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1 Introduction

We study simple coalition formation problems in which a group of agents is partitioned

into coalitions and agents have preferences over the coalitions they are members of. Fol-

lowing the terminology proposed by Drèze and Greenberg (1980), we focus on problems

characterized by the “hedonic” aspect of coalition formation. Agents’ preferences only

depend on the identity of the members of the coalition they belong to. Hence, we exclude

the existence of externalities among different coalitions. Relevant examples of such prob-

lems are matching problems such as marriage and roommate problems, or the formation

of social clubs, teams, and societies.

The formation of coalitions is a relevant phenomenon in a wide variety of social and

economic environments. The rationale behind the formation of coalitions is that agents

form groups in order to exploit the joint benefits of cooperation. The literature on Coali-

tional Game Theory has extensively analyzed the existence of stable partitions in hedonic

coalition formation problems.1 Instead, we propose a social choice and implementation

approach. We study coalition formation rules that associate to each profile of agents’ pref-

erences a partition of the group of agents. A coalition formation rule can be interpreted

as an optimal recommendation for the society that represents an optimal compromise

between the conflicting preferences of the agents. However, since preferences are not ob-

servable, they must be elicited from the agents. Thus, given a coalition formation rule,

a fundamental concern is whether or not agents have the incentive to reveal their true

preferences. In this paper, we analyze the possibility of devising coalition formation rules

that always give agents such an incentive. Hence, we are interested in rules that satisfy

strategy-proofness. Strategy-proofness is the strongest decentrability property. It implies

that it is a dominant strategy for the agents to straight-forwardly reveal their preferences.

Moreover, each agent needs to know only her own preferences to compute her best choice.

It is well known that the requirements of strategy-proofness are hard to meet. In the

abstract model of social choice, Gibbard (1973) and Satterthwaite (1975) show that –

provided there are more than two alternatives at stake– every strategy-proof social choice

rule is dictatorial. However, reasonable strategy-proof rules exist if appropriate restric-

tions are imposed on agents’ preferences. In coalition formation problems, such domain

1For further references, see the recent works by Banerjee, Konishi, and Sönmez (2001), Barberà and

Gerber (2003), Bogomolnaina and Jackson (2002), and Pápai (2004).
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restrictions arise naturally. On the one hand, while coalition formation rules select a

partition for each preference profile, each agent only cares about the coalition she is a

member of. On the other hand, additional restrictions on how an agent may compare

different coalitions can be easily justified. For instance, an interesting class of problems

consists of situations in which there are no complementarities among the members of a

coalition. That is, the preferences of an agent i regarding the convenience of an agent j

joining the coalition i belongs to, do not depend on the coalition to which i is assigned.2

Then, agents’ preferences are additively representable or separable. These domains of

preferences have been studied in the general context of abstract social choice by Barberà,

Sonnenschein, and Zhou (1991) and Le Breton and Sen (1999), among others, and positive

results have been obtained. Yet, the possibility of constructing strategy-proof coalition

formation rules when agents’ preferences are additively representable or separable has not

been addressed in the literature.

Besides strategy-proofness, we would like our rules to satisfy four additional proper-

ties. Our rules should be individually rational, Pareto efficient, non-bossy, and flexible.

Individual rationality is a participation constraint. It means that no agent should ever

be worse-off than she would be if staying alone. Pareto efficiency requires that the whole

society of agents should not prefer a partition formed by feasible coalitions rather than

forming the partition that the rules recommends. Non-bossiness is a collusion-proof re-

quirement. It says that if a change in an agent’s preferences does not affect the coalition

to which this agent is assigned, then the remaining agents are also unaffected by this

change of preferences. Flexibility is implied by Pareto efficiency. It says that every parti-

tion formed by a collection of feasible coalitions belongs to the range of the rule. Hence,

flexibility implies that feasible disjoint coalitions are mutually compatible.

We provide two characterizations of a family of rules, the family of single-lapping

rules, that fulfill the previous axioms in minimally rich domains of preferences (as the

domain of additively representable preferences). Single-lapping rules are characterized

by strong restrictions over the set of feasible coalitions –the single-lapping property– that

can be justified by the initial existence of a hierarchical structure of the society. The

2Think, for example, in the preferences of a senior member of an Economics Department about the

job–candidates for two tenure–track positions that are available (but that need not to be filled). Suppose

that there are two candidates, a macroeconomist and an econometrician. If the senior economist prefers

hiring the macroeconomist rather than not hiring anybody, then the senior economist should also prefer

hiring the macroeconomist and the econometrician rather than hiring the econometrician alone.
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single-lapping property was firstly introduced by Pápai (2004), who shows that it is a

necessary and sufficient condition for the existence of a unique core-stable partition of the

society for every profile of agents’ preferences. In fact, single-lapping rules always select

the unique core-stable partition of the society, in the sense that no feasible coalition of

agents unanimously prefer joining each other rather than staying at the coalition they are

assigned to. Hence, our results provide further evidence on the relation between the non-

cooperative game theory concept of strategy-proofness and the cooperative game theory

concept of the existence of a unique core-stable partition.

Before proceeding with the formal analysis, we review the most related literature.

This paper is is closely related to the already mentioned Pápai (2004). Pápai’s main

focus is on finding necessary and sufficient conditions on the set of feasible coalitions for t

uniqueness of core-stable partitions. Additionally, this author shows that, given an initial

set of coalitions that satisfy the single-lapping property, its associated single-lapping

rule is the unique rule that satisfies strategy-proofness, individual rationality, and Pareto

efficiency when agents’ preferences over coalitions are restricted to prefer any coalition in

the initial set to any other coalition. Our analysis complements Pápai’s results in several

directions. We show that the single-lapping structure of the set of feasible coalition is

implied directly by strategy-proofness and the remaining axioms. Moreover, we show that

the results also hold in more restricted domains of preferences over coalitions.

The manipulability of coalition formation rules has also been studied by Alcalde and

Revilla (2004), Cechlárová and Romero-Medina (2001), Sönmez (1999), and Takamiya

(2003). However, these works focus on different domains of preferences that are not con-

sistent with additively representable or separable preferences. More specifically, Alcalde

and Revilla (2004), and Cechlárová and Romero-Medina (2001) assume that agents’ pref-

erences over coalitions are based on the best or the worst group of agents in each coalition.

In these environments, they prove the existence of strategy-proof rules that always select

core-stable partitions. Finally, Sönmez (1999) proposes a general model of allocation of

indivisible goods which includes our coalition formation model as a special case. This au-

thor focuses on problems for which there always exist core-stable partitions. Under some

assumptions on agents’ preferences, Sönmez (1999) shows that there exist strategy-proof,

individually rational, and Pareto efficient rules only if the set of core-stable partitions

is always essentially single-valued. Takamiya (2003) proves that the converse result also

holds under additional assumptions on preferences –such as strict preferences and no
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consumption externalities– that are fulfilled in coalition formation problems.

The remainder of the paper is organized as follows. In Section 2, we present the

model and basic notation. In Section 3, we present different domains of preferences over

coalitions and the notion of minimally rich domain. In Section 4, we introduce the main

axioms while in Section 5 we present single-lapping rules and provide the characterization

results. In Section 6, we prove Theorem 2. We include the proofs of some intermediate

results and supplemental material in the Appendices.

2 Basic Notation

Let N ≡ {1, . . . , n} be a society consisting of a finite set of at least 3 agents, (n ≥ 3).

We call a non-empty subset C ⊆ N a coalition. Let N denote the set of all non-empty

subsets of N . For each C ∈ N , let [C] ≡ {{i} : i ∈ C}. A collection of coalitions is

a set of coalitions Π ⊆ N that contains all singleton sets, [N ] ⊆ Π. Let σ be a partition

of N and let Σ denote the set of all partitions of N . For each i ∈ N and each σ ∈ Σ, we

denote by σi ∈ σ the coalition in σ to which i belongs.

For each i ∈ N , let Ci ≡ {C ⊆ N, i ∈ C}. That is, Ci is the set of all coalitions to

which i belongs. A preference for i, %i, is a complete order on Ci.
3 For each i ∈ N ,

we denote by Di the set of all preferences for i. Note that preferences are strict. Hence,

for each i ∈ N , each %i∈ Di, and each C, C ′ ∈ Ci, we write C �i C ′ to indicate that i

strictly prefers C to C ′, and C %i C ′ to indicate that either C �i C ′ or C = C ′. We

assume that agents only care about the coalition they belong to, then agents’ preferences

over partitions are completely defined by their preferences over coalitions. Thus, abusing

notation, we say that for each i ∈ N , each %∈ Di, and each σ, σ′ ∈ Σ, σ is at least as

good as σ′, σ %i σ′, if and only if σi %i σ′i.

For each i ∈ N , each set of coalitions X ⊆ N with X ∩ Ci 6= ∅, and each %i∈ Di, let

top(X , %i) be the coalition in X ∩ Ci that is ranked first according to %i.

Let D ≡ ×i∈NDi. We call %∈ D a preference profile. For each C ⊂ N , DC = ×i∈CDi ,

while for each %∈ D, %C∈ DC denotes the restriction of profile % to the preferences of

the agents in C.

Let D̃ ⊆ D, we say that D̃ is a cartesian domain if for each i ∈ N there is D̃i ⊆ Di

such that D̃ = ×i∈ND̃i.

