured in
the accident. Property damage expenses includes the insured’s liability for damages he
or she caused to vehicles, property or objects when the accident occurred.

The claims included in our sample are all claims that had already been settled. Al-
though claims for compensations with bodily injury may take a long time to settle, these
data were gathered in 2002, so that there has been enough time for the claimant to include
most costs, so we consider that these are closed claims.

The sample size contains 518 claims, and for each claim i we observe X1 the cost of
property damage and X2 the cost of medical expenses expressed in thousands of euros.

2.1 Descriptive statistics

The main empirical characteristics are shown in Table 1.

In Figure 1 a plot of X1 and X2 is shown. From Figure 1 it is clear that the data
are very bunched with a significant volume of small claims on both the property dam-
age and additional medical expenses. In order to display the features of the data more
clearly, we plot the data by transforming both components of the claim costs using natural
logarithms. The resulting plot is shown in Figure 2.

We also provide univariate histograms of the individual claim data for both compo-
nents of the claim costs. These are shown in Figure 3. On each of these histograms
we have overlaid a normal probability density function, estimated for the data using the
method of maximum likelihood. It is clear that a symmetric distribution, such as the
normal, does not provide a good fit to these data. Much of the density under the fitted
normal distribution relates to claim sizes smaller than the minimum observed claim value.

As a next step in the modelling, we investigate estimation using the log-normal distri-
bution. Equivalently, we investigate taking the log transforms of each of the two compo-
nents of our claim data set and fitting normal distributions to the resulting transformed
data. Histograms of the log transformed data with overlaid normal density functions are
shown in Figure 4. The improvement in fit obtained using the log-normal distribution
compared to the normal distribution is apparent.
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Figure 1: Plot of the positive claims data set
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Figure 2: Plot of the logarithm of positive claims data set
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Figure 3: Histogram of univariate positive claims data set with a normal density overlaid
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Figure 4: Histogram of univariate log of positive claims data set with a normal density
overlaid

3 Kernel density estimation

3.1 Classical kernel density estimation

For a random sample of n independent and identically distributed observations x1, ..., xn

of a random variable X, the kernel density estimator is:

f̂ (x) =
1

nh

n∑

i=1

k

(
x − xi

h

)
(1)

where h is the bandwidth and k (·) is the kernel function. The bandwidth parameter
is used to control the amount of smoothing in the estimation so that the greater h,
the smoother the estimated density curve. The kernel function is usually a symmetric
density with zero mean; in this work we will use a Gaussian kernel (see Wand and Jones,
1995). Many methods have been proposed for the selection of the bandwidth parameter
in kernel density estimation. In this paper we work with the method of biased cross-
validation, also described in Wand and Jones (1995). We provide kernel density estimates
for both components of the univariate claims data and also for the log transformation of
both components of the claims data. The resulting estimates are shown below in Figures
5 and 6.

Turning now to the bivariate case, a simple generalization of (1) is performed by means
of product kernels (see Scott, 1992, pp. 150-155). More specifically, in the bivariate
case, let us consider a random sample of n independent and identically distributed pair
observations (x1i, x2i), i = 1, ..., n, of the random vector (X1, X2)

′. Then the kernel
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Figure 5: Histogram of univariate positive claims data set with kernel density estimate
overlaid
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Figure 6: Histogram of univariate log positive claims data set with kernel density estimate
overlaid
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estimator of the bivariate density function can be expressed as

f̂ (x1, x2) =
1

nh1h2

n∑

i=1

k

(
x1 − x1i

h1
,
x2 − x2i

h2

)
, (2)

where h1 and h2 are bandwidths that, like in the univariate situation, are used to control

the degree of smoothing. The function k

(
x1 − x1i

h1
,
x2 − x2i

h2

)
= k

(
x1 − x1i

h1

)
k

(
x2 − x2i

h2

)

is the product kernel.

