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RESUMEN 
Estudiamos el problema de implementación en equilibrios de Nash cuando el 
resultado del mecanismo puede ser renegociado entre los agentes, pero el 
planificador desconoce la función de renegociación que utilizarán. 
Caracterizamos los objetivos sociales que pueden implementarse en 
equilibrios de Nash cuando el mismo mecanismo debe funcionar para 
cualquier función de renegociación admisible. La correspondencia 
Walrasiana restringida, la correspondencia del núcleo, y la correspondencia 
Pareto-eficiente y libre de envidia satisfacen las condiciones necesarias y 
suficientes para esta forma de implementación si y sólo si se permite 
desperdiciar recursos. La regla uniforme, por otro lado, no es 
implementable en equilibrios de Nash para algunas funciones de 
renegociación admisibles. 
 
Palabras clave: Teoría de la implementación, equilibrio de Nash, función 
de renegociación. 
 
 
ABSTRACT 
This paper studies Nash implementation when the outcomes of the 
mechanism can be renegotiated among the agents but the planner does not 
know the renegotiation function that they will use. We characterize the 
social objectives that can be implemented in Nash equilibrium when the 
same mechanism must work for every admissible renegotiation function. 
The constrained Walrasian correspondence, the core correspondence, and 
the Pareto-efficient and envy-free correspondence satisfy the necessary and 
sufficient conditions for this form of implementation if and only if free-
disposal of the commodities is allowed. The uniform rule, on the other hand, 
is not Nash implementable for some admissible renegotiations functions. 
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1 Introduction

Implementation theory concerns the problem of designing mechanisms (or
game forms) whose equilibrium outcomes are desirable according to the ob-
jectives of a planner. Most papers related with implementation assume im-
plicitly that the mechanisms are fully enforceable so that the agents are
obliged to accept the outcomes that the mechanisms select, even if they are
bad from the society’s point of view. Although such bad outcomes will not
generally occur in equilibrium, they are often incorporated in mechanisms off
the equilibrium path as punishments for deviations. There are some studies
which have addressed the ability of the planner to enforce out-of-equilibrium
outcomes that are known to be undesirable (see, for example, Baliga et al.,
1997, and Chakravorti et al., 2003).
Nevertheless, there exist numerous situations in which the agents are

not bound to the mechanism.1 In particular, Maskin and Moore (1999) ar-
gued that if the outcome of the mechanism is not Pareto-efficient from the
agents’ perspective, they may decide to renegotiate it. This can be prob-
lematic, to the extent that the good behavior of a mechanism may depend
on Pareto-inefficient outcomes being enforced. Maskin and Moore considered
implementation where any Pareto-inefficient outcome suggested by the mech-
anism is replaced by a Pareto-superior outcome according to an exogenous
renegotiation function. In the same spirit, Jackson and Palfrey (2001) ana-
lyzed implementation where a general state-contingent function converts the
outcomes of the mechanism. This function allows them to deal with different
problems of enforcement other than renegotiation (for instance, the state-
contingent function could also model individual rationality constraints).2 In
this paper, however, we will focus on its interpretation as a renegotiation
function.
Given any such renegotiation function, Maskin and Moore (1999) and

Jackson and Palfrey (2001) obtain characterizations of Nash implementation
that have intuitive relationships to the standard results (see, e.g., Maskin,
1999). It must be stressed, however, that these characterizations depend

1See Hurwicz (1994) for a discussion of enforceability in mechanism design.
2Ma et al. (1988) were the first to point out that individual rationality constraints

must be imposed both in and out of equilibrium. Jackson and Palfrey (2001) proposed to
model these constraints by means of a function that reverts any non-individually rational
outcome of the mechanism to the status quo.
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on the exogenous specification of the renegotiation function.3 This poses a
new problem since, in many settings, the planner may not know the specific
renegotiation function when the mechanism is designed (although the planner
knows that any Pareto-inefficient outcome will be renegotiated, he may not
know the particular bargaining strengths of each agent when he designs the
mechanism).
This paper aims to study the Nash implementation problem in this sort

of situations. For that, we assume that there exists a set of admissible rene-
gotiation functions, G, so that, although the planner knows that the true
renegotiation function must be in that set, the precise function is unknown
to him. Specifically, we make two reasonable assumptions about admissible
renegotiation functions: (1) renegotiated outcomes are always Pareto-efficient
and, (2) no agent ends up worse off after renegotiating.
In the spirit of the Nash equilibrium concept, we assume that the agents

know the true renegotiation function in G (i.e., they know each other’s bar-
gaining strenghts when playing the mechanism), but it is unknown to the
planner. In this framework, we propose a new form of implementation where
the same mechanismmust work for every admissible renegotiation function in
G (which we call Nash implementation in G). The characterizations of Nash
implementation when the renegotiation function is fixed are extended to this
setting. Not surprisingly, the fact that the planner ignores the renegotiation
function acts as a constraint on what can be implemented.
Next, we examine some applications within the context of fair division

problems. In this setting, free disposal of the commodities seems to be the
key condition for Nash implementability in G. Thus, we show that the con-
strained Walrasian correspondence, the core correspondence, and the Pareto-
efficient and envy-free correspondence are Nash implementable in G if and
only if the mechanisms can throw away resources. That free disposal is
a fundamental requirement is corroborated by the fact the uniform rule is
not Nash implementable for some admissible renegotiation functions, despite
being implementable in dominant strategies when no renegotiation is consid-
ered (remember that the uniform rule is a social choice rule defined within
the context of a single-peaked preferences model where free disposal of the
commodities is never allowed).

