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Abstract

In this paper we propose to analyze the economic problem of allocating
tasks on time in order to finish a complex project when information about
tasks’ duration and predating sequences of tasks is privately owned by the
agents that undertake each task. In order to achieve the efficient alloca-
tion of tasks -using the well-known Critical path method in the Operations
Research literature-, the planner must design the appropriate incentives and
compensations to the agents based on the reported information. We show the
existence of mechanisms that implement in dominant strategies the efficient
allocation of tasks on time. When we further add new desirable properties
like individual rationality, an impossibility result emerges.

Keywords: Critical path, PERT, Dominant strategies, implementation,
tasks allocations, strategy-proofness, individual rationality.

JEL classification numbers: D78, C60.

Resumen
En este art́iculo proponemos analizar el problema económico de asig-

nación de tareas en el tiempo para finalizar un proyecto complejo cuando
la información sobre la duración de las tareas y secuencias de tareas prece-
dentes es información privada de los agentes que llevan a cabo cada una
de ellas. Para conseguir la asignación eficiente de tareas -usando el cono-
cido método del camino cŕitico en la literatura de Investigación Operativa-,
el planificador debe diseñar los incentivos apropiados y las compensaciones
a los agentes basadas en la información transmitida por ellos. Mostramos
la existencia de mecanismos que implementan en estrategias dominantes la
asignación eficiente de tareas en el tiempo. Cuando además añadimos nuevas
propiedades deseables como la individualidad racional, obtenemos un resul-
tado de imposibilidad.
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1 Introduction

In this paper we study the existence of dominant strategies mechanisms in
an incomplete information version of the Critical Path Method (CPM) or
Program Evaluation and Review Technique (PERT), a well-known solution to
a standard production network problem in the Operations Research literature
-see, for example, Bazawa and Jarvis [1], Derigs [2] and Deo and Pang [3] as
comprehensive introductions to the topic.
The PERT was first developed and used, with great success, during the

late 1950s by the US Navy to control the progress of the construction of the
Polaris missiles, an extraordinary complex project carried out by different
production units. The CPM technique was found independently and applied
to virtually the same kind of problems, although the PERT was a little bit
more general since it allowed for some degree of uncertainty.
The simplest production network problem at which these techniques are

applied is very simple: A project consisting in a number of different elemen-
tary tasks has to be carried out. Each task constitutes a time-consuming
production activity -abstracting from any other economic resource employed-
necessary for the completion of the project. Tasks cannot generally be allo-
cated arbitrarily, since a particular task may need some others to be finished
before it starts, and maybe some of its preceding tasks are also preceded
by others, and this network structure is what generates the complexity of
the problem. Of course, for the problem to make sense some technological
restrictions must be introduced: cycles and loops of precedence are techno-
logically unfeasible. The CPM and the PERT are equivalent methods to
analyze the sequences of tasks such that the total amount of time needed
to finish all the tasks is minimized.1 A critical path is a sequence of tasks
that are undertaken one after the other and such that the completion of the
sequence requires exactly the minimum amount of time needed to terminate
all tasks. The CPM and the PERT define algorithms to identify the critical
paths and those tasks with some roominess -the tasks outside the critical
paths that can therefore be allocated at different starting times without af-
fecting the total (minimum) duration of the project-. It can be proven that
the whole allocation problem can be transformed into a linear programming
one and the operations research analysis is essentially one of computability.
The CPM and the PERT also assume that the planner knows all relevant
data about the technologies: tasks, time needed by each one and which are
the immediate preceding tasks of each one. The PERT admits some uncer-

1There is an underlying assumption that the total cost of the completion of the project
to the planner or principal is increasing in the total amount of time needed.
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tainty about the duration of each task, but the probability distribution is
always known to the planner.
This paper explores the same task allocation problem but assumes that

each task is carried out by an economic agent;2 as in many production prob-
lems, the agent responsible for each task can be a worker, supervisor, firm or
the people in charge of a sub-project or division within a firm, but the key
assumption is that she is better informed about the technological character-
istics of her particular task than the planner herself. In the limit, we assume
that the planner has to rely on the information reported by the agents in
each task to allocate the times and sequence of the tasks and the rest of the
agents do not need to know anything about a different task but their own.
The agents are rational and will exploit their informational advantage if given
the opportunity. Nevertheless, the planner is not completely uninformed: if
some agents lie about the duration or precedence of their tasks and they are
allocated in a technologically unfeasible way, they will be caught and pun-
ished hard enough to discourage any agent to lie in a potentially detectable
way. Notice, however, that there is still room enough for safe lies: reporting
longer duration times and declaring as preceding tasks more tasks that those
really needed are always undetectable when the planner is allocating tasks
by using the CPM or the PERT methods, and they are actually the only
lies that we will allow in this paper. We also assume that the agents, if not
compensated in other way, are interested in delaying the completion of their
own task as much as possible. This is justified because each hour employed
in carrying out the task requires a costly effort to be made by the agent
and agents prefer the same disutility to take place later rather than sooner.
There is, therefore, a fundamental conflict of interests between the planner
or principal -who is allocating tasks by using the PERT with the informa-
tion reported by the agents and who tries to minimize the total cost of the
project- and her agents, who would prefer the project to be delayed forever.
A simplifying and important assumption we impose is that disutility of effort
is known and the same for everybody and is normalized to unity, but we still
allow for differences in the agents’ relative impatience -their time discounts-.
Of course, planning the production network and the starting-finishing time of
each task is not the only way the planner has to influence the behavior of the
agents. We assume that the planner can design a transfer scheme depending
on the reported technologies that specifies the monetary payments that each
agent receives or has to pay -taxes in this case- to the planner.3 This rule is

2When it is the case that the tasks are undertaken by machines or automata alone, the
original task-machine allocation problem still applies, but it seems unlikely that no worker
(but the planner herself) is involved in any task in real life problems.

