
Identifying endogenous fiscal policy rules for
macroeconomic models∗

Javier J. Pérez
centrA, and

U. Pablo de Olavide (Seville, Spain)

Paul Hiebert
European Central Bank

July 11, 2002

Abstract

In this paper, we present a model-based method for identifying fiscal closure rules in
stochastic macroeconomic models. The methodology is based on the stability analysis of
the model at hand, with an endogenous derivation of a reaction on the part of the fiscal
authority to state variables in the model. The rule achieves the dual aim of imposing solvency
on the fiscal sector and generating a state-contingent dynamic adjustment in a framework
consistent with the properties of the model. Up to now, fiscal rules in leading large-scale
macroeconomic forecasting models have been imposed exogenously, and in this sense are not
necessarily compatible with the formulation of other sectors of these models. An example
of the derivation procedure, including some illustrative results, is provided using a small
calibrated macro model.
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1 Introduction

In large-scale macroeconomic forecasting models, including those used by leading interna-
tional institutions, the modelling of the fiscal sector involves some type of fiscal closure rule.
This rule, or fiscal reaction function, serves a dual purpose. First, and most importantly, its
inclusion is used to generate solvency for the fiscal sector, guaranteeing that the intertem-
poral budget constraint of the government is satisfied and generating model closure. That
is, the possibility of an unstable or explosive path for the government debt ratio is ruled
out, and as a result agents in the model are willing to hold public debt. Second, the rule
embodies some behavioural elements regarding the intertemporal behaviour of governments
– and how adjustments of fiscal variables are made vis-à-vis their steady state values in the
face of shocks or policy changes. In this sense, the time path of adjustments in fiscal and
other variables in the model are influenced by the formulation of the fiscal rule.

The formulation of these rules can entail significant economic consequences for the results
of model simulations and forecasts. The specification and calibration of a fiscal rule can
affect not only fiscal policy variables, but also key economic and financial variables, given
that agents’ decisions (that determine the allocation of output) depend to some extent on
the time paths of fiscal variables. The forecasts and policy simulations based on these models
are used in many instances as an important input into policy decision-making. Consequently,
the formulation and implementation of fiscal rules has wide-ranging implications. Yet, the
literature surrounding the formulation of fiscal rules has thus far received considerably less
attention than the literature on monetary policy rules.

In general, the existing fiscal rules employed in leading macroeconomic forecasting mod-
els are imposed exogenously, and tend to involve backward-looking governments even when
households, firms and the monetary authority are now very often modelled in an optimising
forward-looking framework. In models with optimising forward-looking agents, the intertem-
poral fiscal rule should, in principle, also be modelled in a forward-looking way. As noted
in Woodford (1999), for instance, the forward-looking behaviour that follows automatically
from an optimising private sector implies that the evolution of its goal variables depends
not only upon its current actions, but also upon how the private sector expects policy to be
conducted in the future. In addition, a multitude of different formulations of a reaction func-
tion can rule out unstable debt paths in model simulations, and the criteria used in choosing
among them is not entirely clear-cut. Although several rules used in practice to close macroe-
conomic forecasting models tend to share similar features, they remain quite diverse in their
specification and calibration. Some recent studies have found through standardised simu-
lations that changing the specification and calibration of these rules can significantly affect
model simulation results, for example, see Mitchell et al. (2000), Bryant and Zhang (1996a
and 1996b) and Barrell et al. (1994).

Ideally, a fiscal rule would be developed optimally. Such an alternative, presumably
involving the strategy pursued in the optimal taxation literature of deriving optimal rules
endogenously, would entail some desirable theoretical characteristics in terms of economic
content. This, however, would likely involve the use of a “Ramsey”-type of government,
which is generally limited to the analysis of fairly simplified economies. Consequently, such a
strategy would be infeasible for large-scale macro models, given the level of complexity of the
economy in these models and their level of disaggregation. Several papers highlight the com-
plexities surrounding the solution of Ramsey problems, such as Chari and Kehoe (1999) and
Chari et al. (1994). In particular, solving a dynamic optimisation model in which the govern-
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ment maximises agents’ utility subject to all Euler conditions in agents’ problems would be
cumbersome, if not impossible, with the level of disaggregation in large-scale macroeconomic
forecasting models. Moreover, notwithstanding the usefulness of this framework in deriving
theoretical predictions, it is not clear that it would be useful for simulation and forecasting
of actual economies.

In this paper, after reviewing the standard practice for guaranteeing debt stability via
fiscal adjustment, we show that for model closure, the relevant fiscal rule can be specified
and calibrated endogenously by means of standard stability analysis theory for rational ex-
pectations models as presented in Sims (2000) or Blanchard and Khan (1980). The rule is
consistent with the optimising behaviour already inherent in the model. It embodies the
pertinent information contained in the economic model, including expectations of future val-
ues of relevant variables and, additionally, policy reactions related to the different stochastic
shocks affecting the economy. We show how a state-contingent policy rule relating fiscal
instruments to state variables, different shocks affecting the economy and expectations of
future developments of the economy can be derived on the basis of the existing setup of a
model. Moreover, its formulation and implied behaviour can be rationalised in the frame-
work of a model in which the policy authority internalises the need for debt to be valued –
see, for instance, Barro (1979). In the absence of a monetary authority monetising shocks to
debt, which is the case in most industrialised countries, a fiscal authority can be thought of
as reacting to innovations affecting debt through the adjustment of budgetary items in order
to guarantee debt sustainability. Indeed, some empirical evidence supports this notion (see,
for instance, Bohn, 1998 and Kilpatrick, 2001).1

Normally the stable solution to dynamic stochastic rational expectations models, for in-
stance, those presented in Cooley and Prescott (1995) or Marimon and Scott (1999), takes
the form of a saddle-path equilibrium. The saddle-path equilibrium is selected by pinning
down the stability conditions attached to unstable eigenvalues or imposed by means of ap-
propriate final conditions as in Julliard et al. (1998). Based on the stability conditions, the
state-contingent nature of the resulting rule would imply an adjustment profile consistent
with the dynamic adjustment process of other agents in the model, and the rule would be
forward-looking insofar as the model is constructed in this way. The coefficients of the fiscal
policy rule would be a function of the deep parameters of the model, so that the Lucas critique
would not apply directly to the fiscal rule when performing policy experiments. Although
we illustrate the methodology using a simple standard macroeconomic model, the proposed
identification methodology is general enough to be applied to larger-scale macroeconomic
models. Once the fiscal closure rule is identified, and in order to solve a large-scale model,
one should move to any of the solution methods available in the literature, for example, the
ones in Juillard et al. (1998), McAdam and Hughes Hallett (1999), Gaspar and Judd (1997)
or Marimon and Scott (1999).