3In the face of individual rationality constraints, Jackson and Palfrey (2001) endoge-
nized the state-contingent function in the context of a dynamic model where agents can
force the mechanism to be replayed. In a previous paper, Jackson and Palfrey (1998)
examined this form of implementation in a bargaining model.
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The rest of the paper is organized as follows. Section 2 presents the gen-
eral setting and explains how the implementation model is extended. Section
3 establishes necessary and sufficient conditions for Nash implementation in
G. Section 4 deals with the Nash implementability in G of the constrained
Walrasian correspondence, the core correspondence, the Pareto-efficient and
envy-free correspondence, and the uniform rule. Finally, Section 5 makes
some concluding remarks.

2 Definitions

Consider an environment with a known set A of feasible alternatives or
outcomes, a set I = {1, 2, ..., n} of agents, and a set S of possible states.
Agents’ preferences over alternatives depend on the state: for each state

s ∈ S, each agent i ∈ I has a preference ordering Ri(s) on the set A. Let
Pi(s) denote the strict part of Ri(s).
Let 2A denote the set of all subsets of A. A social choice rule (SCR) is

a correspondence F : S → 2A, which associates each state s with a subset of
alternatives F (s) ⊆ A.
A SCR is supposed to represent the objectives of a social planner (some-

times a real person, sometimes a surrogate of the agents). The implementa-
tion problem arises when the planner cannot achieve directly the outcomes
recommended by the SCR. To obtain the alternatives prescribed by the SCR
in a decentralized way, the planner must design a mechanism which specifies
the “game rules”. A mechanism is a pair Γ = (M,h), where M = ×ni=1Mi,
Mi is the set of possible messages for agent i, and h :M → A is the outcome
function.
Most of the literature on implementation takes the alternatives selected

by the mechanism as immutable: if the agents reportm ∈M , the alternative
that they get is h(m), and that would be that.
Following to Maskin and Moore (1999) and Jackson and Palfrey (2001), in

this paper we study a more general setting in which the alternatives suggested
by the mechanism may be altered in a state dependent way via some function
g : A× S → A, which we call renegotiation function.
The renegotiation function reflects a renegotiation process. Suppose that

the mechanism is Γ = (M,h) and the agents report m ∈M at state s ∈ S. If
h(m) is inefficient from the agents’ perspective at state s, they might decide to
renegotiate the outcome to something which Pareto-dominates it. Although
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the issue of renegotiation is more apparent in a contractual context where the
agents choose the mechanism themselves, it can well arise in other settings
in which the planner is a real person who cannot prevent the agents from
renegotiating (for example, Amorós and Moreno, 2001, studied the problem
of implementation with renegotiation in a principal-agent model). Clearly,
the renegotiation process depends on the default outcome and on the agents’
preferences over alternatives (and it does not necessarily involve all agents).
Taking into account that the final outcome may not come directly from

the mechanism but instead from the renegotiation function, we have the
following natural extensions of the standard notions of Nash equilibrium and
Nash implementation:

Definition 1 The message profile m ∈ M is a g-Nash equilibrium of
mechanism Γ = (M,h) at state s ∈ S when g(h(m), s)Ri(s)g(h(m̂i,m−i), s)
for all i ∈ I and m̂i ∈ Mi. Let Ng(Γ, s) denote the set of g-Nash equilibria
of Γ at s.

Definition 2 The mechanism Γ = (M,h) g-Nash implements the SCR
F when, for all s ∈ S:
(1) For each a ∈ F (s) there exists m ∈ Ng(Γ, s) such that g(h(m), s) = a.
(2) If m ∈M is such that g(h(m), s) /∈ F (s), then m /∈ Ng(Γ, s).
If such a mechanism exists then F is g-Nash implementable.

Jackson and Palfrey (2001) showed that if a SCR is g-Nash implementable,
then it satisfies the following condition:

Definition 3 A SCR F is g-monotonic when, for all s ∈ S and a ∈ F (s),
there exists z ∈ A such that:
(1) g(z, s) = a.
(2) For all s0 ∈ S such that g(z, s0) /∈ F (s0), there exists y ∈ A and i ∈ I

such that g(z, s)Ri(s)g(y, s) and g(y, s0)Pi(s0)g(z, s0).

