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Abstract

This paper analyses a model of learning by imitation, where besides the
decision maker, there is a population of individuals facing the same decision
problem. We analyse a property called Absolute Expediency, which requires
that the decision maker’s expected payo¤ increases from one round to the
next for every decision problem and every state of the population. We give
a simple characterisation of the expediency property and show that its basic
feature is proportional imitation: the change in the probability attached to
the played action is proportional to the di¤erence between the received and
the sampled payo¤ (the sampled payo¤ plays the role of an aspiration level).



1 Introduction
Learning theory has become a central part of economic theory over the last
decade. This is due to the fact that it is precisely through a learning process
that we arrive to the majority of our decisions and decision making is one
of the basic tasks in economics. An extensive overview of this subject is
provided by Fudenberg and Levine (1998).

One of the main weaknesses in this literature is the variety of learning
rules and that the results obtained are quite often particular to the learn-
ing rules. In a recent paper, Börgers et al (2001) have tried to put into
order the huge variety of rules considered in the literature by focusing on
a particular property: absolute expediency.1 Their approach is so general
that encompasses almost all learning rules whose input is the received payo¤.
This property requires that the performance of the agent improves from one
period to the next provided the environment stays the same. This property
has two particular advantages: …rst, it refers to agent’s behaviour and there-
fore it can be tested in experiments. Second, the experimental veri…cation is
more easily achieved because the property is concerned with the short run
performance of the agent, and it is precisely the short run behaviour what it
is observed in experiments.

Although they do not provide a complete characterisation of absolute
expedient rules, they …nd necessary as well as some su¢cient conditions.
Expediency requires that the decision maker behave as if he used a modi…ed
version of Cross’ (1973) learning rule, in which the adjusted probabilities are
proportional to the payo¤ received. However, it encompasses richer rules
than the Cross’ one as for example, rules which incorporate “similarity”
relationships between actions.

In this paper, we extend their theoretical analysis to cover situations in
which the agent can observe, in addition to his payo¤, the performance of
other individuals who are also engaged in the same decision situation. This
opens the door to the analysis of learning by imitation which is also believed
to be a major source for human learning.

In our imitation scenario, a crucial issue is where the payo¤s distributions
come from.2 We will consider the simplest framework in which our analysis

1This expression was …rst considered in the literature on machine learning (Lakshmi-
varahan and Thathachar (1973)).

2In Börgers et al (2001) this question is irrelevant because they deal with individual
learning. Therefore, their approach can be applied to single decision problems as well as
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can be conducted by assuming that all members of the population are facing
the same decision problem. It will be assumed that payo¤ realisations are
independent across rounds. In addition, we need to consider how payo¤
realisations across individuals are related in a given round. Among others,
there are two extreme cases: (i) payo¤s realisations are independent across
individuals (this case is referred to as Independent Events Condition), and
(ii) every individual choosing the same action receives the same payo¤ (this
case will be named Common Events Condition). These are the cases that
will be considered in this paper.

Our analysis will be conducted in what Börgers et al. (2001) call “local”
model of learning: Only two periods of time are considered (“today” and
“tomorrow”) and the decision maker’s behaviour “today” is taken as given
and …xed. This sort of models can be considered as the “reduced” form of
more general learning models. To see how such a model of learning can be
derived from a fully speci…ed learning model with a general state space the
reader is referred to Section 8 of Börgers et al. (2001).

The decision maker’s behavior today is described by a probability distri-
bution, which indicates how likely is that the decision maker plays each of
his strategies. After playing his strategy and receiving his payo¤, he has the
opportunity to observe the payo¤ and the action taken by a member of a pop-
ulation. With this information, the decision maker updates his probability
distribution. To simplify the complexity of the characterisation analysis, we
will restrict the class of learning rules that the decision maker can use. The
restriction is intended to capture the essence of imitative behaviour: given
that imitation is the act of copying others’ actions, we will assume that the
decision maker can only update the probabilities attached to the played and
the sampled actions.