3An order is a reflexive, transitive, and antisymmetric binary relation.
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We are interested in rules that associate a partition of the society to each profile of

agents’ preferences.

Let D̃ ⊂ D be a cartesian domain. A (coalition formation) rule defined on the

domain D̃ is a mapping ϕ : D̃ → Σ.

Naturally, for each i ∈ N and each %∈ D̃, ϕi(%) denotes the coalition in ϕ(%) to

which i belongs.

Finally, Rϕ denotes the range of ϕ, that is, the set of feasible partitions,

Rϕ ≡ {σ ∈ Σ, such that there is %∈ D̃, ϕ(%) = σ},

while, Fϕ denotes the set of feasible coalitions,

Fϕ ≡ {C ∈ N , such that for some σ ∈ Rϕ, C ∈ σ}.

3 Restricted Domains of Preferences over Coalitions

We start by presenting two classes of preferences over coalitions – top and bottom pref-

erences– that play a crucial role in our analysis. Both domains are contained in other

domains of preferences that have been extensively analyzed in the social choice litera-

ture, namely, the domains of additively representable and separable preferences. Top and

bottom preferences are obtained by extending orders over single agents to orders over

coalitions. The basic idea behind top and bottom preferences is that each agent i divides

the society into two groups according to some order over the set of agents: the agents

that she likes and the agents she dislikes. An agent equipped with top preferences pri-

oritizes (lexicographically) joining the agents she likes the most with respect to avoiding

the agents she dislikes. On the other hand, an agent equipped with bottom preferences

prioritizes (lexicographically) avoiding the agents she dislikes the most with respect to

joining the agents she likes.

Let P be the set of all complete orders over N . For each P ∈ P , R denotes the

weak order associated to P and it is defined in the usual way. For each C ⊆ N and

each P ∈ P, max(C, P ) and min(C, P ) denote, respectively, the first-ranked and the

last-ranked agent of C according to P . Next, for each i ∈ N , each P ∈ P , and each

C ∈ Ci, let C+
i (P ) ≡ {j ∈ C, s.t. j R i} , and C−

i (P ) ≡ {j ∈ C s.t. i R j} . Now, de-

fine C+
i (1, P ) ≡ max(C+

i (P ), P ) and C−
i (1, P ) ≡ min(C−

i (P ), P ) . Once C+
i (t, P ) and
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C−
i (t, P ) are defined for some t ≥ 1, iteratively, let

C+
i (t + 1, P ) ≡ max

([
C+

i (P ) \ ∪t
k=1C

+
i (k, P )

]
, P

)
, and

C−
i (t + 1, P ) ≡ min

([
C−

i (P ) \ ∪t
k=1C

−
i (k, P )

]
, P

)
.

For each i ∈ N and each P ∈ P , the preference %i∈ Di is the top preference

associated to P by i, %i=%+
i (P ) if for each two distinct coalitions C, C ′ ∈ Ci, C �i C ′

if and only if

• C+
i (P ) 6= C ′+

i (P ) and C+
i (t, P ) P C ′+

i (t, P ), where t is the first integer such that

C+
i (t, P ) 6= C ′+

i (t, P ).

• C+
i (P ) = C ′+

i (P ) and C−
i (t′, P ) P C ′−

i (t′, P ), where t′ is the first integer such that

C−
i (t′, P ) 6= C ′−

i (t′, P ).

Let i ∈ N , P ∈ P , and let C, C ′ ∈ Ci be such that C 6= C ′. When comparing the

coalitions C and C ′, if agent i is equipped with preference %+
i (P ), then she focuses on

the sets of agents who are ranked above i according to P , C+
i (P ) and C ′+

i (P ). First,

i compares C and C ′ on the basis of the agents who are first-ranked according to P in

C+
i (P ) and C ′+

i (P ). If these agents are the same, then i compares the second-ranked

agents and so on. If C+
i (P ) = C ′+

i (P ), then i turns her attention to the agents who are

ranked below i according to P , C−
i (P ) and C ′−

i (P ), and applies the same lexicographic

logic, but starting from the bottom. She compares first the last ranked agents in C−
i (P )

and C ′−
i (P ), and she proceeds iteratively in the case that they are the same agent.

The logic behind bottom preferences mimics top preferences.

For each i ∈ N and each P ∈ P,, the preference %i∈ Di is the bottom preference

associated to P by i, %i=%−
i (P ) if for each two distinct coalitions C, C ′ ∈ Ci, C �i C ′

if and only if

• C−
i (P ) 6= C ′−

i (P ), and C−
i (t, P ) P C ′−

i (t, P ), where t is the first integer such that

C−
i (t, P ) 6= C ′−

i (t, P ).

• C−
i (P ) = C ′−

i (P ) and C+
i (t′, P ) P C ′+

i (t′, P ), where t′ is the first integer such that

C+
i (t′, P ) 6= C ′+

i (t′, P ).
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Let i ∈ N , P ∈ P , and let C, C ′ ∈ Ci be such that C 6= C ′. When comparing the

coalitions C and C ′, if agent i is equipped with the preference %−
i (P ), then i focuses

on the sets of agents who are ranked below i according to P , C−
i (P ) and C ′−

i (P ). First,

i compares C and C ′ on the basis of the agents who are last-ranked according to P in

C−
i (P ) and C ′−

i (P ). If these agents are the same, then i compares the next-to-the-last

ranked agents and so on. If C−
i (P ) = C ′−

i (P ), then i turns her attention to the agents who

are ranked above i according to P , C+
i (P ) and C ′+

i (P ), and applies the same lexicographic

logic, but starting from the top. First, she compares the first-ranked agents in C+
i (P )

and C ′+
i (P ), and she proceeds iteratively in the case that they are the same agent.

For each i ∈ N , let

D+
i ≡ {%i∈ Di such that for some P ∈ P , %i=%+

i (P )} ,

D−
i ≡ {%i∈ Di such that for some P ∈ P , %i=%−

i (P )} ,

D∗
i ≡ D+

i ∪ D−
i and,

D∗ ≡ ×i∈ND∗
i .

Let D̄ ⊆ D. We say that D̄ is minimally rich if D̄ is cartesian and D∗ ⊆ D̄.

We consider that a domain of preferences over coalitions is minimally rich if it contains

top and bottom preferences. Minimal richness also requires that the domain is cartesian.

That is, an agent’s set of admissible preferences does not depend on the preferences of

the remaining agents.

The following remark shows that in minimally rich domains, the preferences of an

agent regarding the way in which she may compare the coalition in which she stays on

her own and any two other different coalitions she may belong to are not restricted.

Remark 1. For each i ∈ N and each two distinct C, C ′ ∈ Ci \ {i}, there exist %, %′, %′′∈
D∗

i such that:

{i} � C � C ′,

C �′ {i} �′ C ′, and

C �′′ C ′ �′′ {i}.

It can be argued that top and bottom preferences reflect rather extreme preferences

over coalitions. However, the domains of additively representable and separable prefer-

ences are minimally rich. These domains exclude the possibility of (negative or positive)

complementarities among the members of a coalition.
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Let i ∈ N . A utility function for agent i is a mapping ui : N → R such that

ui(i) = 0. A preference for agent i, %i∈ Di is additively representable if there is a

utility function ui such that for each C, C ′ ∈ Ci, C %i C ′ if and only if
∑

c∈C ui(c) ≥∑
c′∈C′ ui(c

′). For each i ∈N, Ai denotes the set of all i’s additively representable prefer-

ences for agent i and let A ≡ ×i∈NAi.

A preference for i, %i∈ Di, is separable if for each j ∈ N and each C ∈ Ci such

that j /∈ C, {i, j} �i {i} if and only if (C ∪ {j}) �i C. Let Si be the set of all agent i’s

separable preferences and let S ≡ ×i∈NSi.

The following remark shows that the domain of additively representable preferences

and the domain of separable preferences are indeed minimally rich domains. Moreover,

for small societies both domains coincide with the smallest minimally rich domain.

Remark 2. Let i ∈ N .

(a) If n ≥ 4, then D∗
i ⊂ Ai ⊂ Si.

(b) If n = 3, then D∗
i = Ai = Si.

4 Axioms

This section introduces four properties that rules may satisfy. Let D̃ ⊆ D be a cartesian

domain and let ϕ be a rule defined on D̃.

Our main axiom is an incentive constraint. A rule should never provide an incentive

for an agent to misreport her preferences. Only if a rule elicits the true preferences from

the agents, the social choice will be based upon the correct information. Of course, this

property refers to the specific domain in which the rule is defined.

Strategy-Proofness. For each i ∈ N , each %∈ D̃, and each %′
i∈ D̃i, ϕi(%) %i ϕi(%N\{i}, %′

i) .

Conversely, we say that i ∈ N manipulates ϕ if there exist %∈ D̃ and %′
i∈ D̃i such that

ϕi(%N\{i}, %′
i) �i ϕi(%).

The Gibbard-Satterthwaite Theorem states that every strategy-proof rule on an un-

restricted domain either is dictatorial or its range contains only two elements.4 As we

4A rule ϕ : D̃ → Σ is dictatorial if there is i ∈ N (a dictator) such that for each %∈ D̃,

ϕi(%) = top(Fϕ,%i) .
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assume that agents’ preferences over social outcomes are restricted to depend only on

the coalitions they are members of and we focus on minimally rich domains, the negative

consequences of the Gibbard-Satterthwaite Theorem do not apply to our framework.