Furthermore, Jackson and Palfrey showed that if there are at least three
agents, g-monotonicity is not only a necessary condition for g-Nash imple-
mentability, but it is sufficient when combined with g-no veto power:

Definition 4 A SCR F satisfies g-no veto power (g-NVP) when, for all
s ∈ S, z ∈ A, and i ∈ I, the following is true: if g(z, s)Rj(s)g(y, s) for all
y ∈ A and all j 6= i, then g(z, s) ∈ F (s).
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It must be stressed that in the g-Nash implementation approach the rene-
gotiation function is taken as fixed (i.e., g is part of the data of the problem).
Then, the choice of the mechanism depends on the given g. On numerous
occasions, however, the true renegotiation function that the agents will use
is unknown to the planner when the mechanism is designed. This poses a
new problem since the fact that a mechanism g-Nash implements F does not
necessarily imply that the same mechanism g̃-Nash implements F for some
other g̃ 6= g. The following example may clarify this point.
Example 1 Let A = {a, b, c, d, e}, I = {1, 2, 3}, and S = {s, s0}. Preferences
of the three agents at the two states are described below (higher alternatives
in the table are strictly preferred to lower alternatives).

s s0

1 2 3 1 2 3
c d e b e c
a a d a b d
d c c c a a
b b b d d b
e e a e c e

Note that alternative b is Pareto-dominated by alternatives c and d at
state s. Consider the two following renegotiation functions, g and g̃, where
alternative b is renegotiated at state s to alternatives c and d, respectively.

g g̃
s s0 s s0

g(a, s) = a g(a, s0) = a g̃(a, s) = a g̃(a, s0) = a
g(b, s) = c g(b, s0) = b g̃(b, s) = d g̃(b, s0) = b
g(c, s) = c g(c, s0) = c g̃(c, s) = c g̃(c, s0) = c
g(d, s) = d g(d, s0) = d g̃(d, s) = d g̃(d, s0) = d
g(e, s) = e g(e, s0) = e g̃(e, s) = e g̃(e, s0) = e

Let F (s) = a and F (s0) = b. It is easy to see that F is g-Nash imple-
mentable via the simple mechanism where agent 2 chooses between alterna-
tives a and b (even though b is renegotiated to c at state s, agent 2 prefers
a rather than c at that state). Similarly, F is g̃-Nash implementable via the
simple mechanism where agent 1 chooses between a and b. However, neither
the former mechanism g̃-Nash implements F (agent 2 prefers to report b at
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s, since g̃(b, s)R2(s)g̃(a, s)) nor the later mechanism g-Nash implements F
(agent 1 prefers to report b at s, since g(b, s)R1(s)g(a, s)).

We will study the Nash implementation problem in this sort of situations.
For that, we assume that there is a set G of admissible renegotiation
functions such that, although the planner knows that the true renegotiation
function must be in that set, the precise function is unknown to him.4

We will always assume that any renegotiation function in G satisfies the
following two properties:

Pareto-efficiency. For all a ∈ A and s ∈ S, there is no b ∈ A such that
bRi(s)g(a, s) for all i ∈ I, with strict preference for some i ∈ I.

Individual rationality. For all a ∈ A, s ∈ S, and i ∈ I, g(a, s)Ri(s)a.

In the spirit of the Nash equilibrium concept, we assume that the agents
know the true renegotiation function g ∈ G that they will use (suppose for
example that they know each other’s bargaining strenghts when they play the
mechanism). In this case, when designing the mechanism, the planner knows
that the agents will play any mechanism according to the g-Nash equilibrium
concept for some g ∈ G, but he is unaware of the precise renegotiation
function. Therefore, if the planner wants to be sure of implementing the
SCR F , the same mechanism should g-Nash implement F for all g ∈ G.
This is what we call Nash implementation in G.

Definition 5 A SCR F is Nash implementable in G if and only if there
exists a single mechanism which g-Nash implements F for all g ∈ G.

Consider again Example 1 analyzed in the previous section. It is clear
that none of the mechanisms proposed in that example Nash implemented
F in G = {g, g̃}. Instead, the planner could use the following mechanism
(where only agents 1 and 2 are strategically active):

4Alternatively, this could be interpreted as an enlargement of the set of possible states.
As Maskin and Moore (1999) argue, two states s and s0 might be identical in preferences
and differ only in terms of how renegotiation would proceed. We prefer to model the set
of admissible renegotiation functions separately in order to illustrate its effect on the set
of implementable social choice rules.
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Agent 2
m21 m22

Agent 1 m11 a b
m12 e a

Note that (m11,m21) is the only g-Nash equilibrium at s, (m12,m22) is the
only g̃-Nash equilibrium at s, and (m11,m22) is the only g-Nash equilibrium
and the only g̃-Nash equilibrium at s0. Therefore, this mechanism g-Nash
implements and g̃-Nash implements F .

3 Necessary and sufficient conditions for Nash
implementation in G

In this section, we will study necessary and sufficient conditions for Nash
implementation in G. The key condition is what we call monotonicity in
G. This is a generalization of the g-monotonicity condition that takes into
account that, for any given alternative and state, the final outcome can be
different depending on the true renegotiation function.

Definition 6 A SCR F is monotonic in G when, for all g ∈ G, s ∈ S,
and a ∈ F (s), there exists z ∈ A such that:
(1) g(z, s) = a.
(2) For all g̃ ∈ G and s0 ∈ S such that g̃(z, s0) /∈ F (s0), there exists y ∈ A

and i ∈ I such that g(z, s)Ri(s)g(y, s) and g̃(y, s0)Pi(s0)g̃(z, s0).

The intuition behind this condition is that, if a ∈ F (s), then Nash imple-
mentability in G implies the existence of a single mechanism where, for each
g ∈ G, there exists a g-Nash equilibrium at s yielding a as final outcome.
Moreover, if for some other g̃ ∈ G the final outcome associated with this
equilibrium is not F -optimal in other state s0, then it cannot be a g̃-Nash
equilibrium at s0.