3We assume that the transfers are implemented before the task allocation starts. There-
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known by the agents, who have committed to work in the project and cannot
quit if they think that they will not receive enough money and money enters
additively on the agents’ payoffs. Our main aim is to analyze the possibility
of designing anonymous, strategy-proof, balanced and invariant to the project
size transfer schemes, i.e., a payoff structure such that: (i) The agents are
treated the same regardless of their names, (ii) no agent has an incentive to
lie about her technology regardless of what other agents report to the planner
and whatever her own technology is, (iii) the sum of all the agents’ transfers
amount to the same fixed amount -the total budget for the project- what-
ever the revealed technologies and (iv) the time units used in the problem do
not affect the agent’s relative transfers. After proving the existence of such
mechanisms, we study the possibility of designing individually rational pay-
ments -transfer schemes such that for every admissible reported technology,
the agents can always guarantee for themselves at least a certain utility. We
prove the impossibility of finding mechanisms with this additional property.
The paper proceeds as follows: In Section 2 the formal model is intro-

duced and the definitions properly stated. Section 3 deals with the results
and we conclude with some comments.

2 The model

Let N be a potential finite set of productive agents and N = {1, ..., n} ⊆ N
be a subset of agents indexed by i, j, k, l, z ∈ N. The total number of agents
in set N is n ≥ 2. Each agent has to perform a task for the completion of
a project. We do not allow in this model for multi-task agents to simplify
the problem and we are not concerned with the matching allocation problem
between agents and tasks. Hence, we assume that each agent either is the
only -or the best- agent capable to perform a particular task or that the
matching or allocation of tasks to agents took place in an earlier stage and is
given. Therefore, there is no reason to define a separate set of tasks and we
identify the set of tasks with the set of agents N . Each task -or alternatively
from now on, each agent- is characterized by its belonging to a network
such that a given task cannot be undertaken before some other tasks are
finished. Moreover, carrying out each task is a time-consuming process and
some work effort -or maybe some cost of capital- has to be invested in order
to be successfully completed. Given any task i ∈ N, we denote as Pi ∈ 2N
the set of preceding tasks of task i. For the problem to make sense, we
need to impose some minimal structure to the admissible sets of preceding
tasks for all tasks. In particular, the following constraints should hold in any

fore, in period ”0” the agents report their technologies and the transfers are made.
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well-defined problem: we say that a project is technologically feasible if the
following conditions hold:
(i). Temporal irreflexivity: ∀i ∈ N, i /∈ Pi.
(ii). Temporal asymmetry: ∀i, j ∈ N, i 6= j, i ∈ Pj −→ j /∈ Pi.
(iii). Temporal acyclicity: ∀i, j, k, ..., l, z ∈ N, (all distinct), i ∈ Pj & j ∈

Pk &...& l ∈ Pz −→ z /∈ Pi.
Condition (i) establish that no task is ever preceded by itself. Condition

(ii) prevents two different tasks to precede each other and (iii) rules out cycles
of precedence. Given the linear structure of time, the meaning of the above
properties becomes obvious.
Furthermore, technology requires the use of costly time for undertaking

each task. For simplicity, we assume time to be discrete -measured in any
relevant unit-. Henceforth, time intervals might be hours, minutes or days,
but let us call them hours-. Let E be the real line and Z+ be the set of non-
negative integers -time structure considering that 0 stands for now - and Z++
be the set of positive integers. Ti ∈ Z++ is the minimum number of hours
that task i needs to be terminated, given the optimal use of the resources
available and given that preceding tasks -and preceding tasks of its preceding
tasks and so on- have been done before. We assume that each hour employed
by the agent to the completion of his task entails a disutility of effort -or some
depreciation of the use of capital-. Moreover, agents discount future effort
with respect to effort now at time 0 -when the allocation has to be decided-,
but they will not have any cost until their own task has to be performed. For
instance, if agent i’s task lasts -efficiently done- Ti hours and it is allocated
to start at time t0i ∈ Z+, the disutility of the agent performing the task is
-measured in some monetary unit-:

−
Xt=t0i+Ti−1

t=t0i
βti

where the time discount applied by each agent (βi, with 0 < βi < 1) is
a function of the intrinsic difficulty of the task and of the laziness of the
workers, which is part of their private information.4We further assume that
disutility of effort done in period 0 (now) of any agent is known to the
planner and equal to 1.5 We call a project planning economy to a tuple

4Note that the discount used by task i, βi may also be interpreted as the cost -
depreciation, funding cost, etc.- of the capital used in that task.