The paper is organised as follows. In Section 2, we discuss the need to include fiscal closure
rules in macroeconomic models, and present a general outline of the standard strategy to
derive existing fiscal rules. In Section 3 we offer the rationale for an alternative specification
in the form of an endogenous fiscal rule. In order to elucidate our identification procedure
clearly, we proceed in this Section from a specific to a general framework, initially using a
standard business cycle model as guidance. We then illustrate the derivation of such a rule

1We interpret evidence of this type purely in a positive sense, that is, we do not enter here into normative issues
regarding rules versus discretion in the actual implementation of fiscal policy.
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in Section 4 on the basis of this model. Finally, in Section 5 we summarise the properties of
the proposed rules and discuss some avenues for further research.

2 The government budget constraint and the need

of fiscal rules

In establishing the basis for including a fiscal rule in a macroeconomic model, one must look
first to the government budget constraint, which takes the following standard form in discrete
time:

Bt

Pt
+ τt = gt + Rt−1

Bt−1

Pt
(1)

where Bt stands for time–t nominal debt, gt is real primary spending, τt tax collection in
real terms, and It ≡ 1 + it the nominal interest rate on bonds. Simply put, this condition
states that the government has to issue debt to pay for spending in excess of tax collection.2

The aggregate fiscal variables defined above might well of course be broken down into their
subcategories in macroeconomic models used in practice.

Solving this equation forward we can express debt as a function of its determinants,

Bt

Pt
=

∞∑

i=0




i∏

j=0

πt+j

Rt+j


 [τt+i+1 − gt+i+1] + lim

i→∞




i∏

j=0

πt+i+1

Rt+i+1


 Bt+i+1

Pt+i+1
(2)

where πt ≡ Pt
Pt−1

− 1 is the time–t inflation rate. For the government to be solvent, the
second term of the right-hand side of the previous expression has to be equal to zero. Ef-
fectively, this can be considered as a no-Ponzi game condition, whereby in the limit, either
agents are holding a zero amount of assets in the aggregate, or assets receive no valuation
(their price is zero). In any standard model with optimising debt holders, this is the transver-
sality condition attached to bond holdings that has to be verified. The remaining terms in
the above equation imply that for the current level of debt to be consistent with the current
status of the economy, any deviation from tax or spending plans at any point in the future –
due to any shocks affecting revenue, spending, interest rates or inflation – has to be backed
by changes in policy instruments.

The use of fiscal closure rules for model economies approximates the actual reaction to
shocks by a fiscal authority. Nevertheless, some empirical evidence supports the notion of
capturing actual government behaviour via a rule. For example, Bohn (1998) has provided
evidence that governments take corrective measures in response to disturbances to avert
an unstable or explosive path for debt. Specifically, based on the analysis of time series
data for the United States, he finds evidence that the government has historically reacted
to increases in the debt-to-GDP ratio by either reducing its primary deficit or improving its
primary surplus.

2Seigniorage revenues are neglected for simplicity. In this framework, the monetary authority is active in the
sense of Leeper (1991) insofar as it sets its control variables independently of tax collection and debt issuance, in
the manner it considers more convenient.
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2.1 Standard practice to obtain fiscal closure in large-scale
macroeconomic models

In order to rule out unstable debt paths, it is necessary to close any given model by fully
specifying the behaviour of the fiscal authority to prevent explosive deviations of debt from
its normal (steady-state) value. This is normally done by positing a reaction function (rule)
for the fiscal authority. In defining this rule, two decisions have to be taken by the modeller.
The first one is the selection of the budget item that would eventually adjust in reaction
to unforeseen events. The second decision consists of specifying a functional form for the
reaction.

2.1.1 The adjusting budgetary item

As regards the first decision outlined above, the fiscal rules used in existing macroeconomic
models normally involve adjustment of a budgetary item on the revenue side of the govern-
ment budget. For clarity of exposition, the revenue side of the model can be thought of as
being composed of two distinct components,

τt = τ (ct, yt, ...) + τ rule
t (3)

where the first part of the equation embodies the normal tax system of the economy
(income taxes, consumption taxes, etc.), embodying, when applicable, automatic stabilisation
properties of budgets, while the second component represents the selected revenue adjustment
by the government in the face of extra-budgetary shocks to guarantee solvency. In practice,
the second component is a tax rate of some sort, and in this way the strict separation implicit
in (3) is blurred somewhat. The specific adjusting tax item can vary from one model to other,
ranging from the adjustment of the aggregate “basic tax rate”, defined as the ratio of total
tax revenues to GDP (e.g. in IMF’s MULTIMOD), to more specific revenue items, such as
direct taxes paid by households (e.g. in ECB’s Area Wide Model, Bank of Canada’s QPM).
For the moment, there is no clear consensus on the appropriate adjusting item – this remains
model-specific. Moreover, there may be the lack of a sound theoretical or empirical criterion
for this selection, although this may be of limited concern if taxes are lump sum (i.e. changes
in tax rates have no real effects) and depends on the focus of the model at hand. Any attempt
to model distortionary elements of taxation, however, could be complicated by the behaviour
induced by such a rule. Were a modeller to introduce such elements, the choice of revenue
item reacting to budgetary variability would no longer have neutral effects, and as such could
have important consequences for aspects of agents’ behaviour. Accordingly, modellers have
generally opted to model tax revenues accruing from the rule as lump-sum.

2.1.2 The functional form and the calibration

As for the chosen form of the rule – although in principle fiscal closure rules can take vari-
ous functional forms – including several types of variables, in practice most modellers have
opted for a broadly similar specification of the fiscal closure rule in the tradition of partial
adjustment equations to deviations of targets, as pioneered in the economic literature by
Phillips (1958). In most cases, budgetary adjustment is a function of the distance of a vari-
able such as deficit or debt from its target value. A tax-difference rule is used in models such
as MULTIMOD (IMF) and NiGEM (National Research Institute) – whereby the change in a
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tax rate is a function of an objective variable. Alternatively, some models specify their rules
in terms of levels – for instance, in MSG2 (a model developed by McKibbin and Sachs) –
whereby the tax rate itself is adjusted in reference to the objective variable.3 To illustrate,
a tax-difference rule would be some variant of the following generic form:

τ rule
t = τ rule

t−1 + a
(
xt−1 − x∗t−1

)
+ b∆

(
xt−1 − x∗t−1

)
(4)

where x is the objective variable governing budgetary adjustment, with an asterisk de-
noting the steady state value, and ∆ ≡ 1 − L denoting the first difference operator. The
coefficients a and b are the speed of adjustment parameters.

