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RESUMEN
En este trabajo se evalúa el impacto de la repercusión de la Directiva Marco de
Aguas, en términos de uso eficiente del agua de riego, sobre diferentes grupos
homogéneos de agricultores. Para la simulación de la respuesta de los
productores, y por tanto del nivel de consumo de este factor de producción,
hemos recurrido a la teoría de la utilidad multiatributo. Metodológicamente la
innovación consiste en el procedimiento de cálculo de las ponderaciones de los
objetivos perseguidos por los agricultores a partir del nivel observado de las
actividades y de los objetivos, así como la aplicación previa del análisis cluster
para la determinación de funciones de utilidad representativas de un grupo
homogéneo de agricultores. Los resultados sugieren un comportamiento muy
diferente según el tipo de productor en relación con la cantidad de agua de riego
consumida a medida que se incrementa el precio de este insumo.

Palabras clave: Teoría de la Producción, Uso de insumos, Teoría de la Utilidad
Multiatributo, Agua de riego.

ABSTRACT
In this paper we present a methodology to analyse input use in the agricultural
sector. The novelty of the theoretical model explained is that it has been
developed considering a multi-criteria environment. Thus, the optimal input use
condition is determined by the assessment of “multi-attribute utility” and “multi-
attribute marginal utility”. We show how the approach adopted in this paper is a
generalization of the single-attribute expected utility theory. The theoretical
model developed is further implemented in an empirical application that studies
water for irrigation use as a particular case.  Results show how multi-attribute
utility functions elicited for a sample of 52 irrigators explain differences on
irrigation water use in relative homogenous agricultural systems, albeit exhibiting
similar water partial utility functions. We conclude that these differences come
from the dissimilar weights that farmers attached to each attribute in the
aggregate utility function. The irrigated area considered as case study is located
in North-western Spain.

Keywords: Production Theory, Input Use, MAUT, Water for Irrigation, Spain 
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1. INTRODUCTION 

Spanish authorities have recently introduced a new legislative framework aiming to 

promote demand water policies as an alternative to traditional supply water policies. This 

new institutional environment includes higher water pricing, complying with the European 

Water Framework Directive, the introduction of water markets and a new subsidy scheme 

in order to achieve water conservation in irrigated areas. 

 

All these policy instruments have been designed and implemented assuming the 

producers’ rational behaviour of profit maximization. Following this assumption, farmers 

use water for irrigation up to a level where the marginal product value equals the water 

price (MgPVw=Pw). Thus, an increase of price devised by the authorities aims a left-shift of 

the factor production function, therefore encouraging a decrease in this input use and so a 

more efficient use of this factor in the agricultural sector.  

 

Following the classical approach of input allocation, the implementation of water markets 

is expected to move water from lower to higher marginal productivity uses. Thus, farmers 

can trade their water use rights and sell them to a point where the water marginal 

productivity equals the water price of the market, therefore, improving water allocation 

efficiency. 

 

In the same way, the Spanish agricultural policy orientated towards the modernization of 

the irrigation systems targets the most inefficient producers to improve water productivity 

and farm income. This policy has been implemented through subsidies in order to partially 

compensate investment costs and thus, allowing farmers to obtain a net profit for the 

water conservation measure achieved. The combination of this policy with the water price 

increase will presumably reduce the water demand for agricultural uses. For a 

comprehensive review of policy water instruments see for example Boggess et al. (1993), 

Carruthers y Clark (1981), FAO (1995), Merret (1997) or OECD (1998). 

 

However, many studies have rejected the hypothesis of farmers’ profit maximization 

behaviour, suggesting that producers seek to optimize a set of objectives apart from the 

former such as risk minimization, the maximization of leisure time, the minimization of 

working capital, etc (Gasson, 1973; Harper and Eastman, 1980; Cary and Holmes, 1982; 

Perkin and Rehman, 1994; Willock et al., 1999 and Solano et al., 2001). The implication of 

this is clear: the impact assessment of input use from such policies will be different 
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whether we assume profit maximization alone or we include various objectives in a multi-

criteria framework. 

 

Based on the previous assumption, the purpose of this paper is to develop a theoretical 

model that includes more than a single-objective to analyse input use. Under the Multi-

Criteria Decision Making (MCDM) paradigm, through the Multi-Attribute Utility Theory 

(MAUT), we aim to determine the utility derived from the use of the input to the producers. 

This analysis will be developed in a twofold manner: the determination of input partial 

utility, this is, the utility calculated considering one single attribute, and the aggregated 

utility as the weighted sum of all partial utilities. This theoretical model will further be 

implemented to analyze water for irrigation as a case study. 

 

The paper is organized as follows: Section 2 presents an introduction to the use of the 

multi-criteria approach to farm modelling via MAUT and how, following the methodology 

we present in this paper, we are able to determine the optimum use of water from its 

shadow price in the aggregate utility functions. Section 3 explains the methodology 

followed to elicit the farmers’ utility functions in our particular case study. Section 4 

presents the area of study in which the methodology was applied, while the results are 

summarized in Section 5. We finish the paper by drawing some relevant conclusions 

about this work. 