A learning rule is called absolutely expedient if it increases the expected
change in expected payo¤s from one round to the next for every decision
problem and every state of the population. We …nd that the characterisation
of absolutely expedient rules is the same under the Common Events and
the Independent Events condition. The basic feature is the proportional
imitation, meaning that the change in the probability attached to the played
action is proportional to the di¤erence between the received and the sampled
payo¤. Speci…cally, the probability attached to the played action is decreased
(increased) if its payo¤ is smaller (greater) than the sampled payo¤. Hence,

games.
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the sampled payo¤ plays the role of an aspiration level.
A related proportional imitation component is also found in Schlag (1998)

although in a quite di¤erent framework. Schlag (1998) considers pure strat-
egy imitation rules in a population of agents all of whom are updating their
behaviour. He axiomatizes strictly improving rules3 and …nds that improving
rules imitate higher payo¤ strategies with a probability which is proportional
to the payo¤ di¤erence.

The rest of the paper is organised as follows. In Section 2, we introduce
the framework in which the analysis is conducted. Section 3 contains the
de…nition of absolute expediency. The characterisation results are contained
in Section 4. Finally, Section 5 concludes. All the proofs are contained in
the Appendix.

2 Framework
A decision maker faces a decision problem. He has to choose one strategy
from a …nite set S of strategies which has at least two elements. Throughout
this paper we keep S …xed. We assume that the decision maker knows S.
Let E be the set of states of Nature. An event e occurs in accordance with
a probability distribution p. The payo¤ received by a decision maker is a
function ¼ : S £ E ! [0; 1]. Note that we have normalized payo¤s to be
between zero and one.4 This motivates the following de…nition:

De…nition 1 An environment E is a speci…cation of a probability distribu-
tion p and a payo¤ function ¼.

As we said in the introduction, only two periods of time will be considered:
“today” and “tomorrow”. The decision maker’s behaviour “today” will be
exogenous and described by a probability distribution ¾. The distribution
¾ speci…es for each pure strategy s how likely it is that the decision maker
chooses s today. We make the following assumption.

Assumption 1. For every s 2 S the probability ¾(s) is strictly positive:

3A rule is strictly improving if when used by all members of the population, the popu-
lation average expected payo¤ increases from one round to the next.

4The substantial assumption here is that the decision maker knows some upper and
some lower bound for payo¤s. Note that this assumption is made everywhere in the
literature.
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This assumption implies that there is a positive probability that the de-
cision maker plays today the best strategies. This assumption rules out
situations in which the decision maker has to …nd out “good” strategies and
focuses on the task of detecting “good” strategies, which is by far easier than
the former one.

The decision maker …rst chooses a strategy s from S and then he observes
the payo¤ received for that choice. After that, he observes the action and the
payo¤ experienced by a member of a population whose members are facing
the same decision problem.

The population is described by a probability distribution µ 2 ¢(S) which
speci…es the proportion of individuals playing each pure strategy. Assuming
uniform sampling, the probability that the decision maker samples an indi-
vidual playing strategy s is precisely µ(s). We will refer to µ as the population
state.

We will assume that payo¤ realisations are stochastically independent
across today and tomorrow. Regarding how payo¤ realisations across indi-
viduals are related today, two polar cases will be considered.

(a) Common Events Condition: The state of Nature is realized. This state
of Nature is common to every decision maker.

(b) Independent Events Condition: The state of Nature is independently
realized across decision makers.

The decision maker’s behaviour “tomorrow” is governed by a learning
rule.

De…nition 2 A learning rule L is a function L : S£[0; 1]£S£[0; 1]! ¢(S)

The distribution L(s; x; s0; y) is the state of the decision maker “tomor-
row” if his state “today” is ¾, the pure strategy which he chose was s, the
payo¤ received was x, the sampled strategy was s0 and the sampled payo¤
was y. For every s00 2 S, we denote by L(s; x; s0; y)(s00) the probability which
L(s; x; s0; y) assigns to s00.

In this paper we shall focus on learning rules which satisfy the following
two assumptions.

Assumption 2: Continuity assumption. For any s 2 S the learning rule L
is continuous in payo¤s:
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This is a technical assumption which will allow us to focus on smooth
functions in searching for absolutely expedient rules. The key assumption is
the following:

Assumption 3: Imitative assumption. L(s; x; s0; y)(s00) = ¾(s00) for all s00 6=
s; s0 and all x; y 2 [0; 1].