As a first input, the calibration of this type of rule requires the identification of target
values for the objective variable in the above equation (usually deficit or debt). This is
relatively straightforward, given the long-run properties of the model. The more difficult
elements to calibrate are the speed of adjustment parameters. The feasible calibration set
for a and b can be obtained on the basis of the stability analysis of the system formed by
the budget constraint, (1), and the equation for the fiscal closure rule, in the form of, for
example, (4).

The government budget constraint (1) is an unstable difference equation in real debt
insofar as τt−gt is stationary and Rt−1 is greater than one. As shown in Mitchell et al. (2000),
the standard practice for building exogenous fiscal rules can be thought of as specifying a
given element of τt –what we call τ rule

t – as a function of past debt so that the resulting
coefficient attached to past debt when solving for the two equations happens to be lower
than one. This two-equation analysis is helpful because it constrains the possible values of
the coefficients in the fiscal rule. It does not result in a unique calibration, but a range of
feasible values for stability. Despite the appealing intuitive nature of this type of presentation,
it leaves open the question about the specification of the rule itself, and in addition, in models
not displaying separability of the government block the above two-equation analysis would
not be valid.

Within the range of values for a and b resulting from the preceding analysis, the specific
values of a and b in (4) can then be fine-tuned by means of some a priori desired properties
of the model solution and responses to shocks. In this sense, the calibration process has the
potential to involve the considerable use of judgement. Various exercises have been pursued
by modellers in the derivation and calibration of fiscal rules. For instance, the parameters
of the fiscal reaction function in MULTIMOD are set at levels that produce stable outcomes
and tend to induce the ratio of government debt in GDP to revert to its target value over
the typical simulation horizon. Other approaches include a derivation based on a cost of
adjustment model to highlight the short-term payoffs facing a government choosing a solvency
rule (Barrell et al., 1994). In this vein, an alternative derivation pursued particularly in the
monetary policy rules literature could be to derive an optimal policy rule on the basis of
the minimisation of a loss function. This, however, would remain an exogenous derivation
procedure, as to fully account for all aspects of a large-scale model in such a derivation would
be cumbersome if not impossible. In general, although these approaches to calibrating the
rule constitute a practical approximation, they do not guarantee that the dynamic adjustment
process resulting from the operation of the fiscal rule is fully consistent with the properties
of the model it is closing.

3A more detailed analysis of the underpinnings of these rules is contained in Mitchell et al. (2000) and Bryant
and Zhang (1996a).
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The functional form and calibration of the fiscal closure rule in a model can be of consider-
able importance in influencing the output of that model in simulation exercises. For instance,
Bryant and Zhang (1996b) find that the response of variables can differ quite substantially
on the basis of alternative standardised fiscal rules. They point out that the values of the
feedback coefficients in monetary and fiscal reaction functions can strongly influence the dy-
namic behaviour of a model, sometimes in unwanted or implausible ways. It is concluded on
the basis of this evidence that generally, there is a particularly imprecise understanding of
how economies respond to fiscal policy actions. Barrell et al. (1994) also find that the imple-
mentation of the fiscal policy rule has a significant effect on model properties in comparing
the tax rules of NIGEM and MULTIMOD. Church et al. (2000, 1997) have the similar find-
ing for models of the UK economy that different simulation results may be obtained simply
given different assumptions about the way in which fiscal policy reacts to shocks. Mitchell
et al. (2000), when comparing the behaviour of the fiscal rules of NIGEM, MSG2 and MUL-
TIMOD, show that the rules can be adjusted to produce similar outcomes. They point out
that the rules and, more importantly, their calibration, are model-specific and not directly
transferable to other models. In performing the two-equation – (1) and some variants of
(4) – stability analysis referred to above, they stress the theoretical equivalencies between
debt and deficit target rules. Nonetheless, their simulation analysis reveals that the impulse
response functions to shocks can differ considerably depending on the form and calibration
of the actually implemented fiscal closure rule. A similar finding is yielded by the analysis
of Barrell et al. (1994), who compare the tax rules of MULTIMOD and NiGEM within the
same model.

Despite the variation in results, little consensus exists in the literature on the proper
formulation of fiscal closure rules. The usual two-equation stability analysis only imposes
some general restrictions on the coefficients of a fiscal rule of type (4). It is not surprising,
based on the reasonably wide scope of possibilities, that in practice, varying specifications are
evident for the formulation of fiscal rules in macroeconomic models. This lack of standardisa-
tion highlights the lack of agreement amongst modellers regarding the appropriate functional
form for these rules, while it also highlights that a multitude of fiscal rules can generate the
same desired outcome of model closure. In other words, the rules used in practice all produce
stable outcomes (i.e. result in transversality holding), although several different formulations
of a rule could generate the same desired mean-reverting behaviour of the debt ratio.

The main shortcoming of the preceding analysis is that when calibrating the key pa-
rameters and designing the rules, the specification and calibration are considered outside
the auspices of the model, and in this way, the structure and specific characteristics of the
model under analysis are only considered indirectly. This type of lack of internal consistency
in modelling has been criticised by many for its lack of microfoundations starting with Lu-
cas (1976). A more fundamental criticism of exogenously imposed fiscal rules is their inherent
vulnerability to the points raised by Lucas, as changes in the deep parameters of the model
(representing preferences, technology, etc.) may not directly lead to a change in the form or
calibration of the fiscal rule.

In addition, while the preceding simple analysis serves to illustrate the need for a fiscal
rule, it is too simplistic to be generalised to a more complex setup in which the fiscal block
cannot be considered in isolation. The presence of distortionary taxes, for instance, requires
an integrated analysis of the fiscal block in the larger context of the model as changes in
taxation have wider repercussions for key economic variables such as output determination
and capital accumulation. Moreover, the interaction with a monetary authority in this

7



context may entail that changes in fiscal variables induce changes in interest rates, in turn
affecting debt service and, accordingly, the government budget constraint.4

3 Identifying endogenous fiscal rules

In modelling fiscal policy one may wish to consider the formulation and calibration of a fiscal
rule in an integrated framework, where the government sector is considered in conjunction
with the economic sector and monetary authority. In this section, we employ stability analysis
leading to debt stabilisation in a given model in an alternative manner to the two-equation
approach discussed in the previous section. We also discuss some standard results of stability
analysis theory that allow us to restrict the set of potential candidate instruments for fiscal
closure given a model. We do so in the context of the basic macro model of the next subsection
to develop some intuition, and we move in Section 3.2 to a more general setting.