 

2. THEORETICAL FRAMEWORK 

2.1. Factor use analysis in Production Theory. Literature review 

In Classic Economic Theory is well accepted the single-objective maximization behaviour 

of the economic agents. According to this, given a production function y= (v1, v2,…,vn) it 

is assumed that: 

0(·)

iv
f     and     0(·)

2

2

iv
f     [1] 

If the product has a known price P, the profit function becomes: 
n

i
iv ·vp)- vP·f( 

i
1

     [2] 

where pvi are the input prices and vi are the amount of inputs used. 

 

The level of input use in this context for a profit maximizer agent will be determined by the 

first order condition: 
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0
iv

   implying that    
iv

i

p
v

fP (·)
             [3] 

This is, the economic agent uses the input up to when its marginal product value equals 

its price (MgPVvi=pvi). 

 

In a multi-input and multi-output context, common in the agricultural sector, and making 

some simplifications about the mathematical formulation of the model, namely fixedness, 

finiteness, continuity, homogeneity, additivity, proportionality and certainty (Hazell and 

Norton, 1986; Paris, 1991; McCarl and Spreen, 1997), the linear programming modelling 

approach of the profit maximizer farmers’ behaviour becomes: 

Max   
n

i

m

j
ijv

m

j
ijjj vp vfP 

i
1 11

·)(·          [4] 

Subject to:               i

m

j
ij bv

1
     i 

where fj(·) is the production function of m activities (crops/livestock), vij is the amount of factor 

i used in the activity j, and ib  is the farm resource availability. 

 

It is common that the optimum solution of the previous model does not seem to fit 

adequately to the observed behaviour of the producer, suggesting the need of a more 

complex model to ensure more accurate results. 

 

In an attempt to cope with the limitation of such a models, Expected Utility Theory (EUT) 

introduces the uncertainty in the analysis. Following this approach, profit is a stochastic 

variable rather than a deterministic one; moreover the producer’s risk aversion must be 

included in determining the optimum strategy facing uncertainty (Von Neumann and 

Morgenstern, 1947). 

 

According to EUT, and assuming the axioms of order, continuity and independence, it can 

be proved that a utility function U( ), associated with a cardinal value to rank alternatives, 

exists, and that the decision-makers try to maximize its expected value. It is mostly 

accepted for this type of utility functions that U’( )>0, implying increasing utility with profit, 

and U’’( )<0, this is, decreasing marginal utility. 

 

Some authors reject some of the assumptions on which EUT is based, being the 

transitivity of preferences a sensitive one (Tversky, 1969; Kahneman and Tversky, 1979). 
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This disagreement has caused the development of several theories inside and outside the 

EUT paradigm in order to establish a descriptive theory of choice under risk. An 

interesting review of the different works done in this field can be found in Starmer (2000). 

Nonetheless, EUT continues being the preferred option for agricultural economists 

(Schoemaker, 1982; Robinson and Hanson, 1997). 

 

Within this context, it is worth noting the seminal work of Magnusson (1969) –further 

developed by Anderson et al. (1977)- on factor use under uncertainty, bringing together 

the Neoclassic Production Theory and EUT. Beginning from a profit utility function, U( ), 

for a single output and input process (y=f(v)) the profit function is defined as = P. (v) - 

pv·v – FC, where FC are the fixed costs. Both works determine the optimizing problem as: 

FC·vP·f(v)- pUEUE vMax          [5] 

In agriculture, the most important source of risk is probably the own production. As a 

result, the model begins considering the function f(v) as the first stochastic element. 

 

The most important limitation to the previous model is the determination of the exact form 

of the utility function. The authors mentioned above have approximated the true utility 

function through Taylor series. Among various possibilities, most mathematical 

formulation include the first two moments, this is, the mean and the variance of , known 

as mean-variance model or E-V model. From these approximations they obtain: 

VARrEUE a ·
2
1Max      [6] 

where ra is the absolute risk aversion coefficient (Pratt, 1964; Arrow, 1965). Thus, applying 

the first order condition to expression [6] it is obtained: 

0)(·

)(
)(

)(
)(

)(
dv

dVAR

E
U

VAR
U

dv
dE     [7] 

Maggnusson defined the expression within the brackets as risk evaluation differential 

quotient (REDQ). Then, using expression [7] within the brackets, it is achieved: 

dv
ydVARPREDQ

dv
ydEPpv

)(··)(· 2     [8] 

Expression [8] implies that the economic optimum is reached as the factor price equals the 

expected marginal product (first term of expression [8]) minus a marginal risk aversion term. 

From this, an efficient risk averter uses factor to a point that its marginal product value is 
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greater than the factor price ( vp(v)fP· ' ). Therefore, under uncertainty the output is lower 

than that postulated by the Classic Economic Theory. The difference is determined by the 

expected output price (P), the production variability (dVAR(y)/dv) and the degree of risk 

aversion of the producer (REDQ). 

 

The former expression can be generalized for a multi-input agricultural system as follows: 

i
ii

v v
dv

ydVARPREDQ
dv

ydEPp
i

       )(··)(· 2    [9] 

Likewise, Anderson et al. (1977) continue the analysis within the same framework 

assuming that the function y=f(v) and the output price (P) are stochastic, being both 

independent distributions, and that the true utility function can be approximated by using 

the first three moments of profit: mean, variance and skewness. The conclusions obtained 

are similar of that presented here. 

