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Abstract

In this paper I present a proposal to obtain appropriate initial conditions when solving
general equilibrium rational expectations models with the Parameterized Expectations Al-
gorithm. The proposal is based on a log-linear approximation to the model under study,
so that it can be though of as a particular variant of the homotopy approach. The main
advantages of the proposal are: i. it guarantees the ergodicity of the initial time series used
as an input to the Parameterized Expectations algorithm; ii. it performs well as regards
speed of convergence when compared to some homotopy alternatives; iii. it is easy to imple-
ment. The claimed advantages are successfully illustrated in the framework of the Cooley
and Hansen (1989) model with indivisible labor and money demand motivated via a cash-
in-advance constraint, as compared to a procedure based on the standard implementation of
homotopy principles.
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1 Introduction

Modern dynamic macroeconomic theory builds extensively on the construction of dynamic,
stochastic, general equilibrium models with rational expectations. The solutions to these
type of very often highly nonlinear models tend to be numerical, as exact solutions are
usually unobtainable. See for example Marimón and Scott (1999) for a variety of numerical
solution methods.

When solving stochastic, dynamic rational expectations models using any numerical al-
gorithm, it is necessary to search for good initial conditions for a certain set of parameters
and variables. The initialization takes the form of adequate initial values for the coefficients
of the selected approximating functions, in order to initialize a fine-tuning algorithm. This
tends to be an important issue for any numerical method, and it is wise to use some infor-
mation provided by the actual system one aims at solving in order to have an indication
on where and how to initialize a given algorithm. In case non-appropriate initial conditions
were chosen, the convergence of the algorithm to a rational expectations equilibrium would
not be guaranteed, and in case of convergence the computational time needed might have
been enormous.

This remark is specially true for the Parameterized Expectations Algorithm (PEA hence-
forth), a widely used algorithm in economics. The most popular variant in economics is
the one introduced in Marcet (1988), and further developed by Marcet and some coauthors,
although there are different versions of the algorithm – see Christiano and Fisher (2000) for
a discussion on this issue, and Duffy and McNelis (2001) for a neural network approach.
Technical expositions can be found in Marcet (1993), Marcet and Marshall (1994), while
some practical issues are discussed in, for example, den Haan and Marcet (1990), or Marcet
and Lorenzoni (1999). The PEA scheme involves the approximation of the conditional ex-
pectation functions in the Euler equations with certain functions, and the use of a numerical
optimization method to determine the parameterization of these functions. PEA tends to
be a convenient algorithm, especially when there are a large number of state variables and
stochastic shocks in key conditional expectations terms.

PEA users tend to recognize the difficulty in finding appropriate initial conditions for
both the PEA and the Gauss-Newton-like algorithm used to solve a nonlinear system of
equations at each iteration of the PEA method – see for example Jensen (1997). den Haan
and Marcet (1990), Marcet and Marshall (1994) and Marcet and Lorenzoni (1999), pro-
pose the use of a systematic approach to obtaining the initial point for the PEA, based on
homotopy ideas. These ideas are also applied by Jensen (1997) to solving a nonlinear ra-
tional expectations model. The approach is very convenient in general, and is supported by
an important stream of the literature on numerical solutions – see for example Eaves and
Schmedders (1999). Depending on the complexity of the model at hand, this type of methods
may be of difficult and/or cumbersome application.

In this paper I propose basing the obtention of appropriate initial conditions for the
parameters of the approximating functions (normally polynomials) on a log-linear approxi-
mation about the steady state of the system one wants to solve for. In this sense the proposal
can be though of as an homotopy-type method. I present the idea in two variants. The first
one uses the log-linear time series to directly estimate initial values for the parameters of the
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approximating functions. The second variant analytically identifies some of the coefficients
of the PEA polynomials, and it is close to some standard practice, as in Christiano and
Fisher (2000). When used to simulate artificial time series, both approximations produce
stationary and ergodic variables, and in this sense are suitable to obtaining an initial set
of parameters with a stationary distribution as the coefficients for the PEA approximating
functions. Nevertheless, the first variant is more general, and can be used, for example,
in cases with multiple expectations, and expectations at horizons larger than one. Both
proposed log-linear methods are simple to implement.

In order to highlight the convenience of basing the homotopy on a log-linear version of
the model at hand, a comparison with two standard homotopy-based solutions is provided in
the paper. The chosen framework is the Cooley and Hansen (1989) model, with indivisible
labor and money demand motivated via a cash-in-advance constraint. The proposed log-
linear methods outperform in terms of speed of convergence and ease of implementation the
standard homotopy-based alternatives.