We also consider a minimal participation constraint. Agents should not prefer to stay

on their own rather than to belong to the coalition that the rule assigns them.

Individual Rationality. For each i ∈ N and each %∈ D̃, ϕi(%) %i {i}.

Note that, for every individually rational rule, its set of feasible allocations is a collec-

tion of coalitions.

We introduce a weak version of efficiency. This notion of efficiency for coalition for-

mation problems is introduced in Pápai (2004).

Pareto efficiency. For each %∈ D̃, there is no σ ∈ Σ such that for each C ∈ σ, C ∈ Fϕ,

and for every i ∈ N , σi %i ϕi(%), and for some j ∈ N , σj �j ϕj(%).

Note that Pareto efficiency is a version of efficiency restricted to the set of feasible

range of the rule. Pareto efficiency does not implies onto-ness.5 That is, it may be the

case that a Pareto efficient rule does not admit every conceivable coalition as feasible.

We consider rules such that whenever a change in an agent’s preference does not

change the coalition she is assigned to, then the assignment for the remaining agents does

not change.

Non-Bossiness. For each i ∈ N , each %∈ D̃, and each %′
i∈ D̃i, ϕi(%) = ϕi(%N\{i}, %′

i)

implies ϕ(%) = ϕ(%N\{i}, %′
i).

We can interpret non-bossiness as a collusion-proof or bribe-proof condition. Imagine

that there exists a transferable private good and that agents preferences over coalitions

and private good allocations are lexicographic. Agents focus first on the coalition they are

assigned, and then in the private good allocation. A violation of non-bossiness implies

a possibility of collusion because an agent might have incentives to misrepresent her

5A rule ϕ : D̃ → Σ satisfies onto-ness if Fϕ = N .
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preferences in exchange for a positive transfer of the private good from those who benefit

from the change in her preference report.

Finally, we introduce a minimal flexibility condition on the range of the rule. We

assume that the range of a rule is determined by the set of feasible coalitions.

Flexibility. For each σ = {C1, . . . , Cm} ∈ Σ, Ct ∈ Fϕ for each t = 1, . . . ,m, implies

σ ∈ Rϕ.

Flexibility means that any two disjoint feasible coalitions are mutually compatible.

Hence, it implies that the range of the rule is completely determined by the set of feasible

coalitions. Flexibility is implied by Pareto efficiency, but flexibility does not implies onto-

ness. By focusing on flexible rules, we rule out some coalition formation problems. For

instance, any rule defined in a four-agent society, in which every couple of agents is a

feasible coalitions but partitions containing two couples are not admissible would violate

flexibility.

5 Characterization Results

In this section we analyze the implications of the axioms listed above over rules defined on

rich domains. First, we introduce additional notation due to Pápai (2004). This author

proposes a property over sets of coalitions – the single-lapping property– that ensures the

existence and uniqueness of a core-stable partition for every preference profile.6 We make

use of this property to define a class of rules.

A collection of coalitions Π satisfies the single-lapping property if

Condition (a): For each C, C ′ ∈ Π, C 6= C ′ implies #(C ∩ C ′) ≤ 1.

Condition (b): For each {C1, . . . , Cm} ⊆ Π with m ≥ 3 and for each t = 1, . . . ,m,

#(Ct∩Ct+1) ≥ 1 (where m+1 = 1), there is i ∈ N such that for each t = 1, . . . ,m,

Ct ∩ Ct+1 = {i}.
6Given a preference profile %∈ D and a collection of coalitions Π ⊆ N , the partition σ ∈ Σ is

core-stable if there is no C ∈ Π such that for each j ∈ C, C �j σj .
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Condition (a) states that if there is an overlap between any two coalitions in the

collection, there cannot be more than one agent who is member of these two coalitions.

Condition (b) is a non-cycle condition. It requires that if a set of coalitions in the collection

form a cycle in which every two neighbor coalitions have a common member, then all these

coalitions have the same common member.

Pápai (2004) shows that single-lapping collections of coalitions can be associated to

a non-directed graph endowed with a tree or network structure. Tree structures are

characteristic to many hierarchical societies or networks in which only members of adjacent

levels in the hierarchy (network) are connected and can form a coalition.7

The following remark presents a prominent property of single-lapping collections of

coalitions. For every single-lapping collection of coalitions and for every preference profile,

there is a coalition in the collection such that all its members think that this coalition is

the best coalition in the collection.

Remark 3. (Pápai, 2004, Theorem 1). Let Π be a single-lapping collection of coalitions.

For each %∈ D there is C ∈ Π such that for each i ∈ C, C = top(Π, %i).

Remark 3 implies that for every single-lapping collection of coalitions and every pref-

erence profile there is a unique core-stable partition of the society. Pápai (2004) presents

the following algorithm to find such partition.

For each %∈ D and each single-lapping collection of coalitions Π ⊂ N , the core-

stable partition associated to Π at profile %, σ̄Π(%), can be identified by the

following algorithm:

Algorithm: (Pápai, 2004). Let %∈ D and let Π be a single-lapping collection of coali-

tions. Find C ∈ Π such that for each i ∈ C, top(Π, %i) = C . As Π is single-lapping,

such coalition exists. Note that there may be several such coalitions, and all these

coalitions are disjoint. Let

Π(1, %) ≡ Π,

MΠ(1, %) ≡ {C ∈ Π such that for each i ∈ C, top(Π, %i) = C}

TΠ(1, %) ≡ ∪C∈MΠ(1,%)C

Hence, MΠ(1, %) denotes the set of all the coalitions that are formed in this first

stage and TΠ(1, %) denotes the set of agents that are matched in the first stage.

7See Demange (2004, 2005) for more on the relation of hierarchical structures and coalitional stability.
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Once Π(t,%), MΠ(t,%), and TΠ(t,%) are defined for some t ≥ 1, let,

Π(t + 1, %) ≡ {C ∈ Π such that C ∩ TΠ(t,%) = {∅}},

MΠ(t + 1, %) ≡ {C ∈ Π(t + 1, %) such that for each i ∈ C, top(Π(t + 1, %), %i) = C} and,

TΠ(t + 1, %) ≡ ∪C∈MΠ(1,%)∪...∪MΠ(t+1,%)C.

Note that, for each t = 1, . . . ,m, Π(t,%) ⊂ Π, Π(t,%) is a collection of coalitions

for the reduced society N \ TΠ(t,%). Moreover, Π(t,%) satisfies the single-lapping

property. Let m ≤ n be the smallest integer such that TΠ(m, %) = N . Then, the

algorithm identifies a unique partition,

σ̄Π(%) ≡ {C ∈ Π such that for some t ≤ m, C ∈ MΠ(t,%)}.

For each single-lapping collection of coalitions and each preference profile there is a

unique core-stable partition. Thus, each single-lapping collection of coalitions defines a

unique rule.

Let D̃ ⊆ D be a cartesian domain of preferences and let ϕ be a rule defined on D̃.

The rule ϕ is a single-lapping rule if there is a single-lapping collection of coalitions

Π such that for each %∈ D̃, ϕ(%) = σ̄Π(%).

Pápai (2004, Theorem 1) shows that, given a fixed single-lapping collection of coali-

tions Π, if agents are restricted to prefer standing on their own to any other coalition

C /∈ Π, then the single-lapping rule associated to Π is the unique rule that satisfies

strategy-proofness, individual rationality, and Pareto efficiency. Note that for every single-

lapping rule, for each preference profile there is always a feasible coalition such that all its

members think that it is their best preferred feasible coalition. Thus, single-lapping rules

clearly satisfy strategy-proofness in any minimally rich domain. In fact, single-lapping

rules also satisfy individual rationality, non-bossiness, flexibility, and Pareto efficiency.

Theorem 1. Let D̄ be a minimally rich domain. If a rule ϕ : D̄ → Σ is single-lapping,

then ϕ satisfies strategy-proofness, individual rationality, non-bossiness, flexibility, and

Pareto efficiency.

Proof. Let Fϕ = Π. Because ϕ is a single-lapping rule, Π is a single-lapping collection

of coalitions. Let us check that ϕ satisfies strategy-proofness.8 Let %∈ D̄. For each i ∈
8This fact is proven in Pápai (2004, Theorem 3). We include the proof for the sake of completeness.
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TΠ(1, %), ϕi(%) = top(Π, %i). Thus, agents in TΠ(1, %) cannot manipulate. Moreover,

by the definition of single-lapping rule for each %′∈ D̄ such that for each i ∈ TΠ(1, %)

%i=%′
i, ϕi(%) = ϕi(%′). Now, let j ∈ TΠ(2, %). If there exists C ∈ Π such that

C �j ϕj(%), then there is i ∈ TΠ(1, %)) such that i ∈ C. Note that for each %′
j∈ D̄j

and each i ∈ TΠ(1, %), ϕi(%N\{j}, %′
j) = TΠ(1, %). Thus, ϕj(%) %j ϕj(%N\{j}, %′

j) and j

cannot manipulate. Repeating iteratively the argument with the remaining steps of the

algorithm, we obtain that no agent can manipulate.

Let us check that ϕ satisfies individual rationality. By the definition of single-lapping

rule, for each i ∈ N and each %∈ D̄, there is t ≤ n such that ϕi(%) ∈ MΠ(t,%). Note

that {i} ∈ Π(t,%). By the definition of single-lapping rule, ϕi(%) ≡ top(Π(t,%), %i).

