

Mainz School of Management and Economics

Discussion Paper Series

A Problem-Specific and Effective

Metaheuristic for Flexibility Design
Michael Schneider, Jörn Grahl, David Francas

Discussion paper number 1001

Johannes Gutenberg University Mainz
Mainz School of Management and Economics

Jakob-Welder-Weg 9
55128 Mainz

Germany
wiwi.uni-mainz.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6496528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contact details

Michael Schneider
Technische Universität Kaiserslautern
Information Systems and Operations Research Department
D-67663 Kaiserslautern

Jörn Grahl
Johannes Gutenberg-University Mainz
Department of Information Systems and
Business Administration
D-55128 Mainz/Germany

David Francas
Universität Mannheim
Chair of Logistics and Supply Chain Management
D-68161 Mannheim

All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP

A Problem-Specific and Effective

Metaheuristic for Flexibility Design

Abstract

Matching uncertain demand with capacities is notoriously hard. Operations

managers can use mix-flexible resources to shift excess demands to unused capac-

ities. To find the optimal configuration of a mix-flexible production network, a

flexibility design problem (FDP) is solved. Existing literature on FDPs provides

qualitative structural insights, but work on solution methods is rare. We contribute

the first metaheuristic which integrates these structural insights and is specifically

tailored to solve FDPs. Our genetic algorithm is compared to commercial solvers on

instances of up to 15 demand types, resources, and 500 demand scenarios. Exper-

imental evidence shows that in the realistic case of flexible optimal configurations,

it dominates the comparison methods regarding runtime and solution quality.

1 Introduction

Demand uncertainty is commonplace in present markets for goods and ser-
vices. The most important drivers for demand uncertainty are shortening
product and service life cycles, high competition on saturated markets and
increasing product and service variety. Unfortunately, operations managers
have to commit to long-term resource capacity levels before demand real-
izes, for example when setting manufacturing plant or workforce capacities.
These levels have to be matched with demand as closely as possible in or-
der to avoid lost sales (when demand exceeds capacity) and unused capacity
(when capacity exceeds demand).

Flexible resources are one means to encounter this problem. We refer the
reader to Bertrand (2003) for a discussion of several flexibility types, their
characteristics and benefits. The flexibility type relevant to this work is mix
flexibility, i.e. the ability of a resource to process a variety of demand types
without incurring high transition penalties (Koste and Malhorta 1999).

The following example illustrates how adding mix-flexibility to an inflex-
ible resource can help to resolve demand-capacity mismatches. Consider two

1

resources 1,2 and two types of demand d1, d2. Both resources have a capacity
of 100 units. Imagine a situation where demand is d1 = 150 and d2 = 50. If
both resources are inflexible, resource i can process di only. This situation
yields lost sales of 50 units at resource 1 and 50 units of unused capacity at
resource 2. Now, if resource 2 is mix-flexible and can process both demand
types, the 50 units of excess demand at resource 1 can be shifted to resource
2. We end up with no lost sales and two completely utilized resources.

A major application area of mix-flexibility lies in the automotive indus-
try. The resource capacities that have to be set include production line and
overall plant capacities. End-customer demand occurs for car models and is
uncertain. Now, mix flexibility can either be used on production line level
or plant level. Chrysler Group produces two entirely different products on
the same production line (DaimlerChrysler News 2002) and Ford is able to
manufacture nine different models in its Rouge plant (Mackintosh 2003). In
the following, we adopt the terminology of the automotive industry and refer
to demand types as product demands and to resources as plants. This shall
increase the readability of the paper and does not restrict the validity of our
findings to the automotive industry.

Flexibility decisions can be formalized by means of bipartite graphs. A
bipartite graph consists of two disjoint sets of nodes. Arcs may only link
two nodes from different sets. To model flexibility decisions, one set of nodes
represents the products, the other set the plants. An arc between a product
and a plant is called a link, and means that the plant is able to manufacture
the product. If a plant is only connected to a single product, it is inflexible.
For more than one linked product, it is mix-flexible. Figure 1 shows an
example flexibility configuration represented as a bipartite graph.

What is the most profitable flexibility configuration a company can choose?
To answer this question, the company has to solve a flexibility design prob-
lem (FDP). It consists of determining for each plant which products it shall
be able to produce, i.e., which links in the bipartite graph must be set, such
that total expected profits are maximized.

The next section reviews relevant literature and motivates our work. Sec-
tion 3 gives a formal description of the FDP. Section 4 shows how to develop
a customized GA (CGA) for solving this problem. Experimental results are
presented in Section 5. The experiments evaluate the run-time and solution
quality of CGA and several comparison methods. Section 6 concludes the
work and gives a brief outlook on future research.

2

Figure 1: Example flexibility configuration with four products and four
plants. Plant 1 is inflexible and dedicated to producing product A only.
Plant 2 is able to produce products B and C, plant 3 is able to produce
product C and D, plant 4 is able to produce products C and D. Plants 2,3
and 4 make use of mix-flexibility.

2 Motivation and literature

We motivate our work on the FDP via missing links between two strands of
literature. The first strand centers around the structure of high-quality solu-
tions of the FDP and was pioneered by Jordan and Graves (1995). The sec-
ond strand of research aims at the development of practical planning models
for strategic network design where flexibility design is accompanied by other
strategic and tactical decisions, like capacity choice or work shift models.

Work on solution structure Jordan and Graves study the optimal as-
signment of products to plants in a stylized multi-product and multi-plant
manufacturing network. They compare the flexibility benefits of different
configurations in simulation studies, and use expected sales and expected
capacity utilization as performance measures.

