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Abstract

This paper considers a learning rules for environments in which little prior in-
formation is available to the decision maker. Two properties of such learning
rules, absolute expediency and monotonicity, are studied. The paper pro-
vides some necessary, and some su¢cient conditions for these properties. A
number of examples show that the there is a quite a large variety of learning
rules which have the properties. It is also shown that all learning rules which
have these properties are, in some sense, related to the replicator dynamics
of evolutionary game theory.



1 Introduction
We arrive at most economic decisions of our lives through a learning process
in which we adjust our behaviour in response to experience. For example, we
learn in this way which consumer products we like, we learn how to invest
our money, or we learn how to behave towards our colleagues at work. For
economic theory it is therefore interesting to explore mathematical models of
learning. There has been a large literature on this subject which has recently
been surveyed, for example, by Fudenberg and Levine (1998).

A problem in this area is that there is a huge variety of learning models
and that existing results are often speci…c to very particular models. This
problem is particularly severe in learning environments in which the decision
maker has very little prior information about the alternatives among which
he chooses. If much prior information is available, then a Bayesian model
of learning with a limited state space in which learning is simply updating
of subjective beliefs over the state space seems plausible. But if the prior
information is very incomplete, then the set of conceivable states of the world
is often so large that a Bayesian model of learning seems highly unrealistic.
Once one turns away from Bayesian learning models, however, it is di¢cult
to see on which grounds to choose one learning model rather than another.

In this paper we want to contribute to a solution of this problem. Our
approach is to begin with a very large and general class of learning models,
and then to investigate which of these models have a particular, intuitively
attractive property. We do not obtain a complete characterisation of all
learning models with this property, but we present a number of results which
together constitute a signi…cant step towards such a characterisation.

Our paper is useful in two ways. Firstly, for theoretical work, we iden-
tify a particular class of learning models which have important properties in
common, and which therefore provide an interesting object for further study.
Our results also provide for theoretical research a shortcut which allows re-
searchers to see easily whether any given learning rule belongs to this class.
Secondly, for experimental work on learning, we identify some salient prop-
erties of learning behaviour which experimenters can seek to test on their
data without having to postulate any particular functional forms.

The properties on which we focus are two short run properties, labeled
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“absolute expediency”1 and “monotonicity”2. Roughly speaking, they say
that the performance of the decision maker improves from each period to the
next provided that the environment stays the same. The properties require
this to be true in every environment in a very large class of environments. It
is this universality of the requirement that gives it bite. The properties which
we study appear attractive when the agent acts in an unknown environment
which might change from time to time. Then “the best the decision maker
can do” is to try to guarantee an upward trend in his performance.

Our main results provide some necessary and some su¢cient conditions
for absolutely expedient and monotone reinforcement learning procedures.
Roughly speaking, we …nd that a necessary condition for absolute expediency
or monotonicity is that local learning, i.e. learning which begins in a given
and …xed current state of the decision maker, is as if the decision maker
used a modi…ed version of Cross’ (1973) learning rule. Cross’ learning rule
is based on Bush and Mosteller’s (1951, 1955) stochastic learning theory. It
says that the decision maker adjusts his choice probabilities proportional to
the payo¤ received. The modi…cations of this rule which are compatible with
absolute expediency or monotonicity are learning rules which result if payo¤s
are subject to certain a¢ne transformations before the rule is applied.

We know from earlier work (Börgers and Sarin (1997)) that there is a close
connection between Cross’ reinforcement learning model and the replicator
dynamics of evolutionary game theory. Therefore, our results in this paper
also imply a connection between absolutely expedient, and monotone learning
rules and the replicator dynamics.

Note that our results are only as if results. We are not saying that the
decision maker has to actually use Cross’ rule. In fact, our characterisa-
tion encompasses a large variety of learning rules which, at …rst sight, look
very di¤erent from Cross’ rule. In particular, the characterisation applies to
learning rules which have larger state spaces and therefore also larger memory
than Cross’ rule.

We also study su¢cient conditions for absolute expediency or monotonic-
ity. One interesting and, to us, surprising result is that there are absolutely

1This expression originates in the literature on machine learning (Lakshmivarahan and
Thathachar (1973)). We discuss the connection between our work and that literature in
Section 9 below.

2Monotonicity as de…ned in this paper is related to, but di¤erent from the monotonicity
requirements studied in the evolutionary game theory literature. We discuss this connec-
tion in Section 3 below.

2



expedient learning rules which have in-built preconceptions about similarity
relations among strategies. According to such rules the larger the payo¤ re-
ceived when a strategy s1 has been played, the larger is in the next round
not only the probability of s1 but also the probability of some other strategy
s2. Intuitively, the decision maker treats s1 and s2 as if they were “similar”
strategies. It is surprising that learning rules of this type can be absolutely
expedient because absolute expediency requires an improvement in all con-
ceivable environments, including environments in which s1 and s2 are very
di¤erent from each other. We shall show in an example that in-built simi-
larity relations among strategies are compatible with absolute expediency if
the payo¤ success of a strategy s1 has a much stronger e¤ect on the proba-
bility with which s1 is chosen than on the probability with which a “similar”
strategy s2 is chosen.

Our paper has the ‡avor of an axiomatic approach to learning theory.
However, we emphasize that our objective is not to isolate a single best
learning rule. That would not be useful to either the theoretical researcher
who wishes to obtain results for broader classes of learning rules nor for the
experimental researcher who faces heterogeneity in the learning behaviour
of subjects. This is one of several point which distinguishes our paper from
papers such as Easley and Rustichini (1999) and Schlag (2001). We shall
discuss these and other related papers in Section 9 below.

This paper is organised as follows. In Section 2 we introduce the simplest
framework in which our analysis can be conducted. We call it a “local”
model of learning because we shall only consider two periods, “today” and
“tomorrow”, and because we shall take the decision maker’s behaviour today
as given and …xed. One should think of the model in Section 2 as a “reduced”
form model of learning. How such a model of learning can result from a much
richer, fully speci…ed model of learning is explained later in the paper. In
Section 3 we formalize and motivate the notions of absolute expediency and
monotonicity. In Section 4 we give Cross’ learning rule as an example of a
simple learning rule which has these properties. Section 5, 6 and 7 contain
our characterisation results. Section 8 extends our analysis to learning rules
with very general state spaces, and provides some indication of the long
run behaviour implied by absolute expediency and monotonicity. Section 9
discusses related literature. Section 10 concludes.
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2 A Local Model of Learning
A decision maker chooses repeatedly from a …nite set S = fs1; s2; :::; sng of
strategies which has at least two elements: n ¸ 2. Every strategy si has
a payo¤ distribution ¹i attached to it. We normalize payo¤s so that they
are between zero and one. The substantial assumption here is that there is
some upper and some lower bound for payo¤s. These may be arbitrarily
large or small, respectively, and payo¤s can then be normalized so that they
are between zero and one. In the following de…nition an assignment of payo¤
distributions to strategies is called an environment.

De…nition 1 An environment E is a collection (¹i)i=1;2;:::;n of probability
measures each of which has support in the interval [0; 1].

For our analysis it does not matter where the payo¤ distributions come
from. They could re‡ect randomness in nature, for example. It could also
be that the decision maker is involved in a game, and that the payo¤ distri-
butions re‡ect other players’ behaviour.

In this section we shall study the decision maker’s behaviour at two dates
only, “today” and “tomorrow”. The decision maker’s behaviour today will be
exogenous. We shall study learning rules which determine how the decision
maker adjusts his behaviour tomorrow in response to his experiences today.

The decision maker knows the strategy set S, and he also knows that his
strategy set tomorrow is the same set as it is today. But the decision maker
does not know the environment E, and he doesn’t know whether it will be
the same tomorrow as it is today. He chooses a strategy from S today, and
then observes the payo¤ realization. In response to this observation he has
to choose a strategy from S tomorrow.

The decision maker’s behaviour today is described by an exogenous prob-
ability distribution ¾ over S. This distribution describes how likely the de-
cision maker is to choose each of his strategies today. Note that we do not
assume that the decision maker is consciously randomizing. The distribution
¾ describes the likelihood of various strategies from the point of view of an
outside observer.

We denote the probability which ¾ assigns to the strategy si by ¾i. Thus,
¾ is the vector: ¾ = (¾1; ¾2; :::; ¾n). We make the following assumption.

Assumption 1. For every i = 1; 2; :::; n the probability ¾i is strictly positive.
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The reason why this assumption is important to our analysis is that it
implies that there is a positive probability that the decision maker will today
play his optimal strategies. The problem which “learning” and the “learning
rule” then have to solve is that they need to recognize a good strategy when
it has been played, but they don’t have to discover good strategies. By
contrast, if some strategies are played with zero probability, then it may be
that exactly those strategies are the “good” strategies, and that the learning
process has to discover these strategies. This is a much harder task than the
one which we study in this paper.

The decision maker’s behaviour tomorrow is governed by a learning rule.

De…nition 2 A learning rule is a function L : S £ [0; 1]! ¢(S).