Thus, ϕi(%) %i {i}, which proves individual rationality.

Let us check that ϕ satisfies non-bossiness. Let i ∈ N , %∈ D̄, and %′
i∈ D̄i be such that

ϕi(%) = ϕi(%N\{i}, %′
i). Let i ∈ TΠ(t,%). Because ϕ is a single-lapping rule, for each

j ∈ ∪t′≤tT
Π(t′, %), ϕj(%) = ϕj(%N\{i}, %′

i). Moreover, because ϕi(%) = ϕi(%N\{i}, %′
i),

for each k ∈ ∪t′≥tT
Π(t′, %), we have ϕk(%) = ϕk(%N\{i}, %′

i) . Then, ϕ(%) = ϕ(%′), which

proves non-bossiness.

Let us check that ϕ satisfies flexibility. Let σ = {C1, . . . , Cm} ∈ Σ be such that for

each t = 1, . . . , k, Ct ∈ Π. Let %∈ D̄ be such that for each t = 1, . . . ,m and each i ∈ Ct,

top(N , %i) = Ct. By the definition of single-lapping rule, ϕ(%) = σ and σ ∈ Rϕ. Thus,

ϕ satisfies flexibility.

Finally, Pareto efficiency follows immediately from the definition of single-lapping

rule. Note that for each i ∈ N and each %∈ D̄ there is t ≤ n such that ϕi(%) =

top(Π(t,%), %i).

Note that we only need to assume that the domain of the rule is minimally rich in

proving flexibility. The proof of the remaining axioms is domain independent. Note also

that single-lapping rules satisfy strategy-proofness even in the unrestricted domain of

preferences over coalitions D. By restricting the set of feasible coalitions, single-lapping

rules eliminate agents’ opportunities for profitable misrepresentation of preferences. Our

next results are, in some way, more surprising. In every minimally rich domain, single-

lapping rules are the only rules that satisfy our list of axioms. Hence, reducing the set of

admissible preferences for the agents does not allow for additional rules.

Theorem 2. Let D̄ be a minimally rich domain. A rule ϕ : D̄ → Σ satisfies strategy-
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proofness, individual rationality, non-bossiness, and flexibility if and only if ϕ is a single-

lapping rule.

We present the proof of necessity part of Theorem 2 in the next section. The intuition

runs as follows. For every rule that satisfies our axioms, when the members of a feasible

coalition of individuals agree that this coalition is the best preferred feasible coalition, this

coalition is formed. Then, it remains to check that the set of feasible coalitions satisfies

the single-lapping property. This step is far from being immediate and constitutes the

bulk of the proof. The analysis is relatively simple for three agents societies. We use an

induction argument to extend the result to arbitrary societies.

Theorem 2 shows that only rules that select the unique core-stable partition given

an initial set of feasible coalition satisfy our list of axioms. Hence, Theorem 2 provides

further evidence on the relation between the concepts of strategy-proofness and unique

core-stability. This relation has been already presented in previous works as Sönmez

(1999) and Pápai (2004).9 However, Theorem 2 provides several novelties with respect to

previous results. We do not impose any restrictions either on preferences or on feasible

coalitions that ensure the existence of core-stable partitions. Instead, we obtain that the

rule selects the unique core-stable partition directly from our axioms. This fact allows

us to obtain a characterization result that applies to every kind of coalition formation

problem instead of impossibility results. In addition, our results apply to very restricted

domains of preferences as the smallest minimally rich domain. Finally, we do not use

Pareto efficiency in the characterization, instead we use two axioms, non-bossiness and

flexibility, that are not included in the definition of core-stability.

The domains of additively representable and separable preferences are minimally rich

domains. Hence, we obtain the following corollaries to Theorem 2.

Corollary 1. A rule ϕ : A → Σ satisfies strategy-proofness, individual rationality, non-

bossiness, and flexibility if and only if ϕ is a single-lapping rule.

Corollary 2. A rule ϕ : S → Σ satisfies strategy-proofness, individual rationality, non-

bossiness, and flexibility if and only if ϕ is a single-lapping rule.

9The line of research that investigates the existence of strategy-proof rules in core selecting organiza-

tions was initiated by Ledyard (1977).
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Corollaries 1 and 2 are in sharp contrast with the results of Barberà, Sonnenschein,

and Zhou (1991). These authors analyze problems in which the founding members of

a society select new members for the society and their preferences over candidates are

additively representable (or separable). They show that for those coalition formation

problems, strategy-proof rules can be decomposed in a set of yes/no rules, one for each

possible candidate. There are two differences between their framework and ours. Bar-

berà, Sonnenschein, and Zhou (1991) do not consider the preferences of the candidates as

relevant for the social choice. Moreover, they do not consider the restrictions imposed by

individual rationality, that we consider indispensable for the analysis of coalition forma-

tion rules.

Theorem 2 is tight if there are at least four agents. When there are only three agents,

flexibility is directly implied by individual rationality. The following examples show the

independence of the axioms for any arbitrary minimally rich domain D̄.10

Example 1 (Strategy-proofness). Let N = {i, j, k}. For each %∈ D̄, let

IRi(%) ≡ {C ∈ Ci, such that for each j ∈ C, C %j {j}} .

Let ϕ−SP be such that for each %∈ D̄, ϕ−SP
i (%) ≡ top(IRi(%), %i) and for each j /∈

top(IRi(%), %i), ϕ−SP
j (%) ≡ {j}. Note that ϕ−SP satisfies individual rationality, non-

bossiness, and flexibility. However, ϕ−SP violates strategy-proofness.11

Example 2 (Individual rationality). Let N = {i, j, k}. Let ϕ−IR be such that for each

%∈ D̄, ϕ−IR
i (%) = top(N , %i), and for each j /∈ top(N , %i), ϕ−IR

j (%) = {j}. The

rule ϕ−IR is dictatorial. Note that ϕ−IR satisfies strategy-proofness, non-bossiness, and

flexibility. However, ϕ−IR violates individual rationality.

Example 3 (Non-Bossiness). Let N = {i, j, k}. Let ϕ−NB be such that for each %∈ D̄,

ϕ−NB (%) =


{i, j, k} if for each i′ ∈ N, {i, j, k} %i′ {i′} ,

({i, j} , {k}) if {i, j} �i {i}, {i, j} �j {j} and top(N , %k) = {k},
[N ] otherwise.

10The following examples are stated in three and four-agent societies. These examples can be easily

generalized to arbitrary societies. This point is discussed in Appendix B.
11In order to check that ϕ−SP is manipulable, let N = {i, j, k}, %∈ D∗, and %′

j∈ D∗
j be such that

{i, j} �i {i, j, k} �i {i}, {i, j, k} �j {i, j} �j {j, k} �j {j}, and {i, k} �k {i, j, k} �k {k}; while

{j, k} �′
j {i, j, k} �′

j {j}. Note that ϕ−SP (%) = ({i, j}, {k}), while ϕ−SP (%N\{j},%′
j) = {i, j, k}. Then,

ϕ−SP
j (%N\{j},%′

j) �j ϕ−SP
j (%).
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Note that ϕ−NB satisfies individual rationality, strategy-proofness, and flexibility. How-

ever, ϕ−NB violates non-bossiness.12

Example 4 (Flexibility). Let N = {i, j, k, l}. Let ϕ−F be such that for each %∈ D̄,

ϕ−F (%) =

{
({i, j}, {k, l}) if for each m ∈ N, ({i, j}, {k, l}) %m [N ] ,

[N ] otherwise.

Note that ϕ−F satisfies individual rationality, strategy-proofness, and non-bossiness. How-

ever, ϕ−F violates flexibility.

At this point, we clarify the relation between strategy-proofness, non-bossiness, and

Pareto efficiency. In many frameworks, strategy-proofness and non-bossiness directly

imply Pareto efficiency. However, this is not the case in our framework.13 On the other

hand, although we cannot find a general and straight-forward argument that shows that

strategy-proofness, individual rationality, and Pareto efficiency, imply non-bossiness, it

turns out that the arguments in the proof of Theorem 2 are also valid (with minimal

modifications) if we use Pareto efficiency instead of non-bossiness and flexibility. Hence,

we can state the following theorem that parallels Theorem 2.

Theorem 3. Let D̄ be a minimally rich domain. A rule ϕ : D̄ → Σ satisfies strategy-

proofness, individual rationality, and Pareto efficiency if and only if ϕ is a single-lapping

rule.

12In order to check that ϕ−NB violates non-bossiness, let %∈ D∗, %′
k∈ D∗

k be such that {i, j} �i {i},
{i, j} �j {j}, top(N ,%k) = {k}, while {j, k} �′

k {k} �′
k {i, j, k}. Note that ϕ(%) = ({i, j}, {k}) and

ϕ(%N\{k},%′
k) = ({i}, {j}, {k}).