 

In spite of the novelty of Magnusson’s (1969) work, it was Sandmo (1971) who 

popularized the analysis of factor use under uncertainty. In his work, the only source of 

uncertainty comes from the product price (P). Unlike Magnusson, Sandmo extends the 

analysis to any mathematical formulation of the utility function without resorting to linear 

approximations, although he reaches the same conclusions, this is, under uncertainty, the 

production level and input use are lower than those obtained in a context of certainty, 

since at the optimum it is verified that vpv·fP )(' . 

 

There are some other studies also focusing on the effect of input price uncertainty (pv) 

upon the input demand and production level (Turnovsky, 1969; Just and Pope, 1979; 

Howitt and Taylor, 1993). According to them, the producer’s demand for input is 

determined by the expected price of the input itself, its variability and his/her degree of risk 

aversion. Thus, the optimum for the risk averse producer is achieved as the marginal 

product value of the factor exceeds the expected input price ( vp(v)P·f ' ). As before, the 

amount of input demanded and output produced are lower than those expected in the face of 

input price certainty. 

 

Seemingly to the modelling of the Classic Production Theory of multi-input and multi-output 

processes using linear programming techniques, the Expected Utility Theory resorts different 

mathematical programming tools. Thus, the analysis of factor use through E-V models is 

presented in Wolgin (1975), Wiens (1976), Musser et al. (1981), Kliebenstein and McCamley 
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(1983) and Singh and Zilberman (1984). More recently, following the same modelling 

approach we have Oglethorpe (1995 and 1997) and Berg (1997). 

 

For non-linear formulations of the utility function is interesting to notice the “Direct Expected 

Utility Maximizing non-linear Programming” (DEMP), developed by Lambert y McCarl (1985), 

the “Utility Efficient Programming” (UEP), devised by Patten et al. (1988), or the combination 

of both (DEMP-UEP), proposed by Pannell et al. (1998). Notwithstanding, all of them require 

the choice, rather subjectively, of the mathematical form of the utility function. We find an 

application of these techniques on the factor use in the agricultural sector in Randhir and Lee 

(1997) using a DEMP model. 

 

2.2. Production Theory in a multi-criteria context 

Albeit the success of EUT as the preferred technique for decision-making modelling after 

the Second World War, it has been recently criticized on the grounds of its single-attribute 

formulation. All these studies reveal the need of considering more than one objective 

when modelling farmers’ decision-making process. 

 

Thus, it is plausible the assumption of the existence of a utility function with several 

attributes , a1, ... an, and that producers aim to maximize its expected value (Robinson, 

1982). This is the core idea behind Multi-Attribute Utility Theory (MAUT): 

Max  E [U ( , a1, ... an)]      [10] 

If attributes a1, ... an are not included in the utility function, the formulation becomes: 

Max  E [U ( , )]        [11] 

Where  is the error term that arises from omitting other attributes in the utility function. As 

Robinson points out (1982, p.374), the expected utility based on a single attribute cannot 

accurately predict the producer’s behaviour since there are other attributes involved in the 

decision-making process. In the same line, Anderson et al. (1977, p.76) claim “money is 

not everything”, therefore there are problems where it seems appropriate to consider other 

than monetary objectives. 

 

Acknowledging the convenience of including several objectives to simulate the producer’s 

behaviour, we resort MAUT, an approach largely developed by Keeney and Raiffa (1976), 

to overcome the limitations of the single-attribute utility function. The multi-attribute 

approach attaches a cardinal value to each alternative, and considers the aggregate effect 

of all attributes. Thus, considering ri attributes from [10] we have: 
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U = U (r1, r2 ... rn)           [12] 

Usually, the level of achievement of each attribute can be expressed mathematically as a 

function of the decision variables, this is, ri = fi( X ). When a direction of improvement is 

assigned to each attribute we refer it as an objective. Thus, decisions under MAUT are 

made by maximizing U and responding to the set of objectives simultaneously followed by 

the producer. 

 

Normally, decision variables ( X ) included in mathematical models programming are 

considered as “activities” associated with crops or livestock to which a particular amount 

of inputs is assigned (i.e. an activity could be the surface devoted to wheat considering 

certain amounts of labour, agro-chemicals, etc.). This is the way to consider the direct 

relationship between the level of production and the amount of inputs used, once the real 

production functions (f(v)) are usually not available. In this sense it is possible to translate 

the level of each activity in the mathematical programming model, X , into a vector of 

inputs, v . Thus, the attributes expressed as a function of the activities, ri = fi( X ), can be 

formulated as well as a function of the inputs used: ri = gi( v ). Taking the example of the 

profit attribute, the new mathematical form as a function of inputs in classical 

microeconomic theory is: 
n

i
ivi ·vp)- vP·f(vvg

i
1

)()( . 

 

Hence, from [12] we obtain: 

U = U [g1( v ), g2( v ) ... gn( v )] = U( v )    [13] 

As in EUT, we assume that  

0)(

iv
vU     and    0)(

2

2

iv
vU      [14] 

However, we will check later whether or not these assumptions are generally applied to all 

utility functions or are merely a particular case of a wider set of utility function shapes. 