Central to their work is the concept of a chain. A chain is defined as a
group of products and plants which are all connected, directly or indirectly,

3

by product assignment decisions. This means that the corresponding graph
consists of exactly one component, i.e. the graph is connected.

They propose the following flexibility principles, which have heavily influ-
enced academic research and industry practice: 1) Chains which encompass
as many plants and products as possible are superior to configurations that
contain several chains. 2) A complete chain which has all node of the graph
in a cycle has virtually the same benefits as a totally flexible network. From
a flexibility viewpoint, adding further links beyond a complete chain con-
figuration is almost useless. 3) In general, there are several possibilities to
configure a production network in a way that optimizes flexibility benefits.
4) When adding flexibility to an inflexible network, the demand for each
product should be balanced with the capacity of the plants the product is
directly connected to. Analogously, the capacity of each plant should be
balanced with the demand of the products the plant is directly connected to.

Studies in other application areas have shown that the applicability of
these design principles is not limited to strategic network planning but also
holds for cross-training workers at production lines and call centers (see e.g.
Brusco and Johns 1998, Hopp et al. 2004, Hopp and van Oyen 2004, Chevalier
et al. 2004, Wallace and Whitt 2005) and designing queueing systems (see
e.g. Gurumurthi and Benjaafar 2004, Andradóttir et al. 2007).

Iravani et al. (2005) develop domain-independent flexibility measures
based on the number of demand shifting possibilities in a network. Their
results underline the power of chain-like flexibility configurations. Analytical
justification of chaining principles is given in Chou et al. (2009) and Aksin
and Karaesmen (2007).

Work on practical planning approaches The FDP is a cornerstone of
the strategic network planning of a company. However, apart from flexibility
decisions alone, practical planning approaches typically consider additional
issues. To name just a few examples, detailed operational work shift mod-
els (Bihlmaier et al. 2009), raw material supplier selection (Alonso-Ayuso
et al. 2003), net present value based optimization (Fleischmann et al. 2006)
and uncertain demand, costs and supply (Santoso et al. 2005) are included.
Kauder and Meyr (2009) consider an extension of Fleischmann’s determin-
istic planning model but restrict its solution space to chains. Flexibility is
forced on solutions for its own sake, and the runtime increases when the
solution space is restricted in this way. Generally, all resulting models are
highly complex and require sophisticated solution methods. Typically, accel-
erated mixed-integer programming techniques like Benders Decomposition
or Branch and Fix are used.

4

Let us now discuss shortcomings of the first strand. Chaining appears to
be a reasonable and robust strategy for designing flexible networks. However,
optimal solutions are only expected to be similar to chains, but not identical
to chains. Knowing that flexible configurations are similar to chains does not
suffice to solve the FDP to optimality. It is NP-hard even if product demands
are certain (Garey and Johnson 1979). Despite its practical relevance and its
challenging nature, no solution methods for this problem are given in these
works.

Regarding the second strand of research, the planning methods described
above require enormous computational effort. This limits the number of net-
work designs practitioners can evaluate. Further, it puts a natural bound on
the size of problems that can be solved in reasonable time. Efforts to lift this
bound focus on accelerating the above mentioned mathematical program-
ming methods. We are not aware of work that exploits the potential of using
qualitative knowledge on partial aspects of the problems. In our case, the
flexibility principles provide qualitative knowledge on how to solve the FDP.
Yet, an integration of this knowledge into solution methods is still missing.

This paper makes the following contributions.

1. We bridge the gap between the described strands by integrating the
flexibility principles and simple statistics, e.g., link ratios, into a meta-
heuristic solution approach for the FDP. The proposed genetic algorithm
(GA) is, to the best of our knowledge, the first metaheuristic for this
problem.

2. In designing the GA, we demonstrate how well accepted qualitative
principles can be incorporated into a quantitative solution approach to
increase its performance.

3. Our approach can handle problem sizes up to 15 products and plants and
500 scenarios which can no longer be solved by commercial optimization
software in reasonable time. We use the solver Xpress-SP, which is spe-
cialized in solving stochastic programs. Our approach demonstrates su-
perior performance and consistently finds flexibility configurations with
higher expected profits in a fraction of the time required by Xpress-SP.

4. The approach is a starting point for intelligently solving more complex
practical planning problems which include additional issues beyond flex-
ibility decision.

5

3 Model description

We consider the FDP in a production network consisting of a set I =
{1, . . , n} of products and a set J = {1, . . . , m} of plants. This problem
can be described as two-stage mixed-integer linear stochastic program as fol-
lows. The first stage decides the flexibility design. A flexibility design is
represented by binary variables yij, i ∈ I, j ∈ J . They are 1 if product i is
assigned to plant j and 0 otherwise. Assigning product i to plant j raises
investment costs cij. We assume that product demands are uncertain at the
time decisions yij are made. This uncertainty is captured in a set of scenarios
S = {1, . . . , k}. A single scenario s ∈ S has probability ps and associated
demand ds

i for product i.
The second stage is a simple linear production planning problem. Its

available production capabilities are determined by the first-stage decisions
yij. The quantity of product i that is produced in plant j in scenario s is xs

ij .
Total production in plant j is limited by its capacity Kj. The πij are the
associated profit margins. The second-stage recourse function is the expected
profit Q(yij, d

s
i) and depends on the first-stage decisions and the stochastic

demands. The expected value is computed over all scenarios s ∈ S.
The overall objective is to determine a flexibility design yij that maximizes

expected second-stage profits minus first-stage link investment costs. The
objective function of the model is:

max
yij ,i∈I,j∈J

{

−
∑

i∈I

∑

j∈J

cij · yij +
∑

s∈S

ps ·Q(yij , d
s
i)