13Consider a society formed by four agents N = {i, j, k, l}. Define the rule ϕ̄ in the domain of separable

preferences. Let ϕ̄ : S → Σ. Agents i and j are the founding members of a club and they are always

together. Then, for each %∈ S, {i} ∈ ϕ̄j(%), {j} ∈ ϕ̄i(%). Preferences of agents k and l are irrelevant

for the social choice. Agent k enters the club if i likes agent k. Thus, {k} ∈ ϕ̄i(%) if {i, k} %i {i}. Agent

l enters the club if j likes l. Thus, {l} ∈ ϕ̄j(%) if {j, l} %l {j}. The rule ϕ̄ satisfies strategy-proofness,

non-bossiness, and flexibility. However, ϕ̄ violates individual rationality and Pareto efficiency. Let

%∈ S be such that {i, j, k} �i {i, k} �i {i, j} �i {i} �i C for each C ∈ Ci \ ({i, j, k}, {i, k}, {i, j}, {i}) ,

{i, j, l} �j {j, l} �j {i, j} �j {j} �j C ′ for each C ′ ∈ Cj \ ({i, j, l}, {j, l}, {i, j}, {j}) , {k} = top(N ,%k),

and {l} = top(N ,%l). Basically, i likes j and k but strongly dislikes l, j likes i and l and strongly

dislikes k, whereas k and l would rather stay alone. Note that ϕ̄(%) = {i, j, k, l}, but for each i′ ∈ N ,

({i, j}, {k}, {l}) �i′ ϕ̄(%).
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Theorem 3 shows that, when applied to strategy-proof and individually rational rules,

non-bossiness and flexibility are equivalent to Pareto efficiency.14 While sometimes

Pareto efficiency may seem a more palatable axiom, we think that in coalition formation

problems, non-bossiness is also easily justifiable. We have chosen to use non-bossiness

instead of Pareto efficiency because Pareto efficiency is part of the definition of core-

stability. We feel that by introducing individual rationality–no single agent prefers stay

on her own rather than accepting the coalition proposed by the rule– together with Pareto

efficiency –all the members of the society do not prefer an alternative partition to the

partition proposed by the rule–, we would introduce too many ingredients of the core in

our framework.

Before moving to the proof of Theorem 2, several remarks are in order.

Our characterization theorems have direct implications for matching problems as mar-

riage, room-mate, and college admission problems. These are coalition formation problems

characterized by initial restrictions of the set of feasible coalitions. In a marriage problem,

agents are divided in two disjoint groups that are usually interpreted as a set of men and

a set of women, and the set of feasible coalitions consists of all single agents and all the

couples formed by a man and a woman. A generalization of marriage problems is known

as theroommate problem. There is a set of agents that have to be organized in couples or

in groups of a given cardinality. These problems can be interpreted as situations in which

there are a number of rooms available and we can assign either 1 or 2 persons to each

room, while some room may remain empty. Another generalization of the marriage prob-

lem is known as the college-admission problem. There are two disjoint sets of agents, a set

of colleges C, and a set of new students S. Each college c ∈ C has a number of free slots

and may admit up to a quota of qc new students. Colleges have preferences over cohorts

of new students. New students have preferences over colleges and classmates. A coalition

is feasible if either is a singleton or it contains exactly one college and the number of stu-

dents assigned to each college is not larger than its respective quota qc. The literature has

provided a series of impossibility results for strategy-proof rules in those environments.

(See Alcalde and Barberà, 1994; Sönmez, 1999; Pápai, 2004, and references therein.) As

we do not impose any initial condition on the set of feasible, we can apply directly our

14Note that the examples that show the independence of the axioms in Theorem 2 are also valid to

show the independence of the axioms in Theorem 3. It is easy to check that ϕ−SP , ϕ−IR, and ϕ−F satisfy

Pareto efficiency. However, ϕ−NB violates Pareto efficiency.
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Theorems 2 and 3 to obtain characterization of the rules that satisfy our axioms in these

environments. Thus, for instance, in marriage problems, if there are at least two men and

two women and every different-sex couple is feasible, then the set of feasible coalitions

violates Condition (b) of the single-lapping property. In this case, Theorems 2 and 3

imply that we may construct single-lapping rules that satisfy our axioms by not allowing

some couples to form.

Next, we address the issue of whether Theorems 2 and 3 hold for domains of preferences

strictly contained in D∗. As D∗ consists of the union of the domains of bottom and top

preferences, it is natural to check whether there exist non-single-lapping rules that satisfy

our axioms in those domains. It turns out that new possibilities arise in both domains.

The rule ϕ−SP presented in Example 1 satisfies strategy-proofness when defined in the

domain of bottom preferences ×i∈ND−
i .15 On the the other hand, the domain of top

preferences is included in the domain of top-responsive preferences proposed by Alcalde

and Revilla (2004). These authors provide an algorithm – the top-covering algorithm–

that always select a core-stable partition of the society if agents’ preferences are top-

responsive. In addition, their top-covering algorithm defines the unique Pareto efficient

rule that satisfies our axioms in their domain. We must note that in Alcalde and Revilla’s

top-responsive domain, there are preference profiles with multiple core stable partitions.

This fact highlights the key role of bottom preferences in obtaining the relation between

strategy-proofness and unique core stability.16 In the light of these examples, we can

interpret Theorems 2 and 3 as minimal domain results. The smallest minimally rich

domainD∗ is a minimal domain for which the single-lapping rules are the unique rules that

satisfy strategy-proofness, individual rationality, and either non-bossiness and flexibility,

or Pareto efficiency.

Finally, we conclude relating our results to those by Sönmez (1999). This author proves

that for coalition formation problems in which there is always a core-stable partition, there

is a rule that satisfies strategy-proofness, individual rationality, and Pareto efficiency if the

set of core-stable partitions is always essentially single-valued. Our results are independent

15See Appendix B for additional details.
16Indeed, individual rationality is easily satisfied in the domain of top preferences. Note that any agent

prefers to join the whole society rather than staying alone as long unless her best preferred coalition is

staying alone. Finally, we have to note that Alcalde and Revilla’s results depend crucially on the fact

that every conceivable coalition is feasible. Their top-covering algorithm works if there are no restrictions

in the set of feasible coalitions.

18

C
en

tr
o

 d
e 

E
st

u
d

io
s 

A
n

d
al

u
ce

s



of Sönmez’s results. The main difference between our framework and Sönmez’s one relies

on the domain of preferences over coalitions. Sönmez (1999) assumes the existence of

certain preferences that need not exist in a minimally rich domain. Basically, in Sönmez’s

framework for each i ∈ N , and each C ∈ (Fϕ ∩ Ci), if there is an admissible preference

%i such that C �i {i}, then there is another admissible preference %′
i such that for each

C ′ ∈ (Fϕ ∩ Ci) \ {i}, C ′ %′
i C if and only if C ′ %i C, while C %i C ′ if and only if

C %′
i C ′ and C %′

i {i} %′
i C ′. There are minimally rich domains, namely the domain of

additively representable preferences, for which such preferences are not admissible. Let

i, j, k ∈ N , and assume {i, j}, {i, k}, {i, j, k} ∈ Fϕ. Let %i∈ Ai be such that {i, j, k} �i

{i, j} � {i, k} � {i}, but there is no %′
i∈ Ai such that {i, j, k} �′

i {i}, {i} �′
i {i, j}, and

{i} �′
i {i, k}.

6 Proof of Theorem 2

We begin this section by introducing some properties that are implied by our axioms.

These properties incorporate the idea that a rule cannot be against the preferences of

the members of the society. When there is a partition that each agent considers at least

as good as every other partition, a rule should choose that best-preferred partition. A

stronger requirement would be that whenever the members of a coalition consider this

coalition as the best coalition, this coalition should form, independently of the preferences

of the remaining agents in society. Of course, the following axioms refer to rules defined

on a minimally rich domain D̄.

Unanimity. Let σ = {C1, . . . , Cm} ∈ Σ be such that for each t = 1, . . . ,m , Ct ∈ Fϕ .

For each %∈ D̄, each t = 1, . . . ,m , and each i ∈ Ct, top(Fϕ, %i) = Ct implies ϕ(%) = σ .

Top-Coalition. Let C ∈ Fϕ and %∈ D̄. If for each i ∈ C, top(Fϕ, %i) = C , then for

each i ∈ C, ϕi (%) = C.

It is clear that top-coalition and Pareto efficiency imply unanimity. However, Pareto

efficiency and top-coalition are logically independent. Note that top-coalition is a prop-

erty of rules. Banerjee, Konishi, and Sönmez (2001) use the term top-coalition to name

a property of preference profiles. These authors say that a preference profile satisfies the

top-coalition property if for every group of agents V ⊆ N there is a coalition C ⊆ V that is
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mutually the best coalitions for all the members of C. Basically, our top-coalition implies

that at a preference profile that satisfies Banerjee, Konishi, and Sönmez’s top-coalition

property, then the rule selects a partition in which all the coalitions such that all their

members consider as the best feasible coalition are formed.

Lemma 1. Let D̄ be a minimally rich domain. If a rule ϕ : D̄ → Σ satisfies strategy-

proofness, non-bossiness, and flexibility, then ϕ satisfies unanimity.

Proof. Let σ = {C1, . . . , Cm} ∈ Σ be such that for each t = 1, . . . ,m, Ct ∈ Fϕ. Let

%∈ D̄ be such that for each t = 1, . . . ,m and each i ∈ Ct, top(Fϕ, %i) = Ct . By

flexibility, σ ∈ Rϕ. Then, there is %′∈ D̄, such that ϕ(%′) = σ. Let i ∈ N . Let

%′′∈ D̄ be such that %′′
i =%i while for each j ∈ N \ {i}, %′′

j =%′
j. By strategy-proofness,

ϕi(%′
N\{i}, %i) %i ϕi(%′) = top(Fϕ, %i) . Then, ϕi(%′

N\{i}, %i) = ϕi(%′) = top(Fϕ, %i) . By

non-bossiness, ϕ(%′
N\{i}, %i) = ϕ(%′). Repeating the argument as many times as neces-

sary, we obtain ϕ(%) = ϕ(%′).