 

To seek the maximum profit, the first order condition implies: 

0)(

iv
vU

         0)(vMgU
iv         vi            [15] 

The former expression is a generalization of that proposed by the EUT and the Classical 

Economic Theory. Let’s consider the EUT assumption of a single-attribute utility function, 

this is, the expected profit utility expression [13] takes the form: 

U = U [ ] = U [  ( v )]       [16] 
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This corresponds to the EUT approach for modelling the economic agents’ behaviour 

since the maximization of U [  ( v )] resembles the maximization of the expected utility with 

profit as the single attribute. Moreover, assuming a linear utility function we get U[ ( v )] = 

( v ), but this is the case usually analysed by the Classical Economic Theory, therefore 

the optimum use of input is determined when: 

ivv
i

n

i
iv

ii
v vp MgPV

v

 ·vp)- vP·f(

v
 v

v
vUvMgU

ii

i

i
         0)()()( 1  [17] 

This EUT point of view, assuming a single-objective, could be considered as adequate 

when the inputs do not provide any other utility different from their contribution to the 

profit. However, as we will show later, this is not the case in the agricultural sector, where 

the inputs provide utility from other attributes different than profit. 

 

In spite of the interest of developing the analysis from expression [15], the main drawback 

comes from the elicitation of the multi-attribute utility function (Herath, 1981; Hardaker et 

al., 1997, p.162). In order to simplify this process, some assumptions are made about the 

mathematical features of the utility function. 

 

Keeney (1974), Keeney and Raiffa (1976) and Fishburn (1982) explain the mathematical 

requirements to assume an additive utility function. According to them, if the attributes are 

mutually utility independent1 the formulation [12] becomes U= {u1(r1), u2(r2), ..., un(rn)} and 

takes either the additive form: U(r1, r2, ..., rn)= wiui(ri), or multiplicative form: U(r1, r2, ..., 

rn)= { (Kwiui(ri)+ 1)- 1}/K, where 0 wi 1 and K= (wi). If the attributes are mutually utility 

independent and wi= 1, then K= 0, and the utility function is additive.  

 

Although these conditions are restrictive to a certain extent, Edwards (1977), Farmer 

(1987) and Huirne and Hardaker (1998) have shown that the additive utility function yields 

extremely close approximations to the hypothetical true utility function even when these 

conditions are not satisfied. This linear approximation is supported by human 

psychological factors as pointed out by Dawes and Corrigan (1974), Einhorn and Hogart 

(1975) and Dawes (1979). For these reasons, among others, it has been widely used the 

additive utility functions for modelling the farmers’ behaviour. In this paper we follow the 

same approach. 
                                                 
1 “An attribute xi is utility independent of the other n-1 attributes xj if preferences for lotteries 
involving different levels of attribute xi do not depend on the levels of the other n-1 attributes xj.” 
(Huirne and Hardaker, 1998). 
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The cardinal value of the utility function, obtained by adding the contributions of each 

attribute, enables us to rank them. The weighting of each attribute expresses its relative 

importance. In mathematical terms, the multi-attribute utility function (MAUF) takes the 

following form: 
n

i
kii ruwU

1
)(      [18] 

where U is the utility value of alternative k, wi is the weight of attribute i and ui(rk) is the 

value of attribute i for alternative k. As pointed out above, the linear additive function 

adopted implicitly assumes that the weights (wi) add up to 1. 

 

Expression [18] in its simplest way takes the form: 
n

i
kirwU

1
      [19] 

The former expression implies linear utility-indifferent curves (constant partial marginal 

utility), a rather strong assumption that can be regarded as a close enough approximation 

if the attributes vary within a narrow range (Edwards, 1977; Hardaker et al., 1997, p.165). 

There is some evidence for this hypothesis in agriculture. Thus, Huirne and Hardaker 

(1998) show how the slope of the single-attribute utility function has little impact on the 

ranking of alternatives. Likewise, Amador et al. (1998) analyse how linear and quasi-

concave functions yield almost the same results. As a consequence, we assume this 

simplification in the elicitation of the additive utility function. 

 

From expression [19] and considering only one variable input we have: 
n

i
ii vgwU

1
)(   i = 1, ..., n    [20] 

The overall utility from factor v is the weighted sum of each factor partial utility function 

(FPUF), this is, the utility that is provided by the factor to each attribute. From this 

formulation the economic optimum implies: 

0)( 
1 dv

vgdwMgU i
n

i
iv   i = 1, ..., n                   [21] 

The former expression for one single product and one input can hardly be applied to the 

agricultural sector where the multi-output and multi-input processes are common. To 

handle the modelling problem we resort in the multi-criteria programming techniques. 

These techniques will allow us to obtain a linear additive MAUF. This utility function 

permits to reduce the complexity of the decision model to a single objective function 
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(estimated MAUF) maximization programming. In this context, the marginal utility of the 

input v (MgUv) in the multi-attribute utility function is calculated from its shadow price. 

Using the amount of input as a parameter, we will be able to calculate the optimum to 

reach a shadow price equals to zero (MgUv=0). 