3.2 Transformation kernel estimation

Classical kernel density estimation does not perform well when the true density is asym-
metric. For instance, when one is interested in the density of the claim cost variable, the
presence of many small claims produces a concentration of the mass near the low values
of the domain and presence of some very large claims causes positive skewness.

The lack of information in the right tail of the domain makes it difficult to obtain a
reliable nonparametric estimate of the density in that area. Many authors have worked
with heavy-tailed distributions and have adapted kernel estimation methods to this con-
text. Wand, et al. (1991), Clements et al. (2003), Bolancé et al. (2003), Buch-Larsen
et al. (2005) and Bolancé et al. (2008) have proposed different transformation kernel
density estimation methods, based on parametric families.

Let T (.) be an increasing and monotonous transformation function. If the true density
is right skewed, then the chosen transformation T (.) must be a concave function. The
transformation kernel estimation method (TKE) consists of transforming the original
data so that the new transformed data can be assumed to have been generated from a
symmetric random variable, and hence the true density of the transformed variable can
easily be reliably approximated using the classical kernel estimation method. Using a
change of variable, once the kernel estimation is obtained for the transformed variable,
estimation on the original scale is also obtained.

Bolancé et al. (2003) proposed selecting the transformation function from a transfor-
mation family that is based on a generalization of the original power family (see Wand,
et al., 1991),

Tλ1,λ2
(x) =

{
(x + λ1)

λ2 sig (λ2)
ln (x + λ1)

, (3)

with λ1 ≥ −min (xi, i = 1, ..., n) and λ2 ≤ 1 for right-skewed data. This parametric fam-
ily of transformation functions is called the shifted power transformation family. Its main
advantage is that it has a simple expression and works particularly well for transformation
kernel estimation of asymmetric distributions. In order to estimate the optimal parame-
ters of the shifted power transformation function, we can use the algorithm described by
Bolancé et al. (2003).

Let us assume a sample of n independent and identically distributed observations for
variable Xj x1, ..., xn is available. Here we will omit subscript j to simplify notation since
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we are only presenting the univariate method. We also assume that a transformation
function T (·) is selected, then the data can be transformed so that yi = T (xi), i = 1, ..., n.
We denote the transformed sample by y1, ..., yn.

So the first step consists of transforming the data set with a function and afterwards
estimating the density of the transformed data set using the classical kernel density esti-
mator

f̂(y) =
1

nb

n∑

i=1

K

(
y − yi

b

)
,

where K is the kernel function, b is the bandwidth and yi, i = {1, ..., n} is the transformed

data set. The estimator of the original density is obtained by back-transformation of f̂(y).
The transformed kernel density estimation method can be formulated as

f̂T (x) =
T ′ (x)

n

n∑

i=1

Kb {T (x) − T (xi)} ,

where, as we mentioned, we have assumed that the transformations are differentiable.
The superindex ′ indicates the first derivative of a function. Kb(·) = 1

b
K(·/b), where K

refers to the kernel function and b is the bandwidth parameter.

3.3 Selecting the transformation parameters and the bandwidth

To implement the transformation approach, a method to select the transformation pa-
rameters and the bandwidth is necessary. Our approach is: firstly, we restrict ourselves to
the set of λ parameters that give approximately zero skewness for the transformed data
y1, .., yn (which have also been scaled to have the same variance as the original sample, see

Wand et al., 1991). We define skewness as γ̂y =

{
n−1

n∑
i=1

(yi − y)3

}
/

{
n−1

n∑
i=1

(yi − y)2

} 3

2

,

where y is the sample mean of the transformed data.
To select the λ parameter vector, we aim at minimizing the mean integrated square

error (MISE) of f̂T (x), which can be approximated by:

5

4

[
k2α(K)2

] 2

5 βy

(
f ′′

y

) 1

5 n− 4

5 , (4)

where βy

(
f ′′

y

)
=

∫ +∞
−∞

[
f ′′

y (y)
]2

dy (Wand et al. 1991). Minimizing (4) with respect to the

transformation parameters is equivalent to minimizing βy

(
f ′′

y

)
. Hall and Marron (1987)

suggested the following estimator:

β̂y

(
f ′′

y

)
= n−1(n − 1)−1

n−1∑

i=1

n∑

j=i+1

c−5K ∗ K
{
c−1 (yi − yj)

}
, (5)

where c is the bandwidth used for this estimation and can be estimated by minimizing the
mean square error (MSE) of β̂y

(
f ′′

y

)
. When it is assumed that fy is a normal distribution
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c can be estimated by ĉ = σ̂x

(
21

40
√

2n2

) 1

13

, where σ̂x =

√
n−1

n∑
i=1

(yi − y)2 (Park and Marron

1990; Wand et al. 1991).
Once the transformation parameters have been estimated, we have to make the selec-

tion of the bandwidth that is going to be used for the transformation. Here we simply use
the rule-of-thumb developed by Silverman (1986, p. 45) for a standard normal density.
Since our transformation aims at a transformed density with zero skewness, this approach
seems very plausible. The final estimator of the bandwidth b is therefore, b̂ = 1.059σ̂xn

− 1

5

and the corresponding transformation estimator will be called f̂T (x, λ̂; b̂).

3.4 Choosing the transformation for kernel density estimation

One of the challenges in providing kernel density estimates with transformed data is
the determination of a suitable transformation. The usual problem of estimating the
bandwidth parameter is also present. Bolancé et al. (2008) suggest use of the Box-Cox
transformation. Zhang et al. (2006) provide a Bayesian approach to the selection of a
suitable bandwidth in multivariate kernel density estimation. We propose here an ex-
tension to the Bayesian analysis by Zhang et al. that will simultaneously consider the
problem of estimating a suitable bandwidth and also determination of (a) suitable trans-
formation parameter(s). The log transform, described earlier in this paper, will be one
of the possible transformations possible under the Box-Cox set of possible transforma-
tions. The method described by Zhang et al. (2006) derives a posterior distribution
of the bandwidth parameter, conditional on the observed data. Simulations from this
posterior distribution, obtained using the method of Metropolis Hastings are obtained.
The bandwidth parameter is then estimated as the mean of these posterior distribution
simulations. The likelihood function used in this formulation is based on the density of
claim costs integrated over the entire range. Given that the focus in non-life insurance is
very often on the upper right tail of the distribution of possible outcomes, we will consider
likelihood functions where greater weights are given to observations in the upper tail.

4 Measuring the goodness of fit

We are interested in evaluating the quality of our density estimates in the whole domain.
Let us begin with the log-likelihood function. Since most of our parametric estimates have
been found using MLE, then by comparing differences between log-likelihood estimates,
we will be able to provide a straightforward measure of the goodness of fit.

Let us first concentrate on the univariate case. Let us assume that we have f̂(x) an
estimate of the density for every point x in the domain. Let us assume a sample of n
independent and identically distributed observations x1, ..., xn is available. Then, we can
estimate the log-likelihood function as:

lnL̂(f̂(·); x1, ..., xn) =
n∑

i=1

lnf̂(xi).
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If a transformation method was used, then instead of f̂(xi) for x1, ..., xn, we have a
transformed data set y1, ..., yn, with yi = T (xi), i = 1, ..., n, where T (·) is the transforma-
tion. In this case, the estimated log-likelihood function is:

lnL̂(f̂T (·); T (·); x1, ..., xn) =

n∑

i=1

lnf̂T (xi).

Note that f̂T (·) is the transformation estimate of the true density f(·), and it holds
that:

f̂T (xi) = f̂(T (xi))T
′ (xi) ,

where f̂(T (xi)) is the classical kernel estimation on the transformed data set and T ′(·) is
the first derivative of the transformation function.

We will evaluate improvements in the likelihood, using the difference between −2lnL̂(f̂T (·); x1, ..., xn)
for our estimated model and a baseline model.