Lemma 2. Let D̄ be a minimally rich domain. If a rule ϕ : D̄ → Σ satisfies strategy-

proofness, individual rationality, non-bossiness, and flexibility, then ϕ satisfies top-coalition.

Proof. Let C ∈ Fϕ. Let %∈ D̄ be such that for each i ∈ C, top(Fϕ, %i) = C. If

#C = 1, then the result follows from individual rationality. If C = N , then the result

is immediate by unanimity. Let %′∈ D̄ be such that for each i ∈ C, top(Fϕ, %′
i) = C,

for each C ′ ∈ Ci such that there is j ∈ (C ′ \ C), {i} �i C ′, and for each k /∈ C,

%k=%′
k.

17 By individual rationality, for each i ∈ C, ϕi(%′) ⊆ C. Let %′′∈ A be such

that for each i ∈ C, %′
i=%′′

i while for each k ∈ (N \ C), ϕk(%′) = top(Fϕ, %′′
k) . By

strategy-proofness, ϕk(%′
N\{k}, %

′′
k) = ϕk(%′) . By non-bossiness, ϕ(%′

N\{k}, %
′′
k) = ϕ(%′) .

Repeating the arguments for each k ∈ (N \ C), ϕ(%′) = ϕ(%′′). By unanimity, for each

i ∈ C, ϕi(%′′) = C. Then, ϕi(%′) = C. Finally, let i ∈ C. By strategy-proofness,

ϕi(%′
N\{i}, %i) %i ϕi(%′) . Then, ϕi(%′

N\{i}, %i) = C. Repeating the argument as many

times as necessary, we obtain that for each i ∈ C, ϕi(%) = C.

In the following lemma we prove that agents’ preferences over infeasible coalitions are

irrelevant for the social choice.

17Note that ×i∈ND−
i ⊂ D̄. Thus, %′

C∈ D̄C .
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Lemma 3. Let D̄ be a minimally rich domain. If a rule ϕ : D̄ → Σ satisfies strategy-

proofness and non-bossiness, then, for each %, %′∈ D̄ such that for each i ∈ N , and each

C, C ′ ∈ (Fϕ ∩ Ci), C �i C ′ if and only if C �′
i C ′, ϕ(%) = ϕ(%′).

Proof. Let %, %′∈ D̄ be such that for each i ∈ N , and each C, C ′ ∈ (Fϕ ∩ Ci), C �i C ′

if and only if C �′
i C ′. Let i ∈ N . By strategy-proofness, ϕi(%N\{i}, %′

i) %′
i ϕi(%) and

ϕi(%) %i ϕi(%N\{i}, %′
i) . Because for each C, C ′ ∈ (Fϕ ∩ Ci), C �i C ′ if and only if

C �′
i C ′, we have ϕi(%) = ϕi(%N\{i}, %′

i). By non-bossiness, ϕ(%) = ϕ(%N\{i}, %′
i).

Repeating the argument as many times as necessary, we get ϕ(%) = ϕ(%′).

The following lemma presents the crucial step in the proof of Theorem 2.

Lemma 4. Let D̄ be a minimally rich domain. If a rule ϕ : D̄ → Σ satisfies strategy-

proofness, individual rationality, non-bossiness, and flexibility, then Fϕ satisfies the single-

lapping property.

Proof. The proof is by induction on the number of agents. We first focus on three-agent

societies. Then, we extend the result to arbitrary societies. We use extensively throughout

the proof the fact that D∗ ⊆ D̄.

Claim 1. Let n = 3, then Fϕ satisfies Condition (a) of the single-lapping property.

Proof. Let N = {i, j, k}. Assume to the contrary that Fϕ does not satisfy Condition (a).

Then, there are C, C ′ ∈ Fϕ such that #(C ∩ C ′) ≥ 2. We have two cases.

Case (1.1): Fϕ = {{i}, {j}, {k}, {i, j}, {i, j, k}}.

Let %̄k ∈ D∗
k be such that {i, j, k}�̄k{i, k}�̄k{j, k}�̄k{k}. Let the rule ϕ̄{i,j} : D̄{i,j} → Σ

be such that for each %{i,j}∈ D̄{i,j}, ϕ̄{i,j}(%{i,j}) ≡ ϕ(%{i,j}, %̄k). By ϕ’s strategy-

proofness, ϕ̄{i,j} satisfies strategy-proofness. By ϕ’s top-coalition,

Rϕ̄{i,j}
= {({i}, {j}, {k}), ({i, j}, {k}), {i, j, k}}.

By Remark 1, agent i and agent j’s preferences over the partitions in Rϕ̄{i,j}
are unre-

stricted. Hence, ϕ̄{i,j} satisfies strategy-proofness, its range contains three elements, and

21

C
en

tr
o

 d
e 

E
st

u
d

io
s 

A
n

d
al

u
ce

s



agents’ preferences over the elements of the range are unrestricted. Then, by the Gibbard-

Satterthwaite Theorem, ϕ̄{i,j} is dictatorial. Assume that i is the dictator for ϕ̄{i,j}. Let

%{i,j}∈ D∗
{i,j} be such that {i, j, k} �i {i, j} �i {i} and {j} �j {i, j} �j {i, j, k}. Then,

ϕ(%{i,j}, %̄k) = {i, j, k} , but {j} �j ϕj(%), which violates individual rationality, a con-

tradiction.

Case (1.2) {{i}, {j}, {k}, {i, j}, {j, k}, {i, j, k}} ⊆ Fϕ.

Let %1∈ D∗ be such that,

%1
i : %1

j : %1
k:

{i, j} {i, j} {j, k}
{i} {j} {i, j, k}

{i, j, k} {i, j, k} {k}
{i, k} {j, k} {i, k}

By top-coalition, ϕ (%1) = ({i, j}, {k}).
Let %2∈ D∗ be such that %2

N\{i}=%1
N\{i} and {i, j, k} %2

i {i, j} %2
i {i, k} %i

2 {i}.
By strategy-proofness, ϕi(%2) %2

i ϕi(%1). Then, ϕi(%2) is either {i, j, k} or {i, j}. Be-

cause {j} �2
j {i, j, k}, by individual rationality, ϕi(%2) = {i, j}. Then, by non-bossiness,

ϕ(%2) = ϕ(%1) .

Let %3∈ D∗ be such that %3
N\{j}=%2

N\{j} and {i, j} %3
j {i, j, k} %3

j {j}. By strategy-

proofness, ϕj (%3) %3
j ϕj(%2). Then, ϕj(%3) = {i, j}. By non-bossiness, ϕ (%3) = ϕ (%2).

Now, let %4∈ D∗ be such that %4
N\{i}=%3

N\{i} and {i, k} %4
i {i, j, k} %4

i {i}. Then,

%4
i : %4

j : %4
k:

{i, k} {i, j} {j, k}
{i, j, k} {i, j, k} {i, j, k}
{i} {j} {k}
{i, j} {j, k} {i, k}

By individual rationality, ϕi(%4) 6= {i, j}, ϕk(%4) 6= {i, k}, and ϕj(%4) 6= {j, k}. By

strategy-proofness, ϕi(%3) %3
i ϕ(%4). Note that, {i, j, k} �3

i ϕ (%3) . Then, ϕ (%4) =

({i}, {j}, {k}).
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Let %5∈ D∗ be such that %5
i =%4

i , {j, k} �5
j {j} �5

j {i, j, k} %5
j {i, j} , and {i, j, k} %5

k

{j, k} %5
k {i, k} %5

k {k}. By top-coalition, ϕk(%5
N\{k}, %

4
k) = {j, k} . By strategy-proofness,

ϕk(%5) %5
k {j, k} . Because {j} �5

j {i, j, k} , by individual rationality, ϕ (%5) = ({i}, {j, k}) .
Let %6∈ D∗ be such that %6

N\{j}=%5
N\{j} and {i, j, k} %6

j {j, k} %6
j {i, j} %6

j {j}. Note

that, by unanimity, ϕ(%6
N\{i}, %

3
i ) = {i, j, k} . Hence, by strategy-proofness, ϕi(%6) %i {i, j, k} .

Then, ϕ(%6) = {i, j, k} .

Finally, let %7∈ D∗ be such that %7
N\{j}=%6

N\{j} and %7
j=%4

j . Then

%7
i : %7

j : %7
k:

{i, k} {i, j} {i, j, k}
{i, j, k} {i, j, k} {j, k}
{i} {j} {i, k}
{i, j} {j, k} {k}

Note that the only difference between %4 and %7 consists of k’s preference. By strategy-

proofness, ϕj (%7) %7
j ϕj (%6) = {i, j, k}. By individual rationality, if j ∈ ϕi(%7), then

ϕi(%7) = {i, j, k}. Hence, ϕ (%7) = {i, j, k}. However, ϕk (%7) �4
k ϕk (%4), which violates

strategy-proofness, a contradiction.

Cases (1.1) and (1.2) exhaust (up to a relabelling the agents) all the possibilities.