}

, (1)

with second-stage expected profit:

Q(yij, d
s
i) = max

xs
ij

∑

i∈I

∑

j∈J

πij · x
s
ij (2)

s.t.
∑

i∈I

xs
ij ≤ Kj ∀j ∈ J, s ∈ S (3)

∑

j∈J

xs
ij ≤ ds

i ∀i ∈ I, j ∈ J, s ∈ S (4)

xs
ij ≤ yij ·Kj ∀i ∈ I, j ∈ J, s ∈ S (5)

xs
ij ∈ R ∀i ∈ I, j ∈ J, s ∈ S (6)

Constraints (3) ensure that plant capacities are respected for all resources
and scenarios. Constraints (4) state that no more units of a product can be
sold than there is demand for the product. Demand may not be satisfied and
unmet demand is lost. Constraints (5) ensure that each plant adheres to the
production possibilities set on the first stage.

6

4 Genetic algorithm for the FDP

Genetic algorithms (Holland 1975) are population-based metaheuristics for
solving combinatorial optimization problems. We develop a customized GA
for the FDP which is based on Goldberg (1989)’s simple GA (SGA). The
CGA design shall concentrate the search around highly profitable flexibility
configurations.

Section 4.1 explains how solutions are represented and how their fitness
is evaluated. The creation of the initial population is described in Section
4.2. It determines the expected structure of good solutions and seeds such
solutions systematically. The crossover operator is outlined in Section 4.3.
The operator combines good parts of flexibility configurations and avoids
their disruption by restricting the crossover points. Section 4.4 explains the
mutation operator. It randomly opens or closes links, but only if promising.

4.1 Solution representation and fitness evaluation

CGA makes the first-stage decisions of the FDP. Thus, chromosomes are
binary strings of fixed length l = m·n. The bit at position u is binary decision
yij with i = ⌈ u

m
⌉ and j = u −m · (i − 1). For each chromosome k demand

scenarios are generated, and the linear production programs on the second
stage are solved to optimality using Xpress-Optimizer (Dash Optimization
2009b). The value of the recourse function is the average of the optimal
profits. Subtracting first-stage link investment costs yields expected profit
(the fitness) of a chromosome.

4.2 Initial population

CGA starts from an initial population seeded with good flexibility configu-
rations. This population is put together from three preliminary populations
P1...3, see Figure 2. The goal of the first population is to get a rough picture
of promising structures, the second aims at replicating such structures, and
the third adds diversity. We now describe these steps in detail.

P1: Supply We create P1 to get a rough picture of promising flexibility
structures. It is filled by randomly rounding the optimal solution ȳi,j, i ∈
I, j ∈ J of the linear relaxation of the FDP (see e.g. Srinivasan 1999). For
each ȳi,j, we draw a random number r in [0, 1 [. If r < ȳi,j, we round ȳi,j to
1, and to 0 otherwise. The solution is then mapped onto a binary string as
described in Section 4.1.

7

Figure 2: Flow-chart for creating the initial population of the CGA.

P2: Replication P2 shall be filled with solutions similar to the best of P1.
To this end, we select the better half of P1 into a population P̄1 and compute
the following indicators for all y ∈ P̄1: 1) A weight ω(y) which depends on
the expected profit of y, 2) the number of components γ(y) of the bipartite
graph of y, and 3) a link ratio.

ω(y) relates the expected profit F (y) to the expected profit of other solu-
tions. The higher ω(y) the more outstanding its expected profit. Let Fworst

denote the smallest expected profit in P̄1. Then, ω(y) is defined as

ω(y) =
F (y)− Fworst

∑

k∈P̄1
F (k)− Fworst

. (7)

The number of network components γ(y) is obtained from y’s bipartite graph.
It roughly indicates to which degree flexibility and chaining structures are
present in the network. γ(y) can be calculated with depth-first search (see
e.g. Cormen et al. 2001) or using our algorithm given in Appendix 6. It
works directly on a chromosome and uses bit-wise operations only which
allows for a very efficient implementation.

The link ratio is the number of links that are set in a solution divided
by the number of possible links n ·m and is a rough indicator for the degree
of flexibility present in a solution. We now describe how ω(y), γ(y) and the
link ratio are used to construct P2.

Grouping First, we build groups of individuals according to their number
of components e and sum up the weights ω(y) of all solutions inside each

8

group to ϑ(e):

ϑ(e) =
∑

y∈P̄1,γ(y)=e

ω(y). (8)

The ϑ(e) are aggregate measures for the impact of flexibility on expected
profit. If e.g. ϑ(1) ≈ 1, then graphs with only one component (1-chains)
perform very well in P̄1. It is then likely that other highly-profitable solutions
are also 1-chains.

Sampling We mirror the structures of solutions in P̄1 by filling P2 so that
it contains approximately ϑ(e) · |P2| solutions for each component number e.
We achieve this by first filling P2 with random solutions that are structurally
similar to those in P̄1.

To create the random solutions, we do not use the standard approach
which is to distribute 0s and 1s uniformly over binary chromosomes. This
would lead to an expected number of 0.5 ·n ·m links. Remember, that adding
links beyond a complete chain has only very limited benefits. A complete
chain has 2·n = 2·m links if n = m, i.e., substantially fewer than 0.5·n·m links
are set when n, m ≥ 5. Thus, uniformly distributing 0s and 1s introduces too
many links. The magnitude of this effect aggravates for growing n and/or
m.