 

In order to clarify the operational aspects of the MAUT model, we begin explaining the 

FPUFs (gi(v)). These partial utility functions can exhibit increasing marginal utility 

(dgi(v)/dv > 0) or decreasing one (dgi(v)/dv < 0). As an example, let us consider the water 

input and two attributes: profit and leisure time. For the first case, as water allowance 

increases so does profit since farmers opt for more profitable crops, therefore we have an 

increasing water partial utility function, this is, dgprofit(water)/dwater > 0. On the contrary, 

for the leisure time attribute we have dgleisure_time(water)/dwater < 0, since more water 

intensive crops consume more labour. 

 

From the previous example we can see how, in the classical approach, the utility from one 

input is overestimated when considering profit as the only attribute. The results presented 

in this paper support this claim. Thus, considering the increasing or decreasing pattern of 

the partial utility functions, the usual assumptions of increasing utility function ( 0)(

iv
vU ) 

and concavity ( 0)(
2

2

iv
vU ) cannot be assumed a priori within this multi-criteria context. 

 

2.3. Variability of input use among producers 

One central issue in this paper is the assumption of the variability of utility derived from 

the use of inputs among producers. These differences come both from the shape of the 

input partial utility function (gi(v)), and the weights (wi) attached to each attribute in the 

aggregate utility function. 

 

The Classical Economic Theory, considering gprofit(v) as the single attribute, explains the 

differences of marginal productivity among the economic agents in terms of fixed 

resources allowance (natural resources, technology, etc.), and therefore the different 

variable inputs consumption at the optimum. Considering the case of irrigation water, both 

the mathematical programming models and the econometric models found in the literature 

clearly focus on structural factors (e.g. farm size and soil quality) to explain differences 
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among producers on their water partial utility functions of the profit attribute, and thus, the 

difference in water and other inputs use. 

 

We believe this is a partial view of the whole problem of simulating producer’s decision-

making processes. In a wider multi-criteria context we should consider also the pattern of 

the FPUFs of all relevant attributes, to continue with the aggregate analysis of them. We 

did not find any reference in this line. 

 

Whereas the differences on the FPUFs may be important for two different agricultural 

areas, these tend to be small for relatively homogeneous areas. Therefore, the significant 

differences on input use observed in these agricultural systems should be explained in 

terms of the objective weightings in the aggregate utility function. Let us consider, for 

example, the existence of two opposite type of producers: those with a profit maximizing 

behaviour, which implies intensive use of inputs, and those more conservative that prefer 

lower expected profitability but less variability of returns. They may have similar factor 

partial utility functions but different weights for each objective resulting in a very dissimilar 

use of inputs. Behind the variety of weights attached to each objective there are 

psychological, social and economic reasons, which vary considerably among farmers 

inside (and outside) any homogenous agricultural area. In this line, there are few studies 

comparing farmers’ objective weighting, among them see for example Sumpsi et al. 

(1997) and Berbel and Rodriguez (1998). 

 

2.4. Multi-criteria technique to elicit multi-attribute utility functions 

To elicit the multi-attribute additive utility function we follow the methodology devised by 

Sumpsi et al. (1997) and Amador et al. (1998) with further modifications proposed by 

Gómez-Limón et al. (2003). Briefly the steps are: 

 

1. Each attribute j is defined as a mathematical function of decision variables X  (e.g. 

crop area); fj = fj ( X ). These attributes are proposed a priori as the most relevant 

decision-making criteria that are used by farmers (usually profit, risk, etc.). 

 

2. A pay-matrix is obtained, optimising each objective. We also obtain an m by n 

variable-objective matrix, where n is the number of objectives and m the number of 

crops to be considered as alternatives. Each element of the matrix, xij represents the 

area of crop i when the objective j is optimized. 
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3. The following m+1 system of equations is solved: 

i

q

j
ijj xxw

1
 i = 1, 2, ..., q  and  w j

j

q

1

1    [22] 

where wj are the weights attached to each objective (the solution), xij are the elements 

of the decision variable-objective matrix and xi the observed area of crop i.  

 

4. Normally, there is not an exact solution to the above system, and it is therefore 

necessary to solve a problem by minimizing the sum of deviational variables that find 

the closest set of weights:  

Min 
q

i
ii pn

1
 subject to:     [23] 

iiiij

q

j
j xpnxw

1
 i = 1, 2, ..., m  and w j

j

q

1

1    

where ni and pi are the negative and positive deviations respectively. 

 

Dyer (1977) demonstrates that the weights obtained in the above system are consistent 

with the following separable and additive utility function: 

)(
1

Xf
k
w

U j

n

j j

j       [24] 

where kj is a normalising factor. 

 

Alternatively, the MAUF [24] can be expressed as: 

*
*

*

1

)(

jj

jj
n

j
j ff

fXf
wU         [25] 

Thus, the utility function [24] is normalized by the difference between the ideal (fj*) and the 

anti-ideal (fj*) of the different objectives, and choosing the mathematical expression of the 

attributes as their utility function, fj (X), minus the anti-ideal (fj*). 