A learning rule determines as a function of the pure strategy si which
the decision maker chooses today (and which is distributed according to ¾),
and of the payo¤ which he receives today (which is distributed according
to ¹i), which mixed strategy the decision maker chooses tomorrow. Denote
by L(si; x)(sj) the probability which the decision maker’s mixed strategy
tomorrow assigns to the pure strategy sj if the decision maker plays today
the pure strategy si and receives the payo¤ x.

One should think of the learning rule in De…nition 2 as a “reduced form”
of the decision maker’s true learning rule. The true learning rule may, for
example, specify how the decision maker updates beliefs about the payo¤
distributions in response to his observations, and how these beliefs are trans-
lated into behaviour. If one combines the two steps of belief updating and
behaviour adjustment one arrives at a learning rule in the sense of De…nition
2, and our work below directly applies if the true learning process is of the
type just described.

Our approach here is therefore much more general than an approach
which focuses on learning rules in which the strategy simplex ¢(S) is the
state space of the learning rule.3 We shall give in Section 8 below examples
of learning rules with much larger state spaces to which our analysis can
nonetheless be applied. This is because for any given state of the decision
maker a reduced form of the learning rule can be constructed which is of the
form postulated in De…nition 2.

An important assumption which we shall make is this:

3Our earlier paper, “Simple Behaviour Rules Which Lead to Expected Payo¤ Maximis-
ing Choices”, took such an approach.
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Assumption 2. For all si 2 S the learning rule L is continuous in x.

It seems to us reasonable that a decision maker with little information
about his environment responds in a continuous way to payo¤ observations.

The perspective adopted in this section is in two senses “local”. Firstly,
we only focus on two days, today and tomorrow. We do not investigate the
decision maker’s behaviour over long time periods. Secondly, we take today’s
behaviour as exogenously given and …xed. We do not consider a variety of
possible initial behaviours. We shall adopt a more “global” perspective in
Section 8 below.

3 Absolute Expediency and Monotonicity
In this paper we study learning rules which guarantee improvements (in a
sense to be made precise) in the decision maker’s performance tomorrow in
comparison to today. The scenario for which we check whether a learning rule
achieves this improvement assumes that the payo¤s tomorrow have the same
distribution as the payo¤s today, and that payo¤s tomorrow are stochastically
independent of the payo¤s today. In other words: payo¤s have to be i.i.d. Our
justi…cation for focusing on this scenario is derived from the agent’s ignorance
of his environment. If the agent knows very little about his environment, then
it seems that “the best that he can do” is to aim for an improvement in his
performance, assuming that payo¤s tomorrow have the same distribution as
payo¤s today, and that tomorrow’s payo¤ realisations are not in some way
pre-determined by today’s realisations.

Now let E be the environment which prevails today, and which will be
assumed to prevail tomorrow as well. Because we assume that the deci-
sion maker does not know the environment E we shall ask that the decision
maker’s performance improves in any conceivable environment E: This rules
out learning rules which trade o¤ big improvements in some environments
against deteriorations in the decision maker’s performance in some other en-
vironments. Such learning rules seem to rely implicitly on the view that some
environments are more important than others. By contrast, we want to study
a decision maker who is entirely ignorant of his environment. Therefore, it
seems reasonable to require improvement in performance for all environments
E.

We now say more formally what we mean by improvement in the decision
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maker’s performance. We …rst need more notation. Fix some environment
E. For any strategy si 2 S we denote the expected payo¤ of strategy si by
¼i. That is, ¼i =

R 1
0
xd¹i. The set of expected payo¤ maximising strategies

is denoted by S¤, that is S¤ = fsi 2 S j ¼i ¸ ¼j for all j = 1; 2; :::; ng. Of
course, ¼i and S¤ depend on E. But to keep our notation simple, we suppress
the dependence on E in the notation.

Now …x not only the environment E but also some learning rule L. For
every strategy si denote by f(si) the expected change in the probability
attached to si:

f(si) =
nX

j=1

¾j

Z 1

0

L(sj; x)(si)¡ ¾id¹j

We extend this de…nition to subsets ~S of S by setting: f( ~S) =
P

si2 ~S f(si):
Finally, we de…ne g to be the expected change in expected payo¤s: g =Pn

i=1 f(si)¼i: Of course, f and g depend on the environment E and the
learning rule L, but, to keep things simple we suppress that dependence in
our notation.

We can now de…ne the property of learning rules which is the focus of
this paper.

De…nition 3 A learning rule L is absolutely expedient if for all environ-
ments E with S¤ 6= S we have: g > 0:

In words, a learning rule is absolutely expedient if in all non-trivial en-
vironments expected payo¤s are on average strictly higher tomorrow than
they were today. An environment is “non-trivial” if S¤ 6= S: If S¤ = S;
all strategies are optimal and nothing needs to be learned. If S¤ 6= S then
there is scope for improvement in the decision maker’s performance because,
by Assumption 1, the decision maker assigns some positive probability to
non-optimal strategies.

We now provide a second formalization of the notion of improvement in
the decision maker’s performance which is somewhat di¤erent from De…nition
3. Our second formalization will require that the probability assigned to the
best actions increases in all non-trivial environments. This is not the main
property studied in this paper because it is by de…nition payo¤s, not action
probabilities, which the decision maker cares about, and hence a property
which refers to payo¤s is intuitively more appealing. However, the second
de…nition leads to simpler characterisations, and it is closely related to the
…rst de…nition, as we shall show in this paper.
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De…nition 4 A learning rule L is monotone if for all environments E with
S¤ 6= S we have: f(S¤) > 0:

The relation between monotonicity and absolute expediency will be an
issue which we study in detail below. However, the following observation is
obvious.

Remark 1 If n = 2 then a learning rule L is absolutely expedient if and only
if it is monotone.

Monotonicity as de…ned above is closely related to properties of selection
dynamics studied in evolutionary game theory.4 Selection dynamics describe
the evolution of the proportions of players playing di¤erent strategies in large
populations. Weak payo¤-positivity requires that some best reply has posi-
tive growth rate. It is weaker than monotonicity in the sense of De…nition 4
because it does not require the set of all best replies to have positive growth
rate. The more restrictive property of payo¤ positivity requires that all strate-
gies which have more than average payo¤ have positive growth rates. This
property is clearly more restrictive than monotonicity. Payo¤ monotonicity
requires that the ordering of growth rates re‡ects the ordering of expected
payo¤s. That, too, is obviously more restrictive than monotonicity. The evo-
lutionary literature does not contain characterisations of the functional form
of selection dynamics with these properties, nor does it trace them back to
the behaviour rules of individuals, like we do.

Samuelson and Zhang’s (1992) aggregate monotonicity is more restrictive
than payo¤ monotonicity in that the requirement applies not only to pure
but also to mixed strategies. Samuelson and Zhang show that a selection
dynamics satis…es aggregate monotonicity if and only if it is a equivalent to
replicator dynamics with linearly transformed payo¤s. Their work is related
to ours as we, too, …nd below a connection between monotonicity and the
replicator dynamics. The monotonicity requirement with which they work
is more restrictive than ours. On the other hand, their result is obtained
by considering a single environment only. By contrast, it is essential for our
results that a learning rule must operate in multiple environments.

4All properties of selection dynamics mentioned in this paragraph are discussed in more
detail in Section 5.5 of Weibull (1995).
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4 An Example
The following example is taken from Cross (1973). We begin with this exam-
ple because later we shall show that all learning rules which are absolutely
expedient or monotone have some structural similarities with this example.

Example 1 For all i; j 2 f1; 2; :::; ng with i 6= j, and for all x 2 [0; 1]:

L(si; x)(si) = ¾i + (1¡ ¾i)x

L(sj; x)(si) = ¾i ¡ ¾ix

In words, if the decision maker plays strategy si and obtains payo¤ x then
he shifts the probability of si into the direction of 1 where the size of the shift
is proportional to x. If x = 1 then the decision maker goes all the way and
sets the probability of si equal to one. If x = 0 he leaves the probability of
si unchanged. The probability of all other strategies is reduced so as to keep
the sum of all probabilities equal to one, and to leave the ratios between the
other probabilities unchanged.

Notice that this learning rule has the somewhat counterintuitive feature
that the decision maker always increases the probability of the action which
he actually played, even if the payo¤ was very low. For the moment this will
not concern us. Although the example is important for our analysis, this
particular feature will not be crucial.

We now show that Cross’ learning rule is absolutely expedient and monotone.
The expected movement of payo¤s under Cross’ learning rule is given by:

g =
nX

i=1

¾i[¼i ¡
nX

j=1

(¾i¼j)]
2.

One can interpret the right hand side as the variance of expected payo¤s
today. How can an expected value have a variance? The decision maker’s
pure strategy today is a random variable. Thus, also the expected payo¤
associated with that pure strategy is a random variable. The right hand
side is the variance of that random variable. Observe that S¤ 6= S and
Assumption 1 imply that this variance is strictly positive. Thus we have
shown that Cross’ rule is absolutely expedient.
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The expected movement of the probability of any particular pure strategy
si is under Cross’ rule:

f(si) = ¾i[¼i ¡
nX

j=1

(¾j¼j)] for all i = 1; 2; :::; n.