This assumption is intended to capture the essence of imitative behaviour.
It states that the probabilities attached to “non-observed” strategies are not
updated. The learning rules satisfying this assumption will be called imitative
rules. Note that more general learning rules will clearly imply a more general
and richer structure, at the cost of complicating the analysis.

In the next section, we will introduce the property we are interested in.

3 Expediency
In this section we de…ne the expediency property over the complete set of
learning rules, i.e. without assuming the imitative assumption. We will im-
pose the imitative assumption in the next section, where the characterisation
analysis will be undertaken.

For given environment E, we de…ne for every strategy s 2 S: ¼s ´R
E ¼(s; e)dp(e), i.e. ¼s is the expected payo¤ associated with strategy s. We

denote by S¤ the set of expected payo¤ maximising strategies, i.e.: S¤ ´
fs 2 S j ¼s ¸ ¼s0 for all s0 2 Sg:

For given learning rule L, environment E and population state µ, we
can de…ne a function f which assigns to every pure strategy s, the expected
change in the probability attached to s.

For the Common Events Condition we have:

f(s) =
X

s02S
¾(s0)

X

s002S
µ(s00)

Z

e

[L(s0; ¼ (s0; e) ; s00; ¼ (s00; e))(s)¡ ¾(s)] dp(e)

for s 2 S.
While for the Independent Events Condition f(s) is de…ned as

X

s02S
¾(s0)

X

s002S
µ(s00)

ZZ

e0;e00

[L(s0; ¼ (s0; e0) ; s00; ¼ (s00; e00))(s)¡ ¾(s)] dp(e0)dp(e00)

for s 2 S.
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And for any subset eS µ S,

f(eS) =
X

s2eS

f(s)

We also de…ne a function g which gives the expected change in expected
payo¤s. Formally,

g =
X

s2S
f(s)¼s

De…nition 3 A learning rule B is expedient if for all environments E with
S¤ 6= S and all population states µ: g > 0:

A learning rule is therefore expedient if for all non-trivial environments,5

the decision maker’s expected payo¤ increases for every environment and
every population state, provided the environment stays the same. The next
section characterises the class of expedient imitative rules.

4 Expedient Imitative Rules
The aim of this paper is the characterisation of the class of absolutely expe-
dient learning rules within the class of imitative rules. Before tackling it, we
will state two useful implications of the imitative assumption over the actual
and expected movement of learning rules.

First, consider strategies s; s0 2 S with s 6= s0. Note that it is enough
to specify L (s; x; s0; y) (s) to completely specify any imitative learning rule
because L (s; x; s0; y) (s00) = 0 for all s00 6= s; s0 by the imitative assumption
and L (s; x; s0; y) (s0) = ¾(s)+¾(s0)¡L (s; x; s0; y) (s) because L (s; x; s0; y) is
a probability distribution.

Second, there are two circumstances under which the probability attached
to a particular action s happens to be updated: (i) either such action s is
actually played by the decision maker (this happens with probability ¾(s))
or (ii) such action is sampled by the decision maker (and this happens with
probability µ(s)). Note that if the population is not playing such action s,
i.e. µ(s) = 0 (and this might occur because there are no restrictions placed
on the population state), the unique force is (i). Furthermore, if the unique

5An environment is called trivial if every strategy gets the same expected payo¤.
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strategy present in the population is strategy s0 6= s; i.e. µ(s0) = 1, then the
formula for the expected movement is further simpli…ed.

We will follow the approach taken in Börgers et al. (2001) by de…ning
and characterising in …rst place a seemingly unrelated property.

De…nition 4 A behaviour rule L is unbiased if for all environments E with
S¤ = S and all population states µ: f(s) = 0 for all s 2 S.

Note that, unlike expediency, there is no much behavioural content un-
derlying this property. It only asks for no expected movement in all trivial
environments, precisely the sort of environments for which expediency does
not apply. We next show why this property is relevant to our analysis.

Proposition 1 Every absolutely expedient behaviour rule is unbiased.