Theorem 1 If the SCR F is Nash implementable in G, then F is monotonic
in G.

Proof. Let Γ = (M,h) be a mechanism that Nash implements in G the
SCR F . Let g ∈ G, s ∈ S, and a ∈ F (s). Then, there exists m ∈ Ng(Γ, s)
with g(h(m), s) = a. Let g̃ ∈ G and s0 ∈ S be such that g̃(h(m), s0) /∈
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F (s0). Then m /∈ Ng̃(Γ, s0) and so, there exists i ∈ I and m̂i ∈ Mi such
that, g̃(h(m̂i,m−i), s0)Pi(s0)g̃(h(m), s0). Since m ∈ Ng(Γ, s), g(h(m), s)Ri(s)
g(h(m̂i,m−i), s). Let z ≡ h(m) and y ≡ h(m̂i,m−i) to satisfy the definition
of monotonicity in G.

Although monotonicity in G alone is not a sufficient condition for Nash
implementation in G, it is sufficient when combined with an adequately mod-
ified version of the g-NVP requirement defined in the previous section. The
generalization of the no veto power condition to the case of Nash implemen-
tation in G only requires F to satisfy g-NVP for all g ∈ G.

Theorem 2 If n ≥ 3 and the SCR F is monotonic in G and satisfies g-NVP
for all g ∈ G, then F is Nash implementable in G.

The proof of this theorem follows from the logic of the proofs of Nash
implementability and is provided in the Appendix.
While it is clear that if a SCR is Nash implementable in G then it is g-

Nash implementable for all g ∈ G, the converse implication is not necessarily
true (the fact that for each g ∈ G there exists a mechanism g-Nash imple-
menting F does not guarantee that there exists a single mechanism g-Nash
implementing F for all g ∈ G). The following example illustrates this point.

Example 2 Let A = {a, b, c, d, e, f}, I = {1, 2, 3}, and S = {s, s0}. Prefer-
ences are described by:

s s0

1 2 3 1 2 3
d b e c e b
c e c d a e
a a b a d d
b c f e f f
f f d f b c
e d a b c a

Note that alternative f is Pareto-dominated by alternatives b and c at
state s, and by alternatives d and e at state s0. Consider the two following
renegotiation functions:
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g g̃
s s0 s s0

g(a, s) = a g(a, s0) = a g̃(a, s) = a g̃(a, s0) = a
g(b, s) = b g(b, s0) = b g̃(b, s) = b g̃(b, s0) = b
g(c, s) = c g(c, s0) = c g̃(c, s) = c g̃(c, s0) = c
g(d, s) = d g(d, s0) = d g̃(d, s) = d g̃(d, s0) = d
g(e, s) = e g(e, s0) = e g̃(e, s) = e g̃(e, s0) = e
g(f, s) = b g(f, s0) = d g̃(f, s) = c g̃(f, s0) = e

Let F (s) = a and F (s0) = b. F is g-monotonic, since: (1) g(a, s) = a,
g(a, s)R1(s)g(f, s), and g(f, s0)P1(s0)g(a, s0), and (2) g(b, s0) = b, g(b, s0)R3(s0)
g(e, s0), and g(e, s)P3(s)g(b, s). Similarly, F is g̃-monotonic, since: (1)
g̃(a, s) = a, g̃(a, s)R2(s)g̃(f, s), and g̃(f, s0) P2(s0) g̃(a, s0), and (2) g̃(b, s0) =
b, g̃(b, s0)R3(s0)g̃(e, s0), and g̃(e, s)P3(s)g̃(b, s). Moreover, F trivially satis-
fies the g-NVP and g̃-NVP conditions. Therefore F is g-Nash implementable
and g̃-Nash implementable. Nevertheless, F does not satisfy monotonicity in
G = {g, g̃}. To see this, note that the only z ∈ A such that g(z, s) = a
is z = a. However g̃(a, s0) /∈ F (s0) and, for all i ∈ I and all y ∈ A, if
g(a, s)Ri(s)g(y, s) then g̃(a, s0)Ri(s)g̃(y, s0).5

Finally, note that a SCR may be Nash implementable in G but fail to
be Nash implementable when no renegotiation is considered.6 To see this,
consider the following example:

Example 3 Let A = {a, b, c, d, e}, I = {1, 2, 3}, and S = {s, s0}. Preferences
are described by:

5Note that in Example 2 we have not considered all possible Pareto-efficient and indi-
vidually rational renegotiation functions. Indeed, if G is the set of all Pareto-efficient and
individually rational renegotiation functions, then a SCR is Nash implementable in G if
and only if it is g-Nash implementable for all g ∈ G.