3.1 Developing intuition via a basic macro model

3.1.1 The model

In order to develop intuition in this Section, we employ the model in Leeper (1993, 1991).
This model can be characterised as a standard neoclassical model where money is motivated
via its presence in the utility function, and the supply side is governed by a microfounded
Lucas supply curve. The model can be summarised by the following set of core equations,
augmented by a tax rule,

yt = λ0 (1− λ2) + λ1 (πt − Et−1πt) + λ2yt−1 + εt (5)
md

t = δ0 + δ1Rt + δ2ct (6)
u′(ct)

Pt
= βRtEt

(
u′(ct+1)

Pt+1

)
(7)

yt = ct + gt (8)
Rt = α0 + α1πt + α2yt (9)

bt + mt −mt−1
1
πt

+ τt = gt +
Rt−1bt−1

πt
(10)

τt = τ0 + τyyt + τ rule
t (11)

Equation (5) is the aggregate supply function in this model, where production (yt) is
driven by surprise changes in inflation (πt) and stochastic shocks to productivity (εt). Some
persistence is present, the degree of which is captured by 0 < λ2 < 1, while λ0 and λ1 are
additional parameters. The operator Et(•) denotes the expectations operator condition on
information up to time t. As regards equation (6), it denotes the demand for real money
balances (md

t ) depending on the nominal rate of interest (Rt) and consumption (ct). The
demand for government debt is captured by means of equation (7), where utility is u(ct) =
log(ct). 0 < β < 1 is the discount factor in the model so that 1/β is the steady state
real interest rate in this model with no growth. The model implies a simplified form of the
standard national income identity (Equation (8)), which abstracts from an investment and

4For a discussion of the need to examine monetary and fiscal policy in a holistic framework, see Leeper (1993).
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external sector, so that total demand is equal to the sum of private consumption and public
consumption (gt).

Equations (9) to (11) contain the monetary and fiscal policy actions. Equation (9) is the
monetary policy rule, where the monetary authority is assumed to follow an interest rate
policy adjusting high-powered money to change the interest rate in response to changes in
inflation. The specification also embodies countercyclical behaviour (α2 > 0) with respect
to output. The government budget constraint (10) is analogous to that described in Section
2 (note that bt ≡ Bt

Pt
). Finally, (11) is the tax system of this economy that is assumed

to be composed of some fixed amount of revenue given by τ0, and revenue accruing from a
proportional tax rate on income given by τy. In addition, the fiscal authority will be assumed
to collect a lump-sum tax earmarked to stabilise debt, τ rule

t .
The random environment in the economy is captured by two exogenous shocks: one to

aggregate supply and one to government spending (i.e. a component of aggregate demand).
Both are assumed to follow stationary first-order autoregressive processes. The shock to
aggregate supply (εt = ρεεt−1 +ηεt) has a zero mean, while the shock to government spending
(gt = (1− ρg)g+ ρggt−1 +ηgt) has mean g.

The model has a well-defined steady state. For a given variable Xt, the steady state
solution is that particular solution in which Xt= Xt−1= X, ∀t. All shocks are set to zero in
the steady state, so that this particular solution reads,

y = λ0, R = α0+α2λ0
1−α1β

c = λ0 − g m = δ0 + δ1R + δ2(λ0 − g)
π = βR, τ = τ0 + τyλ0

and

b =
(

β

β − 1

) [
m

(
1
π
− 1

)
+ g − τ0 − τyλ0

]

for all variables y, R, c, m, π, τ and b.

3.1.2 Characterising the stable manifold of the model

Solving the model developed above in the absence of a fiscal closure rule, we can explicitly
identify the conditions under which the model would produce stable outcomes. This un-
derpins the rationale for the inclusion of a fiscal rule. Linearising the system around the
well-defined steady state, we can express it as follows:

Γ0 Yt = Γ1 Yt−1 + Ψ εt + Π ηt (12)

plus the transversality condition on debt,

lim
j→∞

(
β

u′(ct)
Pt

)j

bt+j = 0 (13)

where Yt ≡
[
ỹt, π̃t, b̃t, Et(π̃t+1), ε̃t, g̃t

]′
, and a tilde (the notation X̃) denotes the deviation

of a variable from its steady-state value. εt = [ηεt , ηgt ]′ is the vector of shocks in the
model, and ηt is the vector of expectational errors, in this case comprised of a single element,
ηπt+1 ≡ πt+1 − Et (πt+1).
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In order to develop the intuition, we set in this section all sources of stochastic distur-
bances equal to zero, so that ηεt = 0 and ηgt = 0, thereby simplifying the model to exclude
the exogenous processes. This yields, after further working out the remaining equations,




ỹt

π̃t

b̃t


 =




λ2 0 0
a12 α1β 0
a13 a23

1
β







ỹt−1

π̃t−1

b̃t−1


 (14)

where:

a12 =
β

c
(α2c + (1− λ2)R) ,

a13 = −λ2 (δ1α2 + δ2 + τy)− (α1δ1 +
b

βπ
+

m

π2
)
[
β

c
(α2c + (1− λ2)R)

]
+

α2 (δ1 + b) + δ2

π

and

a23 = −α1β

[
α1δ1 +

b

βπ
+

m

π2

]
+

α1 (δ1 + b)
π

Given the lower-triangular structure of the matrix premultiplying the lagged values of
the variables, the eigenvalues of the system lie on the main diagonal of the coefficient matrix
in (14): λ2, α1β, and 1/β. The first one lies within the unit circle by assumption. As
regards the second one we assume that the monetary authority reacts when facing deviations
from its target level of inflation. The third eigenvalue, however, is located outside the unit
circle for any sensible parameterisation of the discount factor, implying an unstable solution
to the system (14). This eigenvalue, 1/β, is the one associated with fiscal policy. This is
easy to see if one proceeds with the full eigenvalue/eigenvector analysis of (14). Indeed,
solving recursively, the solution for debt turns out to be unstable, according to the following
expression,

b̃t = (λ2)t w1 ỹ0 + (α1β)t w2 [w3 ỹ0 + π̃0] + (1/β)t
[
w4 ỹ0 + w5 π̃0 + b̃0

]
(15)

where the weights w1 to w5 are known and computable functions of the deep parameters.
The solutions for output and inflation are stable, starting from any appropriate initial con-
dition. For the solution for debt to be stable it has to be that either: (i) | 1/β |< 1, which
is not the case for reasons outlined above; or (ii) a weighted sum of the initial values of the
state variables is equal to zero, w4ỹ0+ w5π̃0+ b̃0 = 0.