The intuition behind this result is clear. If an expedient rule were not un-
biased, then it would be the case that for some trivial environment E; there
exists at least one action s 2 S such that f(s) < 0. Increase slightly the pay-
o¤s of those strategies s with f(s) < 0 to make them the optimal strategies,
i.e. the expected payo¤ maximising ones. By a continuity argument, in the
modi…ed environment the optimal strategies will have a negative expected
movement in its probability (f(s) < 0). It is trivial to show that in that
modi…ed environment it is true that g < 0, contradicting expediency. Note
the role played by the continuity assumption and the fact that the expedi-
ency property is de…ned over a class of environments which contains trivial
environments.

Proposition 1 implies that the class of absolutely expedient rules belongs
to the class of unbiased rules. Hence, it is clear that our …rst step towards the
characterisation of expedient rules should be the characterisation of unbiased
rules. This is the content of the next proposition.

Proposition 2 An imitative rule L is unbiased if and only if there exists a
function B : S£S ! R such that for every (s; x; s0; y) 2 S£ [0; 1]£S£ [0; 1]
with s0 6= s :

L (s; x; s; y) (s)¡ ¾(s) = 0
L (s; x; s0; y) (s)¡ ¾(s) = B (s; s0) (x¡ y)

This proposition holds for both the Common and the Independent Events case.
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Remark 1 The …rst formula comes directly from the imitative assumption.

Remark 2 The expected movement of the probability attached to strategy s
for an unbiased imitative rule is given by

f (s) =
X

s0 6=s
(¼s ¡ ¼s0) [¾(s)µ(s0)B (s; s0) + ¾(s0)µ(s)B (s0; s)] (1)

This formula holds for both the Common and the Independent Events case.

The remark 2 holds for both cases because the rule is linear in payo¤s.
Also from the formula in the remark can be seen that for trivial environments
it is true that f (s) = 0.

To see why the same characterisation arises in both cases, let focus on
environments in which all strategies but one receive a deterministic payo¤.
Note that for this class of environments, the distinction between common
and independent events conditions is innocuous. It is precisely this sort of
environments whichthat are used in the proof of the proposition.

Then, the main feature of unbiasedness is not only the linearity of the
imitative rule in payo¤s, but something a bit more demanding: linearity
in payo¤s di¤erence. The linearity in payo¤s comes from the fact that the
expediency property is de…ned in terms of expected payo¤s, and obviously,
expected payo¤s are linear in payo¤s.6 The linearity in payo¤s di¤erence is
due to the fact that we are restricting attention to imitative rules.7 In a
setting in which the analysis is not restricted to imitative learning rules it
can be conjectured that the linearity will be the distinguishing feature of this
property, although more general rules will be presumably obtained.

Recall that the goal is the characterisation of the expediency property
within the class of imitative rules, and note that Propositions 1 and 2 come
very close to the desired result. A further step regarding the sign of the
coe¢cients B(s; s0) is therefore called to complete the characterisation. The
next de…nition goes into that direction.

De…nition 5 An unbiased imitative rule L is positive if B(s; s0) > 0, for
s 6= s0

6The linearity of the expedient rules in payo¤s is also obtained by Börgers et al. (2001)
in their setting.

7The linearity in payo¤s di¤erence is also the key feature of the optimal rule in Schlag
(1998).
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Positivity implies that the probability attached to the played action is
decreased as long as the received payo¤ is smaller than the sampled one;
otherwise, the probability is increased. Thus, it requires the unbiased rule to
consider the sampled payo¤ as an aspiration level for the adjustment of the
probability distribution, where the update is proportional to the di¤erence
between the realised and the observed payo¤.

With this de…nition, we can state the main result of the paper.

Theorem 1 An unbiased imitative rule L is expedient if and only if it is
positive.

For grasping the intuition behind this theorem, we …rst interpret the
positivity property in terms of the expected movement of the rule. Fix an
environment and a population state, and perform the following mental ex-
periment: modify the expected payo¤ associated to a particular action bs and
look how the expected movement of the rule changes. Equation (1) yields

df(s)

d¼bs
= ¡ [¾(s)µ(bs)B (s; bs) + ¾(bs)µ(s)B (bs; s)] < 0 for s 6= bs (2)

df (bs)
d¼bs

=
X

s6=bs
[¾(bs)µ(s)B (bs; s) + ¾(s)µ(bs)B (s; bs)] > 0 (3)

Thus positivity implies that the expected change in the probability at-
tached to strategy bs increases when its expected payo¤ is increased while the
probability attached to any other strategy decreases. Hence, the rule goes in
expected terms into the direction of putting more weight to the action whose
expected payo¤ has been increased, taking away some probability from all
other strategies.