Then, Fϕ satisfies Condition (a), which concludes the proof of Claim 1. �

Claim 2. Let n = 3, then Fϕ satisfies Condition (b) of the single-lapping property.

Proof. Assume, to the contrary, that Fϕ does not satisfy Condition (b). Then, there is

a list of coalitions {C1, . . . , Cm} ⊂ Fϕ, with m ≥ 3 and m + 1 = 1 such that for each

t = 1, . . . ,m, #(Ct ∩ Ct+1) ≥ 1 and for no i ∈ N , (Ct ∩ Ct+1) = {i}. By Claim 1, ϕ

satisfies Condition (a). Then, we have Fϕ = {{i}, {j}, {k}, {i, j}, {j, k}, {i, k}}. Thus,

for each %∈ D̄, there is i′ ∈ {i, j, k} such that

ϕi′(%) = {i′} (*)

Let %∈ D∗ be such that {i, j} �i {i, k} �i {i},18 {j, k} �j {i, j} �j {j}, and

{i, k} �k {j, k} �k {k} . Let P ∈ P be such that k P i P j, and let %′
i∈ D∗

i be

18Note that by Lemma 3, we only need specify agents’ preferences over feasible coalitions.
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%′
i=%−

i (P ) . Because top(Fϕ, %′
i) = top(Fϕ, %k) = {i, k} , by top-coalition, we have that

ϕ(%N\{i}, %′
i) = ({i, k}, {j}) . By strategy-proofness, ϕi(%) �i ϕ(%N\{i}, %′

i) . Then, we

have that ϕi(%) 6= {i} . Using parallel arguments, we get ϕj(%) 6= {j} and ϕk(%) 6= {k} ,

which contradicts (*) and concludes the proof of Claim 2. �

Now, we extend the result to arbitrary finite societies.

Induction Step. There is m ≥ 3 such that for n = m, if the n-agent rule ϕ satisfies

strategy-proofness, individual rationality, non-bossiness, and flexibility, then Fϕ satisfies

the single-lapping property. We prove that this is true for n = m + 1.

By Claims 1 and 2, the induction hypothesis is true for m = 3. Let n = m+1. Assume

that ϕ satisfies strategy-proofness, individual rationality, non-bossiness, and flexibility.

First, we prove two facts.

Fact 1. For each C, C ′ ∈ Fϕ such that C ∪ C ′ 6= N , #(C ∩ C ′) = 1.

Proof. Let C, C ′ ∈ Fϕ be such that (C ∪ C ′) 6= N . Let j ∈ N \ (C ∪ C ′). Let %̄j ∈ D∗
j

be such that for each C ∈ Cj, C 6= {j}, {j}�̄jC. Let ΣN\{j} denote all the partitions

of the reduced society N \ {j}. Define the rule ϕ̄N\{j} : D̄N\{j} → ΣN\{j} in such a way

that for each %N\{j}∈ D̄N\{j}, (ϕ̄N\{j}(%N\{j}), {j}) ≡ ϕ(%N\{j}, %̄j). By ϕ’s strategy-

proofness, individual rationality, non-bossiness, and flexibility, ϕ̄N\{j} satisfies strategy-

proofness, individual rationality, non-bossiness, and flexibility. By the induction hypoth-

esis, F ϕ̄N\{j}
satisfies the single-lapping property. By ϕ’s flexibility, C, C ′ ∈ F ϕ̄N\{j}

, then

#(C ∩ C ′) = 1. �

Similar arguments apply to prove the following fact.

Fact 2. For each {C1, . . . , Cm} ⊆ Π with m ≥ 3, ∪m
t=1Ct 6= N , and for each t = 1, . . . ,m,

#(Ct ∩ Ct+1) ≥ 1 (where m + 1 = 1), there is i ∈ N such that for each t = 1, . . . ,m,

Ct ∩ Ct+1 = {i}.

Claim 1′. Fϕ satisfies Condition (a).
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Proof. Assume, to the contrary, that there are C, C ′ ∈ Fϕ such that (C ∪ C ′) = N , and

#(C ∩ C ′) ≥ 2. We replicate the arguments of three-agent societies. There are three

cases:

Case (1.0′) Let C, C ′ 6= N .

By Fact 1, either Fϕ = {[N ], C, C ′}, or Fϕ = {[N ], C, C ′, N}. Let %̄N\(C∩C′) ∈ D∗
N\(C∩C′)

be such that for each j ∈ (C \ C ′), top(Fϕ, %j) = C, whereas for each k ∈ (C ′ \ C),

top(Fϕ, %k) = C ′. Define the rule ϕ̄C∩C′
: D̄C∩C′ → Σ in such a way that for each

%C∩C′∈ D̄C∩C′ , ϕ̄C∩C′
(%C∩C′) ≡ ϕ(%C∩C′ , %̄N\(C∩C′)). Because ϕ is strategy-proof, ϕ̄C∩C′

is strategy-proof. Moreover, by top-coalition, Rϕ̄C∩C′
= {[N ], (C, [C ′ \ C]), (C ′, [C \ C ′])}.

By Remark 1, the preferences of the agents in (C∩C ′) over the partitions in Rϕ̄C∩C′
are not

restricted. By the Gibbard-Satterthwaite Theorem, ϕC∩C′
is dictatorial. Let i ∈ (C ∩C ′)

be a dictator for ϕC∩C′
. Let %C∩C′∈ D∗

C∩C′ be such that top(F ϕ̄C∩C′
, %i) = C ′, and for

each j ∈ (C∩C ′)\{i}, top(F ϕ̄C∩C′
, %j) = {j}. Then, ϕ(%C∩C′ , %̄N\(C∪C′)) = (C ′, [C\C ′]),

which violates ϕ’s individual rationality, a contradiction.

Case (1.1′) Let C ′ = N , and for no j ∈ C there is k ∈ N \C and C ′′ ⊂ N with C ′′ ∈ Fϕ

such that {j, k} ⊆ C ′′.

Let %N\C∈ D∗
N\C be such that for each j ∈ (N \C), top(Fϕ, �̄j) = N . Define now the rule

ϕ̄C : D̄C → Σ in the following way. For each %C∈ D̄∗, ϕ̄C(�C) ≡ ϕ(%C , %̄N\C). Clearly,

ϕ̄C satisfies strategy-proofness. Moreover, by top-coalition, for each i ∈ C, Fϕ∩Ci = F ϕ̄C
.

Hence, by Remark 1, the preferences of the agents in C over partitions in Rϕ̄C
are not

restricted. By the Gibbard-Satterthwaite Theorem, ϕ̄C is dictatorial, which, by an already

familiar argument, violates ϕ’s individual rationality, a contradiction.

Case (1.2′) Let C ′ = N , and for some j ∈ C there is k ∈ N \ C and C ′′ ⊂ N with

C ′′ ∈ Fϕ such that {j, k} ⊆ C ′′.

Note first that, by Fact 1, for each C ′′ ∈ (Fϕ \ N), #(C ∩ C ′′) ≤ 1. Moreover, by

Fact 2, there is no cycle of three coalitions in Fϕ that does not involve the grand coalition

N .
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Let C, N ∈ Fϕ, let j ∈ C be such that for some T ⊆ N \ C, T ∪ {j} ∈ Fϕ. Let

C̄ ≡ C \ {j}. Let T ′ ∈ Fϕ \ {C, N}. By Fact 1, there is no i ∈ C \ {j}, such that

{i, j} ⊆ T ′. By Fact 2, there is no k ∈ T such that {i, k} ⊆ T ′.

Let %1∈ D∗ be such that for each i ∈ C̄, there is P 1
i ∈ P with j = max(N, P 1

i ),

N+
i (P ) = C, and %1

i =%−
i (P 1

i ), for j there is P 1
j ∈ P with N+

j (P ) = C, and %1
j=%−

j (P 1
j ),

while for each k ∈ N \ C, there is P 1
k ∈ P with N+

k (P ) = {j} ∪ {k}, and %1
k=%+

k (P 1
k ).

By top-coalition, for each i ∈ C, ϕi(%1) = C.

Next, let %2∈ D∗ be such that %1
N\C̄=%2

N\C̄ , while for each i ∈ C̄ there is P 2
i ∈

P such that j = max(N, P 2
i ), N+

i (P 2
i ) = N , and %2

i =%+
i (P 2

i ). Note that for each

i ∈ C̄, N = top(Fϕ, %2
i ) and C = top(Fϕ \ N, %2

i ). Let i ∈ C̄, by strategy-proofness,

ϕi(%1
N\{i}, %

2
i ) %2

i ϕi(%1) = C. By individual rationality, ϕj(%1
N\{i}, %

2
i ) 6= N . Then,

ϕi(%1
N\{i}, %

2
i ) = C. By non-bossiness, ϕ(%1

N\{i}, %
2
i ) = ϕ(%1). Repeating the same

argument iteratively with each i ∈ C̄, we get ϕ(%2) = ϕ(%1).

Let %3∈ D∗ be such that %2
N\{j}=%3

N\{j} and %3
j=%+

j (P 1
j ). Note that top(Fϕ, %3

j) = C .

By strategy-proofness, ϕj(%3) %3
j ϕ(%2). Then, ϕj(%3) = C, and by non-bossiness,

ϕ(%3) = ϕ(%2).