In order to achieve stability, the standard practice in macroeconomic modelling usually
rectifies instability via imposing (i) – thereby directly eliminating the unstable root from
the solution. For example, if we posit a fiscal closure rule along the lines of those typically
used in macroeconomic models of the form τ rule

t = τ bb̃t−1 and we repeat the preceding
eigenvalue/eigenvector analysis, then the unstable eigenvalue turns out to be 1/β − τ b, so
that calibrating τ b appropriately one can make | 1/β−τ b |< 1, and as a consequence stabilise
the solution for debt. Under this approach, the solution is globally stable in the sense that
all eigenvalues lie within the unit circle, and any deviation from the steady state will be
automatically corrected.

Keeping in mind the shortcomings of this approach outlined at the end of Section 2.1.2,
an alternative approach is based on forcing the linear combination of the state and control
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variables w4ỹ0+ w5π̃0+ b̃0 to be zero. In analytical terms, if we get back to the solution for
debt (15), this means imposing the period by period condition,

b̃t = [−δ1α2 − δ2τ
y] ỹt +

[
−α1δ1 − b

βπ
− m

π2

]
π̃t (16)

This relation is the stable manifold of the system, and it is usually denoted as the stability
condition. In this case the model would display a saddle path structure, in line with the
solution to standard rational expectations models. The stability condition would force the
system to be on the stable arm of the saddle in every period, and would let the dynamics of
the system determine the dynamics of the transition back to the steady state. Appending
this stability condition to the core equations of the model therefore generates stability, as
agents internalise the transversality condition and adjust their optimal decisions so that the
real value of debt is bounded, and the deviation from the target in real terms (or, in models
with economic growth, as a percentage of nominal income) is prevented. In other words, once
agents internalise that the government commits itself to be solvent, they behave in such a way
that indeed the resulting equilibrium is stationary and the government debt is valued and
held by the agents. This reasoning is close to the one used by advocates of the Fiscal Theory
of the Price Level. Rather than the government budget equation constraining the behaviour
of the policymaker, changes in the equilibrium price level would force the fulfilment of the
budget constraint.

3.1.3 Computing an explicit model-based rule

From an economic point of view and for the purposes of policy analysis, the intuition behind
the formulation in (16) might be a bit obscure. Although imposing such conditions to
solve for the variables in the model is technically correct, it is somewhat more difficult to
give some economic meaning in the framework of the model being analysed. Specifically,
when imposing the transversality conditions applying to government bonds, one may wonder
which instrument the government would be moving on the event of, for instance, a recession.
Moreover, the “implicit” endogenous fiscal policy rule in (16) relies on an assumption that
governments are credible, thus generating the outcome that agents internalise the government
budget constraint completely. This form of the rule, however, suffers from the drawback that
this assumption of credibility is maintained despite a lack of systematic stabilisation on the
part of the government in response to imbalances in the economy.

From the fiscal policy point of view we would be interested in knowing what amount of
revenue given by τ rule

t would stabilise debt and make the transversality condition hold, while
being fully based on the model itself. If we want to assign the role of reacting to deviations
in targets explicitly to the fiscal authority, we can do so by exploiting the information in
the structure of the saddle-path solution. Specifically, this can be used to measure the
government reaction needed to keep the system on the saddle-path equilibrium. In developing
this rule, we address the two basic decisions of a modeller as developed in Section 2.1: (i) the
adjusting budgetary item and (ii) the functional form and calibration of the rule.

The adjusting budgetary item

First, we sidestep issues related to the decision regarding which tax item to adjust by
creating a tax adjustment at the margin, to cater for transitory shocks. For reasons outlined
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earlier, this separation of “core” taxes (income taxes, consumption taxes, etc.) from marginal
adjustments gives the modeller the full flexibility to maintain a practical specification for
the behaviour of regular taxation in the model in whatever format seems most appropriate.
Modelling the reaction separately as a marginal adjustment then allows us to avoid sacrificing
a tax item for this purpose, while the lump-sum nature of this adjusting tax item avoids any
distortionary effects on other variables in the model.

Therefore, we maintain a strict separation of the tax system in the form of (3). The first
part involves the standard tax items of budgets (and, accordingly, the applicable automatic
stabilisation properties), and the second component represents the incremental revenue ad-
justment by the government required to guarantee solvency. The strict separation of the
lump-sum term equipped to handle “extra-budgetary operations” from the “core” tax sys-
tem means that adjustment to these sources of variability do not focus on one particular tax
category. This is based on the premise that clear theoretical or empirical evidence of which
budgetary item should be adjusting to imbalances generated by stochastic disturbances is
scant. In the case where compelling evidence is available, the rule can obviously be adapted
accordingly. This could include, if appropriate, the modelling of a fiscal policy response in
the form of a distortionary tax.

The functional form and calibration

The second basic decision of a modeller in building a tax rule is the selection of the
functional form. Regarding this point, our rule is based on the selection of the stable manifold
outlined above. With this additional equation in the system, we can solve for one additional
variable, τ rule

t – which represents the fiscal rule. The tax item is the “jumping” variable -
moving the system back to the stable manifold.

This way, and in terms of the example model economy we are using, one would need to
solve for τ rule

t , τt, and b̃t by means of the system made up of three basic ingredients: the
stable manifold equation in (16), the government budget constraint (10), and the tax system
represented by (11). Substituting τt from (11) in (10), and eliminating b̃t from (10) using
(16), we get the following expression for τ rule

t ,

τ rule
t =

[
1
β

]
b̃t−1 +

[
α2(δ1 + b) + δ2

π

]
ỹt−1 +

[
α1(δ1 + b)

π

]
π̃t−1 (17)

This rule governs the period-by-period reaction of the government in order to guarantee
debt stability in this model. From (17) it is apparent that the proposed type of rule, while not
deviating substantially from the simplicity of standard rules, displays the following desirable
properties: (i) the debt path is not explosive and the intertemporal budget constraint of
the government is fulfilled; (ii) it assigns an explicit role to τ rule

t while being fully based on
the stable manifold of the model; and (iii) the coefficients of the rule depend explicitly on
the deep parameters of the model under consideration, thus alleviating susceptibility of this
sector to the Lucas critique.

For simplicity we have excluded all stochastic elements in the preceding analysis. Nev-
ertheless, as we will see below, the shocks present in the solution would appear in a fiscal
rule of the type of (17). In fact, the fiscal rule item τ rule

t could also be expressed solely as a
reaction to shocks, as we will see in Section 4.
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3.2 Generalisation of the discussion in linear models

3.2.1 Standard stability analysis theory

For the purpose of developing clear intuition, we have restricted the discussion to the analysis
of a simplified model thus far. In this Section, we generalise the discussion to models with a
linear/log-linear structure, including stochastic components.5 The linearised version of the
system around the deterministic steady-state can be expressed as the general representation
in (12), plus a set of transversality conditions,

lim
j→∞

(
φj Yt+j

)
= 0 (18)

where now the vector Yt contains all the endogenous and exogenous variables in the model,
as well as the conditional expectations in the model, and φ is the appropriate discount rate
for the variables in the model. In particular, in the cases of interest to us, Yt will contain the
variable debt, bt, and taxes, τt. Taking an arbitrary set of initial conditions Y0 and simulating
Yt using solely (12), conditional on sample realisations for εt, will normally lead to unstable
trajectories for Yt that would eventually violate the transversality conditions given by (18).
For the transversality conditions to hold, we need to add a set of stability conditions to the
system in (12).