5This is partly a simplifying assumption. For our results to hold it is needed that the
planner either knows the (possibly different) agents’ disutility of effort or at least know
that there is some common upper bound on every agent’s disutility of effort, which does
not seem to be an unreasonable assumption. In that case, the mechanism we propose
should be properly re-scaled.
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of the form: e = hN,Pi, Ti, βi ∀ii = {N, e1, ..., ei, ..., en} , provided that the
project is technologically feasible.6 Let PPE be the set of all project planning
economies. Given an economy e ∈ PPE, a feasible allocation -or simply, an
allocation-, denoted by x, y, z ∈ Z2(#N)+ is a vector that assigns a pair of times
to each task or agent, x = (t01, t

1
1, t

0
2, t

1
2, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) with the following

properties:
(a). ∃i ∈ N such that t0i = 0.
(b). ∀i ∈ N, t1i − t0i ≥ Ti.
(c). ∀i, j ∈ N, i ∈ Pj −→ t0j ≥ t1i .
An allocation establishes a technologically feasible plan for the tasks to be

carried out on time: t0i stands for the planned starting time of task i and t
1
i de-

notes the date after the termination date of task i. (a) means that some task
should be initiated in period 0 (when the allocation is decided), (b) establish
that no task should be allocated a working time smaller than the minimum
time required to be done and (c) requires that no task can be started before
all its preceding tasks have been completed. Let FA(e) be the set of feasible
allocations for economy e. Given an economy e ∈ PPE, a critical path alloca-
tion (CPA) is an allocation x = (t

0
1, t

1
1, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) ∈ FA(e) such that

maxi∈N t
1
i ≤ maxi∈N t1i ∀x = (t01, t11, ..., t0i , t1i , ..., t0n, t1n) ∈ FA(e), i.e., an allo-

cation such that the period of time until the last task is finished is as small as
possible within all the feasible allocations. Let us denote by CPA(e) the set
of CPAs for an economy e. An efficient CPA or CPA+(e) is a critical path
allocation such that no agent can be better off in any other critical path, i.e.,

x = (t
0
1, t

1
1, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) ∈ CPA(e) is efficient if ∀i ∈ N, −

Pt=t
1
i−1

t=t
1
i−Ti

βti

≥ −Pt=t1i−1
t=t1i−Ti

βti ∀ x = (t01, t11, ..., t0i , t1i , ..., t0n, t1n) ∈ CPA(e).7 Notice that un-
der our assumptions, CPA+(e) is a singleton for each economy and the only
efficient CPA(e) corresponds to the allocation such that tasks are started as
late as possible when there is some roominess.
There are several ways to find the efficient CPA for a given economy.

The optimization problem can be formulated as one of linear programming
or different algorithms can be applied to reach the solution. In what follows,
we will use the following strings CPA+ algorithm: given any economy e, the
set of CPA+(e) comes from following the steps:

6Our definition of an economy includes the set of agents, that is allowed to vary within
the range of admissible economies. Mechanisms that work for some set of PPE have to
take into account that the number of agents could be different. The identity of agents and
tasks makes the problems consistent.

7We assume that every task is efficiently performed and whenever more time than
needed is provided in the allocation, only the last Ti hours will be used, and hence achieving
the smaller possible disutility.
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Step 1 : Take tasks 1 to n. Assign the negative integers z0i and z
1
i ∈ Z−:

z1i = 0, z
0
i = −Ti.

Step 2 : Take task i = 1, ...n successively. In each sub-step i, do: ∀j ∈ Pi,
redefine z1j = z

0
i and z

0
j = z

1
j − Tj.

Step 3 : Repeat Step 2 until no new change emerges.
Step 4 : ∀i ∈ N, redefine t0i = z0i + mini∈N z

0
i and t

1
i = z1i + mini∈N z

0
i .

x = (t
0
1, t

1
1, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) = CPA

+(e).
STOP.
Given any economy e ∈ PPE, we are interested in those tasks that are

critical. We call a critical string associated to the CPA+(e) to a sequence of
subsets of tasks

©
S1(e), S2(e), ..., Sk(e)

ª
, with Sh(e) ⊆ N and Sh(e)∩Sl(e) =

∅ ∀h, l that can be found with the following algorithm using the CPA+(e)
allocation:
Step 1 : Take any i ∈ N such that t

0
i = 0. Task i belongs to the first set

of tasks in the sequence: i ∈ S1.
Step 2: Take any j ∈ N such that t

0
j = t

1
i for any i ∈ S1 and i ∈ Pj.

Then, j belongs to the second: j ∈ S2.
....
Step k : Take any i ∈ N such that t

0
i = t

1
j for any j ∈ Sk−1 and j ∈ Pi.

Then, i belongs to the kth set (we assume that there are k(e) ∈ {1, ..., n}
subsets). Let us call S(e) the union of the tasks belonging to any critical
string associated to the CPA+(e), i.e., S(e) =

Sk
h=1 S

h(e).
Notice that under our assumptions both algorithms work in selecting the

unique CPA+(e) and the critical strings that define the minimum period of
time needed for all the tasks -the project- to be finished. In what follows,
we focus on implementing the CPA+(e). This is justified because that selec-
tion is the only one that maximizes the total welfare of the agents subject
to the planner achieving her total time-minimizing objective -assuming that
the planner receives a payoff strictly decreasing in the total duration of the
project-. Moreover, other selections from the CPA(e) like that which allo-
cates tasks not belonging to the critical path to start as early as possible are
even more difficult to implement because that rules defy more directly the
agents’ incentives by imposing an inefficient cost on them -starting early-.
Let us illustrate the former concepts with a simple example. Let us con-

sider the following economy e = (e1, e2, e3) ∈ PPE such that N = {1, 2, 3} ,
e1 = (T1, P1,β1) = (2, {∅} , 0.5), e2 = (T2, P2,β2) = (1, {∅} , 0.7) and e3 =
(T3, P3,β3) = (4, {1, 2} , 0.1). Therefore, task 1 lasts for two hours, does not
need to be preceded by any other and working one hour later entails half the
disutility of effort now. Agent 2 is the less impatient and agent 3 is the most
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impatient of all three. The efficient CPA of e ∈ PPE is

(t
0
1, t

1
1, t

0
2, t

1
2, t

0
3, t

1
3) = (0, 2, 1, 2, 2, 6).