To control the number of links, we change the probability of setting a link
from 0.5 to a parameter g, which leads to an expected number of g ·n·m links.
This means, that g is the expected link ratio of a created solution. Setting
g biases the search towards a certain degree of flexibility. For example, g =
1/m on average supplies the number of links to form a completely inflexible
configuration, whereas g = 2/m on average supplies the number of links
required to form a complete chain.

To mirror the diversity of flexibility structures in P̄1, we set a lower
bound g = min{linkRatio(y)|y ∈ P̄1} on g. The respective upper bound

is g = max{linkRatio(y)|y ∈ P̄1}. The value of g is then uniformly sampled
from [g; ḡ]. Note that random sampling cannot guarantee a certain network
structure. Setting g = g may not result in an inflexible configuration, set-
ting g = ḡ may not form a 1-chain. It only regulates link supply, while the
formation of desired structures is achieved by crossover and mutation.

After the solutions have been sampled using g, we modify them such that
the proportions of each number of components e are approximately ϑ(e)·|P2|.
We transform solutions by adding links and thus reducing the number of
components. Links are added in a way that balances product demands and
plant capacities (Jordan and Graves 1995), i.e. we successively add links

9

from the component with the highest excess demand to the component with
the highest excess capacity.

P3: Adding diversity The randomized rounding used to create P1 poten-
tially produces many similar or even identical solutions. In P2 the flexibility
characteristics of the best solutions in P1 are mirrored. To diversify, we gen-
erate P3 by the sampling technique used to generate P2. However, g (ḡ) is

set to the minimal (maximal) link ratio of the best 1
2

of individuals in P2.
Finally, we build a single population P by merging the best 1

4
of P1 and

P2 and the best 1
2

of P3. The fraction of P3 is set this high in order to increase
diversity.

4.3 Customized crossover

We present a crossover operator more adequate for the FDP than the one-
point or uniform crossover used in standard GAs. The latter operators break
good solutions at arbitrary positions. Consider the problem instance in Fig-
ure 3 with three products and plants. The chromosomes are divided into
three groups, so that each group contains the plant assignment decisions of
a product. Crossover points are vertical lines (|). Assume that the plant
assignment for the second product (bits four to six) of Parent 1 is optimal.
After applying one-point crossover, it is not present in any offspring. To avoid
this problem, we use a one-point crossover that cannot cut the plant assign-
ment of any product but only at product boundaries, i.e. only crossover
points r ∈ {t · m | t = 1, . . . , n − 1} are possible. In the following, this
customized one-point crossover is referred to as one-point crossover, the one-
point crossover used in SGA is referred to as standard one-point crossover.

Note that the one-point crossover is not able to introduce new plant as-
signments into the population. Sufficient supply of such assignments must
be assured by an initial population of adequate size and the mutation oper-
ator. The crossover operator recombines these assignments to evolve better
solutions.

4.4 Customized mutation

We customize bit-flip mutation to prevent CGA from searching in low-quality
areas of the search space. To this end, the minimal and maximal link ratio
for the best 30% of the population is determined at the beginning of each
generation, denoted as linkRatiomin and linkRatiomax. If an individual has
a link ratio greater than linkRatiomax, mutation does not open another link.

10

110 001 010

X +

Parent 1 Parent 2 Offspring 2Offspring 1

010 1|01 010 110 0|10 110 010 110 110

Figure 3: Application of one-point crossover at arbitrary positions can de-
stroy high-quality partial solutions.

Analogously, mutation does not close a link in an individual that already has
a lower link ratio than linkRatiomin.

Mutation probability is 1/2l, but to prevent premature convergence we
adaptively enlarge it after the best found solution has not improved over a
certain number of generations. The number of generations without improve-
ment that causes the GA to terminate is denoted by ̺. After 0.5 · ̺, 0.8 · ̺,
and 0.9 · ̺, the mutation probability is scaled by a factor α.

5 Numerical Studies

The numerical studies are subdivided into preliminary tests and the main
study. The former investigate the impact of flexibility present in optimal
solutions on the performance of the following comparison methods: 1) CGA
as presented in Section 4, 2) SGA, 3) Xpress-Optimizer, a solver that inte-
grates exact solution routines for mixed-integer programs (X-O), 4) Xpress-
SP (Dash Optimization 2009c), a solver integrating exact methods for opti-
mization problems involving uncertainty (X-SP).

We found that problem instances with inflexible optimal solutions are
relatively easy to solve for the exact methods (X-O, X-SP). As soon as the
solutions exhibit some flexibility, the performance of solution methods de-
pends mainly on the size of a problem. Therefore, the main study examines
the effect of an increasing number of products, plants and/or scenarios on
the performance of all comparison methods.

Implementation details and method parameters are explained in Section
5.1. The preliminary tests and the main studies are in Sections 5.2 and 5.3.
The results of the main study are presented and discussed in Section 5.4.

11

5.1 Implementation details and method parameters

We first describe implementation details and method parameters identical in
CGA and SGA. Both algorithms are implemented from scratch in Java. The
models for evaluating the expected profit of an individual and for computing
the relaxed solution (required for creating the initial CGA solutions, see
Section 4.2) are written in Xpress Mosel and are integrated into the Java
code using the Mosel Java Library (Dash Optimization 2009a).

SGA and CGA use the representation and evaluation scheme described
in Section 4.1. Their population size is 5 · n ·m. Both select the best ⌊0.5 ·
popSize⌋mod2 individuals at the beginning of a generation into the mating
pool, and maintain the best ⌊0.1·popSize⌋ individuals for the next generation.