The rest of the paper is organized as follows. Section 2 starts by describing the PEA
method and discussing why it is important to have appropriate initial conditions when solv-
ing nonlinear rational expectations problems using PEA. Section 3 exposes the general prin-
ciples of homotopy theory, while Section 4 presents the proposed ideas for obtaining initial
conditions on the basis of a log-linear approximation to the model one wants to solve for.
In Section 5 I present and evaluate the performance of the proposed methods as compared
to two standard ways of implementing homotopy ideas, in the framework of the Cooley and
Hansen (1989) model. Finally, Section 6 concludes.

2 Parameterized Expectations and initial conditions

Assume that a dynamic, stochastic economy can be described as a set of endogenous state
variables, {st}, other endogenous variables, {vt}, and exogenous variables, {zt}, related
among them by means of objective functions and constraints. Let an equilibrium solution for
this economy be a vector {st, vt, zt} that fulfils the set of first order conditions and constrains
of this problem,

L∗(Et[φt(st+1, vt+1)], st, vt, zt, st−1, vt−1) = 0 (1)

for all t, given the exogenous process {zt} that is assumed to be a Markov process of order
one. The functions L∗ and φt are known functions once the structural parameters of the
economy are fixed. Alternatively, let the solution be expressed as a law of motion L such
that the vector {st, vt} generated by

[
st

vt

]
= L(st−1, zt) (2)

fulfils (1), given that all past information relevant to forecast φt(st+1, vt+1) could be sum-
marized in a finite-dimension function of {st−1, zt}.

Obtaining a solution to (1) using PEA consists of finding a flexible function ψt(q; st−1, zt),
such that for a positive integer ν, q ∈ Dν , where Dν ⊂ { q ∈ R∞ : i-th element of q is zero
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if i > ν }, the process {st(q), vt(q), zt} satisfies for all t the set of equations

L∗(ψt(q; st−1(q), zt), st(q), vt(q), zt, st−1(q), vt−1(q)) = 0 (3)

and the order ν is such that when solving S(q) = argminq Et [φt(st+1(q), vt+1(q), zt+1)−
ψt(q; st−1(q), zt)]

2, then q = S(q). Given these conditions, the stochastic process {st(q), vt(q)}
is the PEA approximated solution.

Under certain regularity conditions over the functions defining the equilibrium (1), the
function L∗(•) is invertible in its second and third arguments, and equation (3) can be written
as (see Marcet and Marshall (1994))

[
st(q)
vt(q)

]
= Lq(q; st−1(q), zt) (4)

for stationary and ergodic processes. Marcet and Marshall (1994) show that under those
regularity conditions, fulfilled by standard business cycle models, it is always possible to find
an approximated function, Lq, arbitrarily close to the true law of motion of the system, L.

The time series {st(q), vt(q)}T
t=1 generated using Lq, and given initial conditions for the

state variables, {s0, v0}, and the exogenous processes, are used to obtain inferences on the
stochastic properties of the true stationary equilibrium, {st, vt}∞t=−∞. For the approximation
to be acceptable, it is necessary that: (i.) If given {s0, v0} the process {st, vt}∞t=−∞ verifying
(1) is stationary, then, given the initial condition {s0, v0} and an initial vector q, the resulting
process {st(q), vt(q)}∞t=−∞ verifying (3) has to be stationary; (ii.) The closer Lq to L, the
closer has to be {st(q), vt(q)}∞t=−∞ to {st, vt}∞t=−∞.

If the first point is guaranteed, the second one is guaranteed as an implication. In practical
applications of the PEA method, one of the main difficulties – as it is the case with any non-
linear numerical solution – lies in finding appropriate initial conditions for the vector q, such
that {st(q), vt(q)}T

t=1 be stationary. This, in turn, makes difficult the convergence of the
solution method to the fixed point value for q, and as a consequence, the obtention of an
approximated law of motion – parameterized law of motion– Lq, arbitrarily close to L.

The structure of the algorithm to solve for such law of motion Lq, and implied vector q of
coefficients can be found in Marcet and Lorenzoni (1999), or den Haan and Marcet (1990),
and can be sketched out as follows:

1. Compute the first order conditions of the problem.

2. Substitute the conditional expectations, Et(•), by parameterized polynomial functions
ψt(q; st, zt), where q is a vector of parameters. In general terms, ψt should approximate
the expectation arbitrarily well when increasing the order of the polynomial.

3. Choose an initial value for q. Fix the initial conditions s0, v0, and z0. Draw a series
{zt}T

t=0 that obeys the distribution of z in the model, with T sufficiently large.

4. Use the first order conditions of the problem plus the constraints (with the conditional
expectations substituted by ψt(q; st(q), zt)) to generate time series of all variables in the
economy: st(q), vt(q). The initial q should be such that st(q) and vt(q) be stationary.
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5. Let S : <m → <m, where m is of the same dimension as q, and

S(q) = argminq Et [φt(st+1(q), vt+1(q))− ψt(q; st(q), zt)]
2 .