The project’s minimum duration is seven periods and the CPA+(e) allo-
cation is represented in Figure 1.

[Insert Figure 1 about here]

Moreover, there also exists a CPA allocation that is not efficient:
(t01, t

1
1, t

0
2, t

1
2, t

0
3, t

1
3) = (0, 2, 0, 1, 2, 6), depicted in Figure 2.

[Insert Figure 2 about here]

A Project Planning function (PPF ) is a function that assigns a feasible
allocation to every admissible economy, i.e., ϕ : PPE −→ FA(e). We say
that a PPF is a critical path PPF if and only if ∀e ∈ PPE, ϕ(e) ∈ CPA(e).
An efficient critical path PPF is a PPF such that ∀e ∈ PPE, ϕ(e) =
CPA+(e). Given an economy e ∈ PPE and a PPF ϕ, ∀i ∈ N, ϕ0i (e) will
denote the component function relative to the starting time of agent i0s task
and ϕ1i (e) denotes the component function giving the allocation of the end
of agent i’s task.
The overall interest of the organization is modeled as the objectives of

the planner or principal. We are assuming all along the paper, following
the traditional PERT literature, that the cost of the project to the principal
is proportional to the maximum amount of time spent for its completion.
Let us assume that the planner wants to minimize the length of the project
by selecting always CPA allocations. If the planner is perfectly informed
about the relevant economy e, it should not be difficult for him to apply
the PERT techniques or the linear programming version of them to find the
CPA allocations. But we are not concerned in this paper about how to find
these allocations, but about the possibility for the planner to achieve those
outcomes when she is not informed about the technologies. We assume that
each agent is better informed about the characteristics of his own task than
the planner -or even any other agent-, so both the minimum duration of the
task, Ti, the set of preceding tasks, Pi, and the time discount βi are agent i’s
private information (ei = (Ti, Pi,βi)). The planner can only decide the final

allocation based on the reported technologies, denoted as bei = (bTi, bPi, bβi) of
each agent. Therefore, the planner is interested in designing a direct revela-
tion mechanism such that the agents will have no incentive to lie about their
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true technologies.8 However, the planner still knows some information about
the relevant set of agents or tasks involved in the project, N , and the consis-
tency of the whole project -e ∈ PPE-. Hence, we will assume that, given an
economy e, the final allocation given the agents’ reported technologies has to
be technologically feasible, i.e., the planner can always find a lie if when the
project is not technologically feasible, some task cannot be undertaken by an
agent given his reported bei.We assume that any detected lie can be so heavily
punished that no agent is ever interested in reporting a set bPi ⊂ Pi.9Using an
identical reasoning, no agent can ever use a lie such that bTi < Ti.10 Notice that
the agents can still lie by using bPi ⊃ Pi and bTi > Ti -trying to delay the com-
pletion of the project in order to avoid early costs- if they are not given other
additional incentives. We allow for monetary transfers to the agents based
on the agents’ reported technologies, but we assume that the total amount
to be transferred to the agents is a fixed quantity -the price of the project-.
Now, we define the concept of an incentive compatible mechanism in this
setting. Given two economies e = hN,Pi, Ti,βi ∀ii = {N, e1, ..., ei, ..., en}
and e0 = hN,P 0i , T 0i ,β0i ∀ii = {N, e01, ..., e0i, ..., e0n} , we write e0i ⊂ ei when-
ever P 0i ⊆ Pi and T

0
i ≤ Ti and e

0 ⊂ e when e0i ⊂ ei ∀i ∈ N. We shall
also make use of the following well-known notation to avoid large expres-
sions: e = (N, e) = (N, eS, e−S), ∀S ⊆ N, and in particular, for S = {i},
e = (N, ei, e−i). 11

Definition 1 A mechanism M is a set of transfer functions {wi ∀i ∈ N}
of the kind wi : PPE −→ E for every set of agents N ⊆ N.
Notice that the above definition entails that mechanisms are direct: the

only information used by the planner to allocate transfers are the agents’
revealed technologies -their types-.

Definition 2 A mechanism M = {wi ∀i ∈ N} implements an efficient
critical path PPF ϕ if the following holds:
∀e ∈ PPE, ∀i ∈ N, ∀e0i ⊃ ei,

wi(e)−
Xt=ϕ1i (e)−1

t=ϕ1i (e)−Ti
βti ≥ wi(N, e0i, e−i)−

Xt=ϕ1i (N,e
0
i,e−i)−1

t=ϕ1i (N,e
0
i,e−i)−Ti

βti

We also say that these mechanisms are strategy-proof.