Two random parents from the mating pool are crossed with a probability
of 0.8 and put directly into the offspring pool otherwise. Mutation is applied
on individuals of the offspring pool. The probability for a bit in a chromosome
to be mutated is 1

2l
. Both GAs terminate after at most 200 generations or if

the best solution found has not improved for more than ̺ = 50 generations.
Due to computational limitations we restrict the number of CGA and SGA
runs per instance to five.

Details specific to CGA or SGA follow. The initial population of SGA
is uniformly sampled and standard one-point crossover and bit-flip mutation
are applied. CGA uses crossover and mutation as outlined in Section 4. The
adaptation factor for adaptive mutation in CGA is α = 2.

X-O and X-SP have a maximum runtime that is the sum of all five CGA
run-times. Finally, all (pseudo) random number generators are initialized
with fixed random seeds to make the results reproducible.

5.2 Preliminary tests

The preliminary tests examine the impact of the degree of flexibility in opti-
mal solutions on the performance of the solution methods. It is well-known,
that low demand variability and high plant capacities (Jordan and Graves
1995) as well as positively correlated demand (Eppen 1979) and low profit
margins with high link costs (Fine and Freund 1990, Van Mieghem 1998)
decrease the value of flexibility.

We use these insights to generate a series of smaller instances with varying
degrees of flexibility in the optimal solutions. A comparison of the perfor-
mance of all solution methods revealed that X-O and X-SP can quickly find
the optimal solutions if the optimum has little flexibility. The reason is that
flexible solutions quickly become too expensive because of the cost of addi-
tional links. The solution space can be strongly reduced, and many branches

12

in the branch and bound tree can be cut. In this case, CGA also delivers
excellent results in terms of optimality gaps, but its use is not necessary since
the exact methods are able to deliver optimal solutions faster.

For instances where the optimal solution is more flexible, this clear-cut
ranking of solution methods is not possible. In this case, problem size is the
major discriminating factor for the comparison methods.

5.3 Main study

The main study investigates the impact of problem size on the performance
of the solution methods. To this end, we generate problem instances with a
small, medium and high (m, n=5; m, n=10; m, n=15) number of products
m and plants n combined with a small, medium and high (k =50, 200, 500)
number of scenarios. For each of the nine combinations, we create three
instances, resulting in 27 instances total.

Problem parameters are chosen in a way that optimal solutions are likely
to exhibit flexibility, i.e. they are not inflexible. Apart from reasons put
forward in Section 5.2, this is desirable because one can expect practical
systems to exhibit some degree of flexibility. Problem parameters are chosen
as follows.

Link costs cij are uniformly drawn from [150, 300].

Profit margins πij are uniformly drawn from [20, 40].

Product demands are uncorrelated and normally distributed with expected
value µi (uniformly distributed in [60, 140]) and standard deviation
σi = µi ∗ 0.3. Differing amounts of total expected demand

∑n

i=1 µi

in the instances causes undesirable side-effects. To avoid them, we let
the expected demands sum up to the number of products multiplied by
100, i.e.

∑n

i=1 µi = n∗ 100. This is achieved by the following procedure:

1. Start with an empty list L of expected demand values.

2. Draw an expected demand value µ from the interval [60, 140] and
add µ and µ̂ = 200− µ to L.

3. Repeat Step 2 ⌊n
2
⌋ times. If n is odd, add µ = 100 to L.

4. Shuffle L and assign the ith value in the list to µi.

The product demands dis for the different scenarios s ∈ S are then
generated from µi and σi by means of descriptive sampling, see e.g.
(Pidd 1984).

Plant capacities Kj , j ∈ J shall be random but shall stay in the bound
of the total expected product demand, i.e.

∑m

j=1 Kj = n ∗ 100. This is
accomplished as follows:

13

1. Start with an empty list C of plant capacities.

2. Determine the average plant capacity c̄ = n·100
m

.

3. Draw a plant capacity value c from the interval [0.7 · c̄, 1.3 · c̄] and
add c as well as ĉ = 2 · c̄− c to C.

4. Repeat Step 2 ⌊m
2
⌋ times. If m is odd, add c = c̄ to C.

5. Shuffle C and assign the jth value in the list to Kj .

In this way, we generate 27 problem instances that are solved by CGA,
SGA, X-SP and X-O.

5.4 Results

All experiments are conducted on a standard desktop PC with AMD Athlon
64 CPU at 2.41 GHz and 3.25 GB of RAM, running Windows XP Profes-
sional. A complete listing of results is given in Table 1. We show the best
solution found by X-O and X-SP. If this solution is found by X-O, this is
indicated by a diamond (⋄), for X-SP by a dagger (†). For X-O and X-SP,
the tables also show the upper bound, the gap between the best solution
found and the upper bound (denoted as optimality gap) and the run-time in
minutes. For the GAs, the tables show the average, best and worst solution
found as well as the average run-time in minutes. For all solution methods,
we provide the gap to the best solution found by any of the methods for the
respective instance. For the GAs, the average solution is used to determine
this gap.

Comparison of CGA and SGA Regarding expected profit, the average
solution found by CGA is better than that of SGA for all instances. The
same is true even for the worst solutions found by the CGA for all but one
problem instance.

Regarding runtime, SGA is only faster than CGA for the instances with
5 products, 5 plants and 50/200 scenarios. The CGA runs significantly faster
than SGA for all other instances: for the medium-sized and large problems
CGA is approximately twice as fast as SGA. This can be explained by SGA
breaking chromosomes at arbitrary positions and having a very poor initial
population for problems with a high number of products and plants (see
Section 4.2). A blind crossover operator and an unfocused initial population
slow down convergence and increase the number of evaluations required.