6The fact that no enforcement of the mechanism can ease implementation has been
already noted by Arya et al. (1997), and Jackson and Palfrey (2001). Nevertheless, their
examples are in the context of individual rationality constraints, and the function that
converts the outcomes of the mechanisms is taken as fixed.
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s s0

1 2 3 1 2 3
e c b e a b
d a e d b e
a b d a d d
c d c c e c
b e a b c a

Note that alternative c is Pareto-dominated by alternatives d and e at
state s0. Then, the two only Pareto-efficient and individually rational rene-
gotiation functions are the following:

g g̃
s s0 s s0

g(a, s) = a g(a, s0) = a g̃(a, s) = a g̃(a, s0) = a
g(b, s) = b g(b, s0) = b g̃(b, s) = b g̃(b, s0) = b
g(c, s) = c g(c, s0) = d g̃(c, s) = c g̃(c, s0) = e
g(d, s) = d g(d, s0) = d g̃(d, s) = d g̃(d, s0) = d
g(e, s) = e g(e, s0) = e g̃(e, s) = e g̃(e, s0) = e

Let F (s) = a and F (s0) = b. Note that F is Nash implementable in
G = {g, g̃} via the following mechanism:

Agent 2
m21 m22

Agent 1 m11 a b
m12 c b

Nevertheless, F is not Nash implementable since it does not satisfy the
standard condition of monotonicity (see Maskin, 1999)7.

Not surprisingly, renegotiation may also act as a constraint on what SCRs
can be Nash implemented. In fact, in the next section we will see that even
if a SCR is implementable in dominant strategies when no renegotiation is
considered, it might fail to be g-Nash implementable for some g ∈ G.

7Note that F (s) = a and, for all i ∈ I and z ∈ A, [aRi(s)z] ⇒ [aRi(s
0)z]. However,

a /∈ F (s0).

10



4 Applications

In this section we study the Nash implementability in G of four important
social choice rules: the constrained Walrasian correspondence, the core cor-
respondence, the Pareto-efficient and envy-free correspondence, and the uni-
form rule. Free disposal of the commodities seems to be the key condition
to assure this form of implementation.

4.1 The constrained Walrasian correspondence

Consider the following setting. Each agent i ∈ I owns a bundle ωi ∈ Rl+ of
l goods which is fixed and known. For each state s ∈ S, each agent i ∈ I
has a preference ordering Ri(s) over Rl+ which is continuous, strictly convex,
and strictly monotone. Let A = {a ∈ Rl×n+ :

P
ai ≤

P
ωi} be the set of

feasible allocations, and let A∗ = {a ∈ Rl×n+ :
P
ai =

P
ωi} be the set

of feasible allocations in which no resource is ever thrown away (where ai
denotes the i-th entry of a). Denote the vector of market prices for goods
by p ∈ Rl. The allocation a ∈ A and the price vector p ∈ Rl constitute a
constrained Walrasian equilibrium at s ∈ S if, for each agent i ∈ I, ai
maximizes Ri(s) over the set {bi ∈ Rl+ : bi ≤

P
ωi and pbi ≤ pωi}. The

constrained Walrasian correspondence, W : S → 2A, selects for each
state s the set of feasible allocations that can be supported as a constrained
Walrasian equilibrium for some p ∈ Rl.
In this context, we say that a renegotiation function is feasible when, for

all a ∈ A and s ∈ S,P gi(a, s) ≤
P
ai (where gi(a, s) denotes the i-th entry

of g(a, s)). Let G∗ be the set of all feasible renegotiation functions satisfying
Pareto-efficiency and individual rationality.
First we will show that if free disposal is not allowed (i.e., if no resource

is ever thrown away) then W is not Nash implementable in G∗.

Proposition 1 If free disposal is not allowed, then the constrained Wal-
rasian correspondence does not satisfy g-monotonicity for some g ∈ G∗.

Proof. Note that if free-disposal is not allowed then any implementing mech-
anism Γ = (M,h) must me such that h(m) ∈ A∗ for allm ∈M . Consider the
two-person, two-good example represented in Figure 1. There are two states,
s and s0. In state s, the agents have preferences represented by the indiffer-
ence curves Is1 and I

s
2 , respectively. In state s

0, the indifference curves of agent
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1 are represented by the dotted curves Is
0
1 , while the preferences of agent 2

do not change (i.e., Is
0
2 = I

s
2). In this example, allocation a can be supported

as a constrained Walrasian equilibrium at state s for the price vector p (i.e.,
a ∈ W (s)). Let g ∈ G∗ be a renegotiation function such that any possi-
ble gains from renegotiation are given to agent 1.8 Let z ∈ A∗ be such that
g(z, s) = a. Notice that: (1) z must be in the indifference curve Is2(a) of agent
2, and (2) g(z, s0) = g(a, s0). Moreover, g(a, s0) cannot be supported as a con-
strained Walrasian equilibrium at s0, and then g(z, s0) /∈ W (s0). It is easy
to see, however, that any y ∈ A∗ such that g(y, s0)P1(s0)g(z, s0) must be in
a indifference curve of agent 2 below Is2(a), and therefore g(y, s)P1(s)g(z, s).
Similarly, any y ∈ A∗ such that g(y, s0)P2(s0)g(z, s0) must be in a indifference
curve of agent 2 above Is2(a), and therefore g(y, s)P2(s)g(z, s). Hence, F does
not satisfy g-monotonicity.

[FIGURE 1 HERE]

The former impossibility result can be avoided if we allow free disposal.
Let us reconsider the example analyzed in Proposition 1. Let y = (y1, 0) ∈
A, where bundle y1 is as represented in Figure 1. Notice that aR1(s)y,
yP1(s

0)g(a, s0), and g(y, s) = g(y, s0) = y (since y2 = 0, no renegotiation
is possible). Then we have g(a, s) = a, g(a, s)R1(s)g(y, s), and g(y, s0)P1(s0)
g(a, s0), so that the g-monotonicity requirement holds. In fact, if free-disposal
is allowed, then W is Nash implementable in G∗.9

Proposition 2 If n ≥ 3 and free disposal is allowed, then the constrained
Walrasian correspondence is Nash implementable in G∗.