8A direct revelation mechanism asks the agents about their types.
9Notice that actually any agent that reports a narrower set of preceding tasks, either

leads to her detection or cannot change the allocation, so it is not individually rational to
do so and we can therefore eliminate all those irrelevant strategies.
10Basically, we are assuming that the planner can monitor when the agents start their

tasks and when they finish.
11This definitions hold irrespective of βi ∀i ∈ N .
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A mechanism implements the efficient critical path PPF if any agent, by
reporting a different technology cannot improve her net payoff -the transfer
received minus the disutility of effort-, and this whatever her true technol-
ogy is and regardless the others’ reported technologies. Therefore, we are
interested in a strong incentive compatibility property to hold.

Definition 3 Given any positive number C > 0, a mechanism
MC = {wi ∀i ∈ N} is balanced if ∀e ∈ PPE,

Pn
i=1wi(e) = C.

This property imposes that the transfer or reward scheme designed by
the planner has to be balanced -the whole budget funding the project should
be distributed among the agents involved in it-.

Definition 4 A balanced mechanism MC = {wi ∀i ∈ N} is invariant to
the project size if ∀e = (N,Pi, Ti, βi) ∈ PPE, ∀λ > 0, if e0 = (N,Pi,λTi, βi),
MλC = {wi(e0) ∀i ∈ N} = {λwi(e) ∀i ∈ N} .
A balanced mechanism is invariant to the project size if the transfers are

proportionally affected by a proportional re-scaling of the project; for exam-
ple, doubling the tasks minimum durations joint with the project value C
should double every agent transfers. This property may be desirable because
it introduces some fairness criterion to the sharing rule when the project is
re-scaled: the agent’s relative payoffs do not change when we measure the
resource ”time” in hours, minutes, days or months.

Definition 5 Given any reservation utility U ∈ Z, a mechanism M =
{wi ∀i ∈ N} implementing PPF ϕ is individually rational if
∀e ∈ PPE, ∀i ∈ N,

wi(e)−
Xt=ϕ1i (e)−1

t=ϕ1i (e)−Ti
βti ≥ U

Individual rationality requires the payoffs to be designed such that for
every economy no agent gets such a small payoff that might lead the agent
to quit the project if possible. An implicit simplifying assumption is that a
net utility of U constitutes the common agents’ reservation utility threshold
for project acceptance.

Definition 6 Given a PPF ϕ, a mechanism M = {wi} is innovation-
monotonic if the following holds:
∀e ∈ PPE, ∀i ∈ N, ∀e0i ⊃ ei,

wi(e)−
Xt=ϕ1i (e)−1

t=ϕ1i (e)−Ti
βti ≥ wi(N, e0i, e−i)−

Xt=ϕ1i (N,e
0
i,e−i)−1

t=ϕ1i (N,e
0
i,e−i)−T 0i

βti

11



A mechanism is innovation-monotonic if an innovation that makes any
agent more ”productive” cannot make him be worse off. Notice that every
mechanism that implements the critical path PPF has to be innovation
monotonic given the efficient critical path PPF . This property constitutes
an additional justification for both implementing the efficient critical path
PPF and using strategy-proof mechanisms.

Definition 7 A PPF ϕ is anonymous if for all N ⊆ N, e ∈ PPE and
any permutation σ(N) of the agents, the following holds: ϕki (N, ei, e−i) =
ϕkσ(i)(N, eσ(i), e−σ(i)), for k = {0, 1} and for all i ∈ N.

This requirement is an obvious fairness property that excludes PPFs that
take into account the agents’ names and not only their technology. Notice
that the efficient critical path PPF is always anonymous.

Definition 8 A mechanism M = {wi} is anonymous if for all N ⊆ N,
e ∈ PPE and any permutation σ(N) of the agents, the following holds:
wi(N, ei, e−i) = wσ(i)(N, eσ(i), e−σ(i)) for all i ∈ N.

Again, anonymity establish that the information about the agents’ names
is not used to allocate the transfers.
Now, we will proceed with the main results in the paper.

3 Results

Our first possibility result proves the existence of anonymous and balanced
mechanisms implementing the efficient critical path PPF. To prove the the-
orem, we still need some definitions.
Let us call a string associated to agent i ∈ N and economy be ∈ PPE,

denoted as Ri(be), to the set of agents obtained with the following algorithm:
Step 1: take a single j ∈ bPi. j ∈ Ri(be). If there is no such an agent,

Ri(be) = ∅ and the process stops.
Step 2: take a single k ∈ bPj. k ∈ Ri(be). If there is no such an agent, the

process stops.
Step 3: take any h ∈ bPk. h ∈ Ri(be). If there is no such an agent, the

process stops.
........
Eventually, since N is finite and technologies are feasible, the algorithm

stops and it is clear that any string is such that Ri(be) ⊆ N\ {i} . Now,
take the union of all the strings associated to agent i ∈ N and declared
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technology be ∈ PPE, i.e., the set of agents with tasks that should nec-
essarily precede i. Let us denote as ri(be) the total number of agents be-
longing to any string associated to agent i ∈ N and technology be ∈ PPE,
i.e., ri(be) = #

S
Ri(be) ∀i ∈ N, ∀be ∈ PPE. Notice that ri(be) = 0 if and

only if bPi = ∅. Let us call terminal agents to the set of agents such that
have not declared to have any preceding task and let us denote them as

S(be), i.e., ∀be ∈ PPE, S(be) = n
i ∈ N s.t. bPi = ∅o, or identically, S(be) =

{i ∈ N s.t. ri(be) = 0} . Notice also that there exists always at least one ter-
minal agent for every feasible technology. Now, we state our main result in
this chapter:

Theorem 1 There exist anonymous, balanced and invariant to the project
size mechanisms implementing the efficient critical path PPF.