These stability conditions are defined by the eigenvectors associated with the unstable
eigenvalues of the system (12). When Γ0 is non-singular the stability analysis is based on
the eigenvalues of Γ−1

0 Γ1. If Γ0 is singular we have to analyse the generalised eigenvalues of
the pair (Γ0, Γ1), by means of, for example, QZ-decompositions (see Sims, 2000). In what
follows, without lack of generality and for the sake of exposition, we will assume that the
matrix Γ−1

0 Γ1 can be decomposed as PΛP−1, where Λ is a diagonal matrix containing the
eigenvalues of Γ−1

0 Γ1 and P−1 is the matrix of left eigenvectors. Let P s denotes the rows of
P−1 associated with the unstable eigenvalues. Then a unique stationary equilibrium must
satisfy the conditions,

P s Yt = 0, ∀t (19)

or alternatively,

P s Γ−1
0 Π ηt = P s Γ−1

0 Ψεt, ∀t (20)

The above is obtained simply by solving forward the system in (12), and substituting the
transversality conditions in (18). The set of equations in (19) are the stability conditions of
the system, amounting to a particular linear (or log-linear) combination of the endogenous
and exogenous variables in the model. There is one such condition per unstable eigenvalue
(the one attached to each transversality condition). In models with a stochastic structure,
the conditions are needed to solve for all expectational errors in the model. As discussed
in Sims (2000), for the equilibrium to be uniquely determined one such condition should be
present for each expectational error in the model.

5For this general analysis, we only explicitly consider models characterised by complete information. For a
recent examination of issues related to learning on the part of agents in the context of monetary rules for models
with incomplete information, see Tetlow and von zur Muelen (2001).
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The stable paths of the approximated model economy can be simulated recursively given
(12) just by solving for the expectations errors using (20), and rewriting so that,

Yt =
[
Γ−1

0 Γ1

]
Yt−1 +

[
Γ−1

0 Ψ
]

εt +
[
Γ−1

0 Π
]

ηt (21)

starting from an appropriate Y0 and given the realisations of the exogenous shocks in εt, or
directly using,

[
Yt

ηt

]
=

[
Γ0 −Π
P s 0

]−1 [
Γ1

0

]
Yt−1 +

[
Γ0 −Π
P s 0

]−1 [
Ψ
0

]
εt (22)

starting from an appropriate Y0.

3.2.2 The identification procedure

The same set of stability conditions could also be combined to identify additional variables
– for example τ rule

t . The equilibrium we select by solving jointly (12) and (19) (or (20)), as
we do in (21) and (22), is one in which the government is credible, and as a consequence
agents adjust their decisions so that government debt is valued and the rest of transversality
conditions hold, even when the policy reaction to shocks is non-existing, i.e. τ rule

t = 0. In
assigning content to a policy reaction, τ rule

t as done in the preceding Section, we first need
to perform the stability analysis of the system (12). From the set of stability conditions
in (19) we can isolate the stability conditions associated to the state variables representing
government debt. Assuming there is only one government asset in the economy, so that the
subset comprises only one condition, let P s,b ⊂ P s be the corresponding row of P s. The
transversality condition associated with government debt then has a corresponding stability
condition given by

P s,b Yt = 0, ∀t (23)

Once we have this new equation, we can solve for τ rule
t . To do this, we solve for τt using

the stability condition (23), and the (linearised) government budget constraint, so that we get
τt = f(Y ∗

t , Yt−1), where Y ∗
t is a vector containing the same elements as Yt with the exception

of b̃t, and f(•) denotes a known function of the variables. Then, using the obtained equation
together with the specification of the tax system in the model – defining τ rule

t as one element
of τt – we can express τ rule

t as a function of the variables in the information set,

τ rule
t = −f0 Yt + f1 Yt−1 (24)

with f0 and f1 being known vectors of coefficients, and the element of f0 corresponding to
b̃t being null. This condition can be considered as the fiscal rule. An example of its form is
(17), in the simplified version of the model developed in a previous Section. As an additional
representation one could also express the tax rule item τ rule

t solely as a function of the shocks
affecting the economy and the expectational errors. Thus, from

[
Yt

τ rule
t

]
=

([
Γ0 1
f0 1

]
−

[
Γ1 0
f1 0

]
L

)−1

( Ψ εt + Π ηt )

the last row – call it N – corresponding to τ rule
t could then be picked up and used as the

fiscal rule,
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τ rule
t =

([
Γ0 1
f0 1

]
−

[
Γ1 0
f1 0

]
L

)−1

N

( Ψ εt + Π ηt )N (25)

where L denotes the lag operator. The innovations in εt are known at t, and the expec-
tational errors can be simulated using the set of stability conditions in (20). This form of
expressing the rule has the advantage that the coefficients of the fiscal rule can be interpreted
directly as the reaction the government depending on the shock affecting the economy, and
the impact on the expectational errors the agents commit.

Once a functional form for the government reaction has been identified in the form of
either (24) or (25), one can solve the model to get the equilibrium values of all the variables
in the economy by means of: (i) the linearised system (12); (ii) the selected tax rule; and
(iii) the set of stability conditions P sYt = 0, ∀t minus P s,bYt = 0 to identify the set of
expectation errors, minus the one attached to debt, that are assumed to be white noise.

This last assumption merits some additional explanation. In both deterministic and per-
fect foresight models, the stability conditions simply represent the stable manifold of the
system, so that one has additional equations with which to operate to identify additional
variables as in the simple example developed above. Each unstable eigenvalue has a corre-
sponding stability condition. In non-perfect foresight models where one has to identify all
expectations errors, a potential indeterminacy problem has to be sorted out in a first stage.
For the rational expectations equilibrium to be uniquely determined the solution has to con-
tain as many stability conditions as elements in the vector ηt. In order to avoid this potential
(but standard) problem one can assume some structure for that element of ηt. There are
various alternatives. The first and most straightforward one could be to assume perfect fore-
sight for the needed element of ηt. Another one would be to evaluate ex-post the rationality
of the expectation error. A final way would be to assume a known stochastic process for
an element of ηt, as in the backward solution method of Sims (1989). As all elements of ηt,
being rational errors, are white noise by construction, this structure is a natural candidate.6

Summarising the steps a modeller would have to follow in order to compute the fiscal
rule proposed in this Section,

1. Compute the steady state solution of the model. Perform a linear approximation of the
model around the steady state.

2. Perform the stability analysis of the system with τ rule
t set to zero. Detect the stability

condition attached to debt (the one coming from the government budget constraint).