Proof. First note that, as soon as there are at least three agents, g-NVP is
trivially satisfied for all g ∈ G∗, since its hypothesis is never met (given that
preferences are strictly monotone).

8We have chosen this renegotiation function to ease the exposition. One can find similar
examples with symmetric renegotiation functions.

9One could view free disposal as a problematic assumption, since it allows inefficient
outcomes to stand. Thus, in a contractual context where there is no planner and the
mechanism is a sort of constitution, the agents could rescind their mechanism to exploit
any ex-post gains. We must stress, however, that in many situations the planner is a real
person who can through away resources (but cannot avoid agents’ renegotiation when they
have enough commodities).
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Next we will show thatW satisfies monotonicity inG∗. Let g ∈ G∗, s ∈ S,
and a ∈ W (s). By the first fundamental theorem of welfare economics we
know that a is Pareto-efficient at s, and then g(a, s) = a. Let g̃ ∈ G∗ and
s0 ∈ S be such that g̃(a, s0) /∈W (s0).
Claim 1. There exists b ∈ A and i ∈ I such that aRi(s)b and bPi(s0)g̃(a, s0).
We prove this claim in three steps.
Step 1.1. If Claim 1 is false then g̃(a, s0) 6= a.
Suppose that g̃(a, s0) = a. Let p ∈ Rl be a price vector that supports

a as a constrained Walrasian equilibrium at s. Since a /∈ W (s0), there is
some i ∈ I and bi 6= ai such that bi ≤

P
ωi, pbi ≤ pωi, and biPi(s0)ai.

Moreover, since (a, p) constitute a constrained Walrasian equilibrium at s,
we have aiRi(s)bi. Let b ∈ A be a feasible allocation where agent i gets bi.
Then aRi(s)b and bPi(s0)g̃(a, s0). Therefore Claim 1 is not false.
Step 1.2. If Claim 1 is false then g̃(a, s0)Ri(s)a for all i ∈ I.
Suppose that aiPi(s)g̃i(a, s0) for some i ∈ I. Then, since preferences are

strictly monotone, g̃i(a, s0) 6=
P

ωi. By continuity of preferences, there is
an ² > 0 such that, for all bi ∈ Rl+ with kbi − g̃i(a, s0)k < ², then aiPi(s)bi.
Moreover, since preferences are strictly monotone, there is some bi ≤

P
ωi

such that kbi − g̃i(a, s0)k < ² and biPi(s0)g̃i(a, s0). Therefore, Claim 1 is not
false.
Step 1.3. If Claim 1 is false then a cannot be Pareto efficient at s.
Suppose that Claim 1 was false. Then, by Steps 1.1 and 1.2, and given

that preferences are strictly convex, we have [λg̃(a, s0) + (1− λ)a]Pi(s)a for
all i ∈ I and all λ ∈ (0, 1), which contradicts that a is Pareto-efficient at s.
Claim 2. There exists y ∈ A and i ∈ I such that g(a, s)Ri(s)g(y, s) and

g̃(y, s0)Pi(s0)g̃(a, s0).
Let b ∈ A and i ∈ I be as defined in Claim 1, and let y = (0, ..., bi, ..., 0).

Since only one agent has a positive amount of at least one good, no renego-
tiation is possible, and then g(y, s) = g̃(y, s0) = y. Then, since g(a, s) = a,
by Claim 1 we have g(a, s)Ri(s)g(y, s) and g̃(y, s0)Pi(s0)g̃(a, s0).

4.2 The core

Consider the setting defined in the previous subsection. A coalition is a non-
empty subset of agents I 0 ⊆ I. A coalition I 0 ⊆ I blocks a feasible allocation
a ∈ A at state s ∈ S if there exists b ∈ A such that: (1) Pi∈I0 bi ≤

P
i∈I0 ωi

and, (2) bRi(s)a for all i ∈ I 0, with strict preference for some i ∈ I 0. The
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core correspondence, C : S → 2A, selects for each state s the set of feasible
allocations that cannot be blocked by any coalition.
Like the constrained Walrasian correspondence, the core correspondence

is Nash implementable in G∗ if and only if free disposal of the commodities
is allowed.

Proposition 3 If free disposal is not allowed, then the core correspondence
does not satisfy g-monotonicity for some g ∈ G∗.

Proof. It is analogous to the proof of Proposition 1 (note that in the example
illustrated in Figure 1 a ∈ C(s) and, since ωP1(s0)g(a, s0), g(a, s0) /∈ C(s0)).

Proposition 4 If n ≥ 3 and free disposal is allowed, then the core corre-
spondence is Nash implementable in G∗.