 

3. METHODOLOGY 

3.1. Partial utility functions 

The first step aims to determine the main objectives pursued by the farmers in the area of 

study. We carried out 52 random interviews to identify their objectives. According to the 

E2003/18



13

previous literature and to the answers given by farmers, we assume that the main 

objectives in the area are: 

 
Maximization of total gross margin (TGM), as a proxy for profit in the short term. 

TGM is obtained from the average crop gross margins from a time series of seven 

years (1993/1994 to 1999/2000); constant euros of 2000. 

Minimization of risk, measured as the variance of the TGM (VAR). The risk is thus 

computed as 'X ·[Cov]· X , where [Cov] is the variance-covariance matrix of the 

crop gross margins during the seven-year period, and X is the crop decision 

vector. 

Minimization of total labour input (TL). This objective implies not only a reduction in 

the cost of this input but also an increase in leisure time and the reduction of 

managerial involvement (labour-intensive crops require more technical 

supervision). 

Minimization of working capital (K). This has the aim of reducing the level of 

indebtedness. 

 

These objectives, which appeared as the most relevant for the farmers, were included in 

the multi-attribute utility function. However, we cannot discard the possibility of other 

objectives followed by them that were not included in the questionnaire (e.g. social 

prestige), due to their difficulty to be modelled through mathematical programming. 

 

Once the attributes of the utility function (fj ( X )) are defined we need to link the activity 

level with the use of inputs (gi(v)). Next, focusing on water for irrigation, we maximize the 

partial utility functions taking the water allotments as a changing parameter. At the optima 

we establish the maximum (or minimum) level of that particular attribute for a given 

amount of water and determine both the water partial utility (the value achieved by the 

objective function) and its marginal partial utility (its shadow price). 

 

To build the models the following constraints were included: 

The sum of decision variables (surface devoted to each crop) is equal to or lower 

than the farm size. 

European Common Agricultural Policy constraints (set-aside requirements and 

sugar-beet quotas). 

Rotational constraints as expressed by the farmers questioned in the survey. 
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Market constraints that limit the amount of risky crops according to traditional 

practices. 

 

The water partial utility functions will show that the differences among producers are 

relatively small. These come mainly from soil quality and CAP constraints (like sugar beet 

quotas), since technology and factors market are alike for all of them. 

 

3.2. Multi-attribute utility functions 

Following the methodology explained in Section 2.4 the MAUF in [25] becomes: 

*
*

*
4*

*

*
3*

*

*
2

*
*

*
1

)()()()(
KK

XKKw
TLTL

XTLTLw
VARVAR

XVARVARw
TGMTGM

TGMXTGMwU      [26] 

This formulation, that expresses the different weighting (wi) of the objectives by the 

farmers, explains most of the variability on water use for irrigation. Thus, we can 

determine the relationship between the amount of water used in the simulation and the 

utility provided to the farmers (U(water)). To do so, we have proceeded as previously 

explained in the assessment of the partial utility functions (gi(v)) by including water as a 

parameter and maximizing the expression [26]. Moreover, we compare the utility functions 

(U(v)) disparity among producers and the amount of water at the optimum. 

 

3.2. Cluster analysis 

The sample size, 52 farmers, makes cumbersome the amount of data to determine the 

individual factor partial utility functions (FPUFs) and the aggregate utility functions 

(MAUFs). Therefore, it was convenient to gather farmers into relatively homogeneous 

groups. Thus, we study the marginal and aggregate utility of the representative farms of 

each group as well. 

 

To reduce the number of cases of study we use the cluster analysis. This technique 

classifies cases into relatively homogeneous groups. Cases in each cluster tend to be 

similar to each other and dissimilar to cases in the other clusters (Malhotra and Birks, 

1999). For this purpose, we have considered the objectives weights (wi) as classification 

variables. Thus, the groups or cluster obtained can be considered to include farmers with 

a similar behavioural pattern (similar MAUFs). 

 

The selected clustering method was Ward’s procedure, or method of the variance. 

Furthermore, the distance used to measure the difference between farmers’ wi vectors 
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has been the squared Euclidean distance. Following this technique, farmers are 

progressively grouped into smaller groups. At the beginning each case is a cluster itself, 

then the closest case, in terms of the Euclidean distance, is aggregate to a new cluster. 

This procedure can be visualized through the dendrogram. From this diagram, the 

researcher decides the number of clusters seeking a trade off between the number of 

clusters and their inner homogeneity (Chatfield and Collins, 1980; Hair et al., 1998). 

 

Each cluster obtained in this way can be considered as a “farmer-type” to be analyzed 

separately. In order to simulate the behaviour of these virtual farmers, it is supposed that 

each one has as objectives weights (wi) the means of all real farmers’ weights included in 

their respective cluster. 

 

4. CASE STUDY 

The case study is a community of irrigators located in Northern Spain, Los Canales del 

Bajo Carrión, in the county of Palencia. This community has 6,554 irrigated hectares and 

889 farmers, with an average farm size of 7.4 ha. It has a typical continental climate, 780 

m above sea level, with long, cold winters and hot, dry summers. Rain falls mostly in 

spring and autumn. During winter the main crops are wheat and barley, in the summer 

mainly maize, sugar beet and sunflower. During the summer it is necessary to irrigate to 

bring the crops to the harvestable stage. 