This equation shows that the expected change in the probability of any pure
strategy si is proportional to the di¤erence between that strategy’s expected
payo¤, and the expected value today of the expected payo¤.5 The condition
S¤ 6= S and Assumption 1 imply that for strategies in S¤ the di¤erence
between this strategy’s expected payo¤ and the expected value of expected
payo¤s is strictly positive. Thus the above equation shows that Cross’ rule
is monotone.

Note that the right hand side of the equation for f(si) is the same as
the right hand of the replicator equation in evolutionary game theory, i.e.
the equation which describes in evolutionary game theory how proportions
of di¤erent strategies in a population move if the population is subject to
evolutionary selection. The connection between Cross’ learning model and
the replicator dynamics was explored in more detail in Börgers and Sarin
(1997).

In the next section we shall show that all absolutely expedient or monotone
learning rules have structural similarities with Cross’ learning rule.

5 Unbiasedness
As a …rst step we study a relatively weak property which we call unbiasedness.

De…nition 5 A learning rule L is unbiased if for all environments E with
S¤ = S we have: f(si) = 0 for every i = 1; 2; :::; n:

In words this de…nition says that a learning rule is unbiased if the expected
movement in all strategies’ probabilities is zero provided that all strategies
have the same expected payo¤. If in such an environment some strategies’
probabilities increased in expected terms, and some other strategies’ prob-
abilities decreased, then the learning rule would “favor” in some sense the

5The phrase “expected value of the expected payo¤” seems at …rst sight strange, but
recall our explanation in the previous paragraph of why expected payo¤s are a random
variable.
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former strategies. This motivates why we refer to the property in De…nition
5 as “unbiasedness”.

The next lemma shows why this property is relevant to our analysis.

Lemma 1 Every absolutely expedient and also every monotone learning rule
is unbiased.

Proof: Consider a biased learning rule L, i.e. suppose that we can …nd an
environment E with S = S¤ such that for some strategy si 2 S we have:
f(si) < 0. Now make a small change in the payo¤ distribution of si, so that
the expected payo¤ of si increases, while leaving all other payo¤ distributions
unchanged. In the new environment si is the unique expected payo¤ max-
imising strategy. But, because of the continuity of L in x (Assumption 2), for
su¢ciently small increase in s0is payo¤ it will still be the case that f(si) < 0.
This implies for the new environment: g < 0 and f(si) < 0. Thus we have
obtained a contradiction to the assumption that L is absolutely expedient or
monotone.

Q.E.D.

Our strategy is now to characterise …rst all unbiased learning rules, and
then, building on this initial characterisation, to ask which additional condi-
tions absolutely expedient or monotone learning rules have to satisfy.

Proposition 1 A learning rule L is unbiased if and only if there are matrices
(Aij)i=1;2;:::;n

j=1;2;:::;n
and (Bij)i=1;2;:::;n

j=1;2;:::;n
such that for every (si; x) 2 S £ [0; 1]:

(1) L(si; x)(si) = ¾i + (1¡ ¾i)(Aii +Biix)

(2) L(sj; x)(si) = ¾i ¡ ¾i(Aji +Bjix) for all j 6= i

and for every i = 1; 2; :::; n:

(3) Aii =
Pn

j=1(¾jAji)

(4) Bii =
Pn

j=1(¾jBji):

This result shows that a learning rule is unbiased if and only if the decision
maker, after playing his action and receiving his payo¤, …rst submits the pay-
o¤ to an a¢ne transformation and then applies Cross’ rule. The coe¢cients
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of this a¢ne transformation are allowed to depend on the strategy which
he has played and on the strategy the probability of which he is adjusting.
Conditions (3) and (4) restrict the coe¢cients of the linear transformation.
They require that the coe¢cients of the a¢ne transformation which are ap-
plied when si was played and si is updated are the expected values of the
coe¢cients which are used when sj was played and s is updated.

The key feature of the learning rule in Proposition 1 is that it is linear in
payo¤s. Very roughly speaking the intuition why this linearity is necessary
for unbiasedness is that also expected payo¤s are a linear function of payo¤s.
The linearity of the expected payo¤ function must be re‡ected in the linearity
of an unbiasedness learning rule.

Before we prove Proposition 1 it is worthwhile to state the following
observation which follows from elementary calculations.

Remark 2 Let L satisfy the characterisation in Proposition 1, and let E be
an environment. Then the expected movement of expected payo¤s is given by:

g =
nX

i=1

¡
¾iBii¼i

2
¢

¡
nX

i=1

nX

j=1

(¾i¾jBij¼i¼j)

and for all si 2 S the expected movement of the probability of s is given by:

f(si) = ¾i

"
Bii¼i ¡

nX

j=1

(¾jBji¼j)

#
:

These two formulas reduce to the analogous formulas for the Cross model
in the previous section if all the coe¢cients Bij equal one. This is evident
for the second formula, which once again is reminiscent of the replicator
dynamics. The …rst formula reduces in the case that all the coe¢cients equal
one to the di¤erence between the expected value of the square of ¼i and the
square of the expected value of ¼i which is, of course, the variance.

Proof: Su¢ciency: If S¤ = S, i.e. if there is some x such that ¼i = x for all
i = 1; 2; :::; n, then the formula for f(si) in Remark 2 becomes:

f(si) = ¾ix

Ã
Bii ¡

nX

j=1

(¾jBji)

!
for all i = 1; 2; :::; n:
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By condition (4) in Proposition 1 the squared brackets equal zero, and thus
f(si) = 0 for all i = 1; 2; :::; n:

Necessity: We proceed in three steps.

Step 1: If L is unbiased then for all sj; si 2 S the function L(sj ; x)(si) is
a¢ne in x.

Proof: Let L be an unbiased learning rule, and consider two environ-
ments, E and eE. In environment E all strategies receive some payo¤ x
with 0 < x · 1 with certainty. In environment eE some strategy sj 2 S
receives payo¤ 1 with probability x, and payo¤ 0 with probability 1¡ x. All
other strategies receive again payo¤ x with certainty. Both environments
are then such that all strategies have the same expected payo¤. Therefore,
unbiasedness requires that in both environments the expected change in the
probability assigned to any strategy si is zero. Denoting by f(si) expected
changes in probabilities in environment E, and by ~f(si) expected changes
in probabilities in environment eE; we obtain thus for any arbitrary strategy
si 2 S :

f(si) = ¾jL(sj ; x)(si) +
nX

k=1
k 6=j

¾kL(sk; x)(si)¡ ¾i = 0

ef(si) = ¾jxL(sj; 1)(si) + ¾j(1¡ x)L(sj; 0)(si) +
nX

k=1
k 6=j

¾kL(sk; x)(si)¡ ¾i = 0

Subtracting these two equations from each other yields:

¾jL(sj; x)(si)¡ ¾jxL(sj ; 1)(si)¡ ¾j(1¡ x)L(sj; 0)(si) = 0

Dividing by ¾j and re-arranging one obtains:

L(sj; x)(si) = L(sj; 0)(si) + (L(sj ; 1)(si)¡ L(sj ; 0)(si)) x

Thus we have concluded that L(sj ; x)(si) is an a¢ne function of x.. Note
that our argument is true for arbitrary pairs of actions sj and si:

Step 2: If the function L(sj ; x)(si) is a¢ne in x then it can be written in
the form asserted in Proposition 1.
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Proof: Consider …rst the case j = i. We can write the formula for
L(si; x)(si) in Proposition 1 as: ¾i + (1 ¡ ¾i)Aii + (1 ¡ ¾i)Biix. Now re-
call the last equation in Step 1. Clearly, we can choose Aii such that
¾i+(1¡¾i)Aii = L(si; 0)(si), and we can choose Bii such that (1¡ ¾i)Bii =
(L(si; 1)(si)¡ L(si; 0)(si)). The last equation in Step 1 then shows that
with these de…nitions L(si; x)(si) has the form asserted in Proposition 1. For
L(sj ; x)(si) where j 6= i we can proceed analogously.

Step 3: The coe¢cients have to satisfy the restrictions (3) and (4).

Proof: Suppose that all actions give the same deterministic payo¤ x. Then
the expected change in the probability of strategy si can be calculated using
formulas (1) and (2) in Proposition 1. One obtains:

f(si) = ¾i

"Ã
Aii ¡

nX

j=1

¾jAji

!
+

Ã
Bii ¡

nX

j=1

¾jBji

!
x

#

This expression has to be zero for all x 2 [0; 1]. This can only be true if both
expressions in big round brackets equal zero. This is what conditions (3) and
(4) say.

Q.E.D.

We now ask which conditions the coe¢cients in Proposition 1 need to
satisfy to ensure that an unbiased rule is either absolutely expedient or
monotone. Notice that only the coe¢cients Bji appear in the two formu-
las in Remark 2. Therefore, our investigation will focus on these coe¢cients.