Proof. As in Proposition 2, g-NVP is trivially satisfied for all g ∈ G∗. Next
we will show that C satisfies monotonicity in G∗. Let g ∈ G∗, s ∈ S, and
a ∈ C(s). Then a is Pareto-efficient at s, and so g(a, s) = a. Let g̃ ∈ G∗ and
s0 ∈ S be such that g̃(a, s0) /∈ C(s0). Then, since preferences are continuous
and strictly monotone, there exists I 0 ⊆ I and b ∈ A such that: Pi∈I0 bi ≤P

i∈I0 ωi and, (2) bPi(s
0)g̃(a, s0) for all i ∈ I 0. Moreover, since a ∈ C(s),

there is some i ∈ I 0 such that aRi(s)b. Let y = (0, ..., bi, ..., 0). Since only
one agent has a positive amount of at least one good, no renegotiation is
possible, and then gi(y, s) = g̃i(y, s0) = bi. Then, we have g(a, s)Ri(s)g(y, s)
and g̃(y, s0)Pi(s0)g̃(a, s0).

4.3 The Pareto-efficient and envy-free correspondence

Consider the same setting of the previous subsections and suppose that,
instead of individual endowments, there is a fixed bundle of goods, Ω ∈ Rl++,
to be divided among the agents (suppose that all agents have equal claims on
Ω). Let A = {a ∈ Rl×n+ :

P
ai ≤ Ω} and A∗ = {a ∈ Rl×n+ :

P
ai = Ω}. The

Pareto-efficient and envy-free correspondence, E : S → 2A, selects for
each state s the set of feasible allocations a ∈ A such that: (1) there is no
b ∈ A such that biRi(s)ai for all i ∈ I, with strict preference for some i ∈ I
(i.e., a is Pareto-efficient at s) and, (2) aiRi(s)aj for all i, j ∈ I (i.e., a is
envy-free at s). Once again, free-disposal of the commodities is the necessary
and sufficient condition for Nash implementation in G∗.

14



Proposition 5 If free disposal is not allowed, then the Pareto-efficient and
envy-free correspondence does not satisfy g-monotonicity for some g ∈ G∗.
Proof. The proof is analogous to the proof of Proposition 1 (consider the
example illustrated in Figure 1 and suppose that ω1 = ω2 and Ω =

P
ωi;

note that a ∈ E(s) and, since g2(a, s0)P1(s0)g1(a, s0), g(a, s0) /∈ E(s0)).
Proposition 6 If n ≥ 3 and free disposal is allowed, then the Pareto-
efficient and envy-free correspondence is Nash implementable in G∗.

Proof. Since preferences are strictly monotone and n ≥ 3, g-NVP is trivially
satisfied for all g ∈ G∗. Next we will show that E satisfies monotonicity in
G∗. Let g ∈ G∗, s ∈ S, and a ∈ E(s). Since a is Pareto-efficient at s,
g(a, s) = a. Let g̃ ∈ G∗ and s0 ∈ S be such that g̃(a, s0) /∈ E(s0). Suppose
that g̃(a, s0) = a. Then a is Pareto-efficient at s0. Since g̃(a, s0) /∈ E(s0), then
a is not envy-free at s0. Therefore, ajPi(s0)ai for some i, j ∈ I. Let π(a) ∈ A
be a permutation of a such that i gets aj. Then π(a)Pi(s

0)g̃(a, s0). Moreover,
since a is envy-free at s, then aRi(s)π(a). Therefore, there exists b ∈ A and
i ∈ I such that aRi(s)b and bPi(s0)g̃(a, s0). The rest of the proof is analogous
to the proof of Proposition 2.

4.4 The uniform rule

Consider now the following single-peaked preferences model. A fixed amount
Ω ∈ R++ of some commodity has to be allocated among a set I = {1, ...n}
of agents whose preferences are single peaked: for each state s ∈ S and each
agent i there is a number pi(s) ∈ [0,Ω] (called agent i’s peak) such that, for
all xi, x0i ∈ [0,Ω], if pi(s) ≤ xi < x0i, or if x0i < xi ≤ pi(s), then xiPi(s)x0i. The
set of feasible allocations is A = {x ≡ (xi)i∈I ∈ Rn+ :

P
xi = Ω} (free disposal

of the commodity is not allowed). The following social choice rule has been
characterized on the basis of a number of implementability conditions (see,
for example, Sprumont, 1991).

Uniform rule (U). For all s ∈ S, U(s) ∈ A is such that: (1) ifP pi(s) ≥ Ω,
then Ui(s) = min{pi(s),λ} for all i ∈ I, where λ solves

P
min{pi(s),λ} = Ω,

and (2) if
P
pi(s) ≤ Ω, then Ui(s) = max{pi(s),λ} for all i ∈ I, where λ

solves
P
max{pi(s),λ} = Ω.

Let G∗ be the set of all renegotiation rules satisfying Pareto-efficiency
and individual rationality. When no renegotiation function is considered,
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the uniform rule is implementable in dominant strategies. However, as we
show in the next proposition, the uniform rule is not g-Nash implementable
for some g ∈ G∗, and then it is not Nash implementable in G∗. The reason
for this result seems to be that, in the single-peaked preferences model, free
disposal is never allowed.

Proposition 7 The uniform rule is not g-Nash implementable for some g ∈
G∗.