With this interpretation at hand, we can understand why expediency
requires positivity. Consider an expedient rule which is not positive, i.e.
there exist strategies bs and s0 such that B (bs; s) · 0. Consider a trivial
environment. As the rule is unbiased (Proposition 1), we already know that
f(s) = 0 for all strategy s 2 S. Increase slightly the expected payo¤ of action
bs to make it the unique expected payo¤ maximising action. Note that in this
new environment there are two di¤erent expected payo¤s values. Focus on
a collapsed population with µ (s0) = 1. Then df (bs) =d¼bs = ¾(bs)B (bs; s0) ·
0. But this clearly contradict expediency as the rule in expected terms is
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taking away probability from the unique optimal strategy and increasing the
probability of the sub-optimal strategies.

For the su¢ciency result, consider an unbiased and positive rule. Con-
sider a bandit problem with two di¤erent expected payo¤s values. By simple
inspection of equation (1), it is clear that positivity implies that the expected
change in expected payo¤s is positive, i.e. g > 0: This will be our starting
point. Let bs denote a strategy belonging to the set of worst strategies. Con-
sider the following mental experiment: modify the expected payo¤ associated
to strategy bs and look how the expected change in expected payo¤s changes.
With some abuse in the notation, we can represent this as follows:

dg

d¼bs
= f(bs) +

X

s2S
¼s
df(s)

d¼bs

Note that positivity implies that f(bs) < 0, df(s)=d¼bs < 0, while df(bs)=d¼bs >
0. Note however, that ¼bs is the smaller expected payo¤ present in the bandit
problem. Therefore, for any s 6= bs it is true that ¼s ¸ ¼bs, where the inequality
is strict for some s. Hence, we can rewrite ¼s as ¼bs + "(s), where "(s) ¸ 0
with strict inequality for some s. Then we can write the above expression as

dg

d¼bs
= f(bs) + ¼bs

X

s2S

df(s)

d¼bs
+

X

s 6=bs
"(s)

df(s)

d¼bs

Note that the second term is zero by de…nition and the third term is
negative by positivity. Recalling that f(bs) is negative, we …nd that dg=d¼bs <
0.

Hence, we have found that when lowering the payo¤ attached to any of
the worst strategies, the expected change in expected payo¤s must increase.
This is enough to show that unbiasedness and positivity imply expediency as
we started out in an environment with g > 0. A more formal and elaborated
proof based on this idea is developed in the Appendix.

Summarising, Theorem 1 shows that positivity is the basic ingredient for
the expediency property within the class of imitative rules. We can now assess
how restrictive the imitative assumption we have introduced is by comparing
our results to those in Börgers et al (2001). They characterise two proper-
ties: absolutely expediency and monotonicity. A learning rule is monotone
if the expected change in the probability attached to the optimal strategies
is positive. They show that both monotonicity and absolutely expediency
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require the positivity property.8 They also de…ne another property called
“cross-negativity”: An unbiased learning rule is cross-negative if the prob-
ability of playing tomorrow a strategy di¤erent from the one played today
is non-increasing in the payo¤ received today. They show that an unbi-
ased learning rule is monotone if and only if it is positive and cross-negative
and that cross-negativity is su¢cient for expediency although is not neces-
sary. Noting that in our setting the positivity property and the imitative
assumption imply cross-negativity, their results show that within the class of
cross-negative rules, monotonicity and absolutely expediency are equivalent
properties (their propositions 3 and 4). This is what happens in our paper
and this is why we are able to characterise all absolutely expedient rules in
our setting.

5 Conclusion
In this paper we have developed a model of learning by imitation. We have
characterised a property called expediency. A learning rule is expedient if
increases the decision maker expected payo¤ from one period to the next,
regardless of the decision problem and the population state. The charac-
terisation is performed within the class of imitative rules: In this class, the
decision maker is “denied” the possibility of updating the probabilities at-
tached to non-observed strategies.