Proof. Let us consider the following mechanism: ∀be ∈ PPE, ∀N ∈
N, ∀i ∈ N, wi(N,be1, ...,ben) = C

n
+

−(ri(be) + 1)bTi if i /∈ S(be) and #S(be) > 1P
j /∈S(be)(rj(be) + 1)bTj

#S(be) − bTi +Pj∈S(be)\{i} bTj
#S(be)− 1 if i ∈ S(be) and #S(be) > 1

−(ri(be) + 1)bTi +Pj∈S(be) bTj
n− 1 if i /∈ S(be) and #S(be) = 1P

j /∈S(be)(rj(be) + 1)bTj − bTi if i ∈ S(be) and #S(be) = 1
In words, starting from an equal sharing of C, this mechanism tax every

agent that has declared to have at least one preceding task to pay her own
declared duration (ri(be) + 1) times. The agents that have declared not to
have any preceding task share equally the total tax paid by the formers,
pay a quantity equal to their total declared duration time and receive a
positive transfer equal to the total tax paid by her partners in S(be) divided
by (#S(be)− 1) . If just one terminal agent exist, her bTi tax is distributed
evenly among the non-terminal agents.
It is easy to check that this is an anonymous mechanism: any permutation

of the names of the agents only permute their payoffs and no information
about the agents’ names is used in the mechanism. It is also an invariant to
the project size mechanism, since every agent transfer in every circumstance
is proportional to both any project size C and the reported duration of the
agents. Moreover, it is always balanced: for any reported be ∈ PPE, adding
up the agents’ transfers yields:

Xn

i=1
wi(N,be1, ...,ben) =

=
X

i/∈S(be)
·
C

n
− (ri(be) + 1)bTi¸+
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+
X

i∈S(be)
"
C

n
+

P
j /∈S(be)(rj(be) + 1)bTj

#S(be) − bTi +Pj∈S(be)/{i} bTj
#S(be)− 1

#
= C if there

are at least two terminal agents andXn

i=1
wi(N,be1, ...,ben) =X

i/∈S(be)
"
C

n
− (ri(be) + 1)bTi + bTk

n− 1

#
+

+

·
C

n
+
P

j /∈S(be)(rj(be) + 1)bTj − bTk¸ = C if just one agent -k- is terminal.

To prove that it implements the efficient critical path PPF, we shall compare
the payoff each agent obtains by both reporting the truth and lying for any
possible be−i.
Case 1: i /∈ S(ei,be−i). We have to distinguish two cases:
Case 1.1.: #S(ei,be−i) > 1.
In this case, reporting a technologically feasible task duration longer

than the true one Ti, say bTi > Ti will not affect her classification as i /∈
S(bei,be−i), since bPi = Pi 6= ∅ and ri(ei,be−i) = ri(be). Hence, agent i ∈ N,
by reporting the truth Ti, would obtain the following payoff: wi(N, eibe−i)−Pt=ϕ1i (N,eibe−i)−1

t=ϕ1i (N,eibe−i)−Ti βti =
C

n
− (ri(be) + 1)bTi −Pt=ϕ1i (N,eibe−i)−1

t=ϕ1i (N,ei,be−i)−Ti βti
By declaring bTi = Ti + 1, agent i is enlarging the critical path in 1 hour

and, given its true βi, can saveXt=ϕ1i (N,eibe−i)−1
t=ϕ1i (N,ei,be−i)−Ti

¡
βti − βt+1i

¢
= β

ϕ1i (N,eibe−i)−Ti
i − β

ϕ1i (N,eibe−i)
i > 0 (1)

monetary units. The cost of obtaining that benefit is one monetary unit,
but notice that the benefit can never outweigh its cost. Now, notice that

by declaring bTi = Ti + 2, the benefit will be Pt=ϕ1i (N,eibe−i)−1
t=ϕ1i (N,ei,be−i)−Ti

¡
βti − βt+2i

¢
=Pt=ϕ1i (N,eibe−i)−1

t=ϕ1i (N,ei,be−i)−Ti
¡
βti − βt+1i

¢
+

+
Pt=ϕ1i (N,eibe−i)

t=ϕ1i (N,ei,be−i)−Ti+1
¡
βti − βt+1i

¢
< 2, which is the cost of declaring the

task to be 2 hours longer, and so on, so ∀bTi > Ti, agent i -actually, any agent-
can never find that lying is more profitable than saying the truth.
By reporting a technologically feasible preceding tasks set bPi ⊃ Pi, agent

i ∈ N cannot change neither her non-terminal category nor the fact that
S(bei,be−i) > 1, so it holds that ∀ bPi ⊃ Pi, i /∈ S(ei,be−i)⇒ i /∈ S(bei, be−i) and
she can get a benefit of at most a delay such that