De…nition 6 An unbiased learning rule L is own-positive if Bii > 0 for all
i = 1; 2; :::; n:

This property means that the probability that the decision maker plays
tomorrow the strategy which he played today increases in the payo¤ which
the decision maker received today. It is a very plausible property. The
following result shows that the learning rules which we want to characterise
in this paper are own-positive.

Proposition 2 An unbiased learning rule L which is absolutely expedient or
monotone is own-positive.
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Proof: Let L be unbiased and absolutely expedient or monotone. Consider
an environment in which all actions have the same expected payo¤ x < 1.
By unbiasedness: f(si) = 0 for all i = 1; 2; :::; n: Now add some " > 0 to the
expected payo¤ of some action si. It is easy to calculate from the formulas in
the proof of Proposition 1 that in this new environment f(si) = ¾i(1¡¾i)Bii".
The probability assigned to all the other strategies taken together changes
by the negative of that amount. Now clearly f(si) has to be positive for L
to be absolutely expedient or monotone. This requires that Bii > 0. This
construction can be done for every strategy si 2 S.

Q.E.D.

Unbiasedness and own-positivity are necessary, but in general not suf-
…cient for absolute expediency. We shall demonstrate this with examples
in Section 7 below. To proceed further we now introduce a further, more
restrictive property.

De…nition 7 An unbiased learning rule L is cross-negative if
(i) Bji ¸ 0 for all i; j 2 f1; 2; :::; ng with i 6= j; and
(ii) if C is a subset of S such that C 6= ; and SnC 6= ; then there are

strategies si 2 C and sj 2 SnC such that Bji > 0.

Condition (i) in this de…nition means that if the decision maker played a
strategy sj today the probability that he plays a di¤erent strategy si tomor-
row is non-increasing in the payo¤ which he received today. This rules out
that the decision maker …nds that sj is “similar” to si, and that therefore a
success today with sj is encouraging news also for si. One can easily imagine
circumstances in which this condition is not plausible, and restricts learning
behaviour unduly. But recall that we are considering a decision maker who
is ignorant about his environment. For such a decision maker this condition
might seem plausible.

Cross-negativity allows for the possibility that some cross e¤ects are null,
i.e. that the size of the payo¤ received today has no impact on the probability
with which some other strategy is played tomorrow. However, not all cross-
e¤ects can be null. This is implied by condition (ii). Condition (ii) means
that whenever one partitions S into two subsets, then one can …nd a pair of
strategies, one from each subset, such that the cross e¤ect is strictly negative.

Remark 3 (i) If n = 2 then an unbiased learning rule is cross-negative if
and only if it is own-positive.

15



(ii) If n ¸ 3 then an unbiased learning rule which is cross-negative is also
own-positive, but not vice versa.

This remark follows directly from condition (4) of Proposition 1. The
only exception is the comment “but not vice versa” in condition (ii). This
comment will be proved by examples which we give in Section 7 below.

In the next two sections we shall now restrict attention to unbiased learn-
ing rule which are own-positive. We shall …rst discuss cross-negative rules
and then we discuss other rules which are not cross-negative. In each case
our focus will be on the question whether the rules which we are considering
are absolutely expedient or monotone.

6 Cross-Negative Rules
The …rst result in this section shows that cross-negativity is su¢cient for
absolute expediency.

Proposition 3 An unbiased learning rule L which is cross-negative is ab-
solutely expedient.

Proof: In this proof we shall …nd it convenient to work with the following
formula for the expected change in a strategy’s probability under unbiased
learning rules. The formula is, of course, equivalent to the formula given in
Remark 2, and follows from that formula by simple algebra.

f(si) = ¾i

nX

j=1
j 6=i

(¾jBji(¼i ¡ ¼j)) for all i = 1; 2; :::; n: (*)

Suppose that L is an unbiased, cross-negative learning rule. Let E be
an environment such that S¤ 6= S; i.e. ¼i 6= ¼j for some i; j 2 f1; 2; :::; ng.
We need to prove that g > 0. We shall prove this by induction over the
number of expected payo¤ values which are possible in E, i.e. by induction
over ]fx 2 [0; 1]j¼i = x for some i = 1; 2; :::; ng.

We begin with the case ]fx 2 [0; 1]j¼i = x for some i = 1; 2; :::; ng = 2.
Let the di¤erence between the two payo¤ levels be " > 0. Consider the
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expected change in the probability of the better strategies. Using formula
(*) we can write this as:

f(S¤) =
X

si2S¤
¾i

X

sj2SnS¤
¾jBji"

All expressions over which the sum is taken on the right hand side are non-
negative. Moreover, condition (ii) in the de…nition of cross-negativity implies
that some expressions have to be positive. Therefore, the total probability
of S¤ must increase and the probability of the set SnS¤ must decrease. This
implies g > 0.

Now suppose we had shown the assertion for all environments E with
]fx 2 [0; 1]j¼i = x for some i = 1; 2; :::; ng = º ¡ 1; and consider an environ-
ment E such that ]fx 2 [0; 1]j¼i = x for some i = 1; 2; :::; ng = º. Denote
the set of all strategies with the lowest expected payo¤ level by S. Denote
the corresponding expected payo¤ level by ¼: Denote the set of all strategies
with the second lowest expected payo¤ level by bS. Denote the corresponding
expected payo¤ level by b¼: De…ne k ´ b¼ ¡ ¼. Consider a modi…ed envi-
ronment in which the expected payo¤ of all strategies in S is raised to b¼.
Denote the expected change of payo¤s in this modi…ed environment by g0.
By the inductive assumption we know that g0 > 0. We shall now show that
g ¡ g0 > 0. This then obviously implies the claim.

To calculate g¡g0 we denote for every s 2 S by f 0(s) the expected change
in the probability of strategy s in the modi…ed environment. Then:

g ¡ g0 =
X

si =2S

f(si)¼i +
X

sj2S

f(sj)¼

¡
X

si =2S

f 0(si)¼i ¡
X

sj2S

f 0(sj)(¼ + k)

=
X

si =2S

(f(si)¡ f 0(si))¼i

+
X

sj2S

(f(sj)¡ f 0(sj))¼ ¡
X

sj2S

f 0(sj)k

Using formula (*) we have for strategies si =2 S:

f(si)¡ f 0(si) = ¾i
X

sj2S

¾jBjik
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Because the sum of the probabilities can’t change, we can conclude that:
X

sj2S

(f(sj)¡ f 0(sj)) = ¡
X

si =2S

(f(si)¡ f 0(si))

= ¡
X

si =2S

X

sj2S

¾i¾jBjik

Using these formulas, we can rewrite our earlier equation as:

g ¡ g0 =
X

si =2S

X

sj2S

¾i¾jBjik¼i

¡
X

si =2S

X

sj2S

¾i¾jBjik¼ ¡
X

sj2S

f 0(sj)k

=
X

si =2S

X

sj2S

¾i¾jBjik(¼i ¡ ¼)

¡
X

sj2S

f 0(sj)k

The …rst term in this di¤erence is evidently strictly positive. The second
term, which is subtracted, is non-negative because for every sj 2 S the
expected change f 0(sj) is non-positive. This is evident from formula (*) and
the fact that the strategies in S are among the strategies with the lowest
payo¤ in the modi…ed environment. All the factors (¼i ¡ ¼j) in formula (*)
will be negative or zero. We can conclude that g(¾)¡ g0(¾) > 0, as required.

Q.E.D.

If we consider monotonicity instead of absolute expediency then we …nd
a stronger result than Proposition 3. Cross-negativity turns out to be both
necessary and su¢cient for monotonicity.

Proposition 4 An unbiased learning rule is monotone if and only if it is
cross-negative.

Proof: Su¢ciency: From (*) in the proof of Proposition 2 we have for every
si 2 S:

f(si) = ¾i

nX

j=1
j 6=i

(¾jBji(¼i ¡ ¼j)):
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Consider any strategy si 2 S¤. If L is cross-negative then all the expressions
in the sum on the right hand side are non-negative, and hence the probability
of si will not decrease in expected terms. If moreover, S¤ 6= S then we know
by condition (ii) in De…nition 7 that there exist si 2 S¤ and sj 2 S¤nS
such that Bji > 0, and hence the expected change in the probability with
which strategy s is played is strictly positive. Thus we can conclude that
also f(S¤) > 0.

Necessity: Suppose that L is monotone. By Lemma 1 it is unbiased. We
now prove that it also is cross-negative. We begin by proving that it has to
satisfy condition (i) in the de…nition of cross-negativity.

Condition (i): Our proof is indirect. Suppose there were j; i 2 f1; 2; :::; ng
with j 6= i such that Bji < 0. Consider an environment E such that si yields
payo¤ x with probability 1, sj yields payo¤ x¡ ± with probability 1, and all
other strategies sk (if any) yield payo¤ x ¡ " with probability 1. Here we
assume ±; " > 0. Then, using (*) in the proof of Proposition 2:

f(si) = ¾i

nX

j=1
j 6=i

(¾jBji(¼i ¡ ¼j))

= ¾i

0
B@Bji± +

nX

k=1
k 6=ij

(¾kBki")

1
CA

If Bji < 0 then this expression becomes negative when " is su¢ciently close
to zero, which contradicts monotonicity.