To sum up, CGA shows clearly better performance than SGA, especially
in those studies that are important in practice: instances that have a high
complexity due to the number of products, plants and/or a high number of
scenarios.

14

k = 50 k = 200 k = 500

m = n = 5 Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5 Inst. 6 Inst. 7 Inst. 8 Inst. 9

X-SP (†) Best Sol. 13282† 13204† 12448†⋄ 13237† 13093† 12352⋄ 13175† 13049 † 12332⋄

X-O (⋄) Opt. Gap (%) - - - - - - 1.37 1.39 1.07
UB - - - - - - 13355 13231 12466

Gap (%) 0 0 0 0 0 0 0 0 0
Time (min) 0.6 0.3 0.5 7.2 5.2 5.4 11.5 9.5 11.5

CGA Avg. Sol. 13247 13141 12440 13237 13031 12339 13166 13026 12331
Best Sol. 13282 13144 12448 13237 13034 12352 13189 13026 12332

Worst Sol. 13222 13138 12427 13237 13022 12331 13143 13026 12328
Gap (%) 0.26 0.48 0.07 0 0.47 0.10 0.06 0.17 0.01

Time (min) 0.6 0.5 0.6 1.8 1.8 1.9 2.3 1.9 2.3
SGA Avg. Sol. 13212 13098 12402 13216 13016 12324 13151 13001 12306

Best Sol. 13222 13138 12448 13237 13048 12352 13174 13049 12332
Worst Sol. 13181 13046 12346 13184 12988 12261 13133 12983 12274

Gap (%) 0.53 0.80 0.37 0.16 0.59 0.23 0.17 0.37 0.21
Time (min) 0.4 0.3 0.4 1.2 1.3 1.1 3.8 3.4 3.0

m = n = 10 Inst. 10 Inst. 11 Inst. 12 Inst. 13 Inst. 14 Inst. 15 Inst. 16 Inst. 17 Inst. 18

X-SP (†) Best Sol. 26722⋄ 27122† 26592† 26708⋄ 27086⋄ 26421⋄ 26620† 26979† 26251†

X-O (⋄) Opt. Gap (%) 2.41 2.35 2.37 2.79 2.50 2.81 3.09 2.67 3.20
UB 27381 27775 27238 27474 27780 27186 27469 27718 27120

Gap (%) 0.29 0.51 0.38 0.51 0.70 0.38 0.57 0.67 1.03
Time (min) 29.0 27.5 22.5 130.0 116.5 132.5 360.0 337.5 304.0

CGA Avg. Sol. 26798 27260 26693 26844 27276 26521 26772 27159 26521
Best Sol. 26863 27334 26723 26893 27308 26584 26817 27180 26556

Worst Sol. 26763 27204 26648 26800 27211 26427 26736 27121 26512
Gap (%) 0 0 0 0 0 0 0 0 0

Time (min) 5.8 5.4 4.5 26 23.3 26.5 72 67.5 60.8
SGA Avg. Sol. 26577 26879 26283 26614 26971 26214 26469 26803 26147

Best Sol. 26659 27002 26329 26775 27131 26318 26574 27010 26229
Worst Sol. 26450 26734 26241 26358 26740 26102 26345 26658 26016

Gap (%) 0.83 1.40 1.54 0.86 1.12 1.16 1.13 1.31 1.41
Time (min) 9.4 9.4 9.5 47.4 42.5 44.3 136.7 130 130

m = n = 15 Inst. 19 Inst. 20 Inst. 21 Inst. 22 Inst. 23 Inst. 24 Inst. 25 Inst. 26 Inst. 27

X-SP (†) Best Sol. 40780⋄ 40332† 34189† 40614⋄ 40194† 34049⋄ 40464† 40018† 33897⋄

X-O (⋄) Opt. Gap (%) 2.71 3.09 3.57 3.00 3.44 3.85 3.25 3.67 4.26
UB 41918 41618 35454 41871 41628 35413 41824 41542 35405

Gap (%) 0.37 0.48 0.27 0.52 0.76 0.45 0.75 0.93 0.86
Time (min) 165 190 172 805 835 809 2560 2800 2662

CGA Avg. Sol. 40931 40525 34280 40825 40500 34204 40770 40395 34192
Best Sol. 40976 40593 34353 40867 40551 34267 40815 40467 34240

Worst Sol. 40888 40472 34221 40765 40460 34165 40711 40328 34162
Gap (%) 0 0 0 0 0 0 0 0 0

Time (min) 33 38 34 161 167 162 512 560 473
SGA Avg. Sol. 40314 39875 33680 40366 39769 33609 40072 39743 33675

Best Sol. 40475 40079 33755 40599 39889 33704 40157 39858 33796
Worst Sol. 39946 39731 33614 40258 39488 33540 40001 39620 33539

Gap (%) 1.51 1.60 1.75 1.12 1.80 1.74 1.71 1.61 1.51
Time (min) 77 79 70 396 403 371 1247 1278 1272

Table 1: Results of main study: solution values, runtime, and gaps for all
methods and instances. Instances 1-9 have m = n = 5 products and plants,
instances 10-18 have m = n = 10, instances 19-27 have m = n = 15. Opt.
Gap (%) denotes the percentage deviation of the best solution to the upper
bound. Gap (%) denotes the percentage deviation to the overall best solution
of the instance.

Comparison of CGA and X-O/X-SP X-O/X-SP is not able to find the
optimal solution in the given time limit in any but the 6 small instances with
5 products, 5 plants and 50/200 scenarios. The best found solution of CGA
is optimal for four of these instances, the average solution is optimal for one
instance.