The basic component of any expedient imitative rule is that the change
in the decision maker’s state is proportional to the payo¤s di¤erence be-
tween the received and the sampled payo¤. A related proportional imitation
component is also found in Schlag (1998) although in a quite di¤erent frame-
work. Schlag (1998) considers pure strategy imitation rules in an evolving
population whereas our characterization deals with mixed strategy imitation
rules concerning one single decision maker. In addition, Schlag axiomatizes
strictly improving rules, a property concerned with the evolution of the whole
population, whereas in our setting we focus on a property concerned with
the behaviour of a single individual. Improving rules imitate higher payo¤
strategies with a probability which is proportional to the payo¤ di¤erence.
In our setting absolutely expediency implies that the change in the decision
maker’s state is proportional to the payo¤ di¤erence, although it incorporates
a reinforcement component, the sampled payo¤ being an aspiration level, i.e.

8They call it “own-positivity”.
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the probability attached to the played strategy is increased if it gets a higher
payo¤ than the sampled action, otherwise is decreased.

Our paper opens interesting lines of research in imitative scenarios. On
the theoretical side, it might be interesting to explore the characterisation of
expedient rules without imposing the imitative assumption. On the practical
side, it suggests the investigation of whether experimental subjects responde
in a proportional way to the payo¤s experience in the way suggested by our
theoretical analysis.

6 Appendix
Proof of Proposition 1. The proof is indirect. Suppose there were an
environment E with S¤ = S, a population state µ and a strategy s 2 S such
that f (s) 6= 0. Let ¼ denote the expected payo¤ associated with E. Let
S+ (E) = fs 2 S : f ( s) ¸ 0g and S¡ (E) = fs 2 S : f ( s) < 0g. Note that
S¡ (E) 6= ;. Let ~E denote the environment in which the payo¤ associated
to strategies belonging to S¡ (E) is increased by adding " > 0. Note that
in this new environment, S¤ = S¡ (E). Denote by ~g the expected change in
payo¤s in ~E. Then

~g =
X

s2S¡(E)

ef ( s) (¼ + ") +
X

s=2S¡(E)

ef ( s) ¼

=
X

s=2S¡(E)

ef ( s)¼ +
X

s2S¡(E)

ef ( s) ¼ +
X

s2S¡(E)

ef ( s) "

= ¼
X

s2S

ef ( s) + "
X

s2S¡(E)

ef( s)

Note that
P

s2S
ef ( s) = 0. Furthermore, by continuity ef ( s) < 0 for all

s 2 S¡ (E), which implies that ~g < 0, contradicting expediency.

Proof of Proposition 2.
Su¢ciency: Equation (1) gives the following formula for the expected

movement of the probability attached to strategy s for both the common and
independent events case.

f (s) =
X

s0 6=s
(¼s ¡ ¼s0) [¾(s)µ(s0)B (s; s0) + ¾(s0)µ(s)B (s0; s)]

12



If ¼s = ¼s
0

for all s0 6= s, this expression is null, as the de…nition of
unbiasedness required.

Necessity: In the remainder of the proof, we consider some given unbi-
ased imitative rule and show that the imitation rule has to have the property
stated in proposition 2. We proceed in two steps.

Step 1: We …rst show that there exists a function eB : S £ S µ£[0; 1] ! R
such that for all s0 6= s;

L (s; x; s0; y) (s)¡ ¾(s) = (x¡ y) eB (s; s0; y)

Let a; y; c 2 [0; 1] with a < y < c. Let E be fe1; e2g. Consider an
environment bE with p (e1) = bp and p (e2) = 1 ¡ bp. For action bs we have
¼ (bs; e1) = a, ¼ (bs; e2) = c whereas for any other strategy s 6= bs, ¼ (s; e1) =
¼ (s; e2) = y. Let bp = c¡y

c¡a . It is clear that for this environment S = S¤

and therefore f(s) = 0 for all s 2 S. Consider a collapsed population with
µ (s0) = 1 for some s0 6= bs. Then the formula for the expected change in
the probability attached to strategy bs under the common events case is as
follows:

¾(bs) [bpL (bs; a; s0; y) (bs) + (1¡ bp)L (bs; c; s0; y) (bs)¡ ¾(bs)] = 0 (4)

For the independent events condition we have the following expression for
f (bs)

¾(bs)
·

bpbpL (bs; a; s0; y) (bs) + bp (1¡ bp)L (bs; a; s0; y) (bs)+
(1¡ bp)bpL (bs; c; s0; y) (bs) + (1¡ bp) (1¡ bp)L (bs; c; s0; y) (bs)¡ ¾(bs)

¸
= 0

(5)
Note that the second expression reduces to the …rst one. Therefore, both
expression are the same.