Condition (ii). The proof is indirect. Suppose there were some subset C
of S such that C 6= ; and SnC 6= ; and such that Bji = 0 for all si 2 C and
sj 2 SnC. Consider an environment E such that all strategies in C yield
payo¤ x with certainty, and all strategies in SnC yield payo¤ y < x with
certainty. Using the same formula as before it is immediate that f(s) = 0
for all strategies in C, and hence that the rule is not monotone.

Q.E.D.

Propositions 3 and 4 have the following implication.

Corollary 1 Every monotone learning rule is absolutely expedient.
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Recalling Remark 3 we can also deduce from Propositions 2, 3 and 4:

Corollary 2 If n = 2 then a learning rule is absolutely expedient if and only
if it is monotone.

An example of a learning rule which belongs to the class which we have
discussed in this section is Cross’ rule which we presented in Section 4. To in-
dicate that the class of monotone rules is quite large, and encompasses many
rules which are intuitively quite di¤erent from Cross’ rule we now give a fur-
ther example of a monotone learning rule. The example will describe learning
based on an aspiration level. The example contrasts with the learning rule
studied in Börgers and Sarin (2000) which is also based on an aspiration
level, but which fails to be absolutely expedient or even unbiased. The rule
in Börgers and Sarin (2000) is quite simple and intuitive. Example 2, by
contrast, involves relatively complicated formulas.

Example 2 Let any ® with 0 · ® · 1 be given. Using the notation of
Proposition 1 we can then de…ne a monotone learning rule by setting for all
i; j 2 f1; 2; :::; ng with i 6= j:

Aii = ¡¾i
nX

j=1
j 6=i

£
(¾j)

2(1¡ ¾j)
¤
®

Bii = +¾i

nX

j=1
j 6=i

£
(¾j)

2(1¡ ¾j)
¤

Aji = ¡(1¡ ¾j)(1¡ ¾i)¾j¾i®

Bji = +(1¡ ¾j)(1¡ ¾i)¾j¾i
Note that for all i; j we have:

Aji = ¡Bji®

which implies that

L(si; x)(si) = ¾i + (1¡ ¾i)Bii (x¡ ®)
L(sj ; x)(si) = ¾(si)¡ ¾(si)Bji (x¡ ®) for all j 6= i:
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Therefore, according to this learning rule, if strategy si was played in iter-
ation n, the decision maker increases (resp. decreases) in period n + 1 the
probability assigned to si if the payo¤ x which the decision maker received
in iteration n was above (resp. below) ®. Intuitively, ® thus plays the role of
an “aspiration level.” If the probability assigned to si is increased (resp. de-
creased), the probability of all other strategies is decreased (resp. increased).

It is obvious that the learning rule in Example 2 is cross-negative. There-
fore we only show that it is unbiased, i.e. satis…es conditions (3) and (4)
in Proposition 1. We write the proof only for condition (4) because it is
completely analogous for condition (3). We need to show that for every
i = 1; 2; :::; n :

Bii =
nX

j=1

¾jBji ,

(1¡ ¾i)Bii =
nX

j=1
j 6=i

¾jBji

(1¡ ¾i)¾i
nX

j=1
j 6=i

£
(¾j)

2(1¡ ¾j)
¤
=

nX

j=1
j 6=i

(¾j(1¡ ¾j)(1¡ ¾i)¾j¾i)

which is obviously true.

7 Cross-Positive Rules
We call an unbiased learning rule “cross-positive” if it is not cross-negative.
Are there unbiased cross-positive learning rules which are absolutely expe-
dient? In this section we show that the answer is yes. We show this by
giving an example of such a rule. We also give an example which proves that
not all own-positive and cross-positive rules are absolutely expedient. We
do not have a general charcterisation of those own-positive rules which are
absolutely expedient, and our examples suggest that such a characterisation
may have to be quite complicated.

Intuitively, it is surprising that there are examples of cross-positive rules
which are absolutely expedient. Cross-positivity means intuitively, as we
suggested earlier, that some notion of similarity of strategies is built into
the learning rule. On the other hand absolute expediency requires that the
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learning rule is able to improve performance in any environment, including
environments in which the strategies which the learning rule treats as similar
are, in reality, not similar at all.

The results of the previous sections show that cross-positive rules which
are absolutely expedient can only exist in the case n ¸ 3. Therefore we
restrict attention to this case.

Example 3 Suppose n = 3 and the current state is: ¾1 = ¾2 = ¾3 = 1
3
. (We

show in the appendix how to generalize this example to an arbitrary number
of strategies and arbitrary initial state). De…ne:

Aji = 0 for all j; i 2 f1; 2; 3g:

Bii =
1

10
for all i 2 f1; 2; 3g:

B12 = B21 = ¡ 1

10
:

Bi3 = B3i =
3

10
for all i 2 f1; 2; 3g:

Thus, if strategy s1 is played and strategy s2 is updated, or vice versa,
then this rule adjusts the behaviour as if a positive payo¤ had not only
been received for strategy s1 but also for strategy s2, or vice versa. In this
sense the rule treats strategies s1 and s2 as similar. We now show that
nonetheless the rule is absolutely expedient in all environments, and hence
even in environments in which s1 and s2 are, in fact, very dissimilar.

Using the formula in Remark 2 the expected change in expected payo¤s
under this rule can be calculated as:

g =
1

3
¢ 1
10

¢ (¼21 + ¼22 + 3¼23)

¡1
9

¢ 1
10
(¼21 ¡ ¼1¼2 + 3¼1¼3)

¡1
9

¢ 1
10
(¡¼2¼1 ¡ ¼22 + 3¼2¼3)

¡1
9

¢ 1
10
(3¼3¼1 + 3¼3¼2 + 3¼

2
3)

=
1

9
¢ 1
10

¢ 2(¼21 + ¼22 + 3¼23 + ¼1¼2 ¡ 3¼1¼3 ¡ 3¼2¼3)
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We are going to show that the term in brackets is strictly positive except
when all expected payo¤s are identical: ¼1 = ¼2 = ¼3, in which case it is
obviously zero. We can write the term in brackets it as:

¼21 + ¼
2
2 + ¼1¼2 ¡ 3¼3(¼1 + ¼2 ¡ ¼3)

The term which gets subtracted here is largest if:

¼3 =
¼1 + ¼2
2

If we substitute this for ¼3 we thus get a lower boundary:

¼21 + ¼
2
2 + ¼1¼2 ¡ 3¼1 + ¼2

2
(¼1 + ¼2 ¡ ¼1 + ¼2

2
)

=
1

4
(¼1 ¡ ¼2)2

Clearly, this will always be non-negative. Moreover, it will be zero only if
¼1 = ¼2. Now recall that this is a lower bound, and that for …xed ¼1 and ¼2
this lower bound will be attained only if ¼3 = ¼1+¼2

2
. Thus, we have found

that the expression which we are investigating is strictly positive except if
¼1 = ¼2 and ¼3 = ¼1+¼2

2
. In other words, it will be strictly positive except if

all expected payo¤s are identical. This is what we wanted to prove.
We now give an example which proves that not all unbiased and own-

positive rules are absolutely expedient.

Example 4 Suppose n ¸ 3; and that the decision maker applies Cross’ rule
with the following modi…cation. If s1 or s2 have been played and a payo¤
x has been received, then the decision maker applies Cross’ rule to the joint
probability of s1 and s2, and moreover keeps the relative probabilities of these
two strategies unchanged. This leads to the following formulas:

Aji = 0 for all j; i 2 f1; 2; :::; ng:

Bii =
¾i(1¡ ¾1 ¡ ¾2)
(¾1 + ¾2)(1¡ ¾i)

for i = 1; 2.

B12 = B21 = ¡1¡ ¾1 ¡ ¾2
¾1 + ¾2

:

Bji = 1 if j =2 f1; 2g or i =2 f1; 2g:
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The expected movement of payo¤s under this rule is the same as in the
modi…ed environment in which strategies s1 and s2 are replaced by a new
strategy s which has expected payo¤ ¾1¼1 + ¾2¼2. The same is true for the
probabilities of all strategies s 6= s1; s2. The expected movement of strategies
s1 and s2 is the same as the expected movement of the new strategy which
replaces s1 and s2 multiplied by ¾1

¾1+¾2
resp. ¾2

¾1+¾2
:

It is then clear that the fact that Cross’ rule is unbiased implies that this
new rule is unbiased, too. However, it is not absolutely expedient. Consider
an environment in which the expected payo¤ of strategies s1 and s2 taken
together equals the expected payo¤ of all other strategies: ¾1¼1 + ¾2¼2 = ¼i
for all i 6= 1; 2, but in which ¼1 > ¼2: Then in expected terms no strategy’s
probability will change, and therefore also the expected utility will stay the
same. However, absolute expediency requires it to increase.