 

The main irrigation systems are furrow for most crops and spraying for sugar beet. In 

decreasing order of importance, the average range of crops is winter cereals, maize, 

alfalfa, sugar beet, and sunflower. 

 

A survey of 52 farmers selected at random was used to gather the necessary data to build 

the models (crop area, costs, yields and constraints) and describe the socio-economic 

situation of the farmer. This source was complemented by official statistics on subsidies 

and prices. 

 

5. RESULTS 

5.1. Partial utility functions 

We built the 52 individual models to be run with the proposed four objectives (max. TGM, 

min. VAR, min. TL and min. K). Thus 52x4 individual models have been solved using 
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water availability as a parameter from 0 to 8,000 m3/ha at intervals of 50 m3/ha.  Results 

of this computational effort are the individual FPUFs (gi(water)). Figure 1 shows the lower 

and upper envelope of the 52 partial utility curves. In between, the lower and upper 

quartiles and the median are also shown. 

 
Figure 1. Water partial utility functions (gi(water)) 

 

As we can see, the proximity of the envelopes suggests relatively homogenous FPUFs for 

the different farmers. For the profit attribute it is observed that the differences on water 

productivity (gprofit(water)), as proposed by the Classical Economic Theory, can hardly 

explain the observed variability of farmers’ behaviour. The curves show, as expected, the 

increasing utility of water for the profit attribute and the decreasing utility for the other 

attributes. 

 

The shape of the partial utility functions has two consequences. First, the shape 

(increasing/decreasing features) of the aggregate utility functions will depend on the 

weights attached to each attribute by the farmer. Thus, the conventional assumptions 

proposed in [14] are not necessary to be true. In any case, the monotony characteristics 

of the utility functions are not a critical point to invalid the theoretical model developed to 
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explain factor use. Second, the utility provided from the use of the input under this 

approach will be lower than that provided under the single-attribute classical approach. 

 

5.2. Estimates of the attribute weights 

Following the methodology explained in Section 2.4, we obtained the weights attached to 

the four attributes for the 52 farmers. According to the results, the maximization of profit 

appears as the most important objective for the 47.8%, followed by the minimization of 

risk (35.7%), and the minimization of the working capital (16.5%). The other objective, the 

maximization of the leisure time, was not considered relevant for the farmers since the 

estimated weight was zero. 

 

Figure 2 shows the weight cumulative distribution function for the three objectives 

included in the individual MAUFs. 

 
Figure 2. Cumulative probability distributions of the weights (wi) 

 

According to the data, the maximization of profit has a weight greater than 0.5 for 

approximately the 39% of the farmers, whereas this importance is total (w1=1.0) for some 

20% of them. Only for these farmers the Classical Production Theory can be useful to 

explain their productive behaviour. Similarly, in the case of the minimization of risk, the 

percentages are 37% and 12%, respectively. Finally, the minimization of the working 

capital is the most important objective for only the 6% of the sample. 
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These results suggest that the maximization of profit and the minimization of risk are the 

most important objectives for most farmers. Yet, the analysis should not be restricted to 

these two objectives, as proposed by the E-V analysis (Expected Utility Theory), since the 

exclusion of other objectives, although less important, may result in biased estimates of 

the input use. 

 

5.3. Multi-attribute utility functions 

Once the weighting vector has been calculated for each producer, we estimate the 

aggregate utility function changing, as previously, the water allowance. Similarly, Figure 3 

presents the maximum, upper quartile, median, lower quartile and minimum curves. 

 
Figure 3. Aggregate utility functions (U) and Marginal utility functions (MgU) 

 

We can draw some conclusions from Figure 3. First, the aggregate utility from the use of 

water varies notably from one producer to another. The main reason behind these 

differences comes from the producer’s weighting of the objectives. Second, the marginal 

utility curve suggests that the optimum amount of water (MgUwater=0) depend on the type 

of producer. Thus, 25% of them locate the optimum at a point of consumption lower than 

4,500 m3/ha. The next two quartiles consume in an interval of 4,500 to 6,500 m3/ha, and 

6,500 to 7,500 m3/ha, respectively. The last quartile of farmers’ demands more than 7,500 

m3/ha. These results indicate the great variability of water consumption among producers 

in the same region. 

 

5.4. Analysis of representative cases 

Using the weighting of the objectives of the 52 farmers as the classifying variable, the 

Ward’s method produces the following dendrogram: 
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Figure 4. Dendrogram 
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We have opted for selecting four groups of farmers. The main characteristics within each 

group are: 

 

Cluster 1. It comprises the largest number of farmers (37%), with the 30% of the area of 

study. They are the youngest farmers (41 years old on average), being agriculture their 

second source of income. The average farm size is 37 ha, mainly covered with maize 

(45%), alfalfa (23%), winter cereals (14%) and sugar beet (10%). This sort of farmers 

places a greater importance to the maximization of profit. We can call them “young 

commercial farmers”. 

 

Cluster 2. This is the third largest group with the 20% of the farmers and the 12% of the 

area. Slightly older (45 years old on average) and, like the previous group, they do not 

have agriculture as their main activity. The average size is 40 ha with more winter cereals 

(40%) than cluster 1, alfalfa (23%) and maize (16%). This crop distribution suggests they 

may also have livestock, so we call them “cattle-raising farmers”. 