We also need to formally generalize the previous goodness of fit statistics in two ways.
Firstly, we would like to provide a statistic that would give more weight to the tail of the
distribution. Secondly, we will generalize this procedure to a two-dimensional case.

4.1 Weighted pseudo-log-likelihood: univariate

A weighted pseudo-log-likelihood can be estimated if weights wi, i = 1, ..., n are included
preceeding each summation term as:

lnwL̂(f̂T (·); x1, ..., xn) =
n∑

i=1

wilnf̂T (xi).

If wi = 1, i = 1, ..., n, then we would have the same log-likelihood expression, but we
can also use some distance as a weight, so that observations that are located close to the
centre of the distribution have much less importance than those located in the tail.

We have tried two different expressions for weights. The first one is giving more weight
to those observations that are distant from 0. Note that our data are always positive.
If we wanted to generalize for both positive and negative values, then we should take
absolute values of the data values. The form of the weights is:

w
(1)
i =

nXi∑n

i=1 xi

.

Using these weights in the estimated weighted pseudo-log-likelihood implies that more
importance is given to the fit in the tail. Then, since for a given i, we have that lnf̂T (xi)
is negative and it is smaller when f̂T (xi) tends to zero (which is exactly what happens
in the long tail region) then weighting those summation terms more, means that the
lnwL̂(f̂T (·); x1, ..., xn) is going to be smaller than lnL̂(f̂T (·); x1, ..., xn). Nevertheless, we
are going to evaluate goodness of fit by comparing −2lnwL̂(f̂T (·); x1, ..., xn) for a density
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estimate and the one obtained for a baseline model, we should not compare this to the
estimated log-likelihood where no weights were considered.

The second possible form for the weights is inspired by the same principle as the
weighted integrated mean squared error that was proposed in Bolancé et al.(2003), where
contributions to the average where weighted with a squared distance. In this case:

w
(2)
i =

nx2
i∑n

i=1 x2
i

When a transformation is used, the corresponding expression would be:

lnwL̂(f̂T (·); T (·); x1, ..., xn) =

n∑

i=1

wilnf̂T (xi) =

n∑

i=1

wiln
(
f̂(T (xi))T

′ (xi)
)

,

where wi can ether be equal to w
(1)
i or w

(2)
i .

4.2 Weighted pseudo-log-likelihood for the multivariate case

In order to obtain a general expression for bivariate observations xi = (x1i, x2i), i = 1, ..., n,
we will use a distance measure as a weight. Distance is the eclidean distance to the (0, 0)
point, therefore, we can define:

w
(1)
i =

n
√

x2
1i + x2

2i∑n

i=1

√
x2

1i + x2
2i

and

w
(2)
i =

n(x2
1i + x2

2i)∑n

i=1(x
2
1i + x2

2i)
.

In the bivariate setting, we can define:

ln
w
L̂(f̂(·); x1, ..., xn) =

n∑

i=1

wilnf̂(x1i, x21)

and then use either w
(1)
i or w

(2)
i .

When a transformation is used in the bivariate setting.
Suppose (Y1, Y2)

′ = T (X1, X2)
′, then

ln
w
L̂(f̂T (·); T (·); x1, ..., xn) =

n∑

i=1

wilnf̂T (x1i, x2i) = (6)

n∑

i=1

wilnf(T (x1i, x2i))

∣∣∣∣
∂Y1

∂x1

(x1i, x2i)
∂Y1

∂x2

(x1i, x2i)
∂Y2

∂x1

(x1i, x2i)
∂Y2

∂x2

(x1i, x2i)

∣∣∣∣ (7)
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5 Conclusions

In this paper we fitted several univariate distributions and a kernel density to a real data
set from motor insurance.

The kernel estimation approach provides a smoothed version of the empirical distri-
bution. We also provided details of goodness of fit criteria based on standard likelihood
theory and also using weighted likelihoods where greater weight is given to density esti-
mation in the right tail of the distribution. This is going to be further developed in the
transformation kernel density estimation for the multivariate case.
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