8 A Global Model of Learning
The model that we have considered so far was a “local” model in two senses.
Firstly, we took the decision maker’s initial behaviour as exogenous, and
didn’t consider learning rules which work for a variety of di¤erent initial be-
haviours. Secondly, we only looked at two periods: “today” and “tomorrow”,
and didn’t trace the decision maker’s behaviour of longer time spans. In this
section we shall discuss how both restrictions can be relaxed. The motivation
for relaxing the …rst restriction is that decision maker might not know how
to choose his initial action distribution, and might therefore desire a learning
rule which improves his performance independent of where he starts. The
motivation for relaxing the second condition is that we might be interested in
understanding for particular environments where the learning process leads
in the long run. We relax both restrictions simultaneously by introducing
a model of learning which is well-de…ned for any initial position, and which
the decision maker can thus apply repeatedly. We then keep track of his
behaviour over longer time spans. The learning model of this section is, in
this sense, “global”.

The decision maker’s learning process now has a state space V which
is some arbitrary subset of a …nite-dimensional Euclidean space. The state
determines behaviour via a function b : V ! ¢(S). If the decision maker is
at some particular point in time in state v 2 V then he chooses his strategy
according to the distribution b(v). Separating state space of the learning rule
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and behaviour in this way allows the decision maker to have a larger memory.
For example, it allows us to consider the case that the decision maker keeps
track of how many times he has already played the same situation.

How the decision maker’s state is adjusted in response to his experiences
is described by a learning rule which we now denote by ¤.

De…nition 8 A global learning rule is a function ¤ : V £ S £ [0; 1] ! V .

If the decision maker enters a period in state v, chooses in that period the
strategy si (distributed according to b(v)), and receives payo¤ x (distributed
according to ¹i), then in the next period his state is ¤(v; si; x).

We want to make our earlier analysis applicable to global learning rules.
In analogy to Assumption 2 we therefore introduce the following assumption.

Assumption 3: The behaviour function b is continuous in v, and the global
learning function ¤ is continuous in (v; x)..

Consider a global learning rule ¤, and focus on some state v. The global
learning rule then implies a “local” learning rule of the type we discussed in
earlier sections. We shall call it the local learning rule Lv at v, and we de…ne
it by: Lv(si; x) = b(¤(v; si; x)) for every x 2 [0; 1]. The local learning rule
Lº is, in a sense, the reduced form of ¤ at the state º.

We can now extend the de…nitions of absolute expediency and monotonic-
ity to global learning rules.

De…nition 9 A global learning rule ¤ is absolutely expedient (resp. monotone)
if for every v 2 V such that b(v) assigns positive probability to all si 2 S
we have that the local learning rule Lv at v is absolutely expedient (resp.
monotone).

We can now apply the results of the previous sections to global learning
rules which are absolutely expedient resp. monotone. At every state at
which b(º) assigns positive probability to all si 2 S the local learning rule
will satisfy all the result of the earlier sections.

In the remainder of this section we discuss examples of global learning
rules which are absolutely expedient or monotone. The simplest class of
examples can be obtained by setting the state space equal to the interior of
the strategy simplex, V = ¢(S), letting b be the identity, and de…ning the
global learning rule by applying the local learning rules which we considered
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in our earlier examples at all possible states. In this way we can construct
absolutely expedient global learning rules based on Examples 1, 2 and 3, and
the …rst two of these examples will also be monotone.

For the case of Cross’ rule, i.e. Example 1, the corresponding global learn-
ing rule was studied in Börgers and Sarin (1997). There it was shown that
Cross’ rule with very small step size stays with high probability close to tra-
jectories of the replicator dynamics. This was shown for game environments
and for …nite time horizons, but the result can be extended to decisions with
i.i.d payo¤s and to in…nite time horizons. Hence the rule picks in such envi-
ronments in the long run with high probability expected payo¤ maximising
actions. This extension, and generalizations of these results to all monotone
learning rules, were proved in earlier versions of this paper. Interestingly,
mathematical di¢culties prevented us from extending these results to all
absolutely expedient rules.

A second class of examples can be obtained by extending the state space
to include the number of the current period: V = ¢(S) £ N with typical
element (¾; t), letting b again be the identity, and de…ning the updating rule
by applying the learning rules of Examples 1, 2 or 3, except that the step
size in round t 2 N is equal to 1

t
. That is, the vector of movement is the

same as in these examples, but all of its components are multiplied by 1
t
. The

idea is that in later iterations the decision maker adjusts his behaviour by
less because he is aware that he has accumulated experience. Multiplication
of the vector of movement by a positive number which does not depend on
the strategy played or the payo¤s received does not a¤ect the properties of
monotonicity or absolute expediency. In i.i.d environments rules of the type
described in this paragraph can be expected to pick with probability 1 an
expected payo¤ maximising action. We conjecture that this can be shown
using similar methods as in Rustichini (1999).

Our …nal example, a learning rule due to Erev and Roth (1995, 1998),
has a signi…cantly richer state space than the examples which we have dis-
cussed so far. The example illustrates how the framework of this section
encompasses a large variety of learning rules.

Example 5 Erev and Roth (1995, 1998). The state space is V = Rn
>0: If v =

(vi)i=1;2;:::;n 2 V then vi is interpreted as the decision maker’s “propensity”
to play si.

The decision maker chooses strategies with probabilities which are propor-
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tional to the propensities:

b(vi) =

µ
vi

§nj=1vj

¶

i=1;2;:::;n

The global learning rule ¤ is de…ned by:

¤(v; x; si) = (v̂i)j=1;2;:::;n where

v̂i = vi + x and

v̂j = vj if j 6= i.

Thus only the propensity of the strategy actually played gets updated. The
new propensity to play that strategy equals the old propensity plus the received
payo¤.

It is interesting to investigate the relation between Erev and Roth’s rule
and Cross’ learning rule. This connection becomes clear if one calculates the
local learning rule Lv induced by Erev and Roth’s learning rule for any given
state º. It is:

Lv (si; x) (si) = ¾i +
1

§nk=1vk + x
(1¡ ¾i) x

Lv (sj; x) (si) = ¾i ¡
1

§nk=1vk + x
¾ix for all j 6= i.

This induced local learning rule is Cross’ rule, except that the direction of
movement is multiplied by 1

§nk=1vk+x
. This factor is stochastic. However, with

probability 1 it converges to zero as long as there is a positive probability of
strictly positive payo¤s. Erev and Roth’s learning rule is thus Cross’ learning
rule with a stochastically declining step size.

Note that the learning rule induced by the Erev-Roth global learning rule
is not linear in payo¤s. Therefore we can deduce, using Proposition 1, that
it is not unbiased, and Lemma 1 then implies that it is neither absolutely
expedient nor monotone. We now give an example to demonstrate this.6 Let
S = fs1; s2g. Suppose that the environment is such that s1 yields 0:1 and 0:9
with probability 1

2
each, and s0 yields 0:4 for sure. Consider the state v such

that: v1 = 0:02 and v2 = 0:05. Thus the probability of s1 today is 2
7
. The

6A similar example appeared …rst in Sarin (1995).
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expected probability of s1 tomorrow is: 2
7
(1
2
¢ 0:12
0:19

+ 1
2
0:92
0:99
)+ 5

7
¢ 0:02
0:49

¼ 0:252 <
2
7

¼ 0:286: This implies that in this environment, for this particular state v,
the implied local learning rule at state v is not monotone and not absolutely
expedient.

9 Related Literature
Papers which characterise all learning rules which possess certain properties
exist both in the economics literature and in the literature on machine learn-
ing. In this section we …rst review papers from the economics literature, and
then papers from the literature on machine learning.

Schlag (1994) and Sarin (1995) are two early unpublished works on ab-
solute expediency of global learning rules.7 Both papers study global learning
rules with state space ¢(S): For the case of two actions Schlag provides a
characterisation of Cross’ learning rule. He assumes that the rule is a¢ne
in payo¤s where the coe¢cients of the transformation of payo¤s are only al-
lowed to depend on the current mixed strategy, and not on the pure strategies
which has been played and which is being updated. Schlag shows that the
Cross rule is the absolutely expedient, and that it maximises expected payo¤
gain among all absolutely expedient rules. Sarin (1995) also deals with the
case of two strategies. He does not assume that the learning rule is a¢ne
in payo¤s. He characterises the Cross’ rule and some multiples of it using
further axioms. Notice the di¤erence in spirit between these two papers and
ours. The aim of our paper is not to axiomatize Cross’ or any other learning
rule. Our aim is to describe a large and ‡exible class of learning rules all of
which have certain properties in common.