Proof. Let Ω = 9 and I = {1, 2, 3}. Suppose that the agents’ preferences
can be represented by an utility function of the form usi (x) = − |xi − pi(s)|.
Let s, s0 ∈ S be two states in which the agents have the following peaks:

s s0

p1(s) = 7 p1(s
0) = 1

p2(s) = 5 p2(s
0) = 5

p3(s) = 8 p3(s
0) = 8

Note that U(s) = (3, 3, 3), and U(s0) = (1, 4, 4). Let g ∈ G∗ be such
that any possible gains from renegotiation are first given to agents 1 and
2. Note that (1) the only z ∈ A such that g(z, s) = U(s) is z ≡ U(s),
and (2) g(U(s), s0) = (1, 5, 3) 6= U(s0). Since agents 1 and 2 are receiv-
ing their peaks at s0 in g(U(s), s0), it is clear that there is no y ∈ A such
that g(y, s0)P1(s0)g(U(s), s0) or g(y, s0)P2(s0)g(U(s), s0). Moreover, any y ∈ A
such that g(U(s), s)R3(s)g(y, s) must be such that y3 ≤ 3. From the as-
sumption made on the renegotiation function, this implies that in g(y, s0)
agent 3 will not receive more than three units of commodity, and then
g(U(s), s0)R3(s0)g(y, s0). Therefore, the uniform rule does not satisfy g-
monotonicity.

5 Concluding remarks

In this paper, we have characterized Nash implementation when the out-
comes of the mechanism can be renegotiated but the planner does not know
the nature of the renegotiation process. We call this Nash implementation
in G. We have shown that the constrained Walrasian correspondence, the
core correspondence, and the Pareto-efficient correspondence are Nash im-
plementable in G if and only if free disposal of the commodities is allowed.
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The uniform rule, however, is not Nash implementable for some admissible
renegotiations functions.
We see some scope for further development and extension of the model

studied in this paper. One line of research could involve to study the case
in which the true renegotiation function is unknown not only to the planner,
but also to the agents (this situation can arise when the agents do not know
each other’s bargaining strenghts when they play the mechanism). Another
line of research could involve to extend our analysis to the case in which the
no enforcement of the mechanism is due to individual rationality constraints.
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Appendix
Proof of Theorem 2. For all g ∈ G, s ∈ S, and a ∈ F (s), let As,ag

be the set of alternatives satisfying points (i) and (ii) of the definition of
monotonicity in G.
Let Γ = (M,h) be the following mechanism. For all i ∈ I, the message

space is Mi = G×S ×A× {0, 1, 2, ...}. The outcome function h : M → A is
defined as follows:
Rule 1. If there is g ∈ G, s ∈ S, a ∈ F (s), and z ∈ As,ag such that

mi = (g, s, z, 0) for all i ∈ I, then h(m) = z.
Rule 2. Suppose there exists g ∈ G, s ∈ S, a ∈ F (s), z ∈ As,ag , and j ∈ I

such that mi = (g, s, z, 0) for all i 6= j, but mj = (g̃, s0, y, k) 6= (g, s, z, 0).
Then

h(m) =

½
z; if g(y, s)Pj(s)g(z, s)
y; if g(z, s)Rj(s)g(y, s)

Rule 3. In all other cases, let h(m) be the alternative announced by
the agent who announced the highest integer (possible ties are broken by
choosing the agent with the lowest index).
Step 1: For all g ∈ G, s ∈ S and a ∈ F (s), there is m ∈ Ng(Γ, s) such

that g(h(m), s) = a.
Let g ∈ G, s ∈ S and a ∈ F (s). Since F is monotonic in G, there

exists z ∈ As,ag . Let m ∈ M be such that mi = (g, s, z, 0) for all i ∈ I.
Then Rule 1 applies to m and h(m) = z. Since z ∈ As,ag , g(h(m), s) = a.
Moreover, m ∈ Ng(Γ,m). To see this consider any unilateral deviation by
some agent i to m̂i = (g̃, s

0, y, k). Then Rule 2 comes into effect, and therefore
g(h(m), s)Ri(s)g(h(m̂i,m−i), s).
Step 2: For all g ∈ G, s ∈ S and m ∈ Ng(Γ, s), g(h(m), s) ∈ F (s).
Let g ∈ G, s ∈ S and m ∈ Ng(Γ, s). Suppose first that Rule 1 applies

to m. Then, there is g̃ ∈ G, s0 ∈ S, a0 ∈ F (s0), and z0 ∈ As0,a0g̃ such that
mi = (g̃, s0, z0, 0) for all i ∈ I. Therefore h(m) = z0 and g̃(z0, s0) = a0.
Suppose by contradiction that g(z0, s) /∈ F (s). By monotonicity in G, there
exists y ∈ A and i ∈ I such that g̃(z0, s0)Ri(s0)g̃(y, s0) and g(y, s)Pi(s)g(z0, s).
Consider a unilateral deviation by agent i to m̂i = (g, s, y, 1). By Rule 2 we
have h(m̂i,m−i) = y, which contradicts that m ∈ Ng(Γ, s).
Suppose now that either Rule 2 or Rule 3 applies to m. Then there is

j ∈ I such that, by making a unilateral deviation, any agent i 6= j can make
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the mechanism to select any alternative y ∈ A via Rule 3. Therefore, since
m ∈ Ng(Γ, s), for all y ∈ A and all i 6= j, g(h(m), s)Ri(s)g(y, s). Then, since
F satisfies g-NVP, g(h(m), s) ∈ F (s).
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Figure 1: Illustration of Propositions 1, 3 and 5
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