P
j∈ bPi bTj −Pj∈Pi

bTj ≥ 0.
By reporting bPi = Pi ∪ {k} , for any k ∈ N\ {i} , agent i ∈ N cannot in any

case get a direct benefit as large as bTi -see the argument above-, and this only
in the case of being part of the critical path after the lie -and maybe before
the lie-, in which case it holds that ri(be) ≥ ri(ei,be−i) + 1. Notice that both
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arguments are valid for possible lies that mix both declaring longer duration
time and a larger preceding tasks set.
Finally, revealed bβi’s do not enter into the definition of the mechanism,

so there is no point in lying about them. Notice, however, that no mecha-
nism implementing the efficient CPA can make non-trivial use of information
about the revealed β’s.
Case 1.2.: #S(ei,be−i) = 1. In this case, no lie of any form: bTi > Ti

or bPi ⊃ Pi can change the facts of i /∈ S(bei,be−i) and #S(bei,be−i) = 1, so

a transfer of the form: wi(N,be1, ..., ben) = C

n
− (ri(be) + 1)bTi + P

j∈S(be) bTj
n− 1

is unavoidable. The third term is independent of the reported lie, so an
identical reasoning to that of Case 1.1. applies to this case as well and there
are no incentives to lie.
Case 2: i ∈ S(ei,be−i).
In this case, if agent i is terminal for that technology, any lie consisting in

declaring a longer duration bTi > Ti cannot neither change her terminal status
nor alter the set S(ei,be−i) = S(bei,be−i), but can delay the project at most
τ = bTi−Ti hours. The benefit for one hour delay is given by (1) and the same
reasoning ensures that no such lie can ever yield a direct benefit of min {τ , Ti}
monetary units. In both cases of #S(ei, be−i) > 1 or {i} = S(ei,be−i), since
both rj(be) and bTj for all j ∈ N\ {i} cannot change with any technologically
admissible lie, the cost of the lie is exactly bTi > Ti monetary units -see the
payoff function-, which is always bigger than the cost.
If agent i ∈ N declares to have some preceding tasks, she will always

change her own terminal status to non-terminal, so ∀ bPi ⊃ Pi = ∅, i ∈
S(ei,be−i)⇒ i /∈ S(bei,be−i). There are again two possibilities here:
Case 2.1.: {i} = S(ei,be−i).
If S(ei,be−i) is a singleton -i.e., i is the only terminal agent for ei andbe−i-, there is no technologically feasible lie available to agent i by declaring

a non-empty bPi, since for any k ∈ N such that k ∈ bPi, there will necessarily
be a sequence of tasks j, l, z ∈ N such that j ∈ bPk, l ∈ bPj, ... z ∈ bPi and we
get a cycle, so there is no possibility in this case of getting the non-terminal
agents payoff.
Case 2.2.: #S(ei,be−i) > 1. In this case, agent i may get a non-terminal

agent status by declaring bPi 6= ∅ and bPi ⊆ S(ei,be−i)\ {i} . There are two
possibilities now:
Case 2.2.1.: #S(bei,be−i) > 1. In this case, observe that for every possiblebe ∈ PPE, the total payoff of any terminal agent is always bigger than that

15



of any non-terminal agent, i.e., the following holds:

C

n
+

P
j /∈S(be)(rj(be) + 1)bTj

#S(be) − bTi +Pj∈S(be)/{i} bTj
#S(be)− 1 >

C

n
− (ri(be) + 1)bTi. (2)

Notice that, although the first term is cancelled in both sides, since ri(be) ≥ 1
for any non-terminal agent, the second term is always at least bTi monetary
units bigger on the right than on the left -in absolute terms-, while the third
term on the left is always positive, so by lying declaring a non-empty bPi,
the cost in terms of the transfer is always bigger than ri(be)bTi. On the other
hand, the direct benefit of getting a delay of at most

P
j∈ bPi bTj -the maxi-

mum possible for some be−i- is again always bounded by minnPj∈ bPi bTj, Tio
monetary units, and the loss in terms of the transfer will be -as was argued

above- bigger than ri(be)bTi, so since ri(be)bTi > minnPj∈ bPi bTj, Tio for bTi > Ti,
true terminal agent i has no incentive to declare to be non-terminal.
Case 2.2.2.: #S(bei,be−i) = 1. In this case, agent i lies in the following

way: there are other terminal agent initially and by reporting this agent
to precede herself makes this agent the only terminal agent after the lie.
Henceforth, agent i changes status from terminal to non-terminal and gets
an additional bonus by getting a share of the terminal agent tax -see Figure
3 below-. Agent i will not have an incentive to lie if, for every be ∈ PPE and
ei, the transfer obtained by reporting her true technology -left hand side of
inequality (3) below- exceeds the transfer obtained by lying plus the maxi-
mum possible direct gain from lying, i.e., Ti -in brackets below- as we have
seen above, so if the new terminal agent is k ∈ N, i ∈ N will not lie if:

C

n
+

P
j /∈S(be)(rj(be) + 1)bTj

2
− bTi + bTk ≥ C

n
− (ri(be) + 1)bTi + bTk

n− 1 + [Ti] .
(3)

If n = 2, expression (3) is true when −bTi+ bTk ≥ −2bTi+ bTk+Ti ⇒ bTi ≥ Ti,
which is always true by assumption. If n > 2, for any be ∈ PPE, the left
hand side of (3) becomes bigger as the second term is positive and the right
hand side becomes smaller as the second term can only amount to either
−2bTi or less -until reaching a minimum of −(n− 1)bTi-. Moreover, the third
term on the right hand side becomes always smaller as the number of agents
increase. Obviously, expression (3) holds for every possible economy and lie
compatible with the case.
Since we have checked that in every possible economy no lie can be ever

profitable, the mechanism is strategy-proof and the proof is complete.
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[Insert Figure 3 about here]

Given the above possibility result, the next obvious step is to refine the
set of desirable mechanisms by imposing additional properties and test the
robustness of the above result to the introduction of other desirable prop-
erties in this context. We opt for individual rationality since it is likely to
be important in real-life situations. Our next result proves the impossibil-
ity of designing anonymous, balanced and individually rational mechanism
implementing the efficient critical path PPF.