Consider an alternative environment in which for all strategy s we have
¼ (s; e1) = ¼ (s; e2) = y. Then for this environment and the same collapsed
population as before we have

f(bs) = ¾(bs) [L (bs; y; s0; y) (bs)¡ ¾(bs)] = 0 (6)

Therefore, the conclusions we reach by using equations (4) and (6) will
apply to both the common and the independent events conditions.

Both equations imply

bpL (bs; a; s0; y) (bs) + (1¡ bp)L (bs; c; s0; y) (bs) = L (bs; y; s0; y) (bs)
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Replacing bp by c¡y
c¡a and rearranging,

L (bs; c; s0; y) (bs)¡ L (bs; b; s0; y) (bs)
L (bs; a; s0; y) (bs)¡ L (bs; b; s0; y) (bs) =

c¡ y
a¡ y

Recalling that from equation (6) we have that L (bs; y; s0; y) (bs) = ¾(bs), it
follows that

L (bs; c; s0; y) (bs)¡ ¾(bs)
L (bs; a; s0; y) (bs)¡ ¾(bs) =

c¡ y
a¡ y

At this must be true for all a; y; c with a < y < c, L (bs; x; s0; y) (bs)¡ ¾(bs)
must be of the form (x¡ y) eB (bs; s0; y), as asserted.

Step 2: We next show that in fact, eB (bs; s0; y) is independent of the sam-

pled payo¤ y, i.e. that for all s0 6= s; eB (bs; s0; y1) = eB (bs; s0; y2) for y1 6= y2.
Let a; b 2 [0; 1] with a 6= b. Let E be fe1; e2g. Consider an environment

E with p (e1) = p (e2) = 1=2. For action bs we have ¼ (bs; e1) = a, ¼ (bs; e2) = b,
for action s0 we have ¼ (bs; e1) = b, ¼ (bs; e2) = a whereas for any other strategy
s 6= bs; s0, ¼ (s; e1) = ¼ (s; e2) = (a+ b)=2. It is clear that for this environment
S = S¤ and therefore f(s) = 0 for all s 2 S.

Consider a population state µ with µ (s0) = 1. We will now compute the
formula for the expected change in the probability attached to action bs.

For the common events condition we have

¾(bs)
·
1

2
(a¡ b) eB (bs; s0; b) + 1

2
(b¡ a) eB (bs; s0; a)

¸
= 0

Rearranging we obtain

¾(bs)1
2
(a¡ b)

h
eB (bs; s0; b)¡ eB (bs; s0; a)

i
= 0

which implies eB (bs; s0; b) = eB (bs; s0; a).
For the independent events condition we have

¾(bs)1
4

2
664

(a¡ b) eB (bs; s0; b)+
L (bs; a; s0; a)¡ ¾(bs)+
L (bs; b; s0; b)¡ ¾(bs)+
(b¡ a) eB (bs; s0; a)

3
775 = 0 (7)

Recalling that from equation (6) it is true L (bs; y; s0; y) = ¾(bs), the above
equation can be rewritten as follows

¾(bs)1
4
(a¡ b)

h
eB (bs; s0; b)¡ eB (bs; s0; a)

i
= 0 (8)
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which again implies eB (bs; s0; b) = eB (bs; s0; a). As this must be true for all a; b,
the proof is complete.

Proof of Theorem 1.
Su¢ciency: The proof is indirect. Suppose there were s; s0 2 S with

s0 6= s such that B (s; s0) < 0: Let "; b > 0; b+ " < 1. Let E be feg. Consider
an environment E with p (e) = 1. For action s we have ¼ (s; e) = b + "
whereas for any other strategy s0; ¼ (s0; e) = b. Note that S¤ = fsg.