For the small instances with 500 scenarios, the X-O/X-SP solution beats
the average solution of CGA, however, the best solution found by CGA is
better or equal than the X-O/X-SP solution for 2 of the 3 instances.

15

For the medium-sized and large problems, the average solution of CGA
is better than the solution found by X-O/X-SP for all instances. More im-
pressive, the worst solution of CGA is still better. The medium-sized and
large problem instances are application areas of CGA. Exact solution meth-
ods are no longer able to find the optimal solution in adequate time for these
instances. The dominance of CGA for this type of problems is illustrated in
Figure 4. It pictures solution quality and the run-time of CGA and X-O/X-
SP for a problem with 15 products, 15 plants and 50, 200 and 500 scenarios.
This figure is typical for our results on medium and large instances. The
average solution quality of CGA lies strictly above the best solution found
by X-O/X-SP, while the average CGA run-time is five times below the time
limit given X-O/X-SP.

Note that, contrary to CGA, SGA is not able to match the solution quality
of X-O/X-SP for any of the 27 problem instances.

40400

40600
X-O/X-SP

SGA

CGA

500200

50

40200

io
n

 v
a

lu
e

CGA

200

50

39800

40000

S
o

lu
ti

500

500
200

50

39600

0 500 1000 1500 2000 2500 3000

Time (min)()

Figure 4: CGA vs. X-O/X-SP: 15 products, 15 plants with 50, 200, 500
scenarios

6 Conclusions

This paper presents the first metaheuristic solution approach to the FDP.
CGA successfully integrates qualitative knowledge on the FDP to guide its
search. It uses a customized technique to generate its initial population,
which is based on the estimation and replication of good flexibility structures.
The crossover operator avoids the disruption of good partial solutions, while
mutation randomly opens or closes links when appropriate. We conducted
experiments on instances up to 15 products and plants and 500 scenarios and

16

compared the solution quality and runtime of CGA and three comparison
methods: SGA, X-O and X-SP.

The results show clearly that the customization of CGA is beneficial. A
standard GA cannot compete with commercial solvers, while CGA is able
to obtain better solutions in a fraction of the time required by commercial
solvers under certain conditions. If the problem instance is small and/or its
optimum is inflexible, X-O/X-SP provides the optimum quickly. However,
medium-sized and large instances of the FDP whose optimal solution is flex-
ible are of primary interest in practice. In these cases, X-O/X-SP are unable
to find the optimal solution in reasonable time. CGA dominates them with
respect to both runtime and solution quality.

Future research is to integrate CGA into larger planning models which
include plant capacity choices. The crux is to gain qualitative insights into
the interplay between the two types of decisions and to examine how this
knowledge can be used in a solution approach. Furthermore, we noted in the
experiments that CGA spends most of its time evaluating the second stage
production program. It shall be investigated how its resolution can be speed
up, e.g. by using iterated dual reoptimization.

17

Appendix: Determination of the number of com-

ponents

The following algorithm determines the structure of the production network
that corresponds to a first-stage solution yij, i ∈ {1, . . , n}, j ∈ {1, . . , m}.
The algorithm is given yij in the form of n product strings that represent the
plant assignment of the respective product:

productString [i] = yi1, . . , yim.

The algorithm returns a set that contains the components that constitute
the network graph. A component consists of a list of the products it contains
(productList) and a bitstring that represents the contained plants (plantString).
Obviously, the number of components can be determined as the cardinality
of the returned component set. The pseudocode of the algorithm is shown
in Figure 5.

Network-Structure(productStrings [1 . . n])

1 Components = { }

2 for j ← 1 to n

3 do

4 c← new Component

5 c. productList ← 〈j〉

6 c. plantString ← productStrings [j]

7 forall k ∈ Components

8 do

9 if c. plantString ∧ k. plantString 6= 0

10 then temp ← remove k from Components

11 add products in c. productList to temp. productList

12 temp. plantString ← temp. plantString ∨ c. plantString

13 c← temp

14 add c to Components

15 return Components

Figure 5: Procedure Network-Structure

The following example with four products and four plants illustrates the

18

algorithm. We are given:

yij =

1 1 0 0
0 1 1 0
0 1 0 0
0 0 0 1

The rows i ∈ {1, . . , n} in the matrix represent the product strings. We
start with an empty set of components Components = { }. We create a
component with the first product string (Lines 4–6): c1 = (〈1〉, 1 1 0 0)
and add it to Components in Line 14, i.e. Components = {c1}. Next, we
create a component with the second product string c2 = (〈2〉, 0 1 1 0). For
each component in Components, we check whether a bitwise ∧ between the
plant string of the component from Components and the plant string of c2 is
different from zero (Lines 7–9):

c1. plantString ∧ c2. plantString = 1 1 0 0 ∧ 0 1 1 0 = 0 1 0 0 6= 0 0 0 0.

As the result is different from zero, we remove c1 from Components and
merge c1 and c2 (Lines 10–13) so that c2 = (〈1, 2〉, 1 1 1 0). c2 is added
to Components, i.e. Components = {c2}. Next, we create the component
c3 = (〈3〉, 0 1 0 0) and perform the bitwise ∧ operation:

c2. plantString ∧ c3. plantString = 1 1 1 0 ∧ 0 1 0 0 = 0 1 0 0 6= 0 0 0 0.

We remove c2 from Components and merge c2 and c3 to c3 = (〈1, 2, 3〉, 1 1 1 0),
which is added to Components. Next, we create the component c4 = (〈4〉, 0 0 0 1).
Since c3. plantString ∧ c4. plantString = 1 1 1 0 ∧ 0 0 0 1 = 0 0 0 0, the com-
ponent c4 is added to Components, which yields the final result:

Components = {(〈1, 2, 3〉, 1 1 1 0), (〈4〉, 0 0 0 1)}.