Let %4∈ D∗ be such that %3
N\C̄=%4

N\C̄ , while for each i ∈ C̄ there is P 4
i ∈ P such that

for some k̄ ∈ T , max(N, P 4
i ) = k̄, N+

i (P 4
i ) = T ∪{i}, and %4

i =%+
i (P 4

i ). Note that by Fact

2 and our assumptions on Fϕ, for each i ∈ C̄, top(Fϕ, P 4
i ) = N , and for each C ∈ Fϕ∩Ci,

if C 6= N , then {i} %4
i C. Let i ∈ C̄, by strategy-proofness, ϕi(%3) %3

i ϕi(%3
N\{i}, %

4
i ).

Hence, ϕi(%3
N\{i}, %

4
i ) 6= N . Repeating the argument for each i ∈ C̄, we obtain that

ϕ(%4) 6= N . Clearly, for each i ∈ C̄, N is the only coalition in Fϕ that is preferred to

staying on her own. On the other hand, for agent j, the coalitions that are preferred to

staying alone include some member of C̄. Finally, each agent k ∈ N \ C requires the

presence of agent j in order to consider a coalition better than staying on her own. Then,

by individual rationality, we have that ϕ(%4) = [N ].

Consider now the profile %5∈ D∗, such that for each i ∈ C̄, %5
i =%4

i , for some P 5
j ∈ P

such that there is k̄ ∈ T , with max(N, P 5
j ) = k̄ and N+

j (P 5
j ) = N , and %5

j=%+
j (P 5

j ),

while for each k ∈ N \ C, there is P 5
k ∈ P such that j = max(N, P 5

k ), N = N+
k (P 5

k ), and

%5
k=%+

k (P 5
k ). By unanimity, ϕ(%5) = N .

Finally, let %6∈ D∗, be such that for each %6
C=%4

C , while %6
N\C=%5

N\C . That is,

we only change agent j’s preferences with respect to the previous profile. By strategy-

proofness, ϕj(%6) %6 ϕj(%5) = N . By individual rationality, for each i ∈ C̄, if j ∈ ϕi(%6) ,
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then ϕi(%6) = N . Hence, ϕ(%6) = N . Clearly, %6 only differs from %4 in the preferences

of the agents who belong to N \ C. Let k ∈ N \ T . By strategy-proofness, we have that

ϕk(%6
N\{k}, %

4
k) %4

k ϕk(%6) = N . Then, j ∈ ϕk(%6
N\{k}, %

4
k). By individual rationality,

there is i ∈ C̄ such that i ∈ ϕj(%6
N\{k}, %

4
k). By Fact 1 and our assumptions over Fϕ,

ϕ(%6
N\{k}, %

4
k) = N . Repeating the argument as many times as necessary, we get that

ϕ(%4) = N , a contradiction.

Cases (1.0′), (1.1′) and (1.2′) exhaust all the possibilities. Then, this suffices to prove

that Fϕ satisfies Condition (a). �

Claim 2′. Fϕ satisfies Condition (b).

Proof. Assume, to the contrary, that ϕ does not satisfy Condition (b). Then, there is

a list of coalitions {C1, . . . , Cm}, with m ≥ 3 such that for each t = 1, . . . ,m, (m + 1 = 1),

(Ct ∩ Ct+1) 6= {∅} , and there is no i ∈ N such that for each t = 1, . . . ,m, {i} = (Ct ∩ Ct+1) .

Because we have just proved that Fϕ satisfies Condition (a) of the single-lapping prop-

erty, we have that for each t = 1, . . . ,m, #(Ct ∩ Ct+1) = 1. By Fact 2, ∪m
t=1Ct = N .

Moreover, Fϕ = {C1, . . . , Cm} ∪ [N ] .

For each t = 1, . . . ,m, let it ≡ (Ct ∩ Ct+1). Note that for each t = 1, . . . ,m and

each j ∈ (Ct \ {it−1, it}) , Fϕ ∩ Cj = {Ct, {j}}. On the other hand, for each t = 1, . . . ,m,

Fϕ ∩ Cit = {Ct, Ct+1, {it}}. Then, by Remark 1, minimal richness of the domain of

preferences does not introduce any restriction on how the agents may order the different

coalitions they may belong to. From now on, we only describe agents’ preferences over

feasible coalitions.

For each t = 1, . . . ,m, let it ≡ (Ct ∩ Ct+1). Let %∈ D̄ be such that for each

t = 1, . . . ,m and each j ∈ (Ct \ {it−1, it}), top(Fϕ, %j) = Ct, and for each t = 1, . . . ,m,

top(Fϕ, %it) = Ct+1, and Ct �it {it}. Let t ∈ {1, . . . ,m}. Let %′
it∈ D̄it be such

that top(Fϕ, %′
it) = Ct. By top-coalition, ϕit(%N\{it}, %

′
it) = Ct . By strategy-proofness,

ϕit(%) %it ϕit(%N\{it}, %
′
it) . Thus, for each t = 1, . . . ,m; ϕit(%) %it Ct.

Assume first that m is odd. Then, there is t′ ∈ {1, . . . ,m} such that ϕit′
(%) = {it′},

a contradiction with ϕit(%) %it Ct for each t = 1, . . . ,m.

Assume now that m is even. Without loss of generality, assume that for each t odd,

ϕit(%) = Ct+1 and for each t′ even, ϕit′
(%) = Ct′ . Let t̄ be even. Let Pt̄ ∈ P be such that
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N+
t̄ (Pt̄) = Ct̄+1. Let %′

it̄
=%−

t̄ (Pt̄) ∈ D∗
it̄
. Note that top(Fϕ, %′

it̄
) = Ct̄+1 and for each

T * Ct̄+1, {it̄} �′
it̄

T . By individual rationality, ϕit̄(%N\{it̄}, %
′
it̄
) 6= Ct̄ . Let %′

it̄−1
∈ D∗

it̄−1

be such that top(Fϕ, %′
it̄−1

) = Ct̄−1 . By top-coalition, ϕit̄−1
(%N\{it̄−1,it̄}, %

′
{it̄−1,it̄}) = Ct̄−1 .

By strategy-proofness, we have that ϕit̄−1
(%N\{it̄}, %

′
{it̄}) %it̄−1

ϕit̄−1
(%N\{it̄−1,it̄}, %

′
{it̄−1,it̄}) .

Then, ϕit̄−1
(%N\{it̄}, %

′
it̄
) = Ct̄−1, and ϕit̄−2

(%N\{it̄}, %
′
it̄
) = Ct̄−1 . Repeating the argument

as many times as necessary, for each t odd, ϕit(%N\{it̄}, %
′
it̄
) = Ct , while for each t′ even

ϕit′
(%N\{it̄}, %

′
it̄
) = Ct′+1, and ϕit̄(%N\{it̄}, %

′
it̄
) = Ct̄+1. Then, we get ϕit̄(%N\{it̄}, %

′
it̄
) �it̄ ϕit̄(%) ,

which violates strategy-proofness, and suffices to prove Claim 2′ and Lemma 4.

Proof of Theorem 2. From Theorem 1, every single-lapping rule satisfies strategy-

proofness, individual rationality, non-bossiness, and flexibility. Hence, we focus on the con-

verse implication. Let ϕ satisfy strategy-proofness, individual rationality, non-bossiness,

and flexibility. By Lemma 2, ϕ satisfies top-coalition. Let %∈ D̄. By Lemma 4, Fϕ

satisfies the single-lapping property. Thus, there is C ∈ Fϕ such that for each i ∈ C,

top(Fϕ, %i) = C . By top-coalition, for each i ∈ C, ϕi(%) = C. Moreover, by top-coalition,

for each %′∈ D̄ such that %C=%′
C , for each i ∈ C, ϕi(%′) = C. Let ΣN\C denote the

set of all possible partitions of the reduced society N \ C. Define now the restricted

social choice function ϕ̄N\C : D̄N\C → ΣN\C , in such a way that for each %N\C∈ D̄N\C ,

(ϕ̄N\C(%N\C), C) ≡ ϕ(%N\C , %C). Clearly, ϕ̄N\C satisfies strategy-proofness, individual

rationality, non-bossiness, and flexibility. Moreover, F ϕ̄N\C
= {C ′ ∈ Fϕ, C ∩ C ′ = {∅}},

and F ϕ̄N\C
satisfies the single-lapping property. Repeating the same arguments as many

times as necessary, we get ϕ(%) = σ̄F ϕ
(%).
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Cechlárová, C., and A. Romero-Medina (2001): “Stability in Coalition Formation

Games,” Int. J. Game Theory, 4, 487–494.

Demange, G. (2004): “On Group Stability in Hierarchies and Networks,” J. Polit.

Economy, 114, 754–777.

(2005): “The Strategy Structure of Some Coalition Formation Games,” Unpub-

lished Manuscript, EHESS - Paris-Jourdan Sciences Economiques.

Drèze, J., and J. Greenberg (1980): “Hedonic Coalitions: Optimality and Stability,”

Econometrica, 48, 987–1003.

Gibbard, A. (1973): “Manipulation of Voting Schemes: A General Result,” Economet-

rica, 41, 587–601.

Le Breton, M., and A. Sen (1999): “Separable Preferences, Strategy-Proofness and

Decomposability,” Econometrica, 67, 605–628.

Ledyard, J. (1977): “Incentive Compatible Behavior in Core-Selecting Organizations,”

Econometrica, 45, 1607–1621.
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