Iterate until q = S(q). This guarantees that if agents use ψt as the function with
which they make up their expectations, the q vector is the best one they could use in
the sense that it minimizes the mean squared error between the true expectation and
the approximated expectation. In order to find qi+1, starting from a qi, a nonlinear
least-squares regression has to be performed.

6. Update q using the rule
qi+1 = qi + λqS(qi)

where λq controls the size of the updating in each iteration.

7. Generate a new set of time series using qi+1. Repeat the steps until

‖qi+1 − qi‖ < Tolerance.

Once the algorithm has converged to the fixed point, say qf , the approximated solution
is {st(qf ), vt(qf )}∞t=0, generated using ψt(qf ; st(qf ), zt). It is worth noticing that I will focus
in this paper on PEA applications that can be characterized by Euler equations. Also, I take
for granted the invertibility of the function L∗(•) in its second and third arguments, so that
the results in Marcet and Marshall (1994) holds.

In order to use the described algorithm successfully, one needs reasonable good initial
values for the vector of coefficients q, in such a way that the initial q is not too far away
from qf . As pointed out in Marcet and Lorenzoni (1999), this is necessary for two reasons: i.
only local stability is guaranteed under PEA, so it is necessary that the algorithm is properly
initialized in order to achieve convergence; ii. it is necessary that the set {st(qi), vt(qi)}∞t=0

generated at each iteration i has a stationary distribution.

3 The homotopy approach

In order to solve the class of models we are interested in with this paper, the usual approach
to initialize the PEA method is the homotopy approach – see for example den Haan and
Marcet (1990), Marcet and Marshall (1994), Jensen (1997), or Marcet and Lorenzoni (1999).
For a formal exposition of the homotopy approach applied to fixed point problems see Garcia
and Zangwill (1981).

The basic idea behind homotopy is to slowly move from a simple case, where the solution
is known or easy to compute, to the desired case where the solution is difficult to solve for
and typically unknown. As long as the solutions to the intermediate versions of the model
are continuous with respect to the parameter/s that drives the model from the known to the
desired solution, one would always be solving models with appropriate initial conditions. In
this way, one only needs local stability of the algorithm that solves for the fixed point.

As an illustrative example, let us consider the basic neoclassical growth model, with
logarithmic utility and full depreciation of the capital stock. The representative agent chooses
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capital and consumption paths such that maximizes her expected utility E0
∑∞

t=1 βt−1 log(ct)
subject to her resource constraint, that can be expressed as ztk

α
t−1 = ct + kt − kt−1, given

k0, and z0. Et(•) denotes the conditional expectation operator. ct time-t consumption t,
kt−1 is the beginning of period t capital stock, and zt is a technology shock. Regarding
the parameters, 0 < β < 1 is the subjective discount factor, while α is the capital share in
production. The first order condition to this problem involving an expectation term is,

1
β

c−1
t = Et

[
c−1
t+1αzt+1k

α−1
t

]
(5)

The implementation of the PEA scheme to solve the set of first order conditions including the
previous one would amount to approximating the previous conditional expectation by means
of a flexible function. Let us assume the selected function is a first order polynomial function
such as, ψt(q1, q2, q3; kt−1, zt) = q1 exp(q2 log(kt−1)+q3 log(zt)), so that for the approximated
PEA solution the Euler condition in (5) would be written as,

1
β

c−1
t = ψt(q; kt−1, zt)

For the selected parameter values the neoclassical model turns out to have an analytical
solution of the form,

1
β

c−1
t =

1
β(1− αβ)

k−α
t−1 z−1

t

which is a first order polynomial function. Then, in this case, the proposed PEA solution
would be exact, with a set of coefficients q1, q2, and q3 that are easy to obtain by equating
the suggested PEA solution and the true solution,

q1 =
1

β(1− αβ)
, q2 = −α, q3 = −1.

Starting from this case with zero capital depreciation, say δ = 0, one could proceed, as
den Haan and Marcet (1990) to solve for the case with δ close to zero, and so on until the
solution obtained using the desired (calibrated) value of delta is achieved. The standard way
of implementing the ideas of homotopy is by moving some key parameters, as for example
in Jensen (1997), although one could also move from a simple model to a complex one, as
it is the case in, for example, den Haan and Marcet (1994). In both cases, and especially in
the second one, the number of necessary steps until the solution to the desired version of the
model is achieved can be cumbersome.

The proposal in this paper builds upon the ideas of homotopy. In our case, the homotopy
would start from the log-linear version of the model. The parameters would be fixed to the
desired ones.