The last comment in the previous paragraph describes also what distin-
guishes our paper from a recent new paper by Schlag (2001). Schlag is there
again concerned with the case of two actions. He focuses on global learning
rules with …nite or countably in…nite state space. He assumes that the global
learning rule ¤ is a¢ne in payo¤s where the coe¢cients of the payo¤ trans-
formation are allowed to depend on the current state. The main innovation
of Schlag (2001) is to introduce a farsighted player whose focus is on long
run discounted payo¤s. We justi…ed the myopia postulated in our paper by
suggesting that the decision maker might not know whether the environment

7Both papers work in game rather than single person decision settings. However, it is
easy to adapt their results to the case of single person decisions.
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is stationary, and might therefore not be able to evaluate long run payo¤s.
Schlag’s approach seems more natural when the decision maker is certain to
live in a stationary environment. Schlag’s focus is on …nding axioms which
select unique rules.8

Easley and Rustichini (1999) consider an individual who faces a repeated
decision problem under risk, and who observes in every round not only the
payo¤ of the strategy which he has chosen but also the payo¤ which other
strategies would have received had they been chosen.9 Hence the agent re-
ceives more feedback information than in our model. The state space V of
their learning rule is the set of preferences over mixed strategies which satisfy
the von Neumann Morgenstern axioms. The elements of the state space can
be viewed as “weights” for the decision maker’s strategies. Easley and Rus-
tichini study a variety of axioms for an individual’s global learning rule and
show that these axioms imply that the individual’s asymptotically chooses
the expected payo¤ maximizing action, and that weights are updated accord-
ing to a transformation of replicator dynamics. Their axioms are unrelated
to the absolute expediency and monotonicity conditions which we discuss
here.

A large set of papers related to ours can be found in the literature on
machine learning, and speci…cally in that part which is concerned with the
learning behaviour of stochastic automata. The concept of a stochastic au-
tomaton is similar to our concept of a global learning rule ¤ with state space
V = ¢(s). A useful overview of the literature on stochastic automata and
learning has been provided by Narendra and Thathachar (1989).10 In this lit-
erature, absolute expediency was originally de…ned by Lakshmivarahan and
Thathachar (1973). Monotonicity is studied by Toyama and Kimura (1977)
who refer to this property as absolute adaptability.

The most general characterisation of absolutely expedient learning rules
in this literature of which we are aware is Theorem 6.1 in Narendra and
Thathachar (1989). This result characterizes absolutely expedient learning
rules assuming that the updating rule is a¢ne in payo¤s. By contrast, we do
not assume this but derive it (Proposition 1). The form of linearity which
Narendra and Thathachar assume is more restrictive than the form of linear-
ity which we derive in that Narendra and Thathachar allow the coe¢cients

8At the time of writing, Schlag’s paper is still incomplete.
9Formally, that is expressed in their model by the condition that the individual observes

in each round the “state of the world”.
10For our setup their Chapter 6 is the relevant chapter.
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in the a¢ne transformation of payo¤s to depend only on the current state
of the learning rule and on the action played whereas our results show that
one can allow in addition dependence on the strategy whose probability is
updated, and still maintain absolute expediency. Narendra and Thathachar
note that in their framework absolute expediency and monotonicity are equiv-
alent (Comment 6.2). This follows also from our results because Naren-
dra and Thathachar’s assumptions about the form of the learning rule im-
ply that every unbiased rule which is of this form must be cross-negative.
Thus, Propositions 3 and 4 show the equivalence of absolute expediency and
monotonicity in Narendra and Thathachar’s framework.

Toyama and Kimura (1977) characterise monotone learning rules. Like
Narendra and Thathachar they assume linearity of the learning rule in payo¤s
whereas we derive it. They allow the coe¢cients of the payo¤ transformation
to depend on the current state, but neither on the action which has been
played nor on the action which is updated. Thus, again, in their framework
monotonicity and absolute expediency are actually equivalent.

10 Conclusion
Within a very large class of learning rule we have provided results about all
learning rules which have certain desirable properties: absolute expediency
and monotonicity. Our analysis leads to interesting lines of further theoreti-
cal and experimental research. Further theoretical research could investigate
the long run implications of learning behaviour that adopts one of the learn-
ing rules studied in this paper. We indicated some conjectures in Section 8.
Experimental research could investigate whether subjects’ choice probabili-
ties are a¢ne functions of payo¤ experiences, as required in Proposition 1,
and whether the coe¢cients of these a¢ne functions satisfy the constraints
which we discussed in Sections 5, 6 and 7.

11 Appendix: Generalizing Example 3
In this appendix we generalize Example 3 to the case of arbitrarily many
strategies and arbitrary initial state. Suppose that n ¸ 3. Suppose that the
current state is some probability distribution ¾ on S such that ¾i > 0 for all
i = 1; 2; :::; n: We wish to de…ne a learning rule which treats two designated
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elements of S as “similar”. We shall denote these two elements by s1 and s2.
The learning rule will involve two constants k and `. We assume that they
are both elements of the open interval (0; 1). We shall also assume that they
are both “su¢ciently small”. What we mean by this will later be made more
precise.

The idea of the learning rule is that if s1 is played and payo¤ x is received,
then this payo¤ is attributed not just to s1 but also to s2. Both strategies’
probabilities are then updated as in Cross’ rule. An important point is that
the probability of s1 is updated as if the payo¤ had been kx, whereas the
probability of s2 is updated as if the payo¤ had been `x: The proof below will
show that the learning rule is absolutely expedient if ` is su¢ciently small
relative to k. The interpretation of this condition is that, although payo¤s
received when one strategy is played can be attributed to the other strategy
as well, this e¤ect must be weak in relative terms.

We begin by giving the formal de…nition of our learning rule. The for-
mulas are complicated because we need to …t them into the framework of
Proposition 1. The formulas re‡ect the ideas described in the previous para-
graph and also the assumption that all strategies other than s1 and s2 are
treated symmetrically.

Aji = 0 for all j; i 2 f1; 2; :::; ng.

B11 = B22 = k

B12 = ¡`1¡ ¾2
¾2

B21 = ¡`1¡ ¾1
¾1

B1i =
k(1¡ ¾1) + `(1¡ ¾2)

1¡ ¾1 ¡ ¾2
for all i = 1; 2; :::; n with i 6= 1; 2

B2i =
k(1¡ ¾2) + `(1¡ ¾1)

1¡ ¾1 ¡ ¾2
for all i = 1; 2; :::; n with i 6= 1; 2:

Bi1 =
k(1¡ ¾1) + `¾2¾1 (1¡ ¾1)

1¡ ¾1 ¡ ¾2
for all i = 1; 2; :::; n with i 6= 1; 2:
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Bi2 =
k(1¡ ¾2) + `¾1¾2 (1¡ ¾2)

1¡ ¾1 ¡ ¾2
for all i = 1; 2; :::; n with i 6= 1; 2:

Bij =
k¾1(1¡ ¾1) + k¾2(1¡ ¾2) + `¾1(1¡ ¾2) + `¾2(1¡ ¾1)

(¾1 + ¾2)(1¡ ¾1 ¡ ¾2)
for all i; j 2 f1; 2; :::; ngnf1; 2g:
We can now say more precisely what we mean by the assumption that k

and ` are “su¢ciently small”. We mean by this that all positive entries of
the above matrix need to be less than one. It is obvious that for …xed current
state ¾ it is possible to choose k and ` so that this is true. On the other
hand one can also easily see that it is not possible to choose the same k and
` for all current states ¾.. For any given and …xed k and ` there will always
be some states ¾ for which the condition is violated. Thus, the constants k
and ` in the above formula will change with the state ¾, and are “constant”
only in as far as they don’t depend on the payo¤ x.

Our proof of absolute expediency of this learning rule will proceed in two
steps. First, we prove it for the case that n = 3. Then we prove it for the
case n > 3. A key idea in the proof is to reduce the case n > 3 to the case
n = 3.