The expected change in expected payo¤s for this environment is given by

g =
X

s02S
f(s0)¼s0

= f(s)"+ b
X

s02S
f(s0)

= f(s)"

Consider a population state µ with µ (s0) = 1. The unique strategy which
the decision maker will ever sample is strategy s0, and only through playing
a particular action s 6= s0 is that the decision maker gets to update the
probability attached to that particular action s. Then the expected change
in the probability attached to the expected payo¤ maximising action is given
by

f (s) = ¾(s)B (s; s0) "
which implies

g = ¾(s)B (s; s0) "2

Therefore, B (s; s0) < 0 implies g < 0 contradicting expediency.
Necessity: The proof is indirect. Let L be an unbiased and positive

imitative rule such that there exists some non-trivial environment E and
some population state µ such that

g =
X

s2S
f(s)¼s < 0 (9)

Let n(E) denote the number of di¤erent expected payo¤ values in envi-
ronment E. If n(E) = 2, then the proof is trivial because it is trivial to show
that positivity implies that g > 0. Then, we need to study the case in which
there are more than 2 di¤erent expected payo¤s values.
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Let S denote the set actions with the smallest expected payo¤ in this
environment. Let ¼ denote such payo¤. Let S denote the set of actions with
the second smallest expected payo¤, and let ¼ denote such payo¤. Finally,
let k denote the di¤erence between these two values, i.e. k = ¼ ¡ ¼. Note
that k > 0 by de…nition.

The expected change in the probability attached to action is given by
equation (1). We write it again:

f(s) =
X

s0 6=s
(¼s ¡ ¼s0)A (µ; s; s0) (10)

where A(µ; s; s0) stands for ¾(s)µ(s0)B (s; s0) + ¾(s0)µ(s)B (s0; s). Recall that
positivity implies that A(µ; s; s0) > 0; and therefore f(S) < 0.

Consider a modi…ed environment eE in which the expected payo¤ associ-
ated to strategies belonging to S is raised by an amount k. We will show
that for this new environment, eg < g, and this will be enough to prove the
claim. Let ef (s) denote the expected change in the probability attached to
action s in decision problem eE. For those strategies s not belonging to the
set S, we have

ef (s) = f (s)¡
X

s02S

A(µ; s; s0)k (11)

we have collected enough information to focus now on eg.

eg =
X

s=2S

ef(s)¼s +
X

s02S

ef(s)(¼ + k)

This can be written as

eg =
X

s=2S

ef(s)(¼s ¡ ¼ ¡ k)

where we have used that
P

s
ef(s) = 0. Rearranging

eg = ¡k
X

s=2S

ef(s)

+
X

s=2S

ef(s)(¼s ¡ ¼)
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By using expression (11) and rearranging,

eg = ¡k
X

s=2S

ef(s)¡
X

s=2S

X

s02S

A(µ; s; s0)k(¼s ¡ ¼)

+
X

s=2S

f (s)¼s ¡ ¼
X

s=2S

f (s)

By using that
P

s f(s) = 0 the second line can be rewritten

eg = ¡k
X

s=2S

ef(s)¡
X

s=2S

X

s02S

A(µ; s; s0)k(¼s ¡ ¼)

+
X

s=2S

f (s)¼s + ¼
X

s2S

f (s)

But note that the third line is simply g. Therefore we arrive at the following
expression

eg = g

¡k
X

s=2S

ef(s)

¡
X

s=2S

X

s02S

A(µ; s; s0)k(¼s ¡ ¼)

Note that the second line is negative because k is positive and
P

s=2S
ef(s)

is positive by positivity. Note that the third line is negative because k is
positive, A(µ; s; s0) is positive by positivity and ¼s¡¼ is positive by de…nition
of ¼. Therefore, we have proved that for environment eE, eg < g < 0. What
this implies for the proof? To answer this question, think of how eE relates
to E in terms of the number of di¤erent expected payo¤ values. In fact,
n( eE) = n(E) ¡ 1: This is the key. Starting at environment E with g < 0

we can …nd a di¤erent environment eE for which eg < 0 but with a smaller
number of di¤erent expected payo¤ values. By repeating the process we will
eventually …nd an environment bE with n( bE) = 2 such that for the imitative
rule L it is true that bg < 0. And this is the desired contradiction.
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