4 A log-linear homotopy approach

We can perform a log-linearization of the necessary equations characterizing the equilibrium
of the system, as denoted by (1), in order to make the system of equations approximately
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linear in the log-deviations of the variables from the deterministic steady state of the model.
Let us denote this log-linear system as,

L̂∗(Et[φ(ŝt+1, v̂t+1)], ŝt, v̂t, zt, ŝt−1, v̂t−1) = 0 (6)

where the hat symbol on a given variable, say ŝ, denotes the log-linearized counterpart of the
same given variable in the model, s, and L̂∗(•) is a log-linear function approximating L∗(•).

The stable solution to the linear approximation of the system in (6) can be obtained by
solving for the desired recursive equilibrium law of motion. This can be done, for example, via
the method of undetermined coefficients, as in McCallum (1983), Binder and Pesaran (1996),
or Uhlig (1999), among many others. The recursive equilibrium law of motion of the system
(6) can be expressed as follows,

˜̂st = Ω1
˜̂st−1 + Ω2 z̃t

ṽt = Ω3
˜̂st−1 + Ω4 z̃t

(7)

where the matrices Ω1, Ω2, Ω3, and Ω4, are such that the equilibrium described by these
rules is stable, and the symbol tilde over a variable denotes log-deviations of the variable
from its deterministic steady state level. The conditions under which the stable solution is
characterized and (7) is indeed a stable solution of (6) can be found in, for example, Theorem
3.2 of Uhlig (1999). The solution in (7), by solving for the stable manifold of the system forces
the transversality conditions to hold. This, in turn, is a necessary and sufficient condition for
the stationarity of the solution. For an explicit discussion of how to impose stationarity when
solving rational expectations model it is illustrative the discussion in Novales et al. (1999).

By solving (6) and picking up the stable solution, we can develop alternative methods to
initialize the PEA method. Basing the obtention of the initial conditions for the non-linear
model in a log-linear version about the deterministic steady state of the very model, implicitly
makes use of the ideas of homotopy. The log-linear approximation is a local counterpart of
the model about the steady state, and at least locally should be close to the nonlinear model.

One can exploit the parallelism between the set of PEA-approximated first order condi-
tions in (3) and the log-linear first order conditions in (6), or between the PEA-law of motion
(4) and the log-linear law of motion in (7).

The identification approach By simple matching of the coefficients attached to the
same state variables between the laws of motion in (4) and (7), in the cases in which
ψt(q; st(q), zt) is polynomial, one could get the q parameters of the PEA polynomial attached
to the first order terms, as the approximation in (6) is a first order Taylor approximation.
This approach is closely related to that suggested in Christiano and Fisher (2000).

The estimation approach Alternatively, one could evaluate (3) for ŝt and v̂t, and esti-
mate the approximated L∗(•) and the implied approximated Lq(•). Given we are running a
regression between stationary variables, the resulting estimated qs have a stationary distri-
bution. On other grounds, if T is long enough the potential multicollinearity problems that
might arise are kept to a minimum.
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Let us denote by ψ̂ the value for ψ obtained directly from the equations in (6). Then one
could write a sub-system from (6) in which, given the invertibility property,

ψ̂ = ψ(q; ŝt−1, zt) (8)

that can be linear in the logarithms of the variables. Based on expression (8) one can write
the regression

ψ̂ = ψ(q; ŝt−1, zt) + noise variable (9)

The estimation of the q parameters from the preceding regression would give a good starting
point for the q coefficients needed to initialize PEA. Standard results in regression analysis
– see for example Hamilton (1994) – guarantee a stationary distribution for the resulting,
estimated vector of coefficients q.

For example, were (9) linear in the logarithms of the variables, then under the standard
assumptions of regression theory of normality and independence of the noise variables, we
could state that q follows a Gaussian distribution with known mean and standard deviation.

The algorithm to frame the estimation would be the following: i. Generate {zt}T
t=0, with

T long enough; ii. Perform a log-linear approximation to the original system; iii. Simulate
time series paths for all variables in the economy: ŝt and v̂t; iv. Evaluate (3) at ŝt and v̂t; v.
Estimate the nonlinear regression for q.

The estimation approach is more general than the identification approach, and can be
always applied. Paradigmatic cases in which the identification approach would not be appli-
cable are systems of Euler equations that display multiple expectations in the same equation,
and those presenting expectations at horizons larger than one.

To sum up: Solving by either the identification or the estimation methods based on
the log-linear approximation around the steady state address the two problems when de-
ciding on the appropriate initial conditions: i. they guarantee local stability; ii. each set
{st(qi), vt(qi)}∞t=0 generated at each iteration i has a stationary distribution when based on
the log-linear approach.