Proof of Absolute Expediency in the Case n = 3 : Using the formula in
Remark 2 we can calculate g as follows, where we …rst collect all terms which
do not involve ¼3, and then all terms which do involve ¼3.

g = ¾1(1¡ ¾1)k¼21 + `¾2(1¡ ¾1)¼1¼2
+`¾1(1¡ ¾2)¼1¼2 + ¾2(1¡ ¾2)k¼22
¡fk¾1(1¡ ¾1)¼1 + `¾1(1¡ ¾2)¼1
+k¾2(1¡ ¾2)¼2 + `¾2(1¡ ¾1)¼2
+k¾1(1¡ ¾1)¼1 + `¾2(1¡ ¾1)¼1
+k¾2(1¡ ¾2)¼2 + `¾1(1¡ ¾2)¼2g¼3
+(k¾1(1¡ ¾1) + k¾2(1¡ ¾2) + `¾1(1¡ ¾2) + `¾2(1¡ ¾1))¼23

To simplify this formula we use the following notation:

® ´ k¾1(1¡ ¾1)
¯ ´ k¾2(1¡ ¾2)
° ´ `(¾1(1¡ ¾2) + ¾2(1¡ ¾1))
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Then we can write g as follows:

g = ®¼21 + ¯¼
2
2 + °¼1¼2

¡f2®¼1 + 2¯¼2 + °(¼1 + ¼2)g¼3
+(®+ ¯ + °)¼23

Now observe that for …xed ¼1 and ¼2 the expected change in expected payo¤s
is a quadratic function of ¼3 where the coe¢cient in front of the square is
positive. Thus, we can use calculus methods to …nd that value of ¼3 for
which the increase in g is smallest. It is:

¼3 =
2®¼1 + 2¯¼2 + °(¼1 + ¼2)

2(®+ ¯ + °)

We see that this is a weighted average of ¼1 and ¼2. Now substitute this
value of ¼3 in the equation above. We obtain a lower boundary for g:

g ¸ ®¼21 + ¯¼
2
2 + °¼1¼2

¡(2®¼1 + 2¯¼2 + °(¼1 + ¼2))
2

4(®+ ¯ + °)

We multiply the right hand side of this equation by 4(® + ¯ + °), which is
clearly sign-preserving, and call the expression which we get bg. We obtain:

bg = 4(®+ ¯ + °)(®¼21 + ¯¼22 + °¼1¼2)¡ (2®¼1 + 2¯¼2 + °(¼1 + ¼2))2

This simpli…es to:
bg = (4®¯ ¡ °2)(¼1 ¡ ¼2)2

Suppose we can show that the …rst bracket in this expression is strictly
positive. Then obviously whenever ¼1 6= ¼2 the whole expression is strictly
positive and we are done. Now consider the case that ¼1 = ¼2 and that
¼3 6= ¼1. Recall that bg is only the lower boundary for g. It has been
calculated for the worst case value of ¼3. The worst case is one in which ¼3
is a weighted average of ¼1 and ¼2. Thus, if ¼1 = ¼2 then the worst case is
that ¼3 = ¼1 = ¼2. In that case obviously the above expression is zero. But
because this is the unique minimizer of expected change in expected payo¤
in all other cases g will be strictly positive.

Thus it is su¢cient to show that the …rst bracket in the above expression
is strictly positive:

4®¯ > °2
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Now we recall the de…nition of ®, ¯, and °, and substitute back:

4k2¾1¾2(1¡ ¾1)(1¡ ¾2) > `2(¾1(1¡ ¾2) + ¾2(1¡ ¾1))2

This will be true if ` is su¢ciently small relative to k. Note that the appro-
priate choice of ` depends on the current state, but not on the payo¤s.

Proof of Absolute Expediency in the Case n > 3 : To simplify formulas,
be shall denote Bij where i; j 2 f1; 2; :::; ngnf1; 2g simply by “B”. That is:

B ´ k¾1(1¡ ¾1) + k¾2(1¡ ¾2) + `¾1(1¡ ¾2) + `¾2(1¡ ¾1)
(¾1 + ¾2)(1¡ ¾1 ¡ ¾2)

:

To check the absolute expediency of this learning rule we now calculate
the expected change in expected payo¤s using the formula for g in Remark
2:

g = ¾1(1¡ ¾1)k¼21 + `¾2(1¡ ¾1)¼1¼2
+`¾1(1¡ ¾2)¼1¼2 + ¾2(1¡ ¾2)k¼22

¡
nX

i=1
i6=1;2

¾1¾i
k(1¡ ¾1) + `(1¡ ¾2)

1¡ ¾1 ¡ ¾2
¼1¼i

¡
nX

i=1
i6=1;2

¾2¾i
k(1¡ ¾2) + `(1¡ ¾1)

1¡ ¾1 ¡ ¾2
¼2¼i

¡
nX

i=1
i6=1;2

¾i
¾1k(1¡ ¾1) + `¾2(1¡ ¾1)

1¡ ¾1 ¡ ¾2
¼1¼i

¡
nX

j=1
j 6=1;2

¾j
¾2k(1¡ ¾2) + `¾1(1¡ ¾2)

1¡ ¾1 ¡ ¾2
¼2¼j

+
nX

i=1
i6=1;2

¾i(1¡ ¾i)B(¼i)2 ¡
X

i;j2f1;2;:::;ngnf1;2g
i6=j

¾i¾jB¼i¼j:

The proof strategy is to reduce the case n > 3 to the case n = 3 with which
we dealt in the …rst step. We shall re-write the above sum so that one part
of sum equals expected payo¤ change in the case that of only three strategies
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s1, s2 and s3, where the third action’s expected payo¤ is the expected payo¤
of the decision maker in his current state conditional on him not playing s1
or s2. It is useful to introduce notation for the relevant conditional expected
payo¤:

b¼ ´
nX

i=1
i6=1;2

µ
¾i

1¡ ¾1 ¡ ¾2
¼i

¶
:

The second term in our decomposition of g will correspond to the interaction
among strategies other than s1 and s2. Because the learning dynamics is the
Cross dynamics if only these strategies are considered, the expected change in
expected payo¤s will take the form of a variance. It will therefore be useful
to have notation available for the expected value of the squared expected
pro…ts, conditional on the decision maker not playing s1 or s2. De…ne:

bb¼ ´
nX

i=1
i6=1;2

µ
¾i

1¡ ¾1 ¡ ¾2
¼2i

¶
:

Thus, the variance of expected payo¤s, conditional on the decision maker
not playing s1 or s2; is: bb¼¡ (b¼)2, and this will be non-negative, and positive
whenever the strategies other than s1 and s2 don’t all have the same expected
payo¤.

To begin our calculations we note that we can re-write the above expres-
sion as:

g = ¾1(1¡ ¾1)k¼21 + `¾2(1¡ ¾1)¼1¼2
+`¾1(1¡ ¾2)¼1¼2 + ¾2(1¡ ¾2)k¼22

¡¾1(k(1¡ ¾1) + `(1¡ ¾2))¼1b¼
¡¾2(k(1¡ ¾2) + `(1¡ ¾1))¼2b¼

¡(¾1k(1¡ ¾1) + `¾2(1¡ ¾1))¼1b¼
¡(¾2k(1¡ ¾2) + `¾1(1¡ ¾2))¼2b¼

+
nX

i=1
i6=1;2

¾i(1¡ ¾i)B¼2i ¡
X

i;j2f1;2;:::;ngnf1;2g
i6=j

¾i¾jB¼i¼j:

We next analyse the last two terms of this expression:
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nX

i=1
i6=1;2

¾i(1¡ ¾i)B¼2i ¡
X

i;j2f1;2;:::;ngnf1;2g
i6=j

¾i¾jB¼i¼j

=
nX

i=1
i6=1;2

¾iB¼
2
i ¡

X

i;j2f1;2;:::;ngnf1;2g
¾i¾jB¼i¼j

= (1¡ ¾1 ¡ ¾2)Bbb¼ ¡ (1¡ ¾1 ¡ ¾2)2Bb¼2

= (1¡ ¾1 ¡ ¾2)Bbb¼ ¡ (1¡ ¾1 ¡ ¾2)Bb¼2 + (¾1 + ¾2)(1¡ ¾1 ¡ ¾2)Bb¼2

Substituting for B in the last expression we get:

= (1¡ ¾1 ¡ ¾2)B(bb¼ ¡ b¼2)
+(k¾1(1¡ ¾1) + k¾2(1¡ ¾2) + `¾2(1¡ ¾1) + `¾1(1¡ ¾2))b¼2

Now we are going to substitute this back into our expression for g, whereby
we write the second of the above two lines before we write the …rst line:

g = ¾1(1¡ ¾1)k¼21 + `¾2(1¡ ¾1)¼1¼2

+`¾1(1¡ ¾2)¼1¼2 + ¾2(1¡ ¾2)k¼22
¡¾1(k(1¡ ¾1) + `(1¡ ¾2))¼1b¼
¡¾2(k(1¡ ¾2) + `(1¡ ¾1))¼2b¼

¡(¾1k(1¡ ¾1) + `¾2(1¡ ¾1))¼1b¼
¡(¾2k(1¡ ¾2) + `¾1(1¡ ¾2))¼2b¼

+(k¾1(1¡ ¾1) + k¾2(1¡ ¾2) + `¾2(1¡ ¾1) + `¾1(1¡ ¾2))b¼2

+(1¡ ¾1 ¡ ¾2)B(bb¼ ¡ b¼2)
Now observe that the …rst seven lines of this expression are exactly the ex-
pression for expected movement of expected payo¤s if there is a third strategy
with expected payo¤ b¼. Thus we know from Step 1that this expression is
non-negative. The last line is the product of three non-negative factors where
the third factor is the variance of expected payo¤s conditional on not playing
s1 and s2.
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We still have to make sure that the above expression is strictly positive
as long as not all strategies have the same expected payo¤. From the case
n = 3 we know that whenever ¼1 6= ¼2 or whenever ¼1 = ¼2 6= b¼ the sum of
the …rst nine lines of the above expression will be strictly positive. Consider
the case that ¼1 = ¼2 = b¼, but that not all strategies other than s1 and
s2 have the same payo¤. Then the last line in the above expression will be
strictly positive because the variance will be strictly positive. This concludes
the proof.
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