3. Solve for the a variable τ rule
t using the system made up of the stability condition at-

tached to debt, (23), the government budget constraint, and the equation defining the
tax system in the model. Choose the reduced form rule (24), or the shock-based rule
(25).

4. Append this new equation to the model (12), and simulate the model.

6Another alternative would be to develop an iterative process to solve non-linear models along the same lines
of the identification procedure described in this paper, but with the possibility to refine the coefficients of the rule
until the ex-post expectation error attached to debt is indeed white noise. This would also open the possibility of
developing a polynomial function which could summarise all of the information in the rule in a sufficient set of
variables. A provisional algorithm of this type is available from the authors upon request.

15



4 Application of the identification scheme

In this Section we implement our identification scheme on the basis of the model developed
in Section 3.1.1. We solve the full model, including the entire stochastic structure left aside
in Section 3.1.2.

The tax system of the type (11) is composed of a fixed amount of tax collection, τ0, an
income tax captured by τy yt, and the tax-rule-based lump-sum amount τ rule

t calibrated using
the endogenous identification procedure. The results from such an approach are compared
with the outcome of a standard tax reaction function, proxied by a rule of the type of

τ rule
t = τ b b̃t−1 (26)

which is fully based on lump-sum tax collection. This assumption that this tax does not
have a distortionary impact on the decisions of private agents does not reflect a limitation of
the identification method. It rather reflects the idea that budgetary adjustment takes place
at the margin – so that the tax item designed to guarantee debt stability in the model should
not unduly distort agents’ allocation of output or assets.

4.1 Calibration of the model

The example in this Section is intended only to illustrate how to implement our methodol-
ogy in a small-sized macroeconomic model usable for policy analysis, and a fairly standard
calibration along the lines of Leeper (1993) has accordingly been chosen. A complete and
quantitative interpretation of the economic meaning of the numbers produced below is not
provided, rather, the focus is only on the qualitative results.

The steady-state value of output is set by assuming λ0 = 10. The nominal rate of return
on bonds is an annual 3.5% , while the subjective discount rate for the agents is fixed to
0.985, which is within the range of the standard values in the literature. The implied rate of
inflation is thus about 2%. Following Leeper (1993), the coefficients in the interest rate rule
are set at α1 = 1.3, α2 = 0.25, and then the implied α0 = R− α1βR −α2λ0. Regarding the
money demand equation, following Leeper again, we fix the elasticity of the interest rate to
be δ1 = −0.05, the income coefficient to δ2 = 1, and m = 0.77. This way δ0 = m− δ1R −δ2c.
As regards the supply equation λ1 = 0.25 and λ2 = 0.7.

The steady state level of public expenditure is set to g = 2, implying a 20% share of the
public sector in total income, while τ = 2.1, so that τ0 = τ − τy λ0. The income tax rate
is calibrated to τy = 0.25. Finally τ b will be equal to 0.1 or 0.8 depending on whether the
assumed reaction on the part of the fiscal authority is considered to be weak or strong, as
we will see below.

The persistence parameters ρε and ρg, are set equal to 0.8, while the standard deviations
of the shocks σηε and σηg have been chosen (arbitrarily) to be 0.01.
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4.2 Computation of the explicit model-based rule

The linear version of the full model in Section 3.1.1, after performing a linear approximation
and rearranging terms and equations, can be written as,

ỹt = λ1(π̃ − Et−1π̃t) + λ2ỹt−1 + ε̃t
β
c (α2c + (1− λ2)R) ỹt = −α1β π̃t + Et(π̃t+1) + βR

c ε̃t + βR
c (1− ρg) g̃t

b̃t +
(
α1δ1 + b

βπt
+ m

πt
2

)
π̃t = (−δ1α2 − δ2) ỹt − τ̃t + (1 + δ2)g̃t +

(
1
β

)
b̃t−1

+
(

α1(δ1+b)
π

)
π̃t−1 +

(
α2(δ1+b)+δ2

π

)
ỹt−1 − δ2

π g̃t−1

τ̃t = τyỹt + τ rule
t

ε̃t = ρεεt−1 + ηεt

g̃t = ρgg̃t−1 + ηgt

ηπt = π̃t − Et−1π̃t

(27)

with τ rule
t remaining to be specified. As described above, a tilda over a variable denotes

absolute deviations of the variable with respect to its deterministic steady state value. The
system could also be written in the general form (12), – the matrices Γ0, Γ1, Φ, and Π are
easily obtained from (27). As a result of the eigenvalue/eigenvector analysis, the stability
condition attached to debt, in the form of (23), turns out to be

P s,bYt = 3.3 ỹt + 9.4 π̃t + b̃t − 4.6 Et (π̃t+1) + 4.5 ε̃t + 6.4 g̃t = 0

for the chosen baseline calibration. Using this stability condition to solve for τ rule
t provides

an explicit version of the endogenous fiscal rule, as a linear function of the contemporaneous
shocks and lagged state variables

τ rule
t = 10 ηεt + 8.3 ηgt + 1.02 b̃t−1 + 4.7 ỹt−1 + 9.5(π̃t−1 − 0.1Et−1π̃t) + 8 ε̃t−1 + 5.7 g̃t−1

which can be alternatively obtained in this case (with lump-sum taxation) as already ex-
plained, using the government budget constraint, the tax system equation, and the stability
condition for debt. The first two elements of the right-hand side reflect the two innovations
affecting this economy, namely supply shocks and shocks to public expenditure. The rule
implies a strong reaction to both of them. The third component in lagged debt enters with
a coefficient of 1/β. There is also a term in lagged deviations of income from its steady state
value, and a term that captures a partial adjustment to the expectation error made by the
agents in the previous period. Finally, the two last terms form a reaction to past shocks.
Note that the above rule can be analogously expressed as a function of contemporaneous
variables like ỹt, π̃t, ε̃t, g̃t, and forward looking contemporaneous elements like Et(π̃t+1), as
well as some terms in lagged variables. In the same manner, we can rewrite the rule so that it
reads as a function of only contemporaneous and lagged values of the innovations hitting the
economy. This provides a straightforward and intuitive interpretation of the fiscal reaction
function in the sense that the nature of the perturbation and its persistence are sufficient to
explain the fiscal policy response. In this case the rule would be

τ rule
t = 10.03 ηεt + 8.29 ηgt − 0.66 ηgt−1 + 0.14 ηgt−2 + 0.11 ηgt−3 + 0.09 ηgt−4 + . . .