The production network for the given yij is depicted in Figure 6 and confirms
our result.

19

Plant 2

Plant 1Product 1

Product 2

Product 3

Product 4

Plant 3

Plant 4

Figure 6: Production network for given yij

References

Aksin, O. Z. and Karaesmen, F.: 2007, Characterizing the performance of
process flexibility structures, Operations Research Letters 35(4), 477–84.

Alonso-Ayuso, A., Escudero, L. F., Garín, A., Ortuño, M. T. and Pérez, G.:
2003, An approach for strategic supply chain planning under uncertainty
based on stochastic 0-1 programming, Journal of Global Optimization
26(1), 97–124.

Andradóttir, S., Ayhan, H. and Down, D. G.: 2007, Compensating for failures
with flexible servers, Operations Research 55(4), 753–768.

Bertrand, J.: 2003, Supply Chain Design: Flexibility Considerations, in
A. de Kok and S. Graves (eds), Supply Chain Management, Vol. 11 of
Handbook in Operations Research and Management Sciences, Elsevier,
chapter 4, pp. 133–198.

Bihlmaier, R., Koberstein, A. and Obst, R.: 2009, Modeling and optimizing
of strategic and tactical production planning in the automotive industry
under uncertainty, OR Spectrum 31(2), 311–336.

Brusco, M. J. and Johns, T. R.: 1998, Staffing a multiskilled workforce with
varying levels of productivity: An analysis of cross-training policies,
Decision Sciences 29(2), 499–515.

Chevalier, P., Shumsky, R. A. and Tabordon, N.: 2004, Routing and staffing
in large call centers with specialized and fully flexible servers, Technical
report, Simon Graduate School of Business, University of Rochester.

Chou, M. C., Chua, G. A., Teo, C.-P. and Zheng, H.: 2009, Design for
process flexibility: Efficiency of the long chain and sparse structure.
Operations Research, Articles in Advance.
URL: http://or.journal.informs.org/cgi/content/abstract/opre.1080.0664v1

20

DaimlerChrysler News: 2002, Chrysler Group’s Windsor assembly plant
launches next phase of flexible manufacturing.

Dash Optimization: 2009a, Xpress-Mosel.
URL: http://www.dashoptimization.com/home/products/products_mosel.html

Dash Optimization: 2009b, The Xpress Optimizer.
URL: http://www.dashoptimization.com/home/products/products_optimizer.html

Dash Optimization: 2009c, Xpress-SP.
URL: http://www.dashoptimization.com/home/products/products_sp.html

Eppen, G. D.: 1979, Effects of centralization on expected costs in a multi-
location newsboy problem, Management Science 25(5), 498–501.

Fine, C. and Freund, R.: 1990, Optimal investment in product flexible man-
ufacturing capacity, Management Science 36(4), 449–466.

Fleischmann, B., Ferber, S. and Henrich, P.: 2006, Strategic planning of
BMW’s global production network, Interfaces 36(3), 194–208.

Garey, M. and Johnson, D.: 1979, Computers and Intractability : A Guide
to the Theory of NP-Completeness, W.H. Freeman and Co.

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley.

Gurumurthi, S. and Benjaafar, S.: 2004, Modeling and analysis of flexible
queueing systems, Naval Research Logistics 51, 755–782.

Holland, J. H.: 1975, Adaptation in Natural and Artificial Systems, Univer-
sity of Michigan Press.

Hopp, W. J., Tekin, E. and van Oyen, M. P.: 2004, Benefits of skill chain-
ing in serial production lines with cross-trained workers, Management
Science 50(1), 83–98.

Hopp, W. J. and van Oyen, M. P.: 2004, Agile workforce evaluation: A frame-
work for cross-training and coordination, IIE Transactions 36, 919–940.

Iravani, S. M., van Oyen, M. P. and Sims, K. T.: 2005, Structural flexi-
bility: A new perspective on the design of manufacturing and service
operations, Management Science 51(2), 151–166.

Jordan, W. C. and Graves, S. C.: 1995, Principles on the benefits of manu-
facturing process flexibility, Management Science 41(4), 577–594.

Kauder, S. and Meyr, H.: 2009, Strategic network planning for an interna-
tional automotive manufacturer, OR Spectrum 31(3), 507–532.
URL: http://dx.doi.org/10.1007/s00291-009-0171-x

21

Koste, L. L. and Malhorta, M. K.: 1999, A theoretical framework for analyz-
ing the dimensions of manufacturing flexibility, Journal of Operations
Management 18(1), 75–93.

Mackintosh, J.: 2003, Ford learns to bend with the wind, Financial Times .
February, 14.

Pidd, M.: 1984, Computer simulation in management science, John Wiley
& Sons, Inc.

Santoso, T., Ahmed, S., Goetschalckx, M. and Shapiro, A.: 2005, A stochas-
tic programming approach for supply chain network design under un-
certainty, European Journal of Operational Research 167(1), 96–115.

Srinivasan, A.: 1999, Approximation algorithms via randomized rounding:
A survey, Series in Advanced Topics in Mathematics, Polish Scientific
Publishers PWN, pp. 9–71.

Van Mieghem, J. A.: 1998, Investment strategies for flexible resources, Man-
agement Science 44(8), 1071–1078.

Wallace, R. B. and Whitt, W.: 2005, A staffing algorithm for call centers with
skill-based routing, Manufacturing & Service Operations Management
7(4), 276–294.

22

	Titelseite 1001
	grahl