Theorem 2 There do not exist anonymous, balanced and individually ratio-
nal mechanisms implementing the efficient critical path PPF for any C and
U .

Proof. Let us fix any reservation utility threshold U ∈ Z and any project
size C > 0. Let us call g(x) ∈ Z ∀x ∈ E to the function that assigns the
minimum integer between the two closest integers to any real number -the
smallest integer between the two closest or the integer part of x ∈ E-. We
assume that a mechanism is balanced, anonymous and strategy-proof and
shall prove that no such a mechanism can ever be individually rational as
well. Now, we consider two cases:

Case 1:
C

2
< U + 1. In this case, consider the following admissible

economy (N, e): N = {1, 2} , Pi = ∅, and Ti = 1 ∀i = 1, 2, regardless of the
agents’ β’s. By anonymity and balance, wi(N, e) =

C

2
, so the total payoff

each agent receive is
C

2
− 1, which is strictly smaller than U by assumption,

so individual rationality is violated in this case.

Case 2:
C

2
> U + 1. We have to prove that within that range of the

parameters C and U, we can find an economy such that individual rationality
is violated, provided that we work within anonymous, balanced and strategy-
proof mechanisms. Let us consider the following economy (N, e) : N =
{1, 2} , Pi = ∅, Ti = g(C−2U) and βi sufficiently close to 1 ∀i = 1, 2. Notice
that since

C

2
> U + 1 within the assumption, Ti ≥ 2 and is an admissible

integer duration, so e ∈ PPE. Now, let us consider any economy (N, e0)
such that the only change with respect to e ∈ PPE is T 01 being very large
-tending to infinity-. This economy is also feasible. Observe now that agent
1 in the true economy e will lie and declare T 01 if the total payoff obtained
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by agent 1 after the transfer is made in e0 ∈ PPE is bigger than her total
payoff in economy e, and since we assume the mechanism to be strategy-
proof, we have to impose the following condition to hold: wi(N, e

0
i, e−i) −Pt=ϕ1i (N,e

0
i,e−i)−1

t=ϕ1i (N,e
0
i,e−i)−Ti

βti ≤ wi(e)−
Pt=ϕ1i (e)−1

t=ϕ1i (e)−Ti
βti. Note that since β1 is sufficiently

close to 1 and T1 <∞ but still T 01 is infinitely longer than T1 by construction,
the expression above can be written as follows for some appropriate selection
of both T 01 and β1 :

w1(N,T
0
1, ∅, e2)− ε1 ≤ C

2
− T1 − ε2

for some ε1, ε2 > 0 but as close to 0 as desired, so there exist admissible
economies such that strategy-proofness, anonymity and balance require some

w1(N, T
0
1, ∅, e2)− ε1 to be smaller than

C

2
− T1. Substituting T1, we obtain:

w1(N, T
0
1, ∅, e2)− ε1 ≤ C

2
− g(C − 2U) < C

2
− (C − 2U). Finally, notice that

the right hand side of the last inequality can be written as

·
U − C

2

¸
+ U,

which is always smaller than U − 1 under our assumptions, so the following
holds: w1(N,T

0
1, ∅, e2)− ε1 < U. But notice that w1(N,T

0
1, ∅, e2) still applies

if the true economy was e0, in which case the direct cost of undertake the
true task T 01 on the left hand side of the last inequality will be much larger
than the negligible ε1, so for that true economy the net agent 1’s payoff will
be much smaller than U, so no mechanism can be individually rational for
any U and any C > 0.
Theorem 2 obliges us to either restrict ourselves to a subset of feasible

technologies or to abandon some other property. However, in some circum-
stances individual rationality is not very important.

4 Concluding Remarks

In this paper we have explored the possibility of designing strong incentive
compatible mechanisms in a particular production setup: the well-known
network production problem, and to the solutions defined by methods like
the CPM and the PERT when transfers to the agents are possible. Although
the problem is similar to other environments like the public goods problem,
the opportunities for exploiting the asymmetry on the distribution of the
private information is very different in this context, and it is not surprising
that we obtain different results when compared to those obtained by Groves
and Clarke -see, for example, Groves [4] and Groves [5]- for the public goods
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provision problem. Assuming that the agents’ payoffs are quasi-linear on the
part of the transfers, we find simple strategy-proof, anonymous and invariant
to the project size mechanisms implementing the PERT that are balanced as
well, so complete efficiency is achieved provided that we include the planner
in the definition of Pareto-optimality. Furthermore, if we add other plausible
property like assuming individually rational payoffs, we obtain an impossibil-
ity result (Theorem 2 ). The possible ways-out in this case include imposing
constraints on the domain of possible economies or relaxing the equilibrium
concept used, although perhaps the most promising approach to escape from
the impossibility could be imposing reasonable bounds on the technologies
allowed to be considered by the planner, like some maximum time for any
task to be completed. The nature of the proofs -and this also includes the
Groves-Clarke mechanism in the public goods provision problem- points to
this lack of bounds as the key factor behind the impossibility results.
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