The contemporaneous coefficients are clearly the most important ones, while there is
some lagged effect in response to an innovation in public expenditure, that fades out quickly
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through time. It is worth noticing that any change in the parameters of the model imply
a change in the coefficients of the rule. For example, a change in the income tax rate from
0.25 in the baseline calibration to 0.5 produces a change in the weight attached to ηεt from
10.03 to 6.43. A 5% increase in g changes the two contemporaneous coefficients to 7.07 and
8.07, respectively.

Figures 1 and 2 illustrates the response of the model to a one standard deviation supply
shock and government spending shock, respectively. The Figures demonstrate the differing
impact of alternative specification of rules for closure, based on the endogenously and exoge-
nously specified rules described above. The solid line corresponds to the behaviour under
the endogenously identified rule, while the dashed and dotted lines represent responses under
standard rules proxied by (26). As apparent from the figure, the dynamic response to the
shock can be markedly different, both in qualitative and quantitative terms. The exogenous
rule reacts to the shocks with a lag, whereas a simultaneous reaction takes place under the
endogenous rule. Moreover, the behaviour of taxes and debt under the “standard” rule is
clearly quite sensitive to the exogenous calibration of the speed of adjustment parameter, τ b.
The lump-sum tax of the endogenous rule is levied in such a way as to produce a smooth
transition of debt back to its steady-state level, consistent with the nature and persistence
of the shock and the properties of this particular model. In particular, the disequilibrium in
debt immediately following the shocks under the endogenous rule is of the opposite sign of
that under the “standard” rule.

[insert FIGURE 1 - response to a 1% supply shock]

[insert FIGURE 2 - response to a 1% government spending shock]

5 Conclusions

This paper has attempted to show that, as an alternative to the standard practice of exoge-
nously imposing a condition to guarantee closure in the fiscal sector, an endogenous fiscal
closure rule can be derived on the basis of the existing structure of a macroeconomic model.
Specifically, the rule is obtained by identifying the stable manifold of the system. An illus-
tration of the means by which a model-based fiscal rule can be derived is provided in the
context of a small-scale model. In principle, however, this methodology is transferable to
larger and more complex macroeconomic forecasting models. Although the complicated na-
ture of some of the large-scale models currently in use would require a careful implementation
of the methodology outlined here, the basic principles would remain: a rule can be derived
in explicit form, whereby the fiscal authority reacts systematically to a variety of shocks. We
show that the presence of optimising agents, combined with some other mild conditions, is
sufficient to identify a unique saddlepath leading to a stable equilibrium.

The model-based rule outlined in this paper shares many of the desirable features of
exogenously imposed rules. Most importantly, it guarantees solvency on the part of the gov-
ernment, rules out instrument instability, is consistent with some economic intuition and is
relatively straightforward to interpret. In addition, it possesses some additional appealing
properties not shared by exogenous fiscal rules. First, the rule is consistent with the specifi-
cation of other sectors in the economy. In this respect, the rule is consistent with the setup
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of the model in which it is implemented – by design – meaning that a change in structural
parameters will automatically be reflected in the fiscal rule. Unlike many exogenously im-
posed fiscal rules, the impulse response of variables is entirely consistent with the optimal
time path of adjustment of agents within the model, and adjustment is not dependent on
exogenously calibrated speed-of-adjustment parameters. Second, it is state-contingent. Ex-
ogenously imposed fiscal rules may involve acyclical features, where, for example, adjustment
of taxes is dependent solely on the observed deviation of the deficit or debt from its target
value. The endogenous fiscal rule derived here, on the other hand, is consistent with the
setup of other sectors in a rational expectations-based model by construction. Consequently,
it is also shock-specific in its response, which is a desirable property from an economic point
of view. At a minimum, the derivation of the explicit version of a model-based rule gives
some guidance regarding the functional form of a fiscal rule.

The functional form of the proposed rule – involving a state-contingent fiscal policy re-
sponse aimed at offsetting/ counteracting shocks that drive the economy away from its saddle
path to steady state at any point in time – represents purely a practical choice for the pur-
poses of efficient model closure. Obviously, the rule is only intended to approximate actual
fiscal reactions, as the heterogeneity of shocks affecting public finances and a reasonably wide
range of possible government reactions makes it impossible to define a standard rule which
can approximate actual behaviour of the fiscal authority in all cases. Accordingly, this study
abstracts from normative issues concerning fiscal rules and their appropriateness for charac-
terising actual fiscal behaviour. Nevertheless, the functional form of the rule is not without
some economic interpretation. Specifically, a “rule-based” scheme for the implementation
of discretionary fiscal policy – extending fiscal stabilisation of a purely automatic nature to
append systematic (and symmetric) discretionary stabilisation – has also been suggested in
some recent studies. Wren-Lewis (2000) argues that the main problems of discretionary fiscal
policy – covering institutional lags and political economy considerations – could be mitigated
by mandating an outside independent body with the role of changing certain tax rates or
allowances on a temporary basis within certain limits. Similarly, Seidman (2001) discusses
the possibility of “automating” certain fiscal policy changes in the United States, allowing
the fiscal authority (or an independent body delegated by the fiscal authority) to change tax
rates on the basis of economic conditions.

On the basis of our findings, there remain several possibilities for further work. Perhaps
the most interesting avenue for further work would be to apply the analysis to a more com-
plex framework, such as a large-scale macroeconomic model typically used for forecasting
purposes. This would permit a rigorous comparison of the properties of endogenous fiscal
rules against exogenously specified rules in the context of such larger-scale models. In con-
junction with this, one could rigorously test the robustness of the alternative specifications
of fiscal closure rules to parameter changes in these models. Moreover, one could assign the
role of fiscal adjustment to a non-neutral component of the government budget (such as a
distortionary tax rate) in order to gauge the implications of adjustment for the behaviour
of other sectors in the model, although this may come at the cost of making the interpreta-
tion of associated simulations less straightforward. More generally, a detailed study of the
interaction between various specifications of rules governing the behaviour of the fiscal and
monetary authorities in these models could provide some interesting insights.
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Figure 1
Impulse response to a supply shock
Solid line: endogenous fiscal rule. Dashed line: standard fiscal rule, τb=0.8. Dotted line: standard fiscal rule, τb=0.1.

Figure 2
Impulse response to a public spending shock
Solid line: endogenous fiscal rule. Dashed line: standard fiscal rule, τb=0.8. Dotted line: standard fiscal rule, τb=0.1.
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