5 A framework to compare initialization methods

In this section I will try to clarify through an example the proposed methodology, and to
check its performance. I have selected the Cooley and Hansen (1989) model for a number
of reasons. First, it is a model solved by den Haan and Marcet in its 1994 paper, so that
I have a benchmark for comparison. den Haan and Marcet achieve a well-behaved final
form for ψ, and give numerical values for the corresponding final vector q. I will take both
facts for given, in order to concentrate the discussion on the obtention of initial conditions.
Second, the model is complex enough not to make superfluous any comparison, moving the
discussion away from the usual one sector neoclassical growth model, and making possible
the extrapolation of the results to more complex environments.

In the next subsections, first I will briefly present the model. Next I will explain how
to implement the log-linearization-based homotopy methods in the framework of the model.
Then, as a means of comparison, I will build two additional, standard ways of implementing
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the homotopy ideas. Both of them are arbitrary, in the sense of being two possibilities in
a hundred of putting homotopy in practice. The two homotopy approaches are based on
moving in a smooth way a given parameter. This means that, everything equal, I will start
the homotopy from a version of the model in which one parameter has a value different from
the one in the baseline parameterization: on the one hand I will move the steady state value
of the money growth rate, gss, and on the other hand the depreciation rate δ. Finally, I
will check the performance of the log-linear homotopy methods as compared to the standard
ones.

5.1 The model

The Cooley and Hansen (1989) model includes a non-convexity, indivisible labor. Money is
introduced via a cash-in-advance constraint in consumption. The competitive equilibrium
is non-Pareto-optimal, and the second welfare theorem does not apply. The representative
firm solves a standard profit maximization problem, while households seek to maximize their
time preferences subject to their holdings of money balances and a set of standard budget
constraints. There are two sources of uncertainty in this economy: an autoregressive shock
to technology, zt,

zt+1 = (1− ρz)zss + ρzzt + εzt+1 .

and an autoregressive logged money growth rate,

log(gt+1) = (1− ρg) log(gss) + ρg log(gt) + εgt+1 .

In equilibrium, we have the following optimality conditions,

λt = βEt

[
λt+1

(
αzt+1k

α−1
t N1−α

t+1 + 1− δ
)]

(10)

λt =
1
ct

βEt

[
1

gt+1

]
(11)

λt =
AN

1− α
z−1
t k−α

t−1N
α
t (12)

Et

[
1

gt+1

]
= e

σ2
εg
2 g

ρg−1
ss g

−ρg

t (13)

ztk
α
t−1N

1−α
t = ct + (1− δ)kt−1 − kt (14)

where λt is the Lagrange multiplier attached to the household’s budget constraint, AN is the
labor weight in utility, and Nt denote hours worked. ct is consumption at time t, kt−1 the
beginning of period t capital stock, and xt investment. 0 < β < 1 is the subjective discount
factor, 0 < α < 1 the capital share in production, and 0 < δ < 1 the depreciation rate.
0 < ρz < 1 and 0 < ρg < 1 controls for the persistence of the shocks. Along the paper the ss
subscript affecting a given variable denotes its deterministic steady state value.

The second expectation arises from the first order conditions for real money balances
and consumption, and the budget constraint. Assuming normality of the innovation εgt , this
expectation has a known analytical form, linear in the logs of the variables. This way, the
only expectation term that needs to be approximated is that in (10).
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5.2 den Haan and Marcet’s 1994 PEA solution

den Haan and Marcet (1994) preferred specification for the approximating function ψ to the
expectation term in (10) is a third order polynomial such that,

βψt = q1 exp
(
q2 log(kt−1) + q3 log(zt) + q4 log(gt) + q5(log(kt−1)2

)

× exp
(
q6 log(kt−1) log(zt) + q7(log(zt))2 + q8(log(zt))3

)
(15)

Following den Haan and Marcet I will adopt as a baseline parameterization: β = 0.99,
α = 0.36, AN = 2.86, ρz = 0.95, ρg = 0.48, σεz = 0.00721, and σεg = 0.009. Regarding the
parameter gss, the value in the chosen version of the model I will be solving for will be 1.15.
As regards δ, the baseline value will be 0.025.

5.3 Implementation of the different homotopy approaches

The identification approach Solving the Cooley and Hansen (1989) model by means
of any undetermined coefficients method, as for example the one in Uhlig (1999), it is not
difficult to see that the solution for some variables in the model can be written as,




k̃t

c̃t

Ñt

λ̃t


 =




νkk νkz νkg

νck νcz νcg

νNk νNz νNg

νλk νλz νλg







k̃t−1

z̃t

g̃t




where the νii coefficients are non-linear functions of the deep, structural parameters of the
model economy. Then it is easy to see that,

λt =
[
λss

(
1

kss

)νλk
(

1
gss

)νλg
]

kνλk
t−1z

νλz
t g

νλg

t

Equating the coefficients of this expression with the ones on the right hand side of (15), one
gets the following identified initial values for the q set of parameters,

q1 =
[
λss

(
1

kss

)νλk
(

1
gss

)νλg
]

; q2 = νλk;

q3 = νλz; q4 = νλg; q5 = · · · = q8 = 0

For the baseline parameterization this means in numerical terms an initial vector q such
that

q1 = 4.0861; q2 = −0.5316; q3 = −0.4703; q4 = −0.0312 (16)
q5 = · · · = q8 = 0

10



The estimation approach The algorithm to implement this approach implies pursuing
the following steps,

1. Generate {zt, gt}T
t=0, with T large enough.

2. Solve the model using a log-linear method as, for example, the method of undetermined
coefficients in Uhlig (1999). Obtain the time series paths for all variables in the economy
such as the capital stock, {k̂t−1}T

t=1, consumption, {ĉt}T
t=1, and the lagrange multiplier,

{λ̂t}T
t=1.

3. Generate an auxiliary value for the approximated polynomial from the expression for
the expectation in (10),

ψ̂t ≡ 1
β

λ̂t, ∀t

4. Estimate by ordinary least squares the regression,

log(ψ̂t) = %1 + %2 log(k̂t−1) + %3 log(zt) + %4 log(gt)

+ %5(log(k̂t−1))2 + %6(log(k̂t−1) log(zt)) + %7(log(zt)2)

+ %8(log(zt)3) + noise.

(17)

For each specific realization of the exogenous shocks, {zt, gt}T
t=0, the obtained vector %

would be slightly different, although not statistically. For a set of 250 draws of the exogenous
processes of size T = 40, 000 each, Table 1 shows the summary statistics mean and the
standard deviation of the mean of the estimated coefficients. As it is apparent from the
Table, and would have been clear a-priori, the coefficients attached to second and third order
terms are statistically non-significant. Had the linear approximation been based on a second
order Taylor expansion, as for example in Collard and Juillard (2001) or Sims (2000), this
would have been different. In any case, the estimation of the parameters %5 to %8 will be
useful in properly directing the search algorithm, as realized in the results section. These
will be the initial values assigned to the parameters of the PEA polynomial.

INSERT Table 1

A homotopy in gss As previously mentioned, den Haan and Marcet (1994) solve the
Cooley and Hansen model, and reach a specification given by (15), for both the selected
baseline parameterization, and a parameterization with gss = 1.015 instead. For this latter
case, the mentioned authors report the following final conditions:

q1 = 3.0275; q2 = −0.2293; q3 = −1.3177; q4 = −0.0324 (18)
q5 = −0.0631; q6 = 0.3553; q7 = −0.1833; q8 = −1.3690

This vector is a reasonable approximation, given the parameterization with gss = 1.015, to
the rational expectations equilibrium solution to (10) - (14). Imagine now that we were to
solve for the case with gss = 1.15. In this case it is reasonable to initialize the PEA for the
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case with gss = 1.15, with the final values in (18) obtained for the case with gss = 1.015.
This exercise would amount to starting the homotopy with a 13% lower value of gss in order
to obtain the solution for the desired parametric case.

To me this is a very favourable way of initializing PEA, and has been chosen on purpose to
check the performance of the log-linear homotopy alternatives. Normally, following den Haan
and Marcet (1990, 1994) one should have started the homotopy from a primitive version of the
model - i.e. the one sector growth neoclassical model, with a basic parameterization. Then,
slowly, one could have moved the solution to more complex versions of the simple neoclassical
model, following a smooth path, until the desired solution is reached. Notice that we have
sidestepped all the intermediate steps - already done by den Haan and Marcet (1994) - and
started off the algorithm from the very close to the desired solution initial conditions in (18).

A homotopy in δ This second homotopy is a more elaborated one. It is a homotopy in
the parameter δ, and also builds upon a steady state version of the model at hand with an
analytical solution. From the optimality conditions (11) to (14) setting δ = 0, it is easy to
obtain the following expression,

λ
1
α
t z

1
α
t kt−1

[
1− α

AN

] 1−α
α

+ λt(kt−1 − kt) = βe
σ2

εg
2 g

ρg−1
ss g

−ρg

t

that in steady state turns out to be,

λ
1
α
ssz

1
α
sskss

[
1− α

AN

] 1−α
α

+ λss(kss − kss) = βe
σ2

εg
2 g

ρg−1
ss g

−ρg
ss

so that solving for the lagrange multiplier λss,

λss =

[
βe

σ2
εg
2

[
AN

1− α

] 1−α
α

]α

k−α
ss z−1

ss g−α
ss (19)

Equating the coefficients attached to the state variables k, z, and g between the previous
expression and the expression of the polynomial in equation (15), one could get

q1 =

[
βe

σ2
εg
2

[
AN

1− α

] 1−α
α

]α

; q2 = −α

q3 = −1; q4 = −α; q5 = · · · = q8 = 0

that numerically produces the values: q1 = 2.5975, q2 = −0.3600, q3 = −1.0000, q4 =
−0.3600, q5 = · · · = q8 = 0. These parameter values are a good approximation for the
solution to the Cooley and Hansen model with δ = 0. Once the solution for this case is
attained, the final values can be used to initialize the case with δ = 0.025, our benchmark
case. This intermediate step is unavoidable, as the algorithm did not converge when I tried
to directly solve for the case with δ = 0.025 using the analytically-obtained parameters for
the case with δ = 0. Using the analytical values computed in the steady state case with
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δ = 0 to initialize the PEA to solve the Cooley and Hansen model in the case with δ = 0,
the following values for the elements of the vector q were achieved:

q1 = 4.0278; q2 = −0.3790; q3 = 0.2511; q4 = −0.0145 (20)
q5 = −0.0275; q6 = −0.1332; q7 = −0.0795; q8 = −0.3216

The coefficients in (20) will be the ones used as initial conditions for the benchmark case with
δ = 0.025. This is a more realistic way of grasping the normal cost attached to the standard
implementation of the homotopy method. I started the homotopy from a primitive version
of the targetted model, and then, in a second step moved a key parameter until getting the
values for the desired case.

5.4 Comparative results

The comparative experiment is implemented as follows, and repeated 250 times. (i.) To begin
with, extract a draw of size T=40,000 for the exogenous processes {zt, gt}. (ii.) Then take
in turn the initial conditions described above for each of the four homotopy alternatives.
For the identified log-linear homotopy take (16); for the estimated log-linear is estimated
each time a new random draw is available; for the homotopy in gss take (18), and finally
for the homotopy in δ use (20). (iii.) In a third step find the PEA solution to the Cooley
and Hansen (1989) model using each set of initial conditions. Compute the convergence
time and the number of iterations needed to converge to the fixed point, with a tolerance of
four digits. (iv.) Apply the den Haan and Marcet (1994) test 250 times to each obtained
solution to check that indeed the obtained equilibrium is a rational expectations one. Reject
the solutions that do not pass the test. The test is repeated in turn for each simulation 250
times in order to obtain the empirical distribution of the den Haan and Marcet statistic, so
that the result is not dependent on a particular realization of the exogenous shocks1.

Table 2 presents the main results, while Figure 1 summarizes the steps involved in the
implementation of each homotopy approach. As the time per iteration may change dra-
matically depending on the employed programming language and the machine used, the
computing times are presented in relative terms, using the log-linear estimation approach as
the baseline.

As it is apparent from Table 2, the log-linear approaches required less iterations to con-
verge to the fixed point than the other implemented methods. The homotopy in gss needed,
on average, 1.6 more time per iteration to converge, while the homotopy in δ demanded about

1The results are available from the author upon request. The idea of the test lies in checking whether there
is some function of the variables in the information set up to time t, say It, that could be useful to predict the
expectations errors, say ξt+1. If this were the case, it would imply a violation of the the rationality property. For
each simulation, the steps to follow would be: (i.) generate a random draw for the exogenous processes (T =40, 000
in this case); (ii.) Regress ξt+1 on It; iii. Define â = (

∑
IT
t It)−1(

∑
IT
t ξt+1) and compute the statistic

âT (
∑

IT
t It)(

∑
IT
t Itξ

2
t+1)

−1(
∑

IT
t It)â ∼ χ2

m1m2
,

where m2 is the number of chosen instruments, and m1 the number of expectations errors, which is equal to one
in our case. The statistic provides a test for the null hypothesis of rational expectations:Et (ξt+1) = 0.
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two times the time of the log-linear estimation approach. When looking at the maximum
and minimum times, the identification approach emerges as the more variable one, present-
ing the highest maximum and the lowest minimum, the first one being four times the time
employed by the estimation method, and the second one 1/4 th of it. A desirable property
in the convergence times would be its stability, given that the researcher normally runs the
procedure for a single realization of the shocks. This characteristic makes the estimation
method superior to the rest. The number of iterations needed to converge displays the same
kind of information, requiring both log-linear methods 52 iterations on average, as opposed
to 80 of the gss homotopy and almost a hundred of the δ homotopy.

Table 2 also shows one fixed point q attained, as an example, for a common realization
of the exogenous shocks. As it is clear from the table, all homotopy methods reach the same
fixed point for the same draw of the shock, starting from different initial conditions. On the
other hand, for different realizations of the innovations, even starting from the same initial
condition, a somewhat different fixed point is achieved. This connection of the convergence
point reached to the draw of {zt, gt} taken, may give an insight into the better performance
of the estimation approach as regards times of convergence and stability in the number of
iterations accross simulations. When running the regression involved in the implementation
of the estimation method, this approach makes use of the information in each realization of
the innovation.

Figure 1 sheds some light into the comparative pros and cons attached to each method.
As regards the preparation time before the PEA is run, the log-linear homotopy methods
seem to be of easier implementation and present less requirements than the other ones. In a
first step the cost of implementing the log-linear homotopy approaches are the ones involved
in computing the log-linear approximation of the original model about its steady state. In
a second step one has to either identify the coefficients of the laws of motions, or run an
ordinary least squares regression. Both steps are easy to automate, and can be performed by
standard available packages. On the other hand, the homotopy over gss needs in a first step
the implementation of a smooth homotopy over different versions of the one sector growth
neoclassical model, that can take several and hard steps. Finally, the homotopy on δ requires
the analytical derivation of the initial conditions for the δ = 0 case, plus the obtention of the
initial conditions for δ = 0.025. As regards the convergence times, the log-linear approaches
are also superior, as discussed in the previous paragraph.

6 Conclusions

In this paper I propose to obtain appropriate initial conditions for the parameters of the
approximating PEA functions on the basis of a log-linear approximation about the steady
state of the system one wants to solve for. In this sense the proposal can be though of as an
homotopy-type method, as the log-linear approximation of the model is a simplified version
of the model at hand.

I present the idea by means of two variants. The first one uses the log-linear time series
to directly estimate initial values for the parameters of the approximating functions. The
second variant analytically identifies some of the coefficients of the PEA polynomial. Both
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approximations share the desirable property of producing stationary and ergodic variables,
and in this sense are suitable to obtaining an initial set of parameters with a stationary distri-
bution as the coefficients for the PEA approximating functions. Nevertheless, the estimated
approach is more general, and can be used, for example, in cases with multiple expectations,
and expectations at horizons larger than one.

In the framework of the Cooley and Hansen (1989) model with indivisible labor and
money demand motivated via a cash-in-advance constraint, I illustrate the performance of
the log-linear approach as compared to a procedure based on the standard implementation
of homotopy principles. Both proposed log-linear methods are simpler to implement, and
outperform the presented alternatives in terms of speed of convergence.
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Table 1: Log-linear estimation approach. Descriptive statistics for the empirical distribution of
the ordinary least squares estimator. Mean and standard deviation of the mean (in parenthesis).

%1 %2 %3 %4

4.08610571451612 -0.53158780860215 -0.47027449908602 -0.03122343300000
(0.00000003532142) (0.00000000405140) (0.00000000516988) (0.00000000000000)

%5 %6 %7 %8

-0.00000000004440 0.00000000010273 -0.00000000004220 0.00000000003839
(0.00000000069382) (0.00000000195405) (0.00000000133405) (0.00000000038802)
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Table 2: Comparative results: solution to the Cooley and Hansen (1989) model starting from the
initial conditions described in the text for each homotopy variant. Summary statistics for 250
draws of the exogenous processes {zt, gt}, each of size T=40,000.

Log-linear homotopy Standard homotopy
Identified Estimated gss : 1.015/1.15 δ : 0.0/0.025

Average time 1.0797 1.0000 1.6203 2.0166
Maximum time 4.0250 1.0000 2.3537 3.0687
Minimum time 0.2510 1.0000 0.9867 1.1786

Average number of iterations 52.31 52.26 80.02 98.73

Example: a typical simulation Identified Estimated(*) gss : 1.015/1.15 δ : 0.0/0.025
q1 3.9809 3.9809 3.9803 3.9803
q2 -0.5104 -0.5104 -0.5099 -0.5101
q3 -0.9249 -0.9249 -0.9253 -0.9250
q4 -0.0316 -0.0316 -0.0316 -0.0316
q5 -0.0043 -0.0043 -0.0043 -0.0043
q6 0.1998 0.1998 0.1999 0.1998
q7 -0.0340 -0.0340 -0.0340 -0.0340
q8 0.8807 0.8807 0.8809 0.8807

(*) Estimated initial q: q = [4.0861,-0.5316,-0.4703,-0.0312,0.0000, 0.0000, 0.0000,0.0000]
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Figure 1: Summary of the experiment. Steps involved in the implementation of each one of the
homotopy methods described in the text.
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