 

Cluster 3. This is the smallest group of farmers (12%) and area (10%). The group with 

more aged farmers (49 years old on average) and with average farm size of 36 ha. Unlike 

the two previous groups, they have farming as their main economic activity. The main 

crops are winter cereals (60%), sugar beet (17%) and sunflower (9%). According to the 

average weight attached to the minimization of risk we call them as “very conservative 

farmers”. 
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Cluster 4. This group comprises the 31% of the farmers and the largest area (41%). The 

average age is 45 and they have agriculture as their main activity with an average farm 

size of 62 ha, mainly with winter cereals (40%), maize (31%) and sugar beet (15%). We 

call them “large conservative farmers”. 

 

The following table summarizes the average weighting of each attribute for the previous 

clusters. It also provides the normalized aggregate utility function calculated from 

expression [26]. 

 
Table 1. Average weighting for each objective and cluster. Aggregate utility function 

Cluster  
Young 

commercial 
farmers 

Cattle-raising 
farmers 

Very 
conservative 

farmers 

Large 
conservative 

farmers 
Maximization of profit 86.9 17.1  2.6 39.3 

Minimization of risk   6.5 13.8 97.4 60.7 

Minimization of total labour  0.0  0.0  0.0  0.0 

Pe
rc

en
ta

ge
s 

Minimization of working capital  6.6 69.1  0.0  0.0 

Maximization of profit 290.5 52.8 87.4 845.0 

Minimization of risk -0.00019 -0.00041 -0.03163 -0.00722 

Minimization of total labour - - - - 

N
or

m
al

iz
ed

 

Minimization of working capital -35.9 -356.0 - - 

 

Once the utility functions for each cluster have been determined, they have been used to 

estimate the optimum solutions for different water allowance. Thus, we obtain the water 

utility and marginal utility curves for each group of farmers. Figure 5 presents the results. 

 
Figure 5. Aggregate utility and marginal utility curves for each cluster 

 

From the previous figure we find important differences in the aggregate utility functions for 

each cluster, yet all have in common a function that is increasing and concave. Cluster 1 
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has the highest utility for the water input due to the importance attached to the 

maximization of profit. Alternatively, Cluster 2 and 3, with a lower weight for the former 

objective, have also lower water utility. 

 

In Figure 5, where marginal utility functions are plotted, we see how the optimum 

(MgUwater=0) is reached at different points. At the extremes, Cluster 1 optimizes its utility 

function with MgUwater=0 for an amount of water equals to 7,500 m3/ha, whereas Cluster 2 

needs only 3,150 m3/ha. Thus, as explained previously, those farmers with their highest 

weight attached to the maximization of profit demand more water. On the opposite, the 

more conservative farmers opt for a lower use of this input, assigning a higher weight to 

the minimization of risk and the minimization of working capital. 

 

These results suggest that the variety of utility functions, this is, the different weights 

attached to the objectives in the utility function, explain the large disparity of input use 

(water in our case) among farmers belonging to a relatively homogenous agricultural area. 

 

6. CONCLUSIONS 

There are two main conclusions from the results obtained in this study: 

The differences observed in the use of inputs by farmers, water in our particular 

case, should be explained not only from their structural endowments (soil, climate, 

etc.) and the access to other production factors (machinery, production quotas, 

etc.), but also from their respective utility functions in a multi-criteria context. Thus, 

relatively homogeneous group of farmers, in terms of production possibilities, differ 

greatly in their behaviour as a consequence of different multi-attribute utility 

functions. 

From a practical point of view, the greatest challenge posed by the Multi-attribute 

Utility Theory is the elicitation of the mathematical form of the function. This 

limitation can be overcome by assuming some simplifications, this is, the 

assumption of additive utility functions. The multi-criteria approach selected in this 

paper allows the elicitation of the utility functions in a straightforward manner. 

 

With respect to the practical findings of the paper about the use of the water for irrigation, 

we stress their importance for the implementation of the water demand policies. This 

approach enables a different analysis for each type of farmers in order to respond to the 

variety of utility functions. From this analysis, we conclude that the effect of a water pricing 
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policy for irrigation on farm income and water consumption will differ from one group of 

farmers to another, rejecting therefore the traditional assessment of similar responses. 

 

Likewise, this methodology improves the understanding of water markets since the 

accurate valuation of the input, its utility for the producer, is a requirement to assess the 

willingness to pay for it (see for example Arriaza et al., 2002). 

 

Finally, the elicitation of aggregate utility functions for relatively homogeneous groups of 

farmers can be used to assess the impact of the irrigation modernization policies, in terms 

of utility really obtained by the farmers for this technological change, instead of analysing 

it exclusively via factor price changes. In fact, the investment decision of changing the 

irrigation system is driven not only by financial aspects but also other relevant attributes 

(Adams, 1982; Rogers, 1983). Thus, it is plausible to expect the rejection of the change, 

even in a context of important subsidies, due to the existence of farmers’ objectives not 

included in the Classical Economic Theory framework, yet this problem can be analysed 

through the multi-criteria approach presented